文档库 最新最全的文档下载
当前位置:文档库 › 武汉理工大学,表面肌电信号实验

武汉理工大学,表面肌电信号实验

武汉理工大学,表面肌电信号实验
武汉理工大学,表面肌电信号实验

实验基于sEMG时域特征特的动作识别

一、实验目的

1.了解肌电信号常用的时域分析方法;

2.利用MATLAB对肌电信号进行去噪、特征提取及动作识别;

二、实验设备

1.Wi-Fi表面肌电信号采集卡;

2.32位Windows XP台式机(Matlab 7.0软件);

3.802.11b/g无线网卡;

三、实验内容

(1)学习信号的基本去噪方法,并用MATLAB实现;

(2)学习肌电信号常用的时域特征并利用Matlab来进行波形长度(WL)符号改变数(SSC)、过零点(ZC)、威尔逊赋值(WAMP)等特征的提取;

(3)学习神经网络信号处理方法,掌握BP神经网络的用法,将其用于肌电信号的动作识别。

学习以上三个部分,最终完成一整套肌电信号去噪、特征提取(选取一种特征)、基于特征的动作识别的MATLAB程序。

四、实验原理

(1)小波去噪

小波去噪方法是一种建立在小波变换基础上的新兴算法,基本思想是根据噪声在不同频带上的小波分解系数具有不同强度分布的特点,将各频带上的噪声对应的小系数去除,保留原始信号的小波分解系数,然后对处理后系数进行小波重构,得到纯净信号。

小波去噪的基本原理图如下

(2) 特征提取

时域分析是将肌电信号看成均值为零,而方差随着信号强度的变化而变化的随机信号。时域特征的计算复杂度低,提取比较方便。

最常用的方法有:方差,过零点数(Zero Crossing, ZC ),Willison 幅值(Willison Amplitude, WAMP ),绝对值平均值 (Mean Absolute Value, MA V )和波形长度(Wave length ,WL )等。在实际应用中,为了让特征可以包含更多的信息,往往选择用不同的时域特征组合形成联合特征向量。我们主要介绍一下几种方法:

过零率(ZC ):为波形通过零线的次数,从一定程度上反映了信号的频率特性。为了降低零点引入的噪声,往往会引入一个阈值δ。计算方式如下:

)(),sgn(11δ≥-+-++k k k k x x x x

(1)

Willison 幅值:是由Willison 提出一种对表面肌电信号的幅值变化数量进行计算的方法,经过后人的研究,对Willison 幅值的阈值有了明确的范围限定,目前认为V μ100~50 是最合适的阈值范围。其数学表示公式如公式(3-3)。

∑=+-=N

t i i x x f WAMP 1

1

(2)

其中:??

?>=otherwise x if x f 阈值

01

)(

波形长度(WL ):它是对某一分析窗中的波形长度的统计,波长可以体现该样本的持续时间、幅值、频率的特征。

∑-=-+=1

1

)

()1(1N i i x i x N WL

(3)

符号改变斜率(SSC ):为信号的的频率性能提供了一些附加信息,对于3个连续的采样点,给定阈值ω,通过下面的公式计算波峰波谷的个数。

()()()N i x x x x i i i i ,,1,11 =≥-?-+-ω

(4)

(3) 神经网络

BP 神经网络又称误差反向传播(Back Propagation ),它是一种多层的前向型神经网络。在BP 网络中,信号是前向传播的,而误差是反向传播的。所谓的反向传播是指误差的调整过程是从最后的输出层依次向之前各层逐渐进行的。标准的BP 网络采用梯度下降算法,与Widrow-Hoff 学习规则相似,网络权值沿着性能函数的梯度反向调整。

前向型神经网络通常具有一个或多个由sigmoid 神经元构成的隐层,以及一个由线性神经元构成的输出层。多个具有非线性传递函数的神经元层使得网络可以学习输入和输出之间的非线性关系,而线性输出层使得网络可以产生[-1,+1]之外的输出值。

+

1,

1IW 1

b 1

p

+

1

,2IW 2

b 1

a

隐层)(tan 111,11b p IW sig a +=输出层

)

(211,22b a IW purelin a +=y

a =3输入

由两层神经元构成的BP 网络结构

(1) BP 网络的训练算法

① BP 算法

BP 算法沿着误差函数减小最快的方向,也就是梯度的反方向改变权值和偏差,这一点与线性网络的学习算法是一致的。BP 算法的迭代计算公式可以表示为:

k k k k g a x x -=+1 (1)

其中,k x 代表当前权值和偏差,1+k x 代表迭代产生的下一次的权值与偏差,

k g 为当前误差函数的梯度,k a 代表学习速率。

② 有动量的梯度下降算法

标准的梯度下降法在调整权值时,仅仅按照当前时刻的负梯度方向进行调整,并没有考虑以前各次运算步骤中的梯度方向,因此新的样本对迭代过程影响太大,可能会导致训练过程中调整方向发生震荡,导致不稳定和收敛速度慢的问题,有动量的梯度下降算法则考虑了往前时刻的贡献,其权值迭代算法为:

)1()()1[()()1(-+-+=+n D n D n w n w ij ij ααη (2)

其中,)1(),(-n D n D 分别表示n 时刻,n-1时刻的负梯度。由于加入了以前时刻梯度的贡献,相当于给迭代过程添加了一个低通滤波器,使得网络忽略误差

曲面上细节特征,避免了陷入局部极小点的问题。

③ 共轭梯度算法

尽管标准的BP 算法采用梯度下降算法,权值和偏差沿误差函数下降最快的方向调整,但却并不一定是收敛最快的算法。在改进的BP 训练算法中,有一大类的算法称为共轭梯度算法。在这一类算法中,权值和偏差沿着共轭梯度方向进行调整,通常能够获得比标准的梯度算法更快的收敛速度。

共轭梯度算法的第一次迭代都是从最陡下降的梯度方向开始。梯度向量为:

00g p -= (3)

沿着此方向进行权值和偏差的调整,公式为:

k k k k g a x x +=+1 (4)

下一次搜索方向则由前两次搜索方向的共轭方向决定,表达式为:

1-+-=k k k k p g p β (5)

对于系数k β不同计算方法产生不同的共轭梯度算法。 a )F-R 共轭梯度算法采取的系数确定方法为:

1

1--=k T k k T

k k g g g

g β (6)

即本次迭代梯度相对于上一次迭代梯度的归一化值。 b )P-R 共轭梯度算法采取的系数确定方法为:

1

11---?=k T k k T k k g g g

g β (7)

即上次迭代梯度与本次迭代梯度的内积对本次梯度的归一化值。 c )Scaled 共轭梯度算法

到目前为止,讨论过的所有共轭梯度算法都需要在每一步迭代过程中对搜索方向进行计算,这样的计算量是比较大。对此moller 提出了Scaled 梯度搜索算法[4],在每一步迭代过程中不计算搜索方向,以减少训练过程的计算量。其基本原理是利用下面介绍的L-M 算法与共轭梯度法相结合产生的。

④ L-M 算法

L-M 算法其权值和阈值的更新过程为:

e J I J J x x T T k k 11][-++-=μ (8)

其中,e为期望输出与实际输出的误差;J为误差对权值微分的Jacobi矩阵;μ为标量因子。如果训练成功,误差性能函数减小,那么就减小μ的值;反之就减小其值。

五、实验步骤

(1)数据格式转换:

N=4;%通道的个数

M=512;%每个通道的采样数

K=10;%每种类别所取的个数

P=6;%类别数

ClassPermode=10;%每类动作数据的个数

ClassNumber=6;%类别的个数

M=512;%每个样本点数据的个数

Channel=4;%通道的个数

Count=ClassPermode*ClassNumber*M;

sample_train=zeros(Count,Channel);%保存训练样本

sample_test=zeros(Count,Channel);%保存训练样本

for i=1:60

D=importdata(strcat('train1\Data',num2str(i),'.txt'));

sample=D.data;

sample_train(((i-1)*M+1:i*M),:)=sample(:,(2:5));%sample(:,(2:5));

end

for i=1:60

D=importdata(strcat('test1\Data',num2str(i),'.txt'));

sample=D.data;

sample_test(((i-1)*M+1:i*M),:)=sample(:,(2:5));

end

save sample_train sample_train

save sample_test sample_test

程序运行后,会看到文件夹中多出了sample_train和sample_test两个.mat 文件。

(2)小波去噪及特征提取,选用WAMP特征。

load 'sample_test.mat';

load 'sample_train.mat';

%%%%% 参数说明%%%%

Window=256;%分析窗口的长度

M=512; %采集数据时一个data的样本数

Channel=4; %采集数据的通道数

Class=6; %类别数

Number=10; %每个类别的个数

WinLap=64; %窗口移动的间隔

JudgeTime=Window/WinLap; %一个分析窗口需要移动的次数8

Count=M*Number*Class/WinLap-Window/WinLap+1; %所有数据需要分析的次数477

ClassCount=M*Number/WinLap-Window/WinLap+1; %一类数据需要的分析次数77

GapCount=M*Number/WinLap; %训练样本两类动作之间的间隔80

ClassOne=1;

ClassTwo=2;

ClassThree=3;

ClassFour=4;

ClassFive=5;

ClassSix=6;

%thr=0.2;

%%%%% train样本小波去噪%%%%%%%%%%

for i=1:Channel

x=sample_train(:,i);

[thr,sorh,keepapp]=ddencmp('den','wv',x);

[c,l]=wavedec(x,3,'db1');

a3=appcoef(c,l,'db1',3);

d3=detcoef(c,l,3);

d2=detcoef(c,l,2);

d1=detcoef(c,l,1);

s4=wdencmp('gbl',c,l,'db1',3,thr,sorh,keepapp);

new_train(:,i)=s4;

end

figure(1)

subplot(4,1,1);plot(sample_train(:,1),'r');hold on;plot(new_train(:,1),'b');legend('原始信号','去噪后信号');title('train样本滤波前后信号对比');

subplot(4,1,2);plot(sample_train(:,2),'r');hold on;plot(new_train(:,2),'b');

subplot(4,1,3);plot(sample_train(:,3),'r');hold on;plot(new_train(:,3),'b');

subplot(4,1,4);plot(sample_train(:,4),'r');hold on;plot(new_train(:,4),'b');

%%%%% trin样本特征提取%%%%%%

Threshold=0.006;

WAMP=zeros(Channel,Count);

for c=1:Count

for n=1:Channel

for w=1:Window-1

if(abs(new_train((c-1)*WinLap+w,n)-new_train((c-1)*WinLap+w+1,n))>Threshold)

WAMP(n,c)=WAMP(n,c)+1;

end

end

end

end

Feature_train=WAMP;

%figure(3)

%plot(Feature_train);

%%%%% test样本小波去噪%%%%% %

for i=1:Channel

x=sample_test(:,i);

[thr,sorh,keepapp]=ddencmp('den','wv',x);

[c,l]=wavedec(x,3,'db1');

a3=appcoef(c,l,'db1',3);

d3=detcoef(c,l,3);

d2=detcoef(c,l,2);

d1=detcoef(c,l,1);

s4=wdencmp('gbl',c,l,'db1',3,thr,sorh,keepapp);

new_test(:,i)=s4;

end

figure(2)

subplot(4,1,1);plot(sample_test(:,1),'r');hold on;plot(new_test(:,1),'b');legend('原始信号','去噪后信号');title('test样本滤波前后信号对比');

subplot(4,1,2);plot(sample_test(:,2),'r');hold on;plot(new_test(:,2),'b');

subplot(4,1,3);plot(sample_test(:,3),'r');hold on;plot(new_test(:,3),'b');

subplot(4,1,4);plot(sample_test(:,4),'r');hold on;plot(new_test(:,4),'b');

%%%%% test样本特征提取%%%%%%%

Threshold=0.006;

WAMP=zeros(Channel,Count);

for c=1:Count

for n=1:Channel

for w=1:Window-1

if(abs(new_test((c-1)*WinLap+w,n)-new_test((c-1)*WinLap+w+1,n))>Threshold)

WAMP(n,c)=WAMP(n,c)+1;

end

end

end

end

Feature_test=WAMP;

save feature Feature_train Feature_test;

train样本和test样本滤波前后信号对比。

(3)模式识别:

clear all;

load 'feature.mat'

Gap=80;

K=77;

Count=477;%共有477组特征值

P=6;%6类动作

Feature=Feature_test;%统一接口

test=Feature_train;%统一接口

net1=newff(minmax(Feature),[7,6],{'tansig','purelin'},'trainlm');

%net = newff ( A, B, {C} ,‘trainFun’)

%

% 参数:

%

% A:一个n×2的矩阵,第i行元素为输入信号xi的最小值和最大值;

% B:一个k维行向量,其元素为网络中各层节点数;

% C:一个k维字符串行向量,每一分量为对应层神经元的激活函数;常用的有:% 线性函数’purelin’,对数S形转移函数’logsig’双曲正切S形函数’tansig’% trainFun :为学习规则采用的训练算法。也可以根据需要修改

%设置训练的输出目标矩阵

ze1=zeros(1,Gap)+1;

ze0=zeros(1,Gap);

ze1_6=zeros(1,K)+1;

ze0_6=zeros(1,K);

t=[ze1 ze0 ze0 ze0 ze0 ze0_6

ze0 ze1 ze0 ze0 ze0 ze0_6

ze0 ze0 ze1 ze0 ze0 ze0_6

ze0 ze0 ze0 ze1 ze0 ze0_6

ze0 ze0 ze0 ze0 ze1 ze0_6

ze0 ze0 ze0 ze0 ze0 ze1_6];

%神经网络进行训练

tic ;

net1.trainParam.show=200;

net1.trainParam.epochs=10000;

net1.trainParam.goal=0.1;

net1.trainParam.lr=0.01;

[net1,tr]=train(net1,Feature,t);

Y=sim(net1,Feature);

YS=sim(net1,test);

toc;

% 一些重要的网络配置参数如下:

% net.trainparam.goal :神经网络训练的目标误差

% net.trainparam.show :显示中间结果的周期

% net.trainparam.epochs :最大迭代次数

% net.trainParam.lr :学习率

% 语法:[ net, tr ] = train( net, X, Y )

% 参数:

% X:网络实际输入

% Y:网络应有输出

% tr:训练跟踪信息

% Y1:网络实际输出

% 语法:Y=sim(net,X)

% net:网络

% X:输入给网络的K×N矩阵,其中K为网络输入个数,N为数据样本数

% Y:输出矩阵Q×N,其中Q为网络输出个数

%判断输出结果为第几类

maxY=max(Y,[],1);

for i=1:Count

for j=1:P

if(maxY(i)==Y(j,i)) class(i)=j;end

end

end

maxYS=max(YS,[],1);

for i=1:Count

for j=1:P

if(maxYS(i)==YS(j,i)) class_test(i)=j;end

end

end

T=Gap;%80

wrong=zeros(1,Count);

for k=1:Gap

if (class_test(k)~=1)

wrong(k)=wrong(k)+class_test(k);end

if (class_test(k+T)~=2)

wrong(k+T)=wrong(k+T)+class_test(k+T);end

if (class_test(k+2*T)~=3)

wrong(k+2*T)=wrong(k+2*T)+class_test(k+2*T);end

if (class_test(k+3*T)~=4)

wrong(k+3*T)=wrong(k+3*T)+class_test(k+3*T);end

if (class_test(k+4*T)~=5)

wrong(k+4*T)=wrong(k+4*T)+class_test(k+4*T);end

end

for k=1:K

if (class_test(k+5*T)~=6)

wrong(k+5*T)=wrong(k+5*T)+class_test(k+5*T);end

end

wrongall=sum(wrong);

figure(1);

i=1:Count;

plot(i,class_test(i),'ob');

hold on;

%stem(i,class(i),'b');

plot(i,wrong(i),'or');legend('正确的类别','错误的类别');title('分类结果');

accuracy=1-wrongall/Count%分类准确率

%save best net1;

分类结果图

分类准确率(87.63%)

六、实验现象及结果分析

滤波过程之后可以看到信号赋值有了较为明显的变化,说明小波去噪有效果。

识别过程中,由于网络的各层之间的权值和阈值是由系统随机分配,因此每次识别的结果都不同。

七、总结

经过这次实验,我学习到了表面肌电信号的相关知识,如信号的采集,滤波,特征提取以及BP神经网络的使用方法。模式识别在许多领域都有着广泛的应用,这次试验为我以后的科研学习打下了良好的基础。

表面肌电信号实验手册

实验基于sEMG时域特征特的动作识别 一、实验目的 1.了解肌电信号常用的时域分析方法; 2.利用MATLAB对肌电信号进行去噪、特征提取及动作识别; 二、实验设备 1.Wi-Fi表面肌电信号采集卡; 2.32位Windows XP台式机(Matlab 7.0软件); 3.802.11b/g无线网卡; 三、实验内容 (1)学习信号的基本去噪方法,并用MATLAB实现; (2)学习肌电信号常用的时域特征并利用Matlab来进行波形长度(WL)符号改变数(SSC)、过零点(ZC)、威尔逊赋值(WAMP)等特征的提取; (3)学习神经网络信号处理方法,掌握BP神经网络的用法,将其用于肌电信号的动作识别。 学习以上三个部分,最终完成一整套肌电信号去噪、特征提取(选取一种特征)、基于特征的动作识别的MATLAB程序。 四、实验原理 (1)小波去噪 小波去噪方法是一种建立在小波变换基础上的新兴算法,基本思想是根据噪声在不同频带上的小波分解系数具有不同强度分布的特点,将各频带上的噪声对应的小系数去除,保留原始信号的小波分解系数,然后对处理后系数进行小波重构,得到纯净信号。 小波去噪的基本原理图如下

(2) 特征提取 时域分析是将肌电信号看成均值为零,而方差随着信号强度的变化而变化的随机信号。时域特征的计算复杂度低,提取比较方便。 最常用的方法有:方差,过零点数(Zero Crossing, ZC ),Willison 幅值(Willison Amplitude, WAMP ),绝对值平均值 (Mean Absolute Value, MA V )和波形长度(Wave length ,WL )等。在实际应用中,为了让特征可以包含更多的信息,往往选择用不同的时域特征组合形成联合特征向量。我们主要介绍一下几种方法: 过零率(ZC ):为波形通过零线的次数,从一定程度上反映了信号的频率特性。为了降低零点引入的噪声,往往会引入一个阈值δ。计算方式如下: )(),sgn(11δ≥-+-++k k k k x x x x (1) Willison 幅值:是由Willison 提出一种对表面肌电信号的幅值变化数量进行计算的方法,经过后人的研究,对Willison 幅值的阈值有了明确的范围限定,目前认为V μ100~50 是最合适的阈值范围。其数学表示公式如公式(3-3)。 ∑=+-=N t i i x x f WAMP 11 (2) 其中:???>=otherwise x if x f 阈值01)( 波形长度(WL ):它是对某一分析窗中的波形长度的统计,波长可以体现该样本的持续时间、幅值、频率的特征。 ∑-=-+=11) ()1(1N i i x i x N WL (3) 符号改变斜率(SSC ):为信号的的频率性能提供了一些附加信息,对于3个连续的采样点,给定阈值ω,通过下面的公式计算波峰波谷的个数。 ()()()N i x x x x i i i i ,,1,11 =≥-?-+-ω (4) (3) 神经网络 BP 神经网络又称误差反向传播(Back Propagation ),它是一种多层的前向型神经网络。在BP 网络中,信号是前向传播的,而误差是反向传播的。所谓的反向传播是指误差的调整过程是从最后的输出层依次向之前各层逐渐进行的。标准的BP 网络采用梯度下降算法,与Widrow-Hoff 学习规则相似,网络权值沿着性能函数的梯度反向调整。

表面肌电分析

表面肌电简介及分析方法 一、表面肌电信号概念 表面肌电信号 (surface electrom yographic signal, sEMG 信号)是从皮肤表面 通过电极引导并放大,显示记录神经肌肉活动时的生物电信号,主要是浅层 肌肉和神经干综合的电活动。表面肌电信号主要有参与活动的运动单位数量、放电频率、同步化程度、募集的模式等有关。 二、表面肌电信号主要是通过时阈和频阈两个方面进行分析 1、sEMG 信号的时域分析方法 时域分析用于刻画肌电图时间序列的振幅特征,主要指标包括积分肌电(integrete EMG,iEMG)、均方根值(root mean square,RMS)、平均振幅(MA)。 积分肌电值(integrated EMG, iEMG)是一段时间内肌肉中参与活动的运动单 位放电总量,其值大小在一定程度上反映参加工作的运动单位的数量多少和 每个运动单位的放电大小。用来分析在单位时间内肌肉的收性。 平均振幅表示肌电信号的强弱,其大小与参与活动的运动单位数目和放电频率的同步化程度有关。 2、sEMG 信号的频域分析方法 频阈方面的分析主要是在频率维度上反映 sEMG 的变化,表面肌电信 号的频域分析广泛应用于肌肉疾病诊断和肌肉疲劳检测。利用表面肌电信号进行傅立叶转换(FFT),获得的频谱或功率谱反映信号在不同频率上的变化。常用指标有平均功率频率(Mean Power Frequency, MPF)和中位频率(Median Frequency, MF)。 MF 指放电频率的中间值,即肌肉收缩过程中放电频率的中间值,一般也 是随着运动时间的增大而呈递减的趋势。。由于骨骼肌中快慢肌纤维组成比例不同,导致不同部位骨骼肌之间的 MF 值不同。快肌纤维兴奋表现在高频放电,慢肌纤维则在低频。一般在中高强度的运动时,MPF 和 MF 值会有所下降,频谱左移,则说明局部肌肉出现疲劳。并且导致反映频谱曲线特征的 MPF 和 MF 产生相应的下降。 3、sEMG在肌肉功能评价中的应用 (Ⅰ)利用sEMG评价肌肉疲劳 MPF或MF随肌肉活动持续时间的延长或肌肉活动次数的增加呈线性 规律下降,且下降速度主要与负荷大小或肌肉疲劳程度相关, (Ⅱ)利用sEMG预测肌纤维类型 表面肌电信号特征(主要是MPF)与肌肉中Ⅰ型肌纤维的比例呈线性负相关,或与Ⅱ型肌纤维的比例呈线性正相关 (Ⅳ)利用sEMG研究肌肉活动的协调程度

表面肌电信号检测系统

信号处理 综合实训报告 题目表面肌电信号检测 学院通信与信息工程学院 专业及班级电子信息科学与技术1202 姓名李娟 学号 1207080205 指导教师赵谦 日期 2015年11月19日

一、研究的目的、意义 目的:表面肌电信号的检测主要是为了临床诊断及康复医学、运动医学等领域的研究分析。意义:表面肌电(surface electromyography, sEMG)信号是神经肌肉系统在进行随意性和非随意性活动时的生物电变化经表面电极引导、放大、显示和记录所获得的一维电压时间序列信号,其振幅约为0-5mV,频率0-500Hz,信号形态具有较强的随机性和不稳定性。与传统的针式肌电图相比,sEMG的空间分辨率相对较低,但是探测空间较大,重复性较好。基础研究表明,sEMG 信号源于大脑运动皮层控制之下的脊髓α运动神经元的生物电活动,信号的振幅和频率特征变化取决于不同肌肉活动水平和功能状态下的运动单位活动同步化、肌纤维募集等生理性因素,以及探测电极位置、信号串线(crosstalk)、皮肤温度、肌肉长度和肌肉收缩方式等测量性因素的共同作用。在控制良好的条件下,上述sEMG 信号活动的变化在很大程度上能够定量反映肌肉活动的局部疲劳程度、肌力水平、肌肉激活模式、运动单位兴奋传导速度、多肌群协调性等肌肉活动和中枢控制特征的变化规律,因而对于体育科学研究、康复医学临床和基础研究等具有重要的学术价值和应用意义。随着人们对肌电信号研究与了解的日益深入和肌电检测技术的进步,肌电信号处理手段的发展与肌电信号处理的广泛应用成为肌电信号研究的一个突出特点。肌电检测不仅是基础研究的需要,而且对于了解人体神经系统信息及康复工程都有着深远的意义。 二、实训内容 本组内容:肌电信号时域波形及频谱在上位机中的显示与处理 软件环境:LABVIEW 具体工作:LABVIEW和VISA的安装配置,程序的设计及后期的调试,以实现用LABVIEW进行串口通信,将所得数据转换并显示为波形的目的。 三、方案设计、工作流程 方案设计:

数字信号处理肌电信号的分析

燕山大学 课程设计说明书题目:肌电信号分析及动作识别 学院(系):电气工程学院 年级专业: 学号: 学生姓名: 指导教师: 教师职称:

电气工程学院《课程设计》任务书 课程名称:“单片机原理及应用——数字信号处理”课程设计基层教学单位:自动化仪表系指导教师:学号学生姓名(专业)班级设计题目肌电信号分析及动作识别 设 计技术参数1、独立完成设计任务。 2、编程,上机调试。 3、连接硬件实验线路,实现所要求的功能。 4、完成设计,提交课程设计报告。 设计要求1、利用肌电传感器采集人体肌电信号,利用Matlab软件对肌电信号进行时域和频域(包括FFT,功率谱,倒谱)分析,计算均值、标准差、方差、积分肌电值IEMG、均方根有效值RMS等时域指标参数和平均功率频率MPF、中值频率MF等频域指标。比较不同动作下肌电信号特征,根据设定阈值给出动作状态,设计相应的信号分析及显示界面。 2、基于肌电信号分析结果,通过串口发送命令给单片机系统,根据肌电信号动作状态控制相应的数码管或LED发光显示。 3、扩展:也可通过动作模式驱动电机转动或其他控制输出模块。 工 作量软件编程与硬件调试相结合,绘制设计流程图,编制相应软件界面,实现单片机控制与信号处理任务的综合应用 参考资料1)《微型计算机控制系统》赖寿宏,机械工业出版社(教材) 2)《单片机及应用》李大友,高等教育出版社(教材) 3)《信号处理原理及应用》谢平等机械工业出版社(教材) 4)《Matlab程序设计及其在信号处理中的应用》聂祥飞等西南交通大学出版社 5)自选其他有关资料 周次第一周第二周 应完成内容熟悉伟福单片机编程环境,调试单 片机各基本功能模块;熟悉matlab 信号处理工具箱,信号处理系统基 本功能模块学习和调试 单片机系统与信号处理系统综合进 行硬件调试, 撰写课程设计报告 指导教师签字基层教学单位主任签字 说明:1、此表一式四份,系、指导教师、学生各一份,报送院教务科一份。 2、学生那份任务书要求装订到课程设计报告前面。

表面肌电信号采集概论

表面肌电信号采集(硬件部分)报告一.研究背景 肌肉收缩时伴随的电信号,表面肌电信号是各个运动单元动作电位在表面电极处之和,是在体表无创检测肌肉活动的重要方法。本课程设计通过表面肌电信号幅值的检测,实现对手指运动或抓握力量的识别。 图一表面肌电信号 图2 手指运动的肌电信号 肌电信号特性 设计肌电信号采集系统,首先要了解并分析肌电信号的特性,明确肌电信号的特性能够更好的滤除噪声,更好的设计肌电采集系统。 肌电信号发源于作为中枢神经一部分的脊髓中的运动神经元。运动神经元的细胞体处在

其中,其轴突伸展到肌纤维处,经终板区(哺乳类神经肌肉接头为板状接头,故称终板或称运动终板motor endplate)与肌纤维耦合(是生化过程性质的耦合)。与每个神经元联系着的肌纤维不只一条。这些部分合在一起,构成所谓运动单位,如图(2.1)。 运动单位是肌肉的最小功能单位并能被随意地激活,它由受同一运动神经支配的一群肌肉纤维组成,肌电信号(EMG)是由不同运动单位的运动单位动作电位motor unit action potential,MUAP)组成。 肌电信息与肌肉收缩的关系可以概述如下:由中枢神经系统发出传向运动神经末梢分支的运动电位,传递着驱使肌肉收缩的信息。由于神经末梢分支的电流太小,常不足以直接兴奋大得多的肌纤维,但是通过神经肌肉接头处的特殊终板的类似放大作用,这样就爆发一个动作电位沿着肌纤维而传播,在动作电位的激发下随之产生一次肌肉收缩。这种兴奋和收缩之间的联结是通过肌纤维内部特殊的传导系统实现的,因此,可以明确以下概念:1)动作电位不是肌肉收缩的表现,而是发动肌肉收缩机制的重要部分。 2)由于肌肉信号只与给予肌肉的指令成比例,因此肌肉实际上不需要产生力,但工作了的肌肉仍然是发放肌电的适当源泉。各肌纤维在检测点上表现出的电位波形,其极性与 终板和检测点的相对位置有关(例如图2.2上纤维1和n引起的电位波形与纤维2,3引起的电位波形反向)。又和纤维与检测点间的距离有关,相距愈远,幅度愈小。

Glazer表面肌电评估解读

Glazer表面肌电评估解读

————————————————————————————————作者:————————————————————————————————日期:

1、评价流程设计: Pre-baseline:60秒放松测试60秒 Fastflick/rest:2秒×5次/10秒快速收缩5次/放松10秒 Tonic contraction:10秒/10秒收缩10秒/放松10秒 Duration :60秒持续收缩60秒 Post-baseline:60秒后基线60秒 2、评估指标解释; A、RMS(均方根值)/单位uv(微伏):反应患者盆底肌收缩或者放松是的表面肌电值,幅值的增加表明肌力的增强,也就是说RMS与肌力成正比。 3、肛肠科盆底肌表面肌电评估统计数值(参考值): 部位指标 时间段 Pre-b aseline 静息平 均值 Mean Fastflick 快速收缩 的最大值 Maximum Tonic 最大收缩 值 Maximum Duration 持续收缩 的平均值 Mean Post- baseline 静息值 阴道RMS 2 35-37.5 25 20 2 部位指标 时间段 Pre-b aseline 静息值 Fastflick 快速收缩 Tonic 最大收缩 Duration 持续收缩 Post- baseline 静息值 肛门RMS最大值 (max)4 以 下 正 常 70以 上 正 常 40以 上 正 常 25以 上 正 常 4 以 下 正 常 4-5 基 本 正 40-50 基 本 正 35-40 基 本 正 20-25 基 本 正 4-5 基 本 正

阵列式表面肌电信号采集仪_赵章琰

第23卷 第12期 电子测量与仪器学报 Vol. 23 No. 12 · 88 · JOURNAL OF ELECTRONIC MEASUREMENT AND INSTRUMENT 2009年12月 本文于2009年6月收到。 * 基金项目:国家自然科学基金(编号:30870656)资助项目 阵列式表面肌电信号采集仪* 赵章琰 陈 香 雷培源 杨基海 (中国科学技术大学电子科学与技术系, 合肥 230027) 摘 要: 采用阵列式电极, 通过空间滤波方法可提高表面肌电信号的MUAP 分辨能力。本文实现的阵列式表面肌电信号采集仪由表面肌电电极阵列、信号调理电路和数据采集部分构成。表面肌电电极阵列实现了镀金圆盘式和弹簧探针式两种类型, 信号调理电路对电极上的肌电信号进行放大和滤波, 数据采集部分将调理后的信号转换成数据并进行显示和存储。电极阵列和前级信号调理电路集成在一起, 有效的降低了微弱信号通过导线传输所引入的干扰。通过实验, 验证了这种阵列式表面肌电采集仪在研究肌肉中动作电位传播和利用空间滤波提高MUAP 分辨力的可行性, 并证实了镀金圆盘式电极在降低噪声方面、弹簧探针式电极在缩短MUAP 时长方面的优势。 关键词: 表面肌电电极阵列;镀金圆盘;弹簧探针;空间滤波;MUAP 时长 中图分类号: R318.6 文献标识码: A 国家标准学科分类代码: 310.6140 Array acquisition instrument for surface electromyogram Zhao Zhangyan Chen Xiang Lei Peiyuan Yang Jihai (University of Science and Technology of China, Hefei 230027, China) Abstract: The discrimination of MUAP from surface Electromyogram (sEMG) can be improved by using elec-trodes array and space filtering method. According to this principle, an array acquisition instrument for sEMG was de-veloped in this paper, containing sEMG electrodes array, signal conditioning circuits and a data acquisition part. Gold plated disk shaped electrodes and spring probe electrodes built up two different kinds of sEMG electrode array; The conditioning circuit amplifies and filters the signal form electrode array; The data acquisition part converted the condi-tioned signal to digital for display and storage. The electrode array is integrated with the first-stage conditioning circuit, in order to prevent interferences of weak signal transmission through wires. It is proved that the array acquisition in-strument can be used in the research of action potential transmission in muscles, and it can improve the discrimination of MUAP by using space filtering method. It is also proved that the gold plated disk shaped electrodes work better in noise reduction and the spring probe electrodes work better in reducing the MUAP duration. Keywords: sEMG electrode array; gold plated disk shaped electrode; spring probe electrode; space filtering; MUAP duration 1 引 言 表面肌电(surface electromyogram, sEMG)是从皮肤表面检测相应位置内部肌肉肌电图的方法, 这种方法与传统的针电极EMG 相比, 具有无痛苦无损伤的优点。表面肌电信号事实上是肌肉上各点的运动单位动作电位(motor unit action potentials, MUAP) 通过皮下组织和皮肤, 在皮肤表面的叠加。所以跟针电极EMG 相比, 它不利于区分出各个MUAP, 在医疗诊断中的应用受到限制。 研究表明, 通过空间滤波的方法可以提高对表面肌电信号MUAP 的分辨能力。空间滤波的基本思想是采集皮肤表面多点的表面肌电信号, 通过线性变换尽可能的反演出肌肉内部的电位活动。这种方

表面肌电信号数字传感器

表面肌电信号数字传感器 介绍了表面肌电信号数字传感器的设计方法。根据表面肌电信号产生特点和采集技术的基本要求,研究电极的形状和正确的放置方法,采用仪用放大器INA128设计前置放大电路。设计有源滤波器,应用串行A/D转换芯片输出数字信号。实验表明,该方法可以提高信噪比,减小噪声,有效地提取出表面肌电信号。 1 引言 表面肌电(surface electromyography, sEMG)信号是神经肌肉系统在进行随意性和非随意性活动时的生物电变化经表面电极引导、放大、显示和记录所获得的一维电压时间序列信号,其振幅约为0-5000μV,频率0-1000Hz,信号形态具有较强的随机性和不稳定性。与传统的针式肌电图相比,sEMG的空间分辨率相对较低,但是探测空间较大,重复性较好,对于体育科学研究、康复医学临床和基础研究等具有重要的学术价值和应用意义[1]。 人体是一导电体,工频干扰及体外的电场、磁场感应都会在人体内形成测量噪声,干扰sEMG的检测,所以信号的滤波和电路的屏蔽成为表面肌电信号数字传感器设计的重点。分为几个部分:电极、放大电路、滤波电路、A/D转换。 2 电极的设计 本文电极极片的基体用铜制作,表面镀银,其形式采用常用的双极型,并在两个电极中间插入了一个参考电极,也称作无关电极,以利于降低噪声,提高对共模信号的抑制能力。为了消除来自电源线的噪声,采用差动放大的方法。 肌电信号由两个电极来检测,两个输入信号“相减”,去掉相同的“共模”成份,只放大不同的“差模”成份。任何噪声如果离检测点很远,在检测点上将表现为“共模”信号;而检测表面附近的信号表现为不同,将被放大。因此,相对较远处的电力线噪声将被消除,而相对比较近处的肌电信号将被放大。其准确性由共模抑制比(CMRR)来衡量[2]。 肌电信息在人体组织(容积导体)内的传递,会随着距离的增加而很快衰减。因此电极宜贴放在肌电发放最强的肌腹部,以减少邻近肌肉的肌电干扰(串音)。采用较小的电极可提高选择性,但会增加电极与皮肤间的接触阻抗。 3 放大电路的设计 人体肌肉组织是皮表肌电的信号源,它发放的肌电经过皮下软组织的体电阻传输至皮肤表面,体电阻约数百欧姆,但是,表面电极与皮肤之间的接触阻抗比较高,约几千欧姆。接触电阻还受接触松紧程度、皮肤清洁程度、湿度、四季时令变化等多种因素影响,变化很大[3]。由此可见,对于放大器来说,肌电信号源是一个高内阻的信号源。 在设计肌电信号放大电路时,着重考虑了以下问题:1.高增益:表面肌电信号幅度约在分布μV~mV数量级之间,是一种极其微弱的信号,要将其放大到一伏左右才能方便使用,所以将放大器的增益设置在80dB。2.高共模抑制比:表面肌电信号的采集易受50Hz工频电源及其它高频电噪声的干扰。但这些干扰信号在放大器的输入端表现为同幅同相的信号——共模信号,因此选用高共模抑制比的放大电路对干扰信号进行抑制。3.高输入阻抗:肌肉组织与电极之间的接触阻抗可能在相当大的范围内变化,天气干燥地区,接触电阻甚至高达几万欧姆,在这种条件下,即使放大器的共模比极优良,如果输入阻抗不够高,共模干扰信号也会造成输出误差。因此必须提高放大器的输入阻抗。 根据以上所述,设计的肌电信号采集电路要求具有高增益、高输入阻抗、高共摸抑制比(CMRR)、低零漂、低失调、低功耗、尤其是低的1/f噪声电压。本文选用德州仪器(Texas

基于multisim的肌电信号的采集与分析

院(系):基层教学单位: 燕山大学课程设计评审意见表

目录 第1章摘要 (1) 第2章基本原理 (3) 第3章设计及仿真 (5) 3.1 前置放 大 (5) 3.2 滤波电路 (8) 3.3 主放大电路 (10) 3.4 50Hz陷波电路 (12) 第5章结论 (16) 参考文献 (18) 第1章摘要 肌电信号是一种复杂的生物医学信号,是肌肉收缩时产生的电活动,不仅和肌肉本身的生理特性有关,也和神经控制系统有关。因此,肌电信号的研究分析已成为临床诊断、康复工程、神经生理学和生物力学等诸多领域的研究热点。 目前,国内外生产的肌电反馈产品较多,它对临床诊断,康复医学及运动医学等领域方面起着重要作用。本文从肌电信号的产生机理入手,研究了肌电信号的特点和提取的方法,通过肌电变化转化成直观的肌电波,以此表征肌肉的活动状态,并通过此反馈给患者,使患者能感知肌电的这种变化,并进行反复的调控训练,从而达到康复训练和治疗的目的。 生物反馈疗法是使用电子仪器,将人们正常意识不到的身体功能,如肌电、脑电、皮温、心率、血压等转变为可以被人察觉到的信号,如视觉或听觉信号,再让患者根据这些信号,学会控制自身不随意功能的治疗和训练方法。这一疗法自60年代提出并开展以来,以其无损伤,无痛苦,无药物副作用,方法简便,疗效满意等优点而被许多国家重视并采用,特别是一些发达国家己把生物反馈和自身调节作为一种常规方法,广泛开展于临床医学临床。 肌电反馈仪及电刺激使用普遍,国内外生产的品种也比较多,

它在临床诊断,康复医学及运动医学等领域方面起着重要作用。随着科学技术的快速发展,新技术、新产品的不断涌现,人们对仪器的功能、灵活性的要求越来越高。虚拟仪器技术是仪器技术和计算机技术相结合的产物。经过了近20年的发展,它已成为2l世纪测试技术和仪器技术发展的主要方向。本课题的研究目的就是为了采用虚拟仪器技术,发挥其强大的软件优势,来实现传统的治疗仪。这将对节约成本,利于开发编程等方面有很高的益处。 第2章基本原理 肌电信号是肌肉中运动单元动作电位(MUAP)在时间上和空间上的叠加,表面肌电信号则主要是浅层肌肉和神经干上电活动的综合效应。肌电信号的幅值本质上是随机信号,其峰一峰幅值范围为0-10mv,均方根幅值范围为 0-1.5mV,主要集中在100-500uV,频率范围在0-10KHz,有用能量分布在 0-500Hz频率范围之间,主要能量集中分布在50—150Hz频率范围之间。 图1 硬件结构图 由于人体表面肌电信号非常微弱,从几微伏到几毫伏,并存在高频电磁干扰,50Hz工频干扰和极化电压干扰等。因此选用高共模抑制比的仪表放大器AD620和高通滤波电路作前置隔直放大,消除极化电压的干扰;通过带通滤波放大电路消除高频电磁干扰:用50Hz陷波器消除工频干扰,并用通过隔离放大器使检测的肌电信号和后端处理信号隔离,保证了人体安全。通过前置放大和二级放大,并经过信号调理后把信号传给AD转换器,供AD采样。由于肌电信号的个体差异性,在设计放大通道时,放大倍数在4000-100000倍,可通过PC机软件调节控制。

单片机肌电信号开题报告

学号: 10417122 常州大学 毕业设计(论文)开题报告 (2014届) 题目基于单片机的肌电信号监测系统设计 学生孙振 学院信息科学与工程学院专业班级自动化 101 校内指导教师吕继东专业技术职务讲师 二○一四年三月

题目:基于单片机的肌电信号监测系统设计 一、前言 1.课题研究的意义,国内外研究现状和发展趋势 1.1课题研究的意义: 肌肉的生物电活动形成的电位随时间变化的波形称为肌电图(EMG)。肌电信号(EMG)是肌肉中运动单元动作电位(MUAP)在时间上和空间上的叠加,表面肌电信号则主要是浅层肌肉EMG和神经干上电活动的综合效应。因此肌电信号的检测处理得到了越来越广泛的应用。在临床医学中,肌电图测试已成为日常诊断某些椎体外神经肌肉病变的有力手段。在体育训练和运动生物学领域中,肌电也已成为对运动员或其他人员的分析的依据。所以,用表面肌电信号的检测与分析也为人们所重视【4】。 近年来,随着计算机技术与数据处理技术的发展,越来越多的学者开始从事表面肌电信号(sEMG)的研究,并将其广泛地应用于肌肉生理、肌肉代谢、康复医学及体育运动等方面的研究和神经肌肉疾病诊断。与此同时,由于生物电信号的微弱性,怎样有效获取sEMG也是一项具有挑战性的研究。因此,研制出一种性价比高、方便实用、性能稳定的sEMG数据监测系统具有重要意义。[3] 1.2国内外研究现状和发展趋势: 国外:国外的肌电放大采集系统发展半个多世纪,已经较好的解决了原始信号的提取放大分析。加拿大Thought 公司是全球表面肌电领域的领导厂商,经过三十年的持续发展,其表面肌电的提取、分析、训练技术已成为全球公认的最高标准。其全球专利数字传感器技术,有效的还原原始信号,可以对多路的肌电,心电,脑电等生理参数进行分析。提供多种函数运算,同时支持全程数据分析、分段分析、实时分析,和开放数据输出至SPSS、MatLab、ASCLL。荷兰BioSemi 公司的Active Two 采用280 通道,24 位解析度能有效的检测肌电和脑电,其应用程序可直接与电脑相连。国外公司肌电采集系统能很好的完成肌电信号的提取采集,但是由于高昂的价格和较差的兼容性,以及较差的便携性,对于我们的康复工程和假肢控制带来不便。[2] 国内:在国内生理信号采集技术已有几十年的技术积累。70 年代末,国内医学信息技术进入了新的发展阶段。许多专家开始了以赶超国际医学研究水平为目标的课题实施。而真正以微型计算机为基础的革命性生物医学工程研究则从80 年代初开始。83 年后,由Z--80 至 8086/8088 CPU 及PC 总线机种与DOS 系统的普及,尤其是国产化优质价廉的采集控制接口产品的推广,给国内生理医学工程技术的发展,注入了强有力的增长剂。国内近几年肌电采集放大系统发展迅速。南京大学微弱信号研究中心研制的HB-851 系统能采集到原始的肌电信号,能够比较好的消除噪声的影响。Pclab 生物信号采集处理硬件主要完成对各种生物电信号(如:心电、肌电、脑电)与非电生物信号(如:血压、张力、呼吸)的采集,并对采集到的信号进行调理、放大,进而对信号进行模/数(A/D)转换,使之进入计算机。特别是近2年合肥旭宁有限公司的表面肌电仪可以选择有线/无线模式,存储器保存原始肌电数据,数据完整性,在不需要计算机干预的情况下,独立实现肌电信号采集和存储。对于国内进行的已经研究出来的采集系统,

表面肌电分析系统1

表面肌电分析系统 项目计划书 >>>成人康复

目录

一、项目提供方简介 二、为什么要定量评定 三、为什么要定制方案 四、为什么是表面肌电分析系统(Flexcomp Infiniti System) 1.产品概述 2.定量评定 3.完美方案 4.功能拓展 5.生物反馈训练 五.部分客户名单 六.效益分析 1.收费标准:(以江苏地区收费为例) 2.治疗收费: 七.文献支持

一、项目提供方简介——南京伟思医疗科技有限责任公司 南京伟思医疗科技有限公司公司成立于2001年,是专业从事医疗器械、生物医学工程、家庭健康产品以及计算机软件开发、生产、销售为一体的高新技术企业。经过十余年的辛勤耕耘,目前已经发展

成为一家拥有自主研发能力、优良的产品线、先进的商业模式、优良的服务、强大的技术能力、优秀的年轻团队、完善的管理体系和积极进取的企业文化的中国知名的医疗器械及家用健康产品供应商。 公司积极与国内数百家公司机构、上千家医院及近万名个人用户进行了友好的合作,使我们的产品成为中国心理学、康复医学及家用健康领域具有影响力和竞争力的品牌之一。伟思公司设立职能部门、供应链、战略产品部、安思定事业部、市场部、客户部、渠道部。 伟思公司还将一如既往提升服务,全力支持我国康复事业的向前发展。 二、为什么要定量评定? “在康复领域中,康复评定是一项基本的专业技能,是制定出好的治疗计划的基础。只有通过全面的、系统的和相近记录的康复评定,才有可能确定病人的具体问题,制定相应的干预计划。”“可以这样说,没有评定,就没有康复。”

目前在临床上经常使用的评定方法有定性评定、半定量评定和定量评定。定性评定容易受评定者和被评定者主观因素的影响,从而使分析结果有很大程度的模糊性和不确定性。这种不确定性有时会因为评定医师的差异性,而使结果差异被主观放大。 最常见的半定量评定方法以量表法最为常见。半定量评定的方法可以数量化地反映被试者的功能障碍水平和特点,但是由于两个分数相同的患者其功能障碍可以不同,他们可在不同的活动中得分或丢分,精确度不高。因此,不同患者之间的功能活动的潜在差异可能被掩盖,而且量表法的有效性在很大程度上取决于评定量表的可靠性。 定量评定,最突出的优点是将障碍的程度量化,相比定性分析和半定量评定而言,更精确、更客观、更详实。通过定量分析可以让研究者对对象的认识进一步精确化,更科学的揭示规律,把握本质,理清关系,预测疾病的发展趋势,并且制定相应的具体治疗计划。 三者比较发现,定量评定没有定性分析和办定量评定的固有缺点——主观误差,这使这种分析方式容易被重复,而且能够实现数据采集的完整性,科学的数据分析和处理,更易被广泛接受与推广。 三、为什么要定制方案?

表面肌电图的分析与应用研究

4 表面肌电图的分析与应用研究 表面肌电(surface electromyography, sEMG)图在电生理概念上虽然与针电极肌电图相同,但表面肌电图的研究目的,所使用的设备以及数据分析技术与针电极肌电图是有很大区别的。相对与针电极肌电图而言,其捡拾电极为表面电极。它将电极置于皮肤表面,使用方便,可用于测试较大范围内的EMG信号。并很好地反映运动过程中肌肉生理生化等方面的改变。同时,它提供了安全、简便、无创的客观量化方法,不须刺入皮肤就可获得肌肉活动有意义的信息,在测试时也无疼痛产生。另外,它不仅可在静止状态测定肌肉活动,而且也可在运动过程中持续观察肌肉活动的变化;不仅是一种对运动功能有意义的诊断方法,而且也是一种较好的生物反馈治疗技术[50]。 4.1 肌电(electromyography, EMG)信号的产生原理及模式 4.1.1肌电信号的产生原理 肌肉收缩的原始冲动首先来自脊髓,然后通过轴突传导神经纤维,再由神经纤维通过运动终板发放冲动形成肌肉收缩,但每根肌纤维仅受一个运动终板支配,该运动终板一般位于肌纤维的中点。当神经冲动使肌浆中Ca2+浓度升高时,肌蛋白发生一系列变化,使细胞丝向暗带中央移动,与此相伴的是A TP的分解消耗和化学能向机械功的转换,肌肉完成收缩。在肌肉纤维收缩的同时也相应地产生了微弱的电位差,这就是肌电信号的由来。 人体骨骼肌纤维根据功能分为Ⅰ型慢缩纤维,又称红肌,亦即缓慢-氧化型肌纤维;Ⅱa型和Ⅱb型快缩纤维,又称白肌。“红肌”力量产生较慢,其特点是ATP产生是氧化代谢产生的(即其含有较高的氧化能力),可以维持较长的工作时间,作用主要为保持耐力。快肌纤维则主要是无氧酵解(糖原代谢)途径,故在相对较短的时间内,易产生疲劳和乳酸堆积[46]。所以,不同纤维类型因其收缩类型不同,能量代谢改变不同,生理作用不同,故其收缩时的肌电信号也有不同特征,故而肌电信号反过来也可相应反映耐力、生化改变,也就是疲劳度、代谢等方面的情况。 4.1.2表面肌电信号产生的模式 肌肉内组成单一运动单位的肌纤维,都被包围在兴奋和未兴奋的众多肌纤维及其它导电性良好的体液和组织中,各肌纤维动作电位的产生和传导都会在其外部介质中形成“容积导体导电”现象。产生动作电位的各肌纤维形成一个共同的

表面肌实验报告

武汉理工大学 现代数字信号处理在前沿学科中的应用实验报告基于sEMG时域特征的动作识别 学院:信息工程学院 学号: 1049731503279 姓名:吴志勇 班级:电子154

实验基于sEMG时域特征特的动作识别 一、实验目的 1.了解肌电信号常用的时域分析方法; 2.利用MATLAB对肌电信号进行去噪、特征提取及动作识别; 二、实验设备 1.Wi-Fi表面肌电信号采集卡; 2.32位Windows XP台式机(Matlab 7.0软件); 3.802.11b/g无线网卡; 三、实验内容 (1)学习信号的基本去噪方法,并用MATLAB实现; (2)学习肌电信号常用的时域特征并利用Matlab来进行波形长度(WL)符号改变数(SSC)、过零点(ZC)、威尔逊赋值(WAMP)等特征的提取; (3)学习神经网络信号处理方法,掌握BP神经网络的用法,将其用于肌电信号的动作识别。 学习以上三个部分,最终完成一整套肌电信号去噪、特征提取(选取一种特征)、基于特征的动作识别的MATLAB程序。 四、实验原理 (1)小波去噪 小波去噪方法是一种建立在小波变换基础上的新兴算法,基本思想是根据噪声在不同频带上的小波分解系数具有不同强度分布的特点,将各频带上的噪声对应的小系数去除,保留原始信号的小波分解系数,然后对处理后系数进行小波重构,得到纯净信号。 小波去噪的基本原理图如下 (2)特征提取

时域分析是将肌电信号看成均值为零,而方差随着信号强度的变化而变化的随机信号。时域特征的计算复杂度低,提取比较方便。 最常用的方法有:方差,过零点数(Zero Crossing, ZC ),Willison 幅值(Willison Amplitude, WAMP ),绝对值平均值 (Mean Absolute Value, MAV )和波形长度(Wave length ,WL )等。在实际应用中,为了让特征可以包含更多的信息,往往选择用不同的时域特征组合形成联合特征向量。我们主要介绍一下几种方法: 过零率(ZC ):为波形通过零线的次数,从一定程度上反映了信号的频率特性。为了降低零点引入的噪声,往往会引入一个阈值δ。计算方式如下: )(),sgn(11δ≥-+-++k k k k x x x x (1) Willison 幅值:是由Willison 提出一种对表面肌电信号的幅值变化数量进行计算的方法,经过后人的研究,对Willison 幅值的阈值有了明确的范围限定,目前认为V μ100~50 是最合适的阈值范围。其数学表示公式如公式(3-3)。 ∑=+-=N t i i x x f WAMP 1 1 (2) 其中: ?? ?>=otherwise x if x f 阈值 01 )( 波形长度(WL ):它是对某一分析窗中的波形长度的统计,波长可以体现该样本的持续时间、幅值、频率的特征。 ∑-=-+= 1 1 ) ()1(1N i i x i x N WL (3) 符号改变斜率(SSC ):为信号的的频率性能提供了一些附加信息,对于3个连续的采样点,给定阈值ω,通过下面的公式计算波峰波谷的个数。 ()()()N i x x x x i i i i ,,1,11Λ=≥-?-+-ω (4) (3) 神经网络 BP 神经网络又称误差反向传播(Back Propagation ),它是一种多层的前向型神经网络。在BP 网络中,信号是前向传播的,而误差是反向传播的。所谓的反向传播是指误差的调整过程是从最后的输出层依次向之前各层逐渐进行的。标准的BP 网络采用梯度下降算法,与Widrow-Hoff 学习规则相似,网络权值沿着性能函数的梯度反向调整。 前向型神经网络通常具有一个或多个由sigmoid 神经元构成的隐层,以及一个由线性神经元构成的输出层。多个具有非线性传递函数的神经元层使得网络可以学习输入和输出之间的非线性关系,而线性输出层使得网络可以产生[-1,+1]之外的输出值。

单片机肌电信号采集电路

表面肌电信号采集模块 表面肌电图(surface Electromyogram,sEMG)又称动态肌电图(dynamic Electromyogram,dEMG),是通过表面电极从肌肉表面引导和记录肌肉活动时神经肌肉系统生物电变化的一维时间序列电信号。这些年来,表面肌电信号在很多领域的应用都越来越受到重视,如在康复医学、骨科学、神经学、生物医学、运动医学和工程学等领域。和传统的采用针式获取肌电图的方法比较,表面肌电信号具有很多优点,比如操作更加便捷、不会产生创伤、可采集的空间相对要大,可以进行很长时间的动态采集以及重复性好等优点。由于这些优点,表面肌电信号采集更容易被脑瘫患儿及家长接受。本节主要介绍表面肌电信号采集电路设计。 (2) 在采集表面肌电信号时,电极片会与人体皮肤直接接触,在这个接触界面上会产生一个接触电阻。由于皮肤表面容易分泌汗液等化学物质,容易发生溶液的电解,影响接触电阻的阻值以及产生对皮肤有害的物质。因此,在采集表面肌电信号的时候,应尽量使电极与皮肤接触保持稳定,并避免产生对人体有害的物质。 (3) 不是采用悬浮电极的情况下,电极与皮肤表面发生的微小位移会引起噪音,干扰肌电信号。 经过综合考虑,本系统采用一次性心电电极引导表面肌电信号,该电极使用Ag/AgCl做为感应元件,水凝胶做为粘性元件。这些元件都具有很好的皮肤适应性。水凝胶用来加强产品与皮肤的粘贴

效果从而杜绝因为人的活动造成接触不良。 (1) 电极主要技术指标: (2) 交流阻抗:≤3KΩ; (3) 直流失调电压:≤100mV; (4) 内容噪声:≥150uVp-p; (5) 模拟除颤恢复性能:每次放电后第五秒,电极对上的电压值≤100mV; (6) 偏置电流耐受度:电极对经400nA的直流电流持续作用4小时,在整个作用期间内,电极对两端的电压变化≤100mV。 肌电信号在人体组织内的传递(容积导),会随着距离的增加而很快急减。因此,电极片应该贴放在肌电信号发放最强的部位,以减少邻近肌肉的肌电信号干扰。同时,良好的接地不仅可以降低前面所述的第一种干扰,还可以有效地降低回路阻抗,提高抗干扰能力。图3-2是表面电极的贴片方式,采用差分方式可以有效降低共模干扰。 图3-2 表面电极贴片方案示例 前置放大电路设计 通过电极拾取到的表面肌电信号含有各种各样的噪声,单片机是无法直接进行A/D转换的,必须要经过一步一步地调理,才能去除噪声,提取有用信号。信号首先经过前置放大电路,进行初步处理。为了更有效地去除共模信号地干扰,本系统采用差分放大电路,选用专门的仪器仪表放大器,同时为了防止干扰从导线引入,应使用屏蔽导线与电极相连。 为了获取极佳的性能与功耗比,我们选用ADI公司生产的新型仪用放大器AD620。该芯片是一款虽然成本低但精度却很高的仪表放大器,实际使用时只需要一个外部电阻便可以设置放大器的增益,增益范围为1至10,000。此外,AD620采用的是8引脚的SOIC和DIP封装,尺寸小于分立电路设计,并且功耗非常低(最大工作电流仅为1.3mA),因而非常适合远程应用、电池供电与便携式等设备中。AD620的非线性度最大仅为40ppm,失调电压最大仅为50μV,失调漂移最大仅为0.6μV/℃,非常适合精密数据采集系统。此外,AD620的低噪声、低输入偏置电流和低功耗特性使之十分适合ECG与

表面肌电信号数字传感器设计

表面肌电信号数字传感器的设计 1. 引言 表面肌电(surFace ElectroMyoGraphy, sEMG)信号是神经肌肉系统在进行随意性和非随意性活动时的生物电变化。经表面电极引导、放大、显示和记录所获得的一维电压时间序列信号,其振幅约为0-5000μV,频率0-1000Hz,信号形态具有较强的随机性和不稳定性。与传统的针式肌电图相比,sEMG的空间分辨率相对较低,但是探测空间较大,重复性较好,对于体育科学研究、康复医学临床和基础研究等具有重要的学术价值和应用意义[1]。 人体是一导电体,工频干扰及体外的电场、磁场感应都会在人体内形成测量噪声,干扰sEMG的检测,所以信号的滤波和电路的屏蔽成为表面肌电信号数字传感器设计的重点。装置主要分为以下几个部分:电极、放大电路、滤波电路、A/D转换。 2. 电极的设计 本文电极极片的基体用铜制作,表面镀银,其形式采用常用的双极型。并在两个电极中间插入了一个参考电极,也称作无关电极,以利于降低噪声,提高对共模信号的抑制能力。为了消除来自电源线的噪声,采用差动放大的方法。 肌电信号由两个电极来检测,两个输入信号“相减”,去掉相同的“共模”成份,只放大不同的“差模”成份。任何噪声如果离检测点很远,在检测点上将表现为“共模”信号;而检测表面附近的信号表现为差模信号,将被放大。因此,相对较远处的电力线噪声将被消除,而相对比较近处的肌电信号将被放大。其准确性由共模抑制比(CMRR)来衡量[2]。 肌电信息在人体组织(容积导体)内的传递,会随着距离的增加而很快衰减。因此电极宜贴放在肌电发放最强的肌腹部,以减少邻近肌肉的肌电干扰(串音)。采用较小的电极可提高选择性,但会增加电极与皮肤间的接触阻抗。 3. 放大电路的设计 人体肌肉组织是皮表肌电的信号源,它发放的肌电经过皮下软组织的体电阻传输至皮肤表面,体电阻约数百欧姆。但是,表面电极与皮肤之间的接触阻抗比较高,约几千欧姆。接触电阻还受接触松紧程度、皮肤清洁程度、湿度、四季时令变化等多种因素影响,变化很大[3]。由此可见,对于放大器来说,肌电信号源是一个高内阻的信号源。 在设计肌电信号放大电路时,着重考虑了以下问题: 1.高增益:表面肌电信号幅度约在分布μV~mV数量级之间,是一种极其微弱的信号,要将其放大到一伏左右才能方便使用,所以将放大器的增益设置在80dB。 2.高共模抑制比:表面肌电信号的采集易受50Hz工频电源及其它高频电噪声的干扰。但这些干扰信号在放大器的输入端表现为同幅同相的信号——共模信号,因此选用高共模抑制比的放大电路对干扰信号进行抑制。 3.高输入阻抗:肌肉组织与电极之间的接触阻抗可能在相当大的范围内变化,天气干燥地区,接触电阻甚至高达几万欧姆,在这种条件下,即使放大器的共模比极优良,如果输入阻抗不够高,共模干扰信号也会造成输出误差。因此必须提高放大器的输入阻抗。 根据以上所述,设计的肌电信号采集电路要求具有高增益、高输入阻抗、高共摸抑制比(CMRR)、低零漂、低失调、低功耗、尤其是低的1/f噪声电压。本文选用德州仪器(Texas Instruments)公司的Burr-Brown系列的同相并联差动三运放仪表放大器INA128PA为核心器件搭建了前置放大电路,获得了良好的电路效果。该芯片内部原理电路图如图1所示。

相关文档