文档库 最新最全的文档下载
当前位置:文档库 › 440MPa级易焊接高强度船体钢的研制

440MPa级易焊接高强度船体钢的研制

440MPa级易焊接高强度船体钢的研制
440MPa级易焊接高强度船体钢的研制

440MPa级易焊接高强度船体钢的研制

柴锋杨才福苏航薛东妹

(钢铁研究总院结构材料研究所,北京100081)

摘要本文采用超低碳+复合微合金化的方法,结合新一代的TMCP工艺,研制开发了新型的440MPa级易焊接高强度船体钢。新型440MPa级易焊接高强度船体钢组织形态为细铁素体+少珠光体组织,平均铁素体晶粒尺寸小于7μm,钢的强韧性较传统钢大幅度提高,韧脆转变温度低于-80℃。铁素体中大量弥散析出的(NbTi)(CN)第二相粒子有利于进一步提高钢的强韧性配合。开发钢碳含量及碳当量低,焊接性较传统钢大幅度提高,可以实现0℃焊接不预热。

关键词易焊接,船体钢,细晶强化,析出强化

引言

为适应船体结构大型化、高效化以及自动化发展的方向,对船体结构钢提出了高强度、高韧性以及易焊接的要求。传统高强度船体结构钢均采用Ni-Cr-Mo-V 合金设计,并通过调质热处理以获得高强度、高韧性的配合,这类钢碳含量和碳当量较高,需要焊前预热或焊后热处理。随着高洁净度冶炼、高效连轧技术、夹杂物控制与改性以及新一代控轧控冷技术的研究与应用,美国海军研制了一种屈服强度更高的HSLA65钢[1-2],以取代传统HSS(High strength steel)钢。研究认为,HSLA65钢在提高船体结构安全的同时,可以大幅度降低船体的重量(约2000吨)。更为重要的是,HSLA65钢具有更为优良的焊接性,能大幅度提高焊接施工效率,显著的降低建造成本。

超低碳、微合金化是高强船体钢的发展方向。本项目采用超低碳+复合微合金化设计思路,充分利用细晶强化+析出强化方式取代传统固溶强化,研制开发了新一代440MPa级易焊接高强度船体钢,对比研究了新一代易焊接高强度船体钢的组织性能、第二相析出物以及焊接性能。

1.实验材料

实验钢采用150吨转炉+精炼+连铸工艺生产。其中传统钢采用中板单张轧制,热处理状态为正火+回火。开发钢采用2150热连轧机组轧制,轧后控制冷却+卷取。两种试验钢的轧制厚度均为16mm,化学成分示于表1。

表1 试验钢的化学成分(重量分数,%)

2.实验结果及分析

2.1冶金质量分析

与传统钢中杂质元素含量相比,新开发440MPa易焊接钢在炼钢过程中严格控制钢中的杂质元素S、P含量与气体含量,其中S含量≤0.0001,达到超纯净钢水平。对传统钢与开发钢分别进行表面、截面1/4处以及心部位置的夹杂物观察。结果表明,开发钢相对较为纯净,钢中未观察到A类硫化物,存在少量B 类氧化物与C类硅酸盐夹杂物。而传统钢中存在大量B类氧化物夹杂,C类硅酸盐夹杂以及D类球状氧化物夹杂,其夹杂物数量与级别相对较高。

a b c

d e f

(a~c)传统钢表面、1/4处、心部(d~f)开发钢表面、1/4处、心部

图1 试验钢不同位置的夹杂物金相照片

2.2力学性能

两种试验钢的力学性能示于图2。如图所示,两种试验钢的屈服强度均高于440MPa。虽然新开发440MPa易焊接钢屈服强度较传统钢高20MPa,但抗拉强度较传统钢高40MPa,屈强比(0.84)高于传统钢(0.75)。在-80℃~室温条件下,开发钢冲击功均显著高于传统钢,-40℃冲击功是传统钢2倍以上。传统钢韧脆转变温度约为-40℃,而开发钢韧脆转变温度低于-80℃。

图2 试验钢的力学性能

2.3金相显微组织

两种试验钢的显微组织示于图3。如图所示,传统钢的显微组织主要为铁素体+珠光体组织,其中铁素体组织含量约为80%,平均铁素体晶粒尺寸约为15μm。开发钢的显微组织为典型的细铁素体+少珠光体组织,组织中铁素体含量约为96%,平均铁素体晶粒尺寸约为6.5μm。传统钢由于采用正火+回火的热处理工艺,其表面、心部组织差异相对较小。开发钢由于采用控轧控冷工艺,心部铁素体晶粒尺寸略高于表面,但均低于7μm。

(a~c)传统钢表面、1/4处、心部(d~f)开发钢表面、1/4处、心部

图3试验钢的显微组织

2.4第二相析出粒子观察统计

对试验钢进行透射分析,结果示于图4。透射分析表明,传统钢的显微组织

为铁素体+珠光体+晶间碳化物。传统钢组织中的夹杂物较多,尤其是球状夹杂物较多,粒度约为0.5μm。对比钢中能观察到一定量方形TiN粒子,粒度约为40~50nm。开发钢的组织为细铁素体+少珠光体组织,其中晶间有较多的碳化物存在。开发钢铁素体内观察到大量细小的(NbTi)(CN)复合析出物,粒度约为20nm。

(a~c)传统钢(d~f)开发钢

图4 试验钢的TEM分析

每个样品选择适合的区域,在50000倍连续拍摄10个视场,保证粒子总数超过100个。定量分析时采用普通的定量金相的方法,在大量的电镜照片上测出每个粒子的平均直径-d和单位面积上的质点数N s,在保证95%的置信度下,粒子平均直径-d的相对误差为8%。根据Fullman公式,便可以得到第二相粒子的体积分数V f以及单位体积内第二相粒子的颗粒数N v,计算公式如下,计算结果示于表2。对每个样品,按20nm为区分间隔,统计不同粒径范围的第二相粒子分布,作出直方图(图5)。如图所示,开发钢第二相粒子粒度主要为20nm以下,而传统钢则主要为40~60nm。大量细小的(TiNb)(CN)粒子有利于进一步提高钢的强韧性配合。

V f =(π/6)·N s ·-d 2 (1-1) N v =N s /-d (1-2)

表2 试验钢第二相粒子统计数据

图5 试验钢第二相粒子粒度分布图

图6 试验钢模拟焊接粗晶区组织与性能

2.5焊接性

利用焊接热模拟的方法对试验钢进行不同t 8/5(不同线能量)下的焊接热循环试验。焊接热循环峰值温度为1350℃,高温保温时间1s ,t 8/5分别为7.5s 、10s 、20s 、30s 、60s 、100s ,热循环后进行-40℃冲击试验,试验数据示于图6。结果表明,开发钢由于具有较低的碳含量和碳当量,其模拟焊接粗晶区的低温韧性显著高于传统钢,在t 8/5=60s 时其焊接粗晶区的组织为板条状贝氏体+少量粒状贝氏体,-40℃冲击功大于50J ,满足材料焊接接头标准要求。和开发钢相比,传统钢粗晶区组织主要为粒状贝氏体,焊接性能较差,仅适用于较小线能量焊接(t 8/5≤20s )。

对试验钢进行斜Y 型坡口裂纹敏感性(小铁研)实验,结果示于表2。结果表明,传统钢在低温焊接时必须进行约80℃预热才可以避免焊接冷裂纹的形成。开发钢 传统钢

开发钢在低温(0℃)以及高温高湿条件下均可以实现不预热焊接,冷裂纹敏感性较传统钢显著降低。

表2 试验钢小铁研实验结果

3.结论

1)新型440MPa级易焊接高强度船体钢采用超低碳+复合微合金化设计思路,钢的强度和传统钢相当,低温韧性显著提高,-40℃冲击功约为传统钢2倍以上;2)细铁素体+少珠光体组织是新型440MPa级易焊接高强度船体钢的主要组织特征。开发钢突破了铁素体珠光体组织钢强度极限,充分利用细晶强化+析出强化取代传统钢固溶强化方式,钢的强韧性大幅度提高;

3)大量细小弥散析出的(NbTi)(CN)复合第二相粒子有利于进一步提高新型440MPa级高强度船体钢的强韧性配合;

3)新型440MPa级高强度船体钢焊接性较传统钢显著提高,可以实现0℃焊接不预热。t8/5≤60s,开发钢模拟焊接热影响区组织主要为板条状贝氏体,焊接粗晶区低温韧性高于50J,在低温以及高温高湿条件下均可以实现不预热焊接。

参考文献

[1]Kitada T., Fukuda, K. Fukushige N., Weldability of Newly Developed TMCP

Type High Strength Steel Shapes for Hull Structure, Nippon Kokan Tech, 1986, 112:69-74.

[2]Konkol P.J., Warren J.L., et al, Weldability of HSLA-65 Steel for Ship

Structures.,Welding Research, 1998, 8:361s-369s.

低合金高强钢的焊接性

低合金高强钢的焊接性 钢铁研究总院田志凌 1 前言 低合金高强(HSLA)钢的焊接性主要包括两个方面,其一是裂纹敏感性,其二是焊接热影响区的力学性能。过去40年,在钢材焊接性的研究方面,我国几代科技工作者进行了卓有成效的工作[1-5]。 在过去的40年,HSLA钢取得了显著进展,精炼技术、微合金钢技术、控轧控冷技术、形变热处理(TMCP)等一些先进技术的应用,使得现代HSLA钢的焊接性大大改善,尤其是HAZ冷列裂纹敏感性大大降低,粗晶区韧性大幅度提高,高效率、大线能量焊接工艺得以应用。然而,新的问题也伴随着出现,如母材的低碳当量高强度化使得冷裂纹从HAZ转移到焊缝金属中,多层焊接头中的局部脆性区问题等。本文将论述HSLA钢制造技术的进步给焊接性带来的变化,以及技术发展趋势。 2 HSLA钢的技术进步及其对焊接性的改善 过去40年,低成本、高性能是钢铁行业技术进步的主要发展方向,从焊接性的角度来看,影响最大的是精炼技术和轧制技术。 2.1 精炼技术的影响 焊接热裂纹、液化裂纹曾经是低碳钢、低合金钢焊接的一个重要问题,随着铁水预处理、碱氧炉炼钢、钢包精炼、真空精炼等精炼技术的采用,钢中S、P等杂质元素的含量越来越低,热裂纹、液化裂纹发生的频率已降得非常低。 以管线钢为例,目前的超纯净冶炼技术能够达到如下水平: P≤20ppm, S≤5ppm, N≤20ppm, O≤10ppm, H≤1.0ppm 此外,上世纪80年代以来,模铸已逐渐被连铸所代替,2001年我国的连铸比已超过90%,高均匀性连铸技术的应用,大大降低了铸坯中间偏析。 一方面,S、P等杂质元素的含量越来越低,另一方面,杂质元素的偏析程度越来越小,因此,HSLA钢焊接性评定中已不再进行热裂纹、液化裂纹敏感性评定。 2.2 轧钢技术和微合金化的影响 在上世纪五、六十年代,最广泛应用的结构钢就是C-Mn钢,钢材的强度主要靠提高C 的含量和合金元素的含量来实现,强度越高,冷裂纹敏感性就越大。 控制轧制的应用始于六、七十年代,控制轧制与正火处理相结合,能够降低钢的碳当量,提高钢材的抗裂性能,同时HAZ的韧性也得到了一定程度的提高。然而,生产力的发展要求采用大线能量焊接,如造船业,焊接效率是加快制造进度、降低成本的关键因素,而对于轧制原有状态和正火状态钢而言,大线能量焊接使得HAZ晶粒变得粗大,同时在粗晶区形成韧性很差的上贝氏体组织,针对这一技术问题,确立了Ti处理技术(1975年之前):根据钢中存在的氮(N)量,适当加入Ti,使TiN成细粒状均匀分布,TiN能够抑制奥氏体晶粒长大,促进晶内铁素体的形核。基于同一机理,微合金化技术得以发展,利用Nb, V, Ti 等微量元素形成细小的碳氮化物生产的细晶粒钢,能够适应较大线能量焊接,图1为Nb, V, Ti三种微合金元素形成的第二相粒子的溶解曲线,由此可见TiN对晶粒长大的阻力最大,Nb(CN)次之,VC最小。

船体用结构钢的力学性能

船体用结构钢的力学性能 ( 摘自 GB / T712 — 1988 ) 钢材等级 厚度 / mm 屈服 点 σ 5 / MPa 抗拉 强度 σ b / MPa 伸长 率 δ 5 ( % ) V 型冲击试验 温 度 / ℃ 平均冲击吸收功 A kv / J 纵向横向 A ≤ 50 ≥ 235 400 ~ 490 ≥ 22 ——— B ≤ 50 ≥ 235 400 ~ 490 ≥ 22 ≥ 27 ≥ 20 D ≤ 50 ≥ 235 400 ~ 490 ≥ 22 - 10 ≥ 27 ≥ 20 E ≤ 50 ≥ 235 400 ~ 490 ≥ 22 - 40 ≥ 27 ≥ 20 AH3 2 ≤ 50 ≥ 315 440 ~ 590 ≥ 22 ≥ 31 ≥ 22 DH3 2 ≤ 50 ≥ 315 440 ~ 590 ≥ 22 - 20 ≥ 31 ≥ 22 EH3 2 ≤ 50 ≥ 315 440 ~ 590 ≥ 22 - 40 ≥ 31 ≥ 22 AH3 6 ≤ 50 ≥ 355 490 ~ 620 ≥ 21 ≥ 34 ≥ 24 DH3 6 ≤ 50 ≥ 355 490 ~ 620 ≥ 21 - 20 ≥ 34 ≥ 24 EH3 6 ≤ 50 ≥ 355 490 ~ 620 ≥ 21 - 40 ≥ 34 ≥ 24 船体结构用钢板简称船用板。由于船舶工作环境恶劣,船体壳要受海水的化学腐蚀、电化学腐蚀和海生物、微生物的腐蚀;船体承受较大的风浪冲击和交变负荷;船舶形状使其加工方法复杂等因素、所以对船体结构用钢要求严格。首先良好的韧性是最关键的要求,此外,要求有较高的强度,良好的耐腐蚀性能、焊接性能,加工成型性能以及表面质量。为保质量和保证有足够的韧性,要求化学成分的Mn/C在2.5以上,对碳当量也有严格要求,并由船检部门认可的钢厂生产。船体用结构钢分一般厚度和高强度钢两种,一般强度钢按质量分A、B、C和D四个等级;高强度钢又分两个强度级别和三个质量等级;AH32、DH32、EH32、AH36、DH36、EH36。 船体结构用钢板主要用于制造远洋、沿海和内河航运船舶的船体、甲板等的钢板。 产品规格:厚度4.5-50mm、宽度1.0-2.2mm、长度4.0-12.0m。

钢结构高强螺栓

钢结构高强螺栓 2010/10/28 16:54:56 钢结构高强螺栓需要性能等级在8.8以上。是用高强度钢制造的,或者需要施以较大预紧力的螺栓,皆可称为高强度螺栓.高强度螺栓多用于桥梁、钢轨、高压及超高压设备的连接.这种螺栓的断裂多为脆性断裂.应用于超高压设备上的高强度螺栓,为了保证容器的密封,需要施以较大的 预应力。 钢结构连接用螺栓性能等级分3.6、4.6、4.8、5.6、6.8、8.8、9.8、10.9、12.9等10余个等级,其中8.8级及以上螺栓材质为低碳合金钢或中碳钢并经热处理(淬火、回火),通称为高强度螺栓,其余通称为普通螺栓。 关于高强度螺栓的几个概念1.按规定螺栓的性能等级在8.8级以上者,称为高强度螺栓.现国家标准只罗列到M39,对于大尺寸规格,特别是长度大于%10~15倍的高强度螺栓,国内生产尚属短线。 高强螺栓与普通螺栓区别 高强度螺栓就是可承受的载荷比同规格的普通螺栓要大。普通螺栓的材料是Q235(即A3)制造的。高强度螺栓的材料35#钢或其它优质材料,制成后进行热处理,提高了强度。两者的区别是材料强度的不同。 从原材料看:高强度螺栓采用高强度材料制造。高强螺栓的螺杆、螺帽和垫圈都由高强钢材制作,常用45号钢、40硼钢、20锰钛硼钢、35CrMoA等。普通螺栓常用Q235(相当于过去的A3)钢制造。 从强度等级上看:高强螺栓,使用日益广泛。常用8.8s和10.9s两个强度等级,其中10.9 级居多。普通螺栓强度等级要低,一般为4.4级、4.8级、5.6级和8.8级。 从受力特点来看:高强度螺栓施加预拉力和靠摩擦力传递外力。普通螺栓连接靠栓杆抗剪和孔壁承压来传递剪力,拧紧螺帽时产生预拉力很小,其影响可以忽略不计,而高强螺栓除了其材料强度很高之外,还给螺栓施加很大预拉力,使连接构件间产生挤压力,从而使垂直于螺杆方向有很大摩擦力,而且预拉力、抗滑移系数和钢材种类都直接影响高强螺栓的承载力。 根据受力特点分承压型和摩擦型.两者计算方法不同。高强螺栓最小规格M12,常用 M16~M30,超大规格的螺栓性能不稳定,设计中应慎重使用。 高强度螺栓摩擦型和承压型连接的区别:高强螺栓连接是通过螺栓杆内很大的拧紧预拉力把连接板的板件夹紧,足以产生很大的摩擦力,从而提高连接的整体性和刚度,当受剪力时,按照设计和受力要求的不同,可分为高强螺栓摩擦型连接和高强螺栓承压型连接两种,两者的本质区别是极限状态不同,虽然是同一种螺栓,但是在计算方法、要求、适用范围等方面都有很大的不同。在抗剪设计时,高强螺栓摩擦型连接是以外剪力达到板件接触面间由螺栓拧紧力所提供的可能最大摩擦力作为极限状态,也即是保证连接在整个使用期间内外剪力不超过最大摩擦力。板件不会发生相对滑移变形(螺杆和孔壁之间始终保持原有的空隙量),被连接板件按弹性整体受力。在抗剪设计时,高强螺栓承压型连接中允许外剪力超过最大摩擦力,这时被连接板件之间发生相对滑移变形,直到螺栓杆与孔壁接触,此后连接就靠螺栓杆身剪切和孔壁承压以及板件接触面间的摩擦力共同传力,最后以杆身剪切或孔壁承压破坏作为连接受剪的极限状态。总之,摩擦型高强螺栓和承压型高强螺栓实际上是同一种螺栓,只不过是设计是否考虑滑移。摩擦型高强螺栓绝对不能滑动,螺栓不承受剪力,一旦滑移,设计就认为达到破坏状态,在技术上比较成熟;承压型高强螺栓可以滑动,螺栓也承受剪力,最终破坏相当于普通螺栓破坏(螺栓剪坏或钢板压坏)。 从使用上看:建筑结构的主构件的螺栓连接,一般均采用高强螺栓连接。普通螺栓可重复使用,高强螺栓不可重复使用。高强螺栓一般用于永久连接。 高强螺栓是预应力螺栓,摩擦型用扭矩扳手施加规定预应力,承压型拧掉梅花头。普通螺栓抗剪

Q460低合金高强度钢的焊接工艺分析

Q460低合金高强度钢的焊接工艺分析 蔺云峰(山西焦煤霍煤电集团机电总厂,山西霍州,031412) 摘要:介绍了Q460低合金结构钢的主要成分、力学性能,给出了焊接Q460低合金高强度钢的焊接应选用的焊接材料和焊接设备,对焊接过程中存在的主要问题提出了解决的办法。关键词:Q460;焊接工艺;焊接性能 液压支架的作用是有效地支撑工作面的顶板,隔离采空区,防止矸石进入回采工作面和推进输送机。它与采煤机和输送机配套使用,实现采煤综合机械化。其使用寿命取决于本身结构的质量。由于支架结构件工作环境恶劣,使用过程中承受动、静载荷,存在应力腐蚀现象等。为了保证支架结构件在使用过程中动作可靠,支架尺寸稳定性的要求,以及预防焊接过程中产生冷裂纹、热裂纹及气孔现象,我公司液压支架结构件大多采用Q460低合金高强度钢。经过反复试验,我们完善了Q460低合金高强度钢的焊接工艺。 1.Q460低合金结构钢主要成分及力学性能 (1)Q460低合金高强度钢是在16Mn钢的基础上加入Cr,Ni,V,Ti等合金元素炼制而成。钒和钛的加入,能使钢材强度增高,同时又能细化晶粒,减少钢材的过热倾向。Q460低合金高强度结构钢的力学性能见表1,Q460低合金高强度结构钢的成分见表2。 (2)焊接性分析。低合金钢焊接具有热裂纹、冷裂纹、淬硬倾向及氢致裂纹敏感性强等主要特点。碳当量是判断焊接性最简便的方法之一。碳当量是指把钢中合金元素(包括碳的含量)按其作用换算成碳的相当含量。随着碳当量的增加,钢的塑性急剧下降,并且在高应力的作用下,产生焊接裂纹的倾向也大为增加,焊接时有明显的淬硬倾向。因此焊接时,需较小的热输入。同时,氢致裂纹是低合金结构钢焊接接头最危险的缺陷,所以需要采取适当预热,控制线能量等工艺措施。 表1 Q460低合金高强度结构钢的力学性能 牌号屈服强度σs/MPa 抗拉强度/MPa 伸长率δ5/% Q460 460 550~720 17 表2 Q460低合金高强度结构钢的成分(%) w(C)w(Si)w(Mn)w(S)w(P)5w(Cr)w(Ni)w(Ti)w(Nb) ≤0.2 ≤0.55 1.0~1.7 ≤0.035 ≤0.03 ≤0.7 ≤0.7 0.02~0.2 0.015~0.06 2.焊接材料及焊接设备的选用 (1)结合性能与使用性能是选用焊材的决定因素。对焊缝的力学性能要求,抗拉强度就是由结合性能与使用性能决定的。同时,考虑等强度的原则,选择H08MnMoA焊丝. (2)点焊时选用E5515碱性焊条,此焊条熔敷金属抗拉强度最小值为550MPa,适用于全位置焊接,药皮为低氢钠型。采用直流反接焊接。用此焊条,由于脱氧完全,合金过渡容易,能有效地降低焊缝中的氢、氧、硫;焊缝中的力学性能和抗裂性能均比酸性焊条好。焊接时采用短弧焊。 (3)焊接设备选用OTC500CO2气体保护焊机。采用CO2气体保护焊的焊接方法,其焊接效率高,没有熔渣,熔池可见度好,热量集中,焊接热影响区窄,焊接变形小,焊接接头含氢量低。焊接工艺参数见表4 焊接焊丝直径/焊丝伸出长度/焊接电流/电弧电压气体流量/ 层次mm mm A /V (L/min) 打底焊 1.2 20 90~110 18~20 10~15 填充焊 1.2 20 220~240 24~26 20

低合金高强度焊接结构钢扩散氢的研究进展

基金项目::国防预研项目(590MPa 级船用高强钢配套焊接材料研究) 作者简介:王晓东(1977-),男,浙江省平湖市人,硕士生 收稿日期:2002-01-28 文章编号:1000-5080(2002)02-0016-05低合金高强度焊接结构钢扩散氢的研究进展 王晓东1,文九巴1,魏金山2 (1.洛阳工学院材料科学与工程系,河南洛阳471003;2.洛阳船舶材料研究所,河南洛阳471003) 摘要:综述了国内外船用低合金高强度焊接结构钢扩散氢的研究现状和发展趋势,对扩散氢的作用、扩散氢的测量方法、扩散氢的影响因素等方面的研究成果进行了介绍和评价,并在此基础上提出了扩散氢今后的研究重点应放在焊缝有效扩散氢、扩散氢逸出特性以及影响扩散氢逸出特性的因素研究上。 关键词:低合金钢;焊接;结构钢;焊缝 中图分类号:TG457.11 文献标识码:A 0 前言 现代造船业中为了减轻船体重量,提高构件的承载能力,普遍使用低合金高强度舰船结构钢[1]。传统典型的船用高强度钢如美国的HY 系列,日本的NS 系列以及俄罗斯的AK 系列钢等都是经正火或淬火回火处理强化基体的高强钢,此类钢碳当量比较高,而焊件的焊接性及韧性与碳当量成反比[2],所以这些钢的焊接性能差,尤其是焊接HAZ 区容易淬硬,并且对氢致裂纹(HIC )敏感,在拘束应力较大时易出现冷裂纹。冷裂纹产生的原因主要是由于焊缝金属及HAZ 区的淬硬性,有足够的扩散氢含量和较大的拘束应力,而且冷裂纹一般均出现在焊接热影响区[3~5]。因此,防止冷裂纹的一个主要措施就是严格控制焊缝和HAZ 区中的氢含量。早在20世纪40年代,人们就已经开始对钢中氢的行为进行研究,但由于焊接过程本身是一个非平衡过程,焊后焊缝组织是非平衡组织,焊缝中的氢扩散行为属于非平衡条件下的动态耗散结构,因而使得其扩散行为更为复杂[6]。目前,关于焊接时氢的行为仍是国际上的重点研究课题之一。1 国内外研究现状 1.1 扩散氢的作用 钢中氢的行为一般是指氢在钢中的扩散和聚集、溶解和逸出过程。钢中的氢可分为扩散氢和残余氢两部分,扩散氢是指溶于金属晶格中的原子态以及离子态的、在金属中具有自由扩散能力以及被可逆陷阱所捕获的那部分氢[7]。 大部分体心立方金属与合金焊接时,进入焊缝和热影响区中的氢将会对接头产生极大危害。主要是在焊缝中形成氢气孔和白点、在焊缝和热影响区中产生氢脆或氢致裂纹[6~8]。 (1)形成氢气孔、白点 氢气孔是焊缝中常见的气孔之一,其主要原因是焊接时熔池吸收了大量的氢,在凝固时由于氢溶解度的突然下降,使氢在焊缝中处于过饱和状态,促使产生如下反应:2[H]=H 2,反应所生成的分子态氢不溶于金属而在液态金属中形成气泡,当焊缝金属晶粒的长大速度大于气泡的长大速度时,形成的气泡来不及逸出,便在焊缝中产生氢气孔。显然在凝固温度,氢在固液相中的溶解度差别越大,则越容易产生氢气孔,在平衡状态下氢在铁中的溶解度凝固后为凝固前的1/3(凝固前后分别为25ml/100g 和8ml/100g ),若在焊接非平衡条件下,凝固前后的溶解度差别会更大,因而更利于氢气孔的生成[6]。 碳钢或低合金钢焊缝,若含氢量高,则常常在其拉伸或弯曲断面上出现银白色圆形局部脆断点,即所谓的白点[6]。焊缝金属对白点的敏感性与含氢量、金属组织以及变形速度等因素有关。一般来说,碳钢和用Cr 、Ni 、Mo 等合金化的焊缝对白点较敏感,焊缝中的气孔或夹杂物周围易形成白点,焊缝含氢量越多,出 第23卷第2期 2002年 6月洛 阳 工 学 院 学 报JournalofLuoyangInstituteofTechnology Vol.23 No.2June2002

超高强钢焊接注意事项

超高强钢焊接注意事项 为了降低结构自重、提高承载能力,低合金高强度钢在工矿机械上的应用越来越受重视。近年来屈服强度> 800MPa超高强度钢在国内的工程机械上被普遍采用,以满足工程机械向大型化、轻量化、高效能化方向发展的需求。由于超高强钢合金系统复杂、淬硬性较大,焊接时容易产生冷裂纹;此外超高强钢强度级别高,焊接过程中容易导致包括焊 接热影响区在内的焊接接头脆化。因此防止焊接冷裂纹产生、确保焊接接头具有优良的力学性能是该系列钢材的焊接技 术关键。 焊接材料的选择和匹配超高强度钢由于强度提高,钢材塑性、韧性相应下降。如果仍采用等强原则,选用高组配的焊接接头,焊缝的韧性不容易保证,将可能导致由于焊缝金属韧性不足引起低应力脆性破坏。因此高强钢焊接应采用等韧性原则,选择焊缝韧性不低于基体金属的低组配焊接接头比较合理。采用低强的焊缝金属并不总是意味着焊接接头的强度一定低于母材。根据多年来的焊接接头力学性能试验经验,只要焊缝金属的强度不低于母材的87%,仍可保证接头与母材等强。 当焊接较厚的超高强度钢板材时,在焊缝的不同部位应匹配不同强度级别的焊接材料。即:根部焊道采用低强度焊材打底、

填充与盖面焊道采用高强度焊材;对角焊而言通常采用低强焊材。选用低强焊接材料比选择高强焊接材料的优点在于,焊缝金属的塑韧性储备大、焊接接头延伸性能好,使接头产生裂纹的可能性减小。 超高强钢焊接时应选用超低氢焊接材料,熔敷金属的含氢量应不超过5 ml/100 g(水银法),以尽量减少焊接过程中由焊接材料带入焊接接头的氢含量。同时为了避免吸潮,焊接材料应根据规定进行储存,使用前按要求重新烘焙。预热温度的确定实际焊接过程中应特别重视对超高强度钢对接焊缝和根 部焊道的预热。钢板越厚,预热的必要性越大。预热温度与钢板的当量板厚相关,此外,预热温度应根据实际情况进行相应调整: (1)如果环境湿度大或温度低于5℃ ,则预热温度应再增加25℃ ;如果工件属刚性固定,预热温度也应相应增加; (2)在当量板厚小于极限值,工件温度低于5℃或空气湿度大于65%时,应将工件预热至50~80℃。焊接热输入控制焊接热输入量的变化将改变焊接冷却速度,从而影响焊缝金属及热影响区的组织组成,并最终影响焊接接头的力学性能及抗裂性。为了避免超高强钢焊接时产生焊接冷裂纹和焊缝热影响区韧性的降低,必须严格控制焊接热输入量,控制焊接冷却速度以得到理想的焊缝及焊接热影响区金相组织。冷却时间t8 /5是决定焊后超强钢的性能和焊接接头性能的一个

浅析超高强钢焊接

浅析超高强度钢的焊接 张勇 摘要:针对性地介绍了超高强度钢焊接时如何合理选择工艺参数、存在的主要问题、注意事项及应采取的预防措施。 关键词:超高强度钢;焊接;冷裂纹;疲劳 超高强度钢一般是指屈服强度大于700Mpa的细晶粒高强钢,如:HQ80(鞍钢)、STE690、STE890、STE960(德国)、WELDOX700、WELDOX900、WELDOX960、WELDOX1100(瑞典奥克隆德钢铁公司)等。其焊接存在的主要问题为:焊接氢致裂纹(冷裂纹)、焊接热影响区软化及韧性下降、焊接接头的疲劳等。本文针对高强钢焊接进行比较详细的分析和介绍。 1.高强钢焊接目标: 在焊接接头处获得适当的强度(抗拉强度和疲劳强度),在焊接接头处获得良好的韧性,避免产生冷裂纹。 2.防止冷裂纹措施 2.1 焊前预热 预热对对接焊缝和根部焊道最为重要,焊接过程中和焊接后的温度越高,则氢越易从钢中逸出;钢板越厚,预热的必要性越大,以补偿厚板更快的冷却速度,而且厚板比薄板的碳当量(CE)值更高。工件具体的预热温度和要求见表一与图一,如果不同钢种的焊接或所用焊材的碳当量比母材高,则预热温度由碳当量高的母材或焊材的碳当时决定。 2.2确保焊接面的清洁和干燥 产生冷裂纹的主要原因是有应力存在的焊缝金属中有氢的存在。焊件在组装前应彻底清除坡口表面及附近母材上的各种脏物(例如:氧化皮,铁锈,油污,水份等,这些脏物在焊接时分解出氢而导致焊缝产生延迟纹或气孔,使焊接接头性能受损),

直至露出金属光泽并保证清理范围内无裂纹与夹层等缺陷。 2.3减小构件内应力 通过采用良好的焊接顺序;合理组装,避免强力组对以减少构件的残余应力;焊接组装时应将工件压紧或垫置牢固,以防止因焊接受热而产生附加的应力和变形。 2.4选择含氢量小的焊接材料 选用的焊接材料其熔敷金属含氢量应小于5ml/100g;为了避免吸潮,焊接材料应根据厂家的规定进行储存,使用前按厂应家要求重新烘焙,以免工件在焊后或使用过程中产生延迟冷裂纹。 2.5焊后后热消氢处理 在焊接完成后,立即将焊件后热到150-250℃,并按每毫米板厚不少于5分钟进行恒温处理后缓冷(且总的恒温时间不得小于1小时),确保焊接接头中的残余氢能扩散逸出,减少延迟冷裂纹的产生。 2.5焊后热处理 进行焊后热处理是为了减少焊接残余应力,高强钢焊后一般不进行焊后热处理,热处理会使接头的某些机械性能下降,如:冲击韧性等。只有在设计规则有特殊说明时,方应进行焊后热处理。但应注意其焊后热处理温度不能超过其调质回火温度。 图一: 预热温度测量位置及当量板厚的确定 S3=0 S1= S2 钢板的当量板厚S K=S1+S2+S3,或至少为2倍板厚 S1=距焊缝金属75mm内的平均厚度

超高强度船体结构钢的开发现状与趋势

超高强度船体结构钢的开发现状与趋势 发表时间:2018-08-10T15:17:55.367Z 来源:《科技中国》2018年4期作者:汤卫兵黄振毅[导读] 摘要:超高强度船体结构钢在制造领域,通常被用来为海洋平台或者大型船舶提供结构上的强度支撑,促进海洋油气开发工程的顺利推进,有着广阔的应用前景。基于此主要发展情况,本文首先分析当前国内外超高强度船体结构钢的开发现状,同时立足于此主要现状,深入探索在未来的制造业消费市场中,超高强度船体结构钢的发展趋势,希望能够为超高强度船体结构钢的科学应用提供理论层面借 鉴。 摘要:超高强度船体结构钢在制造领域,通常被用来为海洋平台或者大型船舶提供结构上的强度支撑,促进海洋油气开发工程的顺利推进,有着广阔的应用前景。基于此主要发展情况,本文首先分析当前国内外超高强度船体结构钢的开发现状,同时立足于此主要现状,深入探索在未来的制造业消费市场中,超高强度船体结构钢的发展趋势,希望能够为超高强度船体结构钢的科学应用提供理论层面借鉴。 关键词:超高强度船体结构钢;焊接性能;析出粒子 引言:在建造船体结构钢的时候,一定要严格按照船级社的建造规范依次开展施工工艺,使得最终制造出来的船体结构钢质量能够满足船体结构的建造需要。通常来说,船体结构钢的强度有着严格的等级划分标准,其中超高强度结构钢属于强度要求最高的一种类型,要求在建造的时候严格按照强度等级超出420MPa的标准来开展生产工艺,使得最终建造出来的钢强度能够满足大型船舶的运航需求。 一、浅析超高强度船体结构钢的开发现状 (一)生产工艺的开发现状 传统的TMCP技术发展至今,已经逐渐演变成了超高强度船体结构钢的生产工艺。在建造超高强度船体结构钢的时候,技术人员通常会注意将TMCP技术的粗轧温度稳定在1000℃-1050℃之间,接着运用大道次压下量的方法,让形变的部位能够逐渐渗透到板坯心部,使得其中的奥氏体材质逐渐结晶。当前已经出现了新的生产工艺,能够结合大型船舶对超高强度船体结构钢质量的使用需求,大幅优化TMCP生产工艺的性能,使得结晶环节中的材料下压率能够超过40%,再逐渐回温到Ar3温度以上,最后可以通过冷却方法的利用,得到具有细小晶粒的室温组织,这种新型生产工艺的好处便是能够显著增强超高强度船体结构钢大强度[1]。 (二)HY系列的开发现状 超高强度船体结构钢HY系列,主要包括美国研制出来的HY80、HY100以及HY130等系列,还有能够替换HY80的HSLA80系列,以及能够替换HY100的HSLA100系列。HY系列的超高强度船体结构钢具有非常高的强度等级,甚至能够达到550MPa-890MPa,主要是因为HY 系列的超高强度船体结构钢具有大量的Ni物质。当超高强度船体结构钢中的Mn含量能够达到1.6%的时候,Ni的含量能够达到1.02%,这时侯超高强度船体结构钢的强度性能最高,正是因为HY系列的超高强度船体结构钢采用了高Mn+低Ni的成分配置方法,所以该系列的钢结构的强度较高,但是焊接性能有所欠缺。 (三)HSLA系列的开发现状 相比之下,HSLA系列的超高强度船体结构钢在碳当量,以及裂纹敏感系数方面的生产工艺都与HY系列存在着较大的不同。首先,HSLA系列的超高强度船体结构钢显著降低了C、Cr、Ni的含量,同时又增加了Cu、Mo和Mn的含量,使得最终制造出来的HSLA系列超高强度船体结构钢,相较HY100钢要多出大量的Mn、Mo、Ni含量,但是Cr的含量却要少很多,只能在一定程度上改善HY系列超高强度船体结构钢的碳当量以及裂纹敏感系数,也就是说实现了焊接性能的有效改善,并且合金元素也有了极大的改善,整体来说HSLA100系列超高强度船体结构钢逐渐转变成了双向组织的超高强度船体结构。 二、浅析超高强度船体结构钢的发展趋势 (一)Cu析出粒子的优化 目前,国内外超高强度船体结构钢的研发,正在逐步向改善强韧化方法以及保持适当碳当量值的方向发展,以期大幅提高超高强度船体结构钢的强度性能。开发超高强度船体结构钢的时候,引出的析出强化粒子主要为Cu粒子,这种Cu粒子的优势在于能够与超高强度船体结构钢的组织类型、变形程度达到良好的契合,从而加强Cu粒子在界面的偏聚情况,使得析出的Cu粒子激活能开始有所降低。如此一来,通过Mn以及Ni的添加,能够显著降低Cu粒子的临界形核功,继而利用三种元素之前的相互契合与相互作用,有效提升奥氏体的稳定性,最终达到强化超高强度船体结构钢结构强度的效果[2]。 (二)化合物析出粒子 在回火温度升高的条件下,超高强度船体结构钢会析出大量富含Nb、Ti的碳氮化物。这些化合类物质的尺寸基本处于10-20nm之间,在Nb、Ti显著增高的前提下也不会导致超高强度船体结构钢中碳当量的增加,能够有效减缓C原子的扩散速度。在电子搅拌离心力的作用下,细小的钛氧化物粒子开始逐渐向周边扩散,等到冷却之后就能够产生纳米钛氧化粒子,可以有效抵抗奥氏体的生产,从而显著改善超高强度船体结构钢的力学性能,使得最终生产出来的超高强度船体结构钢在质量性能商更为优越,是为未来超高强度船体结构钢的主要发展方向。 (三)焊接性能的提升 焊接性能的提升能够改善超高强度船体结构钢的性能,增强其在结构方面的铸造质量。在目前的生产工艺中,超高强度船体结构钢一旦经受了高温热循环处理,便会导致结构的韧性开始下降,影响到钢结构最后的焊接效果。因此,未来提升超高强度船体结构钢的焊接性能将成为主要的发展方向,目的是为了提高焊接前预热、焊接后回火处理的效果,保证超高强度船体结构钢在生产工艺能够获得良好的焊接效果,继而逐步突破超高强度船体结构钢焊接工艺方面存在的难点,促进超高强度船体结构钢强度等级的提高。 结束语:综上所述,目前我国的超高强度船体结构钢开发正在逐步取得新的进展,面临的各项技术瓶颈也在不断的被突破,未来超高强度船体结构钢还将在我国走向纵深化的发展道路。但是与此同时,技术人员还要意识到超高强度船体结构钢开发过程中存在的技术难点,继而从韧性、强度以及焊接性能等方面出发,全面推动超高强度船体结构钢的研发技术走向质的飞跃,提升船体结构的稳定性。参考文献: [1]雷玄威, 黄继华, 陈树海,等. 超高强度船体结构钢的开发现状与趋势[J]. 材料科学与工艺, 2015, 23(4):7-16. [2]陈佳, 孙明, 隋丹,等. 高强度船体结构钢的现状与发展[J]. 工程技术:全文版, 2016(2):00289-00289.

gr60低合金高强结构钢焊接施工工法

Gr60低合金高强结构钢焊接施工工法 Gr60级低合金高强度结构钢为国内首次在建筑钢结构上使用钢材,符合美国材料标准ASTM903/913M一97 Gr60标准,相当于国内钢材标准中的Q420级钢。由于Gr60钢为国内首次使用,目前尚无成熟的规范及焊接工艺参数作参照,焊接不确定性因素多,难度较大。探索总结Gr60级钢的使用,对于推动Q420低合金高强度结构钢在国内建筑钢结构的应用,从节约资源的角度上符合我国的可持续发展国策,对于本企业乃至国内建筑钢结构行业的良性发展,均具有积极的创新意义。 1工法特点 1.1Gr60属低合金高强度结构钢,能大幅度提高结构杆件的承载力,减小了杆件截面面 积,从而减小自重,增加建筑空间。 1.2 Gr60钢对于需验算疲劳的焊接结构具有一40℃冲击韧性的合格保证,使其应用范围和结构可靠度得以扩大。 1.3 Gr60级钢的焊接性能优于国内工程中正在大量使用的Q345钢。现场安装施焊操作较易控制。在常温及低温下,Gr60级钢的预热温度较之同条件下的Q345钢低;并且,在负温下,只需对板厚在lOOmm以上的钢材采取低温度的后热措施。 1.4焊接施工过程须严格按照既定的焊接工艺指导书的工艺参数及焊接规定进行施工,对焊接速度、预热温度、层问温度、后热温度、保护气体的气压与流速等严格控制,方能保证焊接质量。 1.5已经过一15℃条件下冬期施工焊接工艺评定和一7℃下冬期施工实践,寒冷地区冬期也可施工。 1.6本工法是在完成北京新保利大厦工程基础上总结编写的,因此实用性很强。 2适用范围 适用于Gr60级低合金高强度结构钢进行CO2气体保护焊的各种焊缝连接形式。 3工艺原理 根据Gr60钢化学成分及力学性能进行可焊性分析与试验,在依据国外规范标准对此类钢材的焊接性的指导意见基础上,结合国内在高强钢CO2气体保护焊方面的焊接施工工艺,按照国内焊接规范的规定,进行常温及负温下典型焊缝形式的现场工艺评定试验,以取得指导现场焊接操作的适用的工艺参数。 Gr60钢的焊接性分析与试验包括下述内容: 3.1焊接性计算与分析:采用碳当量和冷裂纹敏感指数评估钢材的焊接性和确定预热温度; 3.2焊接性的直接试验:z向拉伸性能试验、Cramfield层状撕裂试验; 3.3焊接接头性能试验:对焊评试件进行外观、无损探伤、横向拉伸、横向弯曲、全焊缝拉伸、冲击(焊缝、热影响区)、熔敷金属化学成分分析及力学性能试验; 3.4焊缝的残余应力检测与有限元分析:采用国际先进的钢弦应变计进行杆件焊接残余应力监测,对于H型截面构件的残余应力,为验证测量结果,采用大型有限元软件ANSYS来分析H型截面构件的残余应力分布。 4.1工艺流程 4工艺流程

低合金高强度钢的焊接工艺

低合金高强度钢的焊接工艺 1)焊接方法的选择 低合金高强度钢可采用焊条电弧焊、熔化极气体保护焊、埋弧焊、钨极氩弧焊、气电立焊、电渣焊等所有常用的熔焊及压焊方法焊接。具体选用何种焊接方法取决于所焊产品的结构、板厚、堆性能的要求及生产条件等。其中焊条电弧焊、埋弧焊、实心焊丝及药芯焊丝气体保护电弧焊是常用的焊接方法。对于氢致裂纹敏感性较强的低合金高强度钢的焊接,无论采用那种焊接工艺,都应采取低氢的工艺措施。厚度大于100mm低合金高强度钢结构的环形和长直线焊缝,常常采用单丝或双丝载间隙埋弧焊。当采用高热输入的焊接工艺方法,如电渣焊、气电立焊及多丝埋弧焊焊接低合金高强度钢时,在使用前应对焊缝金属和热影响区的韧性能够满足使用要求。 2)焊接材料的选择 低合金高强度钢焊接材料的选择首先应保证焊缝金属的强度、塑性、韧性达到产品的技术要求,同时还应该考虑抗裂性及焊接生产效率等。由于低合金高强度氢致裂纹敏感性较强,因此,选择焊接材料时应优先采用低氢焊条和碱度适中的埋弧焊焊剂。焊条、焊剂使用前应按制造厂或工艺规程规定进行烘干。为了保证焊接接头具有与母材相当的冲击韧性,正火钢与控轧控冷钢焊接材料优先选用高韧性焊材,配以正确的焊接工艺以保证焊缝金属和热影响区具有优良的冲击韧性。 3)焊接热输入的控制 焊接热输入的变化将改变焊接冷却速度,从而影响焊缝金属及热影响区

的组织组成,并最终影响焊接接头的力学性能及抗裂性。屈服强度不超过500MPa的低合金高强度钢焊缝金属,如能获得细小均匀针状铁素体组织,其焊缝金属则具有优良的强韧性。而针状铁素体组织的形成需要控制焊接冷却速度。因此为了确保焊缝金属的韧性,不宜采用过大的焊接热输入。焊接操作上尽量不用横向摆动和挑弧焊接,推荐采用多层窄焊道焊接。 热输入对焊接热影响区的抗裂性及韧性也有显著的影响。低合金高强度热影响区组织的脆化或软化都与焊接冷却速度有关。由于低合金高强度钢的强度及板厚范围都较宽,合金体系及合金含量差别较大,焊接时钢材的状态各不相同,很难对焊接热输入作出统一的规定。各种低合金高强度钢焊接时应根据其自身的焊接性特点,结合具体的结构形式及板厚,选择合适的焊接热输入。 与正火或正火加回火钢及控轧控冷钢相比,热轧钢可以适应较大的焊接热输入。含碳量较低的热轧钢(09Mn2、09MnNb等)以及含碳量偏下限的16Mn 钢焊接时,焊接热输入没有严格的限制。因为这些钢焊接热影响区的脆化及冷裂纹倾向较小。但是,当焊接含碳量偏上限的16Mn钢时,为降低淬硬倾向,防止冷裂纹的产生,焊接热输入应偏大一些。 碳及合金元素含量较高、屈服强度为490MPa的正火钢,如18MnMoNb等。选择热输入时既要考虑钢种的淬硬倾向,同时也要兼顾热影响区粗晶区的过热倾向。一般为了确保热影响区的韧性,应选择较小的热输入,同时采用低氢焊接方法配合适当的预热或及时的焊后消氢处理来防止焊接冷裂纹的产生。 控冷控轧钢的含碳量和碳当量均较低,对氢致裂纹不敏感,为了防止焊

碳素结构钢与低合金高强钢焊接工艺分析

碳素结构钢与低合金高强钢焊接工艺分析 摘要:本文主要通过对碳素结构钢与低合金高强钢的焊接性能进行分析,选用适宜的焊接方法、焊接材料,采取相应的质量控制措施,制定了适宜的焊接工艺,确保产品焊接接头性能符合产品技术条件要求,为企业创造更大效益。 关键词:碳素结构钢;低合金高强钢;焊接工艺 Abstract: This paper mainly through the carbon steel and low alloy high strength steel welding performance analysis, the choice of suitable welding method, welding materials, take appropriate quality control measures, the development of a suitable welding process, to ensure that products meet the performance of welded joints product technical conditions for enterprises to create greater efficiency. Keywords: carbon structural steel; low alloy high strength steel; welding process 碳素结构钢与低合金高强钢焊接属于异种金属材料焊接,采用异种钢的焊接结构,不但经济合理而且便于根据材料来分析焊接工艺,而且能提高构件的使用性能。异种金属制成的焊接结构在现代机械、化工、电力、石油及矿山邓领域的应用日益广泛。 碳素结构钢产量大、成本低、杂志较多,且具有一定的力学性能,一般在热轧钢板、钢带、型钢、棒钢、可供焊接、以及栓接构件之用。广泛应用于桥梁、船舶、建筑工程中制作各种静负荷的金属结构件、不需要热处理的一般机械零件盒普通焊接件,是一种用途广泛的工程用钢。 低合金高强钢结构钢是含少量合金元素(一般含合金(质量分数)小于3%)的普通合金钢,它强度高,加工和焊接性能好,具有较好耐磨、耐腐蚀、耐低温性能,生产成本和碳素钢接近。低合金高强钢含碳量低(质量分数)(一般在0.1%-0.25%范围内)。随着钢中合金元素含量的增加,钢的淬硬性增大,焊接性变差。加入的主要合金元素是猛、硅、钒、钛、铌等。锰硅能对钛素体起固溶强化作用,提高强度;钒、钛和铌细化晶粒,提高钢的韧性;加入适量铜、磷可以提高耐蚀能力;加入适量稀土有利于脱氧、脱硫和净化钢中其他杂质和改善钢的性能。低合金高强度结构钢广泛用于船舶、车辆、桥梁、高压容器、钢结构件等。 二、焊接工艺 碳素结构钢与低合金高强钢焊接时焊接工艺(包括焊前准备、焊接材料的选择、预热和层间温度、焊后热处理)应由焊接性相对较差的一侧来确定。 焊接前准备

低合金高强度钢焊接特点概述

低合金高强度钢焊接概述 低合金高强度结构钢的焊接特点: 1.热影响区的淬硬倾向焊后冷却过程中,易在热影响区中出现低塑性的脆硬组织,这种组织在焊缝扩散氢量较高和接头拘束较大时易产生氢致裂纹。 钢材的碳当量是决定热影响区淬硬倾向的主要因素。碳当量越高,钢材淬硬倾向越大。焊接时热影响区过热区的800-500℃的冷却时间(一般用t8/5表示)是另一个重要参数。该冷却速度越大,则热影响区的淬硬程度越高。焊接方法、板厚、接头形式、焊接规范、预热温度决定了t8/5的大小。 焊接接头中,热影响区的硬度值最高。一般用热影响区的最高硬度来衡量淬硬程度的高低。不同级别的主强度钢热影响区有不同的最高硬度允许值,目前我国还没有明确规定。 2.冷裂纹敏感性低合金高强度钢焊接时出现的裂纹主要是冷裂纹。因此,焊接时对于防止冷裂纹问题必须予以足够的重视。钢的强度级别越高,淬硬倾向越大,冷裂纹敏感性也越大。关于冷裂纹形成机理,是一种比较复杂的现象,一直有人在深入研究。目前多数人认为产生冷裂纹的三大因素是: (1)焊缝凝固以后冷却时,由于焊缝一般含碳量比母材低,所以焊缝的奥氏体向铁素体转变较母材早,此时氢的溶解度急剧降低,大

量的氢向仍处于奥氏体的母材热影响区中扩散,由于氢在奥氏体中扩散速度小,在熔合区附近形成了富氢带,含氢量越高,冷裂纹敏感性越大。 (2)滞后相变的热影响区发生奥氏体向马氏体转变的淬硬组织,氢以过饱和状态残存于马氏体中并逐步晶格缺陷等应力集中处扩散聚集,使该处的金属结合强度降低或脆化。钢的淬硬性倾向越大,冷裂纹倾向也越大。 (3)结构的刚性越大,由于焊接时加热引起的拘束应力也越大。同时热影响区相变组织应力共同构成了产生冷裂纹的应力条件。焊接应力越大,冷裂纹敏感性越大。 冷裂纹一般在焊后冷却过程中发生,也可能在焊后数分钟或数天后发生,具有延迟的性质,这可以理解为是氢从焊缝金属扩散到热影响区淬硬区集聚达到某一临界值的时间。在点固焊时,由于冷却速度快,极易出现冷裂纹,必须特别注意。 3.再热裂纹倾向当焊接厚壁压力容器等结构件时,焊后需进行消除应力热处理,对于含铬、钼、钒、钛、铌等合金元素的钢材,在热处理过程中,易在热影响区的粗晶区产生晶间裂纹。有时不仅在热处理过程中发生,也可能发生于焊后再次高温加热的使用过程中。焊接这类高强度低合金钢时,应重视防止再热裂纹问题。防止再 热裂纹的主要措施是尽量选取对再热裂纹不敏感的材料,选择强度较低的焊接材料,提高预热温度和焊接线能量,以及尽量减少焊接接头中的应力集中等。

高强度钢焊接工艺

目录 1、概述 2、焊接高强度钢注意事项 3、操作要点 4、焊接材料的选用及焊接方法 5、定位焊及装配要求 6、焊接要求及施工工艺 7、手工焊及CO2焊接要点 8、焊缝缺陷的返修及补焊 9、焊接参数规范

高强度钢在船体焊接中的要点 1、概述 高强度钢建造的船舶其“应力水平”普遍高过一般强度钢,这样对船舶建造工艺水准提出挑战我们的工艺要求,工艺纪律不能随便。,随着我厂建造的大吨位单壳散货船临近开工在,对于高强度钢的焊接施工工艺方案采用正确与否直接涉及到船体焊接质量。对焊接程序、定位焊要求、焊缝缺陷返修补焊,以及手工焊、CO2焊、埋弧焊焊接规范参数都有一定要求,在此特编写如下: 2、使用高强度钢注意事项 (1)、标示:高强度钢标示所指是:AH32、DH32、AH36、DH36、EH36,钢板上必须有标示、构件上必须有标示。 (2)、预热:高强度钢在定位焊前必须预热,预热温度80℃-100℃,预热范围为板厚的5倍,但不小于100㎜。 (3)、保温:507焊条在烘箱拿出后使用必须放入保温筒,带入施工现场,且每4小时换用。 (4)、清洁:焊前必须对待焊的焊缝边缘宽30㎜内的氧化皮、油污等杂质清除干净,不能及时焊接,会使焊缝及焊缝边缘宽30㎜重新生锈或污染,焊前应重新清理。 (5)、焊接方法:必须采用多层多道层间温度100℃,同一层焊道的焊接方向要一致,各层的焊接方向相反,但接头要错开。 (6)、焊前应对CO2焊机送丝顺畅情况和气体流量作认真检查。 3、操作要点 1.垂直或倾斜的位臵开坡口的街头必须从下到上焊接,对不开坡口的薄板对接和立角焊可采用向下焊接;平、横、仰对接接头可采用坐向焊接法。 2.必须根据被焊接工件的结构及室外作业再风速大于1M/S时,选择合理的焊接顺序。 3.对接两端应设臵同板厚150*150的引弧和熄弧板。 4.有坡口的板缝,尤其是板厚是多道焊缝,焊丝摆动时再坡口的两侧应稍作停留,锯齿形运条每层厚度不大于4mm,以使焊缝熔合良好。 5.应经常清理软管内的污物及喷嘴的飞溅,送丝软管焊接时必须拉顺,不能盘曲,送丝软管半径不小于150mm,施焊前应将送气软管内残存的不纯气体排出。 6.根据焊丝直径正确选取焊丝导电阻,导电阻磨损后孔径增大,引起焊接不稳定,需重

第五章 船体结构用钢材

第五章船体结构用钢材(4学时) 教学要求:理解CCS关于船体结构用钢的规定。 重点:强度船体结构用钢不同牌号的性能指标。 难点:强度船体结构用钢性能指标测定试验。 教学内容: 随着造船工业的不断发展,造船工业所用的材料,品种越来越多,数量越来越大。例如建造一艘16000吨级多用途集装箱货船,单船体用钢材就需要4600吨,2005年我国造船量为1200万载重吨,消耗钢材400多万吨,由此可见材料对发展造船工业的重要性。 造船材料分为金属材料和非金属材料两大类。 现代船舶的船体结构制造所用材料主要是一般强度船体结构用钢、高强度船体结构用钢、奥氏体不锈钢和双相不锈钢、复合钢板、Z向钢、铝合金、增强塑料等。根据CCS 1998年《材料与焊接》规范和2002、2004年规范修改通报要求,所有金属材料必须从力学性能(强度、塑性、硬度、蠕变)、工艺性能(弯曲、焊接性)、化学成分、脱氧方法、交货状态(热处理)等方面符合规范要求。 第一节船体结构对其金属材料的基本要求 由于船舶工作条件的特殊性和复杂性,因而对制造船体结构的金属材料提出了较高的要求,大致有以下几方面: 一、良好的力学性能 1.强度 强度—金属材料在外力作用下抵抗断裂和变形的能力。 2.塑性 塑性—金属材料在外力作用下产生塑性变形而不破坏的能力。 3.冲击韧性 冲击韧性—金属材料抵抗冲击载荷和脆性破坏的能力。 4.疲劳强度 疲劳强度—金属材料抵抗外力反复作用下的能力,即在交变载荷无限次作用下不致引起破坏的能力,以бN表示。 5.硬度 硬度—金属材料抵抗比它更硬物体压入表面内的能力。 二、优良的工艺性能 所谓工艺性能是指材料对各种加工方法的适应性。在现代造船中,采用最多的金属材料加工方法是焊接与弯曲。因此,作为船体结构材料必须具有良好的焊接性和优良的承受弯曲加工的性能。 三、良好的耐腐蚀性能 船体结构用金属材料在海水中具有较高的耐腐蚀性能,而目前的一般强度船体结构用钢和高强度船体结构用钢还不能完全满足要求,在海水中的腐蚀都比较严重,据统计碳素钢为0.1毫米/年,含镍合金钢为0.08毫米/年。因此,船舶设计时必须增放腐蚀余量,这就增加了船体自重和材料消耗。

相关文档