文档库 最新最全的文档下载
当前位置:文档库 › 模拟分析法在热水供暖系统初调节中的应用

模拟分析法在热水供暖系统初调节中的应用

模拟分析法在热水供暖系统初调节中的应用
模拟分析法在热水供暖系统初调节中的应用

二级换热系统的水力平衡调节

二级换热系统的水力平衡调节 首都机场动力能源公司暖通分公司秦春雨夏晨宇 摘要:本文介绍了首都机场动力能源公司暖通分公司供暖站解决水力失调的几种方法和措施,提出了一套根据不同年代建筑的单位面积热负荷和建筑面积进行水力平衡调节的计算公式和理论依据,并介绍了针对不同情况的高温水系统、低温水系统进行水力平衡调节的步骤和方法,最后对水力平衡调节的节能效果进行了分析。 关键词:二级换热系统、水力平衡调节、高温水系统、低温水系统 1、系统概况 1.1供热系统布置情况介绍 在一个以3台75吨、l台45吨燃气蒸汽锅炉为热源的180万平方米大型供热系统中, 有一级换热站3个,直接将燃气蒸汽锅炉生产出压力为0.9MPa、温度约为230℃的过热蒸汽, 换热成高温水。大部份高温水需要经过二级换热站换热后用于供暖,小部分高温水直接用于 供暖。各换热站的关系如图1.所示。其中:1#、2#、6#换热站为汽一水一级换热站,4#、 5#、7#、航站楼等换热站为水一水二级换热站。6#、7#换热站负责住宅区的供热,其余几个 站负担工作区的供热。供回水设计温度:一次高温热水130/90℃,二次低温热水95/70℃。 图1.各换热站关系 1.2系统的运行方式 一级换热站均已采用变频自控技术,电脑控制变频器,使水泵流量随室外温度自动改变 见表l,通过电脑调节蒸汽电动阀使供水回水温度随室外温度变化,调节曲线见图2。

循环水流量调节表 2.供回水温度随室外温度变化 1.3水力失调现象: (1)以前对高温水系统未进行水力平衡调节,只对一部分换热站点的低温水进行水力平衡调节,以l#站高温水为例见图3. 图3.1#站部份高温水水力平衡失调度图 *表示水力失调度:实际流量/计算流量*100% 一些近端二级换热站(4#站)的高温水水力失调度达2.46,远端换热站(国航货运)的高温水水力失调度为0.76。(2)水力失调的影响: a.对用户的室内温度影响:个别用户室温低于16度,05年1月底开展的测温活动发现室温低于16度的用户如下:西消防支队温度15度,货运仓库14度,场务队特种车库14度。

热水采暖系统

本文由along74贡献 doc文档 0、引言设置系统定压装置的目的在于供暖系统能在稳压状态下运行,保证系统内不倒空、不汽化。目前供热系统定压方式主要有膨胀水箱定压,即静水柱定压,补水泵定压,补水泵变频调速定压,气体定压罐定压等。以下对几种定压方式进行分析 1、膨胀水箱定压因其必须设在整个系统的最高点距离锅炉房较远,管理不方便,使高位水箱的应用受到了限制。 2、补水泵定压补水泵连续补水定压的供热系统,其定压装置是由补水箱、补水泵及调节器组成,在系统正常运行时,通过压力调节器作用,使补水泵连续补给的水量与系统泄漏量相适应,从而维持系统动水压曲线的位置,但这种定压方式,一般需连续运行,耗电大。而采用补水泵配稳压罐的方式定压,又使设备变得复杂,且增大了锅炉房的占地面积。 3、稳压罐定压经调查分析,国内生产的稳压罐主要有以下几个问题:①设计方法仍沿用冷水罐的设计方法,大多数的定压罐是冷水罐的变形。②罐与系统的连接只是简单地照搬高位水箱的连接方法,罐及泵系统缺少必要的安全措施。③罐及附属设备的性能检验手段及检测方法不完善,罐体气密性差,一次性充气的罐体根本保证不了一个采暖期静压线不降低。 4、补水泵变频调速定压综合上述几种定压方式的不合理处,采用补水泵变频调速定压,其基本原理是根据供热系统的压力变化,改变电源频率,平滑无级地调整补水泵转速,并与在旁通管上增设电磁阀,进而及时调节补水量,实现系统恒压点压力的恒定。该定压方式的关键设备是变频器,其工作原理是把 50HZ 的交流电转为直流电,再经过变频器把直流电变换为另一种频率的交流电。由于电流频率的改变,从而达到补水泵调速的目的。频率与转速的关系为 n=60f(1-Sn)/P 式中 n 一异步电动机即水泵转速; f 一电源频率,Hz;
Sn 一电机额定转数,即电机定子旋转磁场转速之差,一般为 5%左右; P 一电机的极对数。由上式可看出, P、一定时,当 Sn 电机即水泵转速与输入电流的频率成正比。频率愈高,转速愈快,频率愈低,转速愈慢。由水泵特性可知,水泵流量与频率也成正比,调节频率即调节转速,则可直接调节补水泵。一般变频器的频率,调节范围为 0.5~400Hz 之间,因此转速的变化为 14~11 200r/min 之间。本图给出了补水泵变频调速变压的调节框图,在旁通管增加电磁阀。此时压力给定,由压力传感测出循环泵旁通管上的被调压力值,将其压力信号反馈与给定压力比较,若不等由调节器计算出变频器的输入电流,变频根据输入电源,自动将频率调至其相应值。变频器将频率输出信号传给补水泵进而改变补水泵转速。调节补水量使恒压点压力维持在给定值,当系统压力值低于下限时,补水泵启动进行补水,当压力值超过上限值,电磁阀自动启动泄至补水箱。 5、结束语补水泵变频调速定压的节能效果是明显的,与补水泵连续运行定压相比较,节省补水泵系统上调节阀的节流损耗。对于间歇运行的补水泵定压,因补水泵启动频繁,不但影响补水泵寿命,而且多耗费了电能。水泵在启动时,由于电机的定子、转子的转差大,通常电机的启动电流约为额定电流的 6~7 倍,进而其启动功率约比额定功率大 30%左右。由于变频器可以使补水泵在额定电流下启动,且启动频率不频繁,因此变频调速定压比起间歇运行定压来,省电效果也是明显的。与气体定压罐比较,特别是供热规模较大,定压罐容积较大时,补水泵变频调速定压方式即使在经济上也是占优势的。

浅谈集中供热水系统

浅谈集中供热水系统 摘要:浅谈集中供热水系统,以及集中供热系统中的能量消耗和热水采暖中常出现的问题。 集中供热水系统是由集中热源所产生的热水通过管网供给一个城市或部分地区生产和生活使用的供热方式,它由热源、热网、热用户三个部分组成。集中供热系统,具有节约能源、减少污染、有利生产、方便生活的综合经济效益、环境效益和社会效益。简单的说一下集中供热系统的特点: 1、有较好的经济效益。因集中供热用的锅炉容量大,热效率高,可以达到90%以上,而分散供热的小型锅炉热效率只有60%左右,或更低。因此城市集中供热代替分散供热综合起来可节约20到30%的能源。 2、有良好的环境效益。城市污染主要来源于煤直接燃烧产生的二氧化碳和烟尘。集中供热的锅炉容量大,有较完善的除尘设备,采用高效率的除尘器,能有效降低城市污染。

一、浅谈集中供热系统的能源消耗 1.供热系统消耗能量的环节 供热系统由热源反热能送达热用户,一般都要经过热制备、转换、输送和用热这几个环节。 我国城市集中供热热制备主要来自燃烧化石燃料(煤、油、气)的区域锅炉房和城市热电厂。我们来谈的是区域锅炉房。区域锅炉房的主要耗能设备是锅炉、燃料输送及灰渣清除机械、鼓风机和引风机、水制备和输配系统的水泵(循环水泵、补水泵和加压泵);它们耗用的能源是燃料、电力、水和热;通常可以用单位供热量的消耗量来评定耗能水平。 热能输送由热网承担,供热管道由钢管、保温层和保护层组成,其结构依敷设而异。管道敷设有架空、管沟和直埋三种方式。它们的能量消耗是沿途散热的热损失和泄漏的水、热损失。一般可用热网热效率来表示其保温效果和保热程度;热网补水率来表示热网水泄漏的程度。在热网管线上有时还设置中间加压泵,以降低和改善系统水力工况(设置在非空载干线上,还能节省输送电耗),它的能量消耗设备是水泵,可用单位供热量的耗电量来评定耗能水平。 能量转换是通过热力站交换器把一级网的热能传递给二级网,并由它输送到热用户。热力站是二级网的热源,主要耗能设备是热交

供热系统水力平衡调试探究

供热系统水力平衡调试探究 供热系统水力平衡调试探究 摘要:本文首先阐述了供热管网水力失调的社会危害及形成原 因分析,其次通过对平衡阀、调节阀的工作原理讲解说明了每种阀适用的供热管网系统。最后结合具体工程实例调试改造,就目前水力平衡调试实践中的困扰问题提出了解决办法。 关键词:供热系统水力失调度平衡阀定流量系统变流量系统阀权度流通能力KV Abstract: this paper first expounds the social harm of heating pipe network hydraulic disorder and cause analysis, secondly based on the principle of balance valve, regulating valve interpretation illustrates each valve for heating pipe network system. Finally debugging reconstruction combined with specific engineering example, the present hydraulic balance debugging problems puts forward the solution in practice. Keywords: heating system water loss scheduling fixed flow balancing valves system power of the variable flow system valve flow capacity KV 中图分类号:TU995文献标识码:A文章编号:2095-2104(2013) 供热系统水力失调的社会危害 在供热、空调水系统中,水力不平衡的现象极为普遍,从而造成各热用户之间的室内温度偏差较大、冷热不均等问题。为缓解供热管网水力失调问题,使业主满意,传统的改造做法是增大热网管径、增大循环泵的流量,采用“大流量、小温差”的运行方式,因而造成了能量的极大浪费。研究表明水力不平衡引起的冷热不均造成的能量浪

供热系统的组成及特点

供热系统的组成及特点 供热、供燃气空调与通风工程刘艳涛305 一、供热系统的组成 供暖系统由热源、热媒输送管道和散热设备组成。 热源:制取具有压力、温度等参数的蒸汽或热水的设备。 热媒输送管道:把热量从热源输送到热用户的管道系统。 散热设备:把热量传送给室内空气的设备。 二、供热系统的分类和特点 供暖系统有很多种不同的分类方法,按照热媒的不同可以分为:热水供暖系统、蒸汽供暖系统、热风采暖系统;按照热源的不同又分为热电厂供暖、区域锅炉房供暖、集中供暖三大类等。 热水供暖系统 水为热媒的供暖系统的优点:其室温比较稳定,卫生条件好;可集中调节水温,便于根据室外温度变化情况调节散热量;系统使用的寿命长,一般可使用25年。 热水为热媒的供暖系统的缺点:采用低温热水作为热媒时,管材与散热器的耗散较多,初期投资较大;当建筑物较高时,系统的静水压力大,散热器容易产生超压现象;水的热惰性大,房间升温、降温速度较慢;热水排放不彻底时,容易发生冻裂事故。 热水供暖系统按其作用压力的不同,可分为重力循环热水供暖系统和机械循环热水供暖系统两种,机械循环热水供暖系统是用管道将锅炉、水泵和用户的散热器连接起来组成一个供暖系统。 在供暖系统中,各个散热器与管道的连接方式称为散热系统的形式。热水供暖系统中散热系统的形式可分为垂直式和水平式两大类。 (1)垂直式 指将垂直位置相同的各个散热器用立管进行连接的方式。它按散热器与立管的连接方式又可分为单管系统和双管系统两种;按供、回水干管的布置位置和供水方向的不同也可分为上供下回、下供下回和下供上回等几种方式。 (2)水平式 指将同一水平位置(同一楼层)的各个散热器用一根水平管道进行连接的方式。它可分为顺序式和跨越式两种方式。顺序式的优点是结构较简单,造价低,但各散热器不能单独调节;跨越式中各散热器可独立调节,但造价较高,且传热系数较低。 水平式系统与垂直式系统相比具有如下优点。 ①构造简单,经济性好。 ②管路简单,无穿过各楼层的立管,施工方便。 ③水平管可以敷设在顶棚或地沟内,便于隐蔽。 ④便于进行分层管理和调节。 但水平式系统的排气方式要比垂直式系统复杂些,它需要在散热器上设置冷风阀分散排气,或在同层散热器上串接一根空气管集中排气。

集中供热管网系统的运行和调节

龙源期刊网 https://www.wendangku.net/doc/bb16519024.html, 集中供热管网系统的运行和调节 作者:张永刚 来源:《神州·下旬刊》2018年第04期 摘要:近年来,随着科学技术水平的不断进步,城市化发展的步伐也在持续加快,城市集中供热管网系统关系着一个城市的发展,所以对于集中供热管网系统的运行与调节就显得尤为重要。实际上集中供热的方式最早始于西方国家,经过漫长的发展,以及能源的不断消耗,越来越多的国家开始重视集中供热的发展,我国城市的集中供热自20世纪50年代以来发展迅速,在全国各个城市建立了热电站,为城市居民以及建筑生产带来福祉。 关键词:集中供热管网;系统运行;调节方法 引言: 据统计,至1983年,我国已有17个城市有集中供热系统,而供热规模相对较大的是北京。集中供热之所以发展迅速,其本身有一定的优越性,集中供热可以有效的节约能源,减少能源的消耗,这为我国目前倡导的绿色环保的口号相得益彰。城市集中供热管网的原理主要是通过集中供热的热源通过热用户直接输送给供热介质的一种管线系统。随着热网工程的建设规模越来越大,在应用中需要大量的成本,所以做好集中供热管网系统的运行和调节工作十分重要,本文针对些问题进行了详细的分析与探讨,希望可以促进我国未来城市化发展的步伐。 1 集中供热管网系统的概述 水蒸气和热水可以说是集中供热管网运行中主要的热媒,要想实现城市用户的供热,要采用多个热源,并进行热交换站及管网供热的方式来达到城市集中供热。集中供热是近年来新兴的供热方式,与过去传统的锅炉供热相比,集中供热的方式有所不同。通过热源、热网和用户三个介质才能达到集中供热。目前,我国的集中供热技术还是以锅炉供热技术和热电联产供热技术为主要供热技术,通过与热能用户和热源进行连接,使多管网分配热能和输送热能发挥一定的效果。当前,集中供热管网较受欢迎的管网形式为枝状管网,这种管网因其造价低,运行简单,所以被普遍应用到供热系统中。但值得注意的是,枝状管网在具体的城市供热系统中,遇到两个以上的热源供热,就不适用于枝状管网,因为两种以上的热源供热就可以使用环状管网进行相互连接,这样所应用的成本会更低一些。 2 集中供热管网调节系统的分类 (1)集中调节。集中调节是集中供热管网调节系统的一个形式,这种形式主要是对供热的温度进行调节,操作起来也相对简单。

水暖供热系统水力平衡的调节

目录 一、水力平衡的基本概念 (1) 二、定流量系统的静态水力平衡 (2) 三、变流量系统的全面水力平衡 (2) 四、水力平衡和水力失调系统的比较 (3) 五、结束语 (9)

水暖供热系统水力平衡的调节 供热管网是一个复杂的水力系统,系统中各环路间水力状况的变化相互影响和制约。因此,在供热工程中,水力平衡的调节是个重要的问题。通过调节系统水力平衡,可以实现供热水力系统的舒适性和节能性。 一、水力平衡的基本概念: 1、静态水力失调和静态水力平衡: 静态水力失调是系统管道特性阻力数比值与设计要求管道特性阻力数比值不一致,从而使系统各用户的实际流量与设计要求流量不一致,引起的水力失调。静态水力失调是系统本身所固有的。它是由于设计、施工、管材等原因导致的。 通过在管道系统中增设静态水力平衡设备,在水系统初调试时对系统管道特性阻力数比值进行调节,使其与设计要求管道特性阻力数比值一致,此时当系统总流量达到设计总流量时,各末端用户流量同时达到设计流量,实现静态水力平衡。 2、动态水力失调和动态水力平衡: 动态水力失调实际上是系统运行过程中当某些末端阀门开度改变引起水流量变化时,系统的压力产生波动,其它末端的流量也随之发生改变,偏离末端要求流量,引起的水力失调。动态水力失调是在系统运行过程中产生的。 通过在管道系统中增设动态水力平衡设备,当其它用户阀门开度改变引起水流量变化时,通过动态水力平衡设备的屏蔽作用,自身的

流量并不随之变化,末端用户散热设备流量不互相干扰,实现动态水力平衡。 3、全面水力平衡: 全面水力平衡就是消除了静态和动态水力失调,使系统同时达到静态和动态水力平衡。 二、定流量系统的静态水力平衡: 定流量系统是早期供热工程中常见的水力系统。 定流量系统是指系统不含任何调节阀门,系统在初调试完成后阀门开度无须做任何改变,系统各处流量始终保持恒定。定流量系统主要适用于末端用户无须通过流量来进行调节室内热量的系统。 定流量系统只存在静态水力失调,基本不存在动态水力失调,因此只需在相关部位安装静态水力平衡调节阀即可。 三、变流量系统的全面水力平衡: 随着人们对室内温度舒适性要求、节能意识的不断提高,变流量水力系统在供热工程中占据越来越重要的位置。 变流量系统是指系统在运行过程中各分支环路的流量随外界负荷的变化而变化。由于近年暖冬的出现,变流量供热系统的管道流量都低于设计流量,因此这种系统是高效节能的。 变流量系统一般既存在静态水力失调,也存在动态水力失调,因此必须采取相应的水力平衡措施来实现系统的全面平衡。 1、静态水力平衡的实现: 通过在相应的部位安装静态水力平衡阀,使系统达到静态水力平

蒸汽采暖系统与热水采暖系统的优缺点分析

蒸汽采暖系统与热水采暖系统的优缺点分析 蒸汽采暖系统与热水采暖系统的优缺点分析 蒸汽采暖的概念: 它是以蒸汽为热媒进行采暖的一种方式。水在锅炉的锅筒内加热蒸发,在锅筒的上部空间因不断地加热蒸发而变成饱和蒸汽和过热蒸汽。当 锅筒内空间达到一定的压力,将具有一定压力的蒸汽通过管道输送到 散热设备称为蒸汽采暖。 蒸汽采暖系统的优点: (1)热媒温度度,热效率高,又蒸汽在管内允许流速较大,所以可节省 管材和散热器的数量。 (2)由于蒸汽密度比水小用于高层建筑采暖,底层散热器不会出现超压 现象。 (3)因蒸汽是靠自身蒸汽压力输送到系统中去的,凝结水靠其管道坡度 及疏水器余压流至凝结水箱(或池)内。节省了输送介质的动力设备的 投资和运行中电耗的费用,易于管理。 蒸汽采暖系统的缺点: (1)因管道和散热器表面温度高(尤其高压蒸汽),灰尘聚积后易产生升 华现象并产生异味。污染室内空气,容易烫伤人。 (2)蒸汽采暖可使室内空气干燥,热惰性较小。室温随供暖间歇波动较大,骤冷骤热易使管件和散热器连接处泄漏,维修量较大。 (3)因系统的泄漏、锅炉运行时的排污、疏水器漏汽、凝结水回收率低 等因素造成无效热损失较大。 (4)系统停运时,系统充满空气,易造成管内壁腐蚀,缩短使用寿命。 热水采暖系统的优点:

(1)因热媒温度较低,室内卫生条件较好,而系统水容量大。室温波动较小,人有舒适感,不燥热。 (2)系统不易泄漏,无效热损失少,因此燃料消耗量较低。 (3)不管系统运行与否,管内均充满水,空气氧化腐蚀较小,管道使用寿命较长。 (4)可在锅炉房(或换热站)内,根据室外温度变化,集中调节供水温度和循环流量,以满足室温恒定要求,因此供暖的质量较高。 (5)易于维修管理,泄漏少。 热水采暖系统的缺点: (1)系统在停运时,系统静水压力较大。在高层建筑内,底层散热器易发生超压现象。 (2)热水系统是靠水泵来克服系统阻力而循环的,因系统水容量大,因此循环水泵的功率大,耗电量多,增加运行费用。 (3)当采用热水采暖时,管内流速不宜过大,因流速过大会增加摩擦阻力损失而加大循环动力,因此管径选择应满足在规定的流速值之内,管径比蒸汽采暖偏大。 室内蒸汽采暖系统通暖应注意事项: (1)蒸汽采暖通暖时,应逐渐打开蒸汽入口阀门,让蒸汽逐渐进入系统进行暖管。温度较高的蒸汽如流速过大,使管道骤热而伸缩不利。也易使空气来不及排出而出现水击。 (2)蒸汽进入后很快即冷凝成凝结水,此时应打开凝结水干管的疏水器组的旁通阀迅速排除凝结水,然后再逐渐开大蒸汽阀门。旁通管冒汽后,关闭旁通管阀门,疏水器组正常工作。 (3)应逐组打开散热器手动排气阀排除散热器内的空气,打开凝结水或绕门弯处的排气阀进行系统排气。

集中供热的调节

浅议集中供热的调节 摘要:热水采暖系统主要由热水锅炉、热水循环泵、补水泵、管网及室内散热器组成。要满足采暖指标,达到采暖用户室内设计温度,除应对锅炉运行参数。燃烧工况进行控制和调整外,还应根据采暖季节。采暖时间等变化情况,对整个供热系统进行热力调节。着重对供热系统的经济运行进行阐述,分析了如何进行供热系统的调节以达到供热的最佳效果和节能降耗的双重目的。 关键词:热水锅炉;供热系统;供热调节;节能降耗 abstract: the hot water heating system mainly by the hot water boiler, hot water circulation pump, water supply pump, and the pipeline and indoor radiator composition. to meet the heating index to heating user indoor design temperature, in addition to deal with the boiler operation parameters. the burning operating mode to control and adjust the outside, still should be based on the heating season. heating time change, to the heating system in thermal regulation. focuses on the economic operation of the heating system, expounds how to carry on the analysis of the heating system in order to achieve the best adjust heating effect and energy saving of the dual purpose. keywords: hot water boiler; heating system; heating regulation; saving energy and reducing consumption

分析供热系统的调节与控制装置

分析供热系统的调节与控制装置 摘要:本文根据目前供热系统冷热不均现状,提出了利用平衡阀作为调节与控制装置解决供热系统水力失调的对策,并通过介绍平衡阀的构造及特点,分析了平衡阀在供热系统中调节的基本原理及平衡阀的调试方法,达到了供热系统的水力平衡并满足人们热舒适性要求的目的。 关键词:供热系统;水力失调;平衡阀;水力平衡 一、概述 近几年,随着我厂住宅小区的不断扩建,供热负荷成倍增加,热力失衡问题越来越严重,即供暖用户室内温度高低不均匀和不稳定,如住在太华区的用户室温太高甚至开窗户,而住在翠微区的用户室温低于16℃,又不断向物业部门投诉。造成目前供暖系统现状的原因很多,其中最主要的原因之一是系统缺乏控制手段和科学合理的运行调节管理措施。而我厂的旧供暖系统上调节控制的阀门通常是普通的闸板阀、截止阀或蝶阀,因此,只有简单的静态调节手段,当系统的实际运行水力工况与设计水力工况不同时,靠系统的调节很难使系统水力平衡,因而造成系统水力失调,供暖用户的流量供需不一致,即供暖质量差。 二、解决供热系统水力失调的对策 (1)采用加大锅炉(换热器)容量和循环水泵流量或者是增大某些管网管径的方法,用“水涨船高”的方式解决部分用户供热量不足的问题,但会使许多用户供热量过大,室内更热,既增大了系统投资,又浪费了大量的热能和电能,增加了供热设备的投资费用和运行费用。 (2)在管路系统中装设节流孔板、闸阀或截止阀来平衡管道系统阻力和调节流量。当系统运行偏离设计工况时,节流孔板无法进行相应调节,而截止阀的调节性能差,闸阀只宜作为关断阀门用,不宜作为调节阀门用。 为保证供热系统在规定的设计流量下运行,达到室内所要求的温度,除设计合理外,还需进行正确的调节。流量调节与控制都是关键的一环。进入21世纪,平衡阀开始在采暖系统中使用,用来改变流经阀门的流动阻力以达到调节流量的目的,起到热平衡的作用。 二、平衡阀的构造及特点 平衡阀是目前管网水力平衡的主要调节设备之一。它主要由阀体、阀塞、手轮、数字显示器、锁定装置及测试小阀等组成。其上的数字显示器可以直接显示阀门开启圈数,即开度百分比。锁定装置的作用是当阀门调止所需开度后,可将其锁定,非操作或运行管理人员无法改变设定状态。阀门下面的两个测压阀的作用是在管网平衡阀调试时,用软管连接智能仪表,利用智能仪表可测出流经平衡

供热调节技术分析_0

供热调节技术分析 热水采暖系统主要由热水锅炉、热水循环泵、补水泵、管网及室内散热器组成。要满足采暖指标,达到采暖用户室内设计温度,除应对锅炉运行参数。燃烧工况进行控制和调整外,还应根据采暖季节。采暖时间等变化情况,对整个供热系统进行热力调节。着重对供热系统的经济运行进行阐述,分析了如何进行供热系统的调节以达到供热的最佳效果和节能降耗的双重目的。 标签供热;调节;节能;降耗 1 供热调节的目的 冬季供暖问题是关系城市居民切身利益的大事。现在供暖企业自负盈亏,既要使居民供暖温度达到标准又要使企业的运行成本达到最低,这就要求供暖企业挖掘内部潜力,做好供热调节工作。因此,对整个热水供热系统进行合理的供热调节就变得至关重要。热水锅炉及采暖系统运行过程中除应对运行参数、燃烧工况进行控制与调整外,还应根据采暖季节(初冬还是严寒)、采暖时间(白天还是夜间)等情况对供热量进行调节。供热调节的目的,一是使系统中各用户的室内温度比较适宜;二是避免不必要的热量浪费,实现热水采暖的经济运行。热水采暖系统试运行期间,由安装单位进行的第一次调节为安装调节,它的目的是检查采暖系统能否达到设计要求。系统投入运行后还要继续进行调节,此为使用调节。运行调节根据采暖系统情况不同,可采用若干种形式,但无论哪种调节方式最终都要通过司炉人员的运行操作来完成。 2 供熱调节原理 供热调节的主要任务是维持供暖建筑的室内计算温度。当供暖系统在稳定状态下运行时,如不考虑管网的沿途热损失,则系统的供热量应等于供暖用户系统散热设备的放热量,同时也应等于供暖用户的热负荷。 建筑供暖方式分为连续供暖和间歇供暖两类。对于不同的供暖方式,供热调节的方法也不同,这主要是由墙体和室内物体的蓄热性能所决定的。对于间歇供暖建筑,当停止供暖后,室内温度不会瞬间降至建筑发生冻害的温度,它需要经过一个降温期。当重新开始供暖后,室内温度升高至计算温度也需要一段升温期,升温期所需要的时间取决于围护结构和室内物体的蓄热性能。 3 供热调节的方式 运行调节中,在热源处进行的温度、流量的调节称为集中运行调节。集中运行调节的方法有以下4种:

供热系统的水力平衡

再议供热系统的水力平衡 清华大学石兆玉 摘要:由于水力失调,引起的冷热不均,至今仍然是困扰本行业的难题。本文重点指出:积极推广热计量收费,是实现水力平衡、消除冷热不均的关键技术措施。文中还就节流式水力平衡、有源式水力平衡技术的关键环节,进行了具体分析,提出了解决办法。 关键词:供热系统、水力平衡、计量收费、节流、有源 供热、空调系统的水力失调进而引起的冷热不均现象,历来是困扰业内人员的老大难问题。20世纪七十年代末,八十年代初,我国科技人员和管理运行人员在学习国外先进经验的基础上,对这一难题从理论到技术进行了比较深入的探讨。30年来,随着国家的改革、开放,经济发展、节能减排和环境保护,本行业也有了长足的进步。但是在供热体制改革,建筑节能和热计量收费的推广应用过程中,仍然存在着各种不同的争论。比如如何解决系统的水力平衡进而消除冷热不均?再如水力平衡与节能减排、计量收费到底有着什么样的因果关系?就是其中的一个重要的争论热点。为了进一步推动行业的技术进步,有必要在新的形势下,就这一问题进行“老话新说“,以期达到更多的共识。 1、推广热计量收费是消除冷热不均最有效的措施 在二十世纪七十年代末,八十年代初,我们在研究供热系统水力工况的基础上,拓展研究了热力工况,并就水力工况与热力工况的相互关系给出了奠基性的结论:指出系统的水力不平衡,是导致系统冷热不均的重要原因;并就国内长期推行的“大流量、小温差”运行方式从理论上进行了深入的利弊分析,明确指出“大流量、小温差”运行方式虽然能自动消除系统的冷热不均,但这是一种大投入、高能耗、低产出因而是落后的运行方式。上述结论在我的《供热系统运行调节与控制》[1]这本书中,有详细的论述。 在[1][2]文献中,对水力不平衡引起的冷热不均,进而造成的能量浪费,进行了数量分析:一般情况下,能量浪费20-30%;如果采用“大流量、小温差”运行方式,既加大循环水泵又增加锅炉台数提高供水温度,则能量浪费可能达到40-50%。至今业内有人仍然不承认系统冷热不均会造成能量浪费;有的虽然承认,但往往把这部分能量的浪费,统计到管网的散热损失中。这是理念上的错误。我们应该明白,冷

集中供热系统由三大部分组成Word版

1、集中供热系统由三大部分组成:热源、热力网(热网)、和热用户 2、供暖系统热负荷:是指在某一室外温度下,为了达到要求的室内温度,供暖系统在单位 时间内向建筑物供给的热量。它随着建筑物得失热量的变化而变化。 3、供暖系统设计热负荷:是指在设计室外温度下,为了达到要求的室内温度t n,供暖系 统在单位时间内向建筑物供给的热量。 4、热负荷计算包括的内容:(1)、供暖房间失热量: a、围护结构的耗热量 b、加热经门、 窗缝渗入室内的冷空气耗热量,称冷风渗透耗热量。c、加热由门、孔洞及相邻房间侵入的冷空气额耗热量,称冷风侵入耗热量。d、加热由外部运入的冷物料和运输工具等的耗热量。e、通风系统将空气从室内排到室外所带走的热量,称通风耗热量。f、水分蒸发耗热量。 (2)供暖房间得热量:a、最小负荷班的工艺设备散热量。b、热管道及其他热表面的散热量。c、热物料的散热量。 (3)通过其他途径散失或获得的热量。 5、散热器的计算:散热器散热面积按下式计算 F-散热器的散热面积(m2) Q-散热器的散热量(W) K-散热器的传热系数【W/(m2℃)】 Tpj- 散热器内热媒平均温度 tn-供暖室内计算温度 -散热器组装片数修正系数 散热器连接方式修正系数 散热器安装形式修正系数 6、低温热水地板辐射供暖的特点:1、热舒适度高2、节约能源3、不占据室内地面有效空 间4、房间热稳定性好5、便于实现分户热计量6、有利于隔声和降低楼板撞击声 7、重力循环热水供暖系统的基本原理

8、 重力循环系统作用压力的计算 9、 单管系统各层水温计算 10、 膨胀水箱的作用是用来贮存热水供暖系统加热后的膨胀水量。水箱上连有膨胀管、 溢流管、信号管、排水管及循环管路等管路。膨胀管与供暖系统的连接点,在机械循环系统中,一般接至循环水泵吸入口处。 11、热负荷延续时间图、 绘制方法1、确定热水网路水压图的基准面及坐标轴。 2、选定静水压曲线的位置 3、选定回水管的动水压曲线的位置 4、选定供水管动水压曲线的位置 12、供暖热用户与热水外网的连接方式:直接连接和间接连接 直接连接:无混合装置的直接连接、 装水喷射器的直接连接:这种系统不需要其他能源,而是靠外网与用户 系统连接处供、回水压差工作的。 装混合水泵的直接连接 13、热水网路压力状况的基本技术要求:不超压、不汽化、不倒空、保证热用户有足够的资用压力、热水网路回水管内任何一点的压力,都应比大气压力至少高出50kp ,以免吸入空气。 14、选择循环水泵时,应注意: 1、循环水泵的流量-扬程特性曲线,在水泵工作点附近应比较平缓,以便当网路水力工况发生变化时,循环水泵的扬程变化较小。 2、循环水泵的承压、耐温能力应与热网的设计参数相适应。 3、循环水泵的工作点应在水泵高效工作范围 4、循环水泵的台数选择,与热水供热系统所采用的供热调节方式有关。不得少于两台 5、当多台水泵并联运行时,应绘制水泵和热网水力特性曲线,确定其工作点,进行水泵选择。 15、热水网路补水装置的选择:1.流量 主要取决于整个系统的渗漏水量。闭式热水管网补水装置的补水量,不应小于供热系统循环流量的2%;事故补水量不应小于供热系统循环流量的4%;对开式热水供热系统,开式热水网路补水装置的补水量,不应小于生活热水最大设计流量和供热系统泄漏量之和。 2,压力 补水压力不应小于补水点管道压力再加30~50Pa 。当补水泵同时用于维持管网静态压力时,其压力应满足静态压力的要求 H ——热水网路补给水泵的扬程,Pa ; H b ——热水网路补水点的压力值,Pa ; H xs ——补给水泵吸水管路的压力损失,Pa ; H ys ——补给水泵压出管路的压力损失,Pa ; h ——补给水箱最低水位高出补水点的高度,m 。 3,补给水泵台数 闭式热水供热系统的补给水泵台数,不应少于两台,可不设备用泵,正常时一台工作,事故时两台工作;开式热水供热系统的补给水泵不宜少于三台,其中一台备用。 h H H H H ys xs b -++=

浅议集中供热的调节(一)

浅议集中供热的调节(一) 摘要:热水采暖系统主要由热水锅炉、热水循环泵、补水泵、管网及室内散热器组成。要满足采暖指标,达到采暖用户室内设计温度,除应对锅炉运行参数。燃烧工况进行控制和调整外,还应根据采暖季节。采暖时间等变化情况,对整个供热系统进行热力调节。着重对供热系统的经济运行进行阐述,分析了如何进行供热系统的调节以达到供热的最佳效果和节能降耗的双重目的。 关键词:热水锅炉;供热系统;供热调节;节能降耗 1供热调节的目的 冬季供暖问题是关系城市居民切身利益的大事。现在供暖企业自负盈亏,既要使居民供暖温度达到标准又要使企业的运行成本达到最低,这就要求供暖企业挖掘内部潜力,做好供热调节工作。因此,对整个热水供热系统进行合理的供热调节就变得至关重要。热水锅炉及采暖系统运行过程中除应对运行参数、燃烧工况进行控制与调整外,还应根据采暖季节(初冬还是严寒)、采暖时间(白天还是夜间)等情况对供热量进行调节。供热调节的目的,一是使系统中各用户的室内温度比较适宜;二是避免不必要的热量浪费,实现热水采暖的经济运行。热水采暖系统试运行期间,由安装单位进行的第一次调节为安装调节,它的目的是检查采暖系统能否达到设计要求。系统投入运行后还要继续进行调节,此为使用调节。运行调节根据采暖系统情况不同,可采用若干种形式,但无论哪种调节方式最终都要通过司炉人员的运行操作来完成。2供热调节原理 供热调节的主要任务是维持供暖建筑的室内计算温度。当供暖系统在稳定状态下运行时,如不考虑管网的沿途热损失,则系统的供热量应等于供暖用户系统散热设备的放热量,同时也应等于供暖用户的热负荷。 建筑供暖方式分为连续供暖和间歇供暖两类。对于不同的供暖方式,供热调节的方法也不同,这主要是由墙体和室内物体的蓄热性能所决定的。对于间歇供暖建筑,当停止供暖后,室内温度不会瞬间降至建筑发生冻害的温度,它需要经过一个降温期。当重新开始供暖后,室内温度升高至计算温度也需要一段升温期,升温期所需要的时间取决于围护结构和室内物体的蓄热性能。 3供热调节的方式 运行调节中,在热源处进行的温度、流量的调节称为集中运行调节。集中运行调节的方法有以下4种: ①质调节——改变网路的供水温度;②量调节——改变网路的循环水量;③分阶段改变流量的质调节——同一阶段流量不变;④间歇调节——改变每天供暖时数。 3.1质调节 在进行质调节时,只改变供暖系统的供水温度,而系统循环水量保持不变。这种调节方式,网路水力工况稳定,运行管理简便,采用这种调节方法,通常可达到预期效果。 集中质调节是目前最为广泛采用的供热调节方式,但由于在整个供暖系统中,网路循环水量总保持不变,消耗电能较多。同时,对于有多种热负荷的热水供热系统,在室外温度较高时,如仍按质量调节供热,往往难以满足其他热负荷的要求。例如,对连接有热水供应用户的网路,供水温度就不应低于70℃。热水网路中连接通风用户系统时,如网路供水温度过低,在实际运行中,通风系统的送风温度也过低,这样会产生吹冷风的不舒适感。在这种条件下,就不能再按质调节方式,而采用其他调节方式进行供热调节了。

供热系统平衡调节分析

供热系统平衡调节分析 河北理工大学智能仪器厂高向升张子君宋立轩 【摘要】供热系统平衡调节是所有供热企业必须面对的重要工作,传统的调节方式存在诸多先天不足的问题,作者做了详细的归纳整理,同时根据实际经验,提出了先进的供热平衡调节的工艺、策略和方法,从根本上扭转了传统平衡调节的被动局面,是本领域的一项重大技术进步成果。 【关键词】热量平衡调节法三级解耦周期热量平衡分析 1、水力、热力、热量平衡的关系 供热的目的:是为了获得舒适的室内温度,同时满足节能、降耗、减排的要求。所以区分不同供热对象的热量平衡是实现供热目的的保证。热量平衡的前提是热力平衡,热力平衡的前提又是水力平衡。 1.1水力平衡是控制出来的 一个热网,无论我们的设计多么仔细和完善,都不能彻底解决水力平衡的问题,一方面是施工和材料设备会与设计存在偏差,另外热网的动态调节都会造成热网的水力失调,热网调整过程中管网是互相耦合的,管网中的实际阻力大小和分布是难以判断的。真正的水力平衡只能靠设备控制来实现,无论是节流式水力平衡通过调节阀门改变管网阻力来实现,还是有源式水力平衡通过分布式变频水泵的变速调节借以改变管网的阻力来实现。换言之,不加监控的热网,会存在先天的近端流量大远端流量小的问题,如果只给一间房子供热,确定一个合适的流量就很简单,然而我们供热的对象是千家万户,每个房间很难同时满足所需的流量,也就出现了冷热不均的问题。所以说热网的水力平衡要靠强大的监控系统来实现,平衡是控制出来的,不是设计出来的。 1.2水力平衡不等于热力平衡 问题是水力平衡就等于热力平衡吗?一次网水力平衡,做到了按各热力站供热面积大小分配一次网的循环水量。该方式只有在所有热力站换热器选型合理且换热系数相等的前提下才能实现各热力站热力平衡。但是前提是不可能成立的。原因有三:①、建设初期,考虑扩容需要,一般选择较大功率的换热器,各换热站的供热面积与换热器功率不匹配;②、换热器工作一定时间后,均存在结垢现象,且结垢情况不等,造成换热系数不同;③二次网的设备配置和运行工况也不一定“配合”一次网换热,如堵塞、旁通、近端短路等问题。

热水采暖系统常见故障的排除

热水采暖系统常见故障的排除 摘要:热水采暖系统常见故障的排除,局部散热器不热 ,热力失效,回水温度过高,系统回水温度过低,其它故障及排除方法。 关键词:热水采暖系统常见故障排除东北地区局部散热器热力失效回水温度故障排除 东北地区冬季气候寒冷,每年要有六个月的冬季采暖期。近年来热水采暖以其在技术和经济上的显着优越性得到广大用户的青睐。 目前热水采暖广泛用于工业和民用建筑中。但是由于施工作业人员在热水采暖系统的施工、调整与运行管理方面的经验不足,系统在运行时可能会出现一些故障,影响正常供热。经过多年的现场实践,总结了热水采暖系统几种常见的故障及其排除方法,供大家参考。 一、局部散热器不热 局部散热器不热的原因大体有以下几种情况:阀门失灵,阀盘脱落在阀座内堵塞了热媒流动通道,这时可打开阀门压盖进行修理,或把失灵阀门更换掉。集气罐存气太多,阻塞管路,也会产生局部散热器不热的情况,这时应打开系统中所设置的放气附件,如集气罐上的排气阀,散热器上的手动放风门等。 管路堵塞,出现这种故障,当送水时间较短时,可用手在管线转弯处与阀门前摸其温度,敲打听声;当送水时间过长,系统较大时,堵塞处前后出现死水段,靠手摸不容易确定堵塞位置,这时可用放水的方法查找,放水点可在不热段管道的中间依次向两端进展。放水时,如来水端热水继续往前延伸,说明堵塞点在此之后;再取余下管段中段进行放水,若发现来水段热水不继续向前延伸,说明堵塞点在第一次放水点与第二次放水点之间。当把堵塞点找出后,段开管子,将管内污物清除或把该管段更换。 采暖系统管道坡度安装的不合理,致使管道出现鼓肚,在其内部产生气塞,堵塞或减小了该管段的流通截面积,从而引起局部不热。这时应调整管段坡度,使其符合设计要求的坡度及坡向。 室内系统的送、回水管道与室外热网的送、回水相互接反,或全部在送(或回)水管上,室内系统不能形成一个循环环路。这时应认真查找,了解外网情况,将接错的管道改正过来。 二、热力失效 采用双管上分式采暖系统时,多层建筑上层散热器过热,下层散热器过冷。产生这种垂直热力失调的原因有两种可能。 其一,通过上下层散热器的热媒流量相差较大。排除这种故障的方法是关小上层散热器支管上的阀门,以减少其热媒流量。 其二,支管下端管段被氧化铁皮、水垢等堵塞,增加了该循环系统的阻力,破坏了系统各环路压力损失的平衡。对于这种情况及时清除管段中的污物或更换支立管,减少阻力损失,恢复系统各

热水集中供热采暖系统运行调节方

《热水集中供热采暖系统运行调节方法探讨分析》 摘要:集中热水供暖系统中,tg=95℃,th=70℃,并配之以分阶段改变流量质调节的运行调节方法被广泛应用。但还不应说这是惟一最合适的方法。本文结合运行调节方式,从减小管网计算流量、加大设计供回水温差入手探讨一种与“大流量小温差”这种不经济的方式相对而言较为经济的设计和运行调节方法。 关键词:热水集中,供热采暖系统,运行调节方法,管网计算流量,“TJ”调节法,循环泵配置

引言 作为锅炉运行管理部门,为了保证住宅小区不仅能在室外设计温度(如吉林市-24℃)的条件下,维持室内设计温度(一般为18℃)标准,同时还应该保证在其它任意非设计室外温度条件下,也能合理调整热媒参数保证室内温度,作到既能保暖又节煤,那么,不仅需要有正确的设计,还必须认真搞好热水供暖系统的运行调节,否则是难于实现。 集中热水供暖系统中,tg=95℃,th=70℃,并配之以分阶段改变流量质调节的运行调节方法(以下简称“TJ”方法)被广泛应用。但还不应说这是惟一最合适的方法。尤其是按这些基本点设计的系统,实际管网和设计容量过大(如水泵、管网直径),过多(如散热器),普通为“大流量小温差”、并且是低温工况下的运行方式。尽管这种方式可以弥补(或者说是掩盖)了一些设计方面和运行方面的不足,但相对一次性投资较大,运行耗电较多,则与我国目前的经济状况反差太大,不相适应。 所以本文试图结合运行调节方式,从减小管网计算流量、加大设计供回水温差入手探讨一种与“大流量小温差”这种不经济的方式相对而言较为经济的设计 和运行调节方法。 1

1运行调节方法及管网计算流量 目前国内小区共暖设计上考虑采用运行调节方法,都是“TJ”方法总结其原因是: 1.1短期内热水供暖系统的设备水平还难以实现逐室逐户的个体调节,只能在热源或热力站进行集中或局部调节。 1.2单纯的集中质调节或量调节又各有不可克服的明显弊病。 1.3虽然热水供暖系统的最佳调节工况为质和量的综合调节,但亦因目前的设备及水平有限还难以广泛应用。 1.4间歇调节并非象一些外行人认为可以节煤,如果说已经节煤则是以允许室内温度有过大的波动为前提的。而且即使有很多是设计按“TJ”方法,而实际运行上则采用了间歇调节的供暖系统是相当普遍的,其主要原因往往都是设备容量过大,只能靠减少运行时数来提高负荷比,这不属于设计上应考虑的范围。而由于“TJ”方法相对融合了质调节和量调节的长处,并且易于实现,则被设计者广泛采用之。 但是,目前设计者所考虑采用的“TJ”方法从理论上讲,在小流量阶段(如设计流量的75%)使运行电耗降低幅度很大,但正如前所述,实际运行中往往仍按“大流量小温差”运行,而未达到节电目的。另一方面,从室外气温分布的情况看,很多地区整个供暖期中可按小流量运行的时间占50%以上。而从管网的综合经济性看,在一次性投资极为紧张的我国,管网长期处于低负荷运行则显得太不经济。 当采用“TJ”方法时,对于外网与用户直接连接的供暖系统,一般将热网相对流量比分为φ=100%,φ=75%两个阶段。 当tg=95℃,th=70℃,tn=18℃,φ=75%,方翼60型散热器:B=0.35,

相关文档