文档库 最新最全的文档下载
当前位置:文档库 › 量子力学作业答案学习资料

量子力学作业答案学习资料

量子力学作业答案学习资料
量子力学作业答案学习资料

量子力学作业答案

第一章 量子理论基础

1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即

m λ T=b (常量);

并近似计算b 的数值,准确到二位有效数字。

解 根据普朗克的黑体辐射公式

dv e

c

hv d kT

hv v v 1

1833

-?

=πρ, (1) 以及 c v =λ, (2)

λρρd dv v v -=, (3)

,1

18)()

(5-?=?=??

? ??-=-=kT

hc v v e

hc c

d c d d dv λλλ

πλλρλλλρλρ

ρ

这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。

本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:

011511

86

'

=????

?

??

-?+--?=

-kT hc kT

hc e kT hc e

hc

λλλλλ

πρ ? 0115=-?+

--kT

hc e kT

hc

λλ

? kT

hc

e

kT

hc λλ=

--

)1(5 如果令x=

kT

hc

λ ,则上述方程为 x e x =--)1(5

这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有

xk

hc T m =

λ 把x 以及三个物理常量代入到上式便知

K m T m ??=-3109.2λ

1.4 利用玻尔——索末菲的量子化条件,求:

(1)一维谐振子的能量;

(2)在均匀磁场中作圆周运动的电子轨道的可能半径。

已知外磁场H=10T ,玻尔磁子124109--??=T J M B ,试计算运能的量子化间隔△E ,并与T=4K 及T=100K 的热运动能量相比较。

解 玻尔——索末菲的量子化条件为

?=nh pdq

其中q 是微观粒子的一个广义坐标,p 是与之相对应的广义动量,回路积分是沿运动轨道积一圈,n 是正整数。

(1)设一维谐振子的劲度常数为k ,谐振子质量为μ,于是有

2

22

12kx p E +=μ

这样,便有

)2

1(22kx E p -

±=μ 这里的正负号分别表示谐振子沿着正方向运动和沿着负方向运动,一正一负正好表示一个来回,运动了一圈。此外,根据

22

1kx E =

可解出 k

E

x 2±

=± 这表示谐振子的正负方向的最大位移。这样,根据玻尔——索末菲的量子化条件,有

??

-+

+

-

=--+-x x x x nh dx kx E dx kx E )2

1

(2)()21(222μμ

?

nh dx kx E dx kx E x x x x =-+-??

+-

-

+

)2

1

(2)21(222μμ

?

h

n

dx kx E x x 2)21(22=-?

+

-

μ

为了积分上述方程的左边,作以下变量代换;

θsin 2k

E

x =

这样,便有

h n k E d E 2sin 2cos 222

2

=???

? ???-

θθμπ

π

?

?-

=?

22

2

cos 2cos 2π

π

θθθμh n d k E E

?

h n d k

E 2

cos 222

2=

?

?=π

πθθμ

这时,令上式左边的积分为A ,此外再构造一个积分

?-?

=22

2sin 2π

πθθμ

d k

E B

这样,便有

??--?

=-?=?

=+22

22

2cos 2,

22π

ππ

πθ

θμμπθμd k

E B A k

E d k

E B A (1)

??--==22

22

,

cos )

2(2cos π

ππ

π???θθμd k

E

d k

E

这里? =2θ,这样,就有

0sin ==-?-π

π

d k

E

B A (2)

根据式(1)和(2),便有

k

E A μ

π

=

这样,便有

h n k

E 2

=

μ

π

? k

h n E μπ2=

,

k nh

μ

=

其中π

2h

h =

最后,对此解作一点讨论。首先,注意到谐振子的能量被量子化了;其次,这量子化的能量是等间隔分布的。

(2)当电子在均匀磁场中作圆周运动时,有

B q R

υυμ

=2

? qBR p ==μυ

这时,玻尔——索末菲的量子化条件就为

?

θ20

)(nh R qBRd

? nh qBR =?π22 ? nh qBR =2

又因为动能耐μ

22

p E =,所以,有

μ

μ22)(2

222R B q qBR E ==

,22B nBN q nB qBn =?==

μμη

η 其中,μ

q M B =

是玻尔磁子,这样,发现量子化的能量也是等间隔的,而且 B BM E =?

具体到本题,有

J J E 232410910910--?=??=?

根据动能与温度的关系式

kT E 2

3=

以及

J eV K k 223106.1101--?==?

可知,当温度T=4K 时,

J J E 2222106.9106.145.1--?=???=

当温度T=100K 时,

J J E 2022104.2106.11005.1--?=???=

显然,两种情况下的热运动所对应的能量要大于前面的量子化的能量的间隔。

2.2 由下列定态波函数计算几率流密度: ikr ikr e r

e r -==

1)2( 1)1(21ψψ 从所得结果说明1ψ表示向外传播的球面波,2ψ表示向内(即向原点) 传播的球面波。

解:分量只有和r J J 21ρ

ρ

在球坐标中 ?

θθ?θ??

+??+??=?sin r 1e r 1e r r 0ρρρ

r mr

k r mr k r r ik r r r ik r r m i r e r

r e r e r r e r m i m

i J ikr ikr ikr ikr ρ

ηρηρ

ηρ

ηηρ30

20

220

1*

1*111 )]11(1)11(1[2 )]1(1)1(1[2 )

(2 )1(==+----=??-??=?-?=--ψψψψ r J 1ρ

ρ与同向。表示向外传播的球面波。

r

mr

k r mr k r )]r 1ik r 1(r 1)r 1ik r 1(r 1[m 2i r )]e r 1(r e r 1)e r 1(r e r 1[m 2i )

(m

2i J )2(3020

220

ik r ik r ik r ik r *

2*222ρ

ηρηρηρ

ηηρ-=-=---+-=??-??=?-?=--ψψψψ

可见,r J ρ

ρ与2反向。表示向内(即向原点) 传播的球面波。

补充:设ikx e x =)(ψ,粒子的位置几率分布如何?这个波函数能否归一化? ∞==?

?∞

dx dx ψψ*Θ

∴波函数不能按1)(2

=?

dx x ψ方式归一化。

其相对位置几率分布函数为 12

==ψω表示粒子在空间各处出现的几率相同。

2.3 一粒子在一维势场

??

?

??>∞≤≤<∞=a x a x x x U ,,

,0 00

)( 中运动,求粒子的能级和对应的波函数。

解:t x U 与)(无关,是定态问题。其定态S —方程

)()()()(22

2

2x E x x U x dx d m ψψψ=+-

η 在各区域的具体形式为

Ⅰ: )()()()(2 01112

2

2x E x x U x dx d m x ψψψ=+-<η① Ⅱ: )()(2 0 222

2

2x E x dx d m a x ψψ=-

≤≤η②

Ⅲ: )()()()(2 3332

2

2x E x x U x dx d m a x ψψψ=+-

>η③ 由于(1)、(3)方程中,由于∞=)(x U ,要等式成立,必须 0)(1=x ψ 0)(2=x ψ 即粒子不能运动到势阱以外的地方去。

方程(2)可变为0)(2)(222

22=+x mE

dx x d ψψη

令222η

mE

k =

,得 0)()(22

2

22=+x k dx

x d ψψ 其解为 kx B kx A x cos sin )(2+=ψ ④

根据波函数的标准条件确定系数A ,B ,由连续性条件,得 )0()0(12ψψ=⑤

)()(32a a ψψ=⑥

⑤ 0=?B ⑥ 0sin =?ka A

),3 ,2 ,1( 0

sin 0ΛΘ==?=∴≠n n ka ka A π

∴x a

n A x π

ψsin )(2= 由归一化条件

1)(2

=?

∞dx x ψ

得 1sin 0

2

2

=?

a

xdx a

n A

π

mn a

b

a

xdx a n x a m δππ?

=*2

sin sin

x a

n a x a

A πψsin 2)(2

2=

∴=

?

222η

ΘmE

k =

),3,2,1( 222

2

2Λη==

?n n ma E n

π可见E 是量子化的。

对应于n E 的归一化的定态波函数为

??

?

??><≤≤=-a x a x a x xe a

n a t x t

E i

n n , ,0 0 ,sin 2),(ηπψ 2.4. 证明(2.6-14)式中的归一化常数是a

A 1=

'

证:?????

≥<+'=a x a x a x a n A n ,0 ),(sin πψ (2.6-14)

由归一化,得

a

A a x a n n a A a A dx a x a

n A x A dx a x a

n A dx a x a

n A dx a

a a

a

a

a a a a

a

n 222

2

222

22

)

(sin 2)(cos

2

2)](cos 1[21)(sin 1'=+?'-'=+'-

'=+-'=+'==-----∞

?

?

??πππ

ππ

ψ

∴归一化常数a

A 1=' #

2.5 求一维谐振子处在激发态时几率最大的位置。

解:2

22

1

22)(x

xe x ααπ

α

ψ-?=

2

22

223

222

112 24)()(x

x

e x e x x x α

α

π

α

π

α

αψω--?=

??==

2

2]22[2 )(3231x e

x x dx x d ααπαω--= 令

0 )

(1=dx

x d ω,得 ±∞=±==x x x 1

由)(1x ω的表达式可知,±∞==x x 0,时,0)(1=x ω。显然不是最大几率的位置。

222

2)]251[(4)]22(2)62[(2 )( 44223

322223212x

x e x x e

x x x x dx x d ααααπ

α

αααπ

αω----=---=而 0142 )(32

1212<-=±

=e dx x d x παω

可见μω

α

η

±

=1

x 是所求几率最大的位置。 #

3.2.氢原子处在基态0/30

1

),,(a r e a r -=π?θψ,求:

(1)r 的平均值;

(2)势能r

e 2

-的平均值;

(3)最可几半径; (4)动能的平均值; (5)动量的几率分布函数。

解:(1)?θθπτ?θψππd rd d r re a d r r r a r sin 1),,(0

220

/230

2

0???

?∞

-=

=

?

-=0

/23

3

4

dr a

r a a r

04

03023

2!34a a a =???

?

??=

22

03020

/23

20

20

/23

2

20

2/23

2

2214 4 sin sin 1)()2(0

00a e a a e dr

r e

a e d drd r e a e d drd r e r

a e r e U a r a r a r -=???

? ??-=-=-=-=-=?

???

???

-∞

-∞

-ππππ?θθπ?θθπ

(3)电子出现在r+dr 球壳内出现的几率为 ?

?

π

?θθ?θψω0

20

22 sin )],,([)(d drd r r dr r dr r e a a r 2

/230

04-=

2

/230

04)(r e a r a r -=

ω 0/2030

)2

2(4)(a r re r a a dr r d --=ω 令

0321 , ,0 0)

(a r r r dr

r d =∞==?=,ω 当0)( ,0 21=∞==r r r ω时,为几率最小位置

/222

00

3022)482(4)(a r e r a r a a dr r d -+-=ω

08)

(2

30

2

20

<-

=-=e a dr r d a r ω ∴ 0a r =是最可几半径。

(4)2222?21??-==

μ

μηp T

???∞--?-=ππ?θθπμ02002

/2/30

2 sin )(1200d drd r e e a T a r a r η ???∞---=ππ?θθπμ02002

/22/3

02 sin )]([11200d drd r e dr d r dr

d r

e a a r a r η ?

----=0

/0

203

2 )2(1

(240

dr e a r r a a a r μη

2

2

20204022)442(24a a a a μμηη=-= (5) τ?θψψd r r p c p

),,()()(*ρρ?= ???

-∞

-=

π

π

θ?θθππ20

cos 0

2

/30

2

/3 sin 1

)2(1

)(0

d d e

dr r e

a p c pr i

a r η

η

??

-=

-∞

θθπππ0

cos 0

/2

30

2

/3)cos ( )

2(20

d e

dr e

r a

pr i

a r η

η

?

--=

cos /230

2

/30)

2(2πθπππpr i

a r e ipr

dr

e r a

η

ηη

?∞---=

0/30

2

/3)()2(20dr e e re ip a pr i

pr i

a r η

ηηηπππ ])1(1)1(1[)2(2202030

2

/3p i a p i a ip a η

ηηη+--=

πππ 2

2

22

003

30)1(421

ηηηp a a ip

ip a +=

π 2

22

2044003

3

)

(24

ηηη+=

p a a a a π

2

22202/30)

()2(ηη

η+=

p a a π

动量几率分布函数

4

22025302

)

(8)()(ηη

+==p a a p c p πω 3.5 一刚性转子转动惯量为I ,它的能量的经典表示式是I

L H 22

=,L 为角动

量,求与此对应的量子体系在下列情况下的定态能量及波函数: (1) 转子绕一固定轴转动: (2) 转子绕一固定点转动:

解:(1)设该固定轴沿Z 轴方向,则有 22Z L L =

哈米顿算符 22

222?21??

d d I L I H Z η-== 其本征方程为 (t H

与?无关,属定态问题)

)

(2)( )()(22

22

22

2?φ??φ?φ?φ?

ηηIE d d E d d I -==-

令 2

22ηIE

m =

,则 0)()( 2

2

2=+?φ?

?φm d d 取其解为 ??φim Ae =)( (m 可正可负可为零) 由波函数的单值性,应有

?π??φπ?φim im e e =?=++)2()()2( 即 12=πm i e ∴m= 0,±1,±2,…

转子的定态能量为I

m E m 22

2η= (m= 0,±1,±2,…)

可见能量只能取一系列分立值,构成分立谱。 定态波函数为 ?φim m Ae =

A 为归一化常数,由归一化条件

π

π

??φφπ

π

21

21 220

220

*

=

?===??A A d A d m m

∴ 转子的归一化波函数为 ?

π

φim m e 21=

综上所述,除m=0外,能级是二重简并的。

(2)取固定点为坐标原点,则转子的哈米顿算符为

2?21?L I

H

= t H

与?无关,属定态问题,其本征方程为

),(),(?212

?θ?θEY Y L I

= (式中),(?θY 设为H ?的本征函数,E 为其本征值) ),(2),(?2?θ?θIEY Y L

= 令 22ηλ=IE ,则有

),(),(?22?θλ?θY Y L

η= 此即为角动量2?L

的本征方程,其本征值为 ) ,2 ,1 ,0( )1(222Λληλλη=+==λL 其波函数为球谐函数?θ?θim m

m m e P N Y )(cos ),(λλλ=

∴ 转子的定态能量为

2)1(2

I

E ηλλλ+=

可见,能量是分立的,且是)12(+λ重简并的。 3.9.设氢原子处于状态 ),()(2

3),()(21),,(11211021?θ?θ?θψ--=

Y r R Y r R r 求氢原子能量、角动量平方及角动量Z 分量的可能值,这些可能值出现的几率和这些力学量的平均值。

解:在此能量中,氢原子能量有确定值 2

2

2

2

2

282η

ηs s e n

e E μμ-

=-

= )2(=n

角动量平方有确定值为

2222)1(ηηλλ=+=L )1(=λ 角动量Z 分量的可能值为 01=Z L η-=2Z L 其相应的几率分别为

41, 4

3

其平均值为 ηη4

343041-=?-?=Z L

3.10一粒子在硬壁球形空腔中运动,势能为

???<≥∞=a

r a r r U ,0;

,)(

求粒子的能级和定态函数。

解:据题意,在a r ≥的区域,∞=)(r U ,所以粒子不可能运动到这一区域,即在这区域粒子的波函数 0=ψ (a r ≥)

由于在a r <的区域内,0)(=r U 。只求角动量为零的情况,即0=λ,这时在各个方向发现粒子的几率是相同的。即粒子的几率分布与角度?θ、无关,是各向同性的,因此,粒子的波函数只与r 有关,而与?θ、无关。设为)(r ψ,则粒子的能量的本征方程为

ψψ

μE dr

d r dr d r =-

)(1222η 令 2

22 ,)(ηE

k rE r U μψ=

=,得 0222=+u k dr

u

d

其通解为

kr

r B

kr r A r kr

B kr A r u sin cos )(sin cos )( +=-∴+=ψ 波函数的有限性条件知, =)0(ψ有限,则 A = 0 ∴ kr r

B

r sin )(=

ψ 由波函数的连续性条件,有

0sin 0)(=?=ka a

B

a ψ

∵0≠B ∴),2,1(

Λ==n n ka π

a

n k π=

∴ 2

2222a n E n μπη

= r a

n r B r πψsin )(=

其中B 为归一化,由归一化条件得

2

2

2

22

2sin 4 sin )(1aB rdr a

n B dr

r r d d a

a

πππθψ?θππ=?====????

∴ a

B 21π=

∴ 归一化的波函数

r

r a n a

r ππψsin 21)(=

喀兴林高等量子力学习题6、7、8

练习 6.1 在ψ按A 的本征矢量{}i a 展开的(6.1)式中,证明若ψ 是归一化的,则 1=∑*i i i c c ,即A 取各值的概率也是归一化的。(杜花伟) 证明:若ψ是归一化的,则1=ψψ。根据(6.1)式 ∑=i i i c a ψ, ψi i a c = 可得 1===∑∑* ψψψψ i i i i i i a a c c 即A 取各值的概率是归一化的。 # 练习6.2 (1) 证明在定态中,所有物理量取各可能值的概率都不随时间变化,因而,所有物理量的平均值也不随时间改变. (2) 两个定态的叠加是不是定态? (杜花伟 核对:王俊美) (1)证明:在定态中i E i H i = , Λ3,2,1=i 则 ()t E i i i i t η -=ψ 所以 i A i e i A e A t E i t E i i i ==-η η ψψ. 即所有物理量的平均值不随时间变化. (2)两个定态的叠加不一定是定态.例如 ()()()t E i t E i e x v e x u t x 21,η η --+=ψ 当21E E =时,叠加后()t x ,ψ是定态;当21E E ≠时, 叠加后()t x ,ψ不是定态. # 6.3证明:当函数)(x f 可以写成x 的多项式时,下列形式上含有对算符求导的公式成立: ) (]),([)()](,[X f X i P X f P f P i P f X ?? =?? =ηη (解答:玉辉 核对:项朋) 证明:(1)

) ()()()()()()()()](,[P f P i P i P f P i P f P f P i P i P f P f P i X P f P Xf P f X ??=??-??+??=??-??=-=ηηηηηηψψ ψψψ ψψ ψψ 所以 )()](,[P f P i P f X ?? =η (2) ) () ()())(())(()()())(()()(]),([X f X i X f X i X i X f X i X f X f X i X i X f X Pf P X f P X f ??=?? --??--??-=?? --??-=-=ηηηηηηψψψψψ ψψ ψψ 所以 )(]),([X f X i P X f ?? =η # 练习6.4 下面公式是否正确?(解答:玉辉 核对:项朋) ),()],(,[P X f P i P X f X ?? =η 解:不正确。 因为),(P X f 是X 的函数,所以)],(,[P X f X =0 # 练习6.5 试利用Civita Levi -符号,证明:(孟祥海) (1)00=?=?L X ,L P (2)[]0=?P X L, (3)()()P X X P P X P X L ?-??-=ηi 22 2 2 证明: (1)∑∑∑∑=== ?ijk k j i ijk k j jk ijk i i i i i P X P P X P L P εε L P

量子力学作业答案

第一章 量子理论基础 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 1 833 -? =πρ, (1) 以及 c v =λ, (2) λρρd dv v v -=, (3) 有 ,1 18)() (5-?=?=?? ? ??-=-=kT hc v v e hc c d c d d dv λλλ πλλρλλλρλρ ρ 这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下: 011511 86 ' =???? ? ?? -?+--?= -kT hc kT hc e kT hc e hc λλλλλ πρ ? 0115=-?+ -- kT hc e kT hc λλ ? kT hc e kT hc λλ= -- )1(5

如果令x= kT hc λ ,则上述方程为 x e x =--)1(5 这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=,经过验证,此解正是所要求的,这样则有 xk hc T m = λ 把x 以及三个物理常量代入到上式便知 K m T m ??=-3109.2λ 1.4 利用玻尔——索末菲的量子化条件,求: (1)一维谐振子的能量; (2)在均匀磁场中作圆周运动的电子轨道的可能半径。 已知外磁场H=10T ,玻尔磁子124109--??=T J M B ,试计算运能的量子化间隔△E ,并与T=4K 及T=100K 的热运动能量相比较。 解 玻尔——索末菲的量子化条件为 ?=nh pdq 其中q 是微观粒子的一个广义坐标,p 是与之相对应的广义动量,回路积分是沿运动轨道积一圈,n 是正整数。 (1)设一维谐振子的劲度常数为k ,谐振子质量为μ,于是有 2 22 12kx p E +=μ 这样,便有 )2 1(22kx E p - ±=μ 这里的正负号分别表示谐振子沿着正方向运动和沿着负方向运动,一正一负正好表示一个来回,运动了一圈。此外,根据 221 kx E = 可解出 k E x 2± =± 这表示谐振子的正负方向的最大位移。这样,根据玻尔——索末菲的量子化条件,有 ?? -+ + - =--+-x x x x nh dx kx E dx kx E )2 1 (2)()21(222μμ

高等量子力学复习题

上册 1.3 粒子在深度为0V ,宽度为a 的直角势阱(如图1.3)中运动,求 (a)阱口刚好出现一个束缚态能级(即0V E ≈)的条件; (b)束缚态能级总和,并和无限深势阱作比较 . 解 粒子能量0V E 小于时为游离态,能量本征值方程为: []0)(22''=-+ ψψx V E m (1) 令002k mV = ,β=- )(20E V m (2) 式(1)还可以写成 ?? ???≥=-≤=+)(阱外)(阱内4)(2,03)(2,022''2''a x a x mE ψβψψψ 无限远处束缚态波函 数应趋于0,因此式(4)的解应取为()2,a x Ce x x ≥=-βψ 当阱口刚好出现束缚态能级时,0,0≈≈βV E ,因此 2,0)('a x Ce x x ≥≈±=-ββψ (6) 阱内波函数可由式(3)解出,当0V E ≈解为 ()()2,s i n ,c o s 00a x x k x x k x ≤?? ?==ψψ奇宇称 偶宇称 (7) 阱内、外ψ和ψ应该连续,而由式(6)可知,2a x =处,0'=ψ, 将这条件用于式(7),即得 ,5,3,,02cos ,6,4,2,02 sin 0000ππππππ====a k a k a k a k 奇宇称偶宇称(8) 亦即阱口刚好出现束缚能级的条件为 ,3,2,1, 0==n n a k π (9) 即2 22202π n a mV = (10) 这种类型的一维势阱至少有一个束缚能级,因此,如果 2 2202π< a mV ,只存在一个束缚态,偶宇称(基态)。如果22202π = a mV ,除基态外,阱口将再出现一个能级(奇宇称态),共两个能级。如() 222022π= a mV ,阱口将出现第三个能级(偶宇称)。依此类推,由此可知,对于任何20a V 值,束缚态能级总数为 其中符号[A]表示不超过A 的最大整数。 当粒子在宽度为a 的无限深方势阱中运动时,能级为 ,3,2,1,212 =?? ? ??=n a n m E n π 则0V E ≤的能级数为 120-=?? ????=N mV a n π (12) 也就是说,如果只计算0V E ≤的能级数,则有限深)(0V 势阱的能级数比无限深势阱的能级数多一个。注意,后者的每一个能级均一一对应的高于前者的相应能级。

第十三章 量子力学基础2作业答案

(薛定谔方程、一维无限深势阱、隧道效应、能量和角动量量子化、电子自旋、多电子原子) 一. 选择题 [ C ]1. (基础训练 10)氢原子中处于2p 状态的电子,描述其量子态的四个量子数(n ,l ,m l ,m s )可能取的值为 (A) (2,2,1,2 1 -). (B) (2,0,0,21). (C) (2,1,-1,2 1 -). (D) (2,0,1,21). ★提示:2p 电子对应的量子数n = 2; l = 1,只有答案(C )满足。 [ C ]2. (基础训练11)在激光器中利用光学谐振腔 (A) 可提高激光束的方向性,而不能提高激光束的单色性. (B) 可提高激光束的单色性,而不能提高激光束的方向性. (C) 可同时提高激光束的方向性和单色性. (D) 既不能提高激光束的方向性也不能提高其单色性. [ D ]3. (自测提高7)直接证实了电子自旋存在的最早的实验之一是 (A) 康普顿实验. (B) 卢瑟福实验. (C) 戴维孙-革末实验. (D) 斯特恩-革拉赫实验. [ C ]4. (自测提高9)粒子在外力场中沿x 轴运动,如果它在力场中的势能分布如图19-6所示,对于能量为 E < U 0从左向右运动的粒子,若用 ρ1、ρ2、ρ3分别表示在x < 0,0 < x a 三个区域发现粒子的概率,则有 (A) ρ1 ≠ 0,ρ2 = ρ3 = 0. (B) ρ1 ≠ 0,ρ2 ≠ 0,ρ3 = 0. (C) ρ1 ≠ 0,ρ2 ≠ 0,ρ3 ≠ 0. (D) ρ1 = 0,ρ2 ≠ 0,ρ3 ≠ 0. ★提示:隧道效应。 二. 填空题 1. (基础训练17)在主量子数n =2,自旋磁量子数2 1 =s m 的量子态中,能够填充的最大电子数是___4___. ★提示:主量子数n =2的L 壳层上最多可容纳228n =个电子(电子组态为2622s p ),如 仅考虑自旋磁量子数2 1 =s m 的量子态,则能够填充的电子数为上述值的一半。 图 19-6

高等量子力学习题汇总(可编辑修改word版)

2 i i i j i j ± 第一章 1、简述量子力学基本原理。 答:QM 原理一 描写围观体系状态的数学量是 Hilbert 空间中的矢量,只相差一个复数因子的两个矢量,描写挺一个物理状态。QM 原理二 1、描写围观体系物理量的是 Hillbert 空间内的厄米算符( A ? );2、物理量所能取的值是相应算符 A ? 的本征值;3、 一个任意态总可以用算符 A ? 的本征态 a i 展开如下: = ∑C i a i i C i = a i ;而 物理量 A 在 中出现的几率与 C i 成正比。原理三 一个微观粒子在直角坐标下的位置 算符 x ? 和相应的正则动量算符 p ? 有如下对易关系: [x ? , x ? ]= 0 , [p ? , p ? ] = 0 , [x ?i , p ? j ]= i ij 原理四 在薛定谔图景中,微观体系态矢量 (t ) 随时间变化的规律由薛定谔方程给 i ? ?t (t ) = H ? (t ) 在海森堡图景中,一个厄米算符 A ?(H ) (t ) 的运动规律由海森堡 方程给出: d A ?(H ) (t ) = 1 [A ?(H ), H ? ] 原理五 一个包含多个全同粒子的体系,在 dt i Hillbert 空间中的态矢对于任何一对粒子的交换是对称的或反对称的。服从前者的粒子称为玻色子,服从后者的粒子称为费米子。 2、薛定谔图景的概念? 答: (x, t ) =< x |(t )>式中态矢随时间而变而 x 不含 t ,结果波函数ψ(x ,t )中的宗量 t 来自 ψ(t ) 而 x 来自 x ,这叫做薛定谔图景. ?1 ? ? 0? 3、 已知 = ?,= ?. 0 1 (1)请写出 Pauli 矩阵的 3 个分量; (2)证明σ x 的本征态 ? ? ? ? 1 ?1 ? 1 | S x ± >= ? = ? 1? (± ). 4、已知:P 为极化矢量,P=<ψ|σ|ψ>,其中ψ=C 1α+C 2β,它的三个分量为: 求 证: 2 2

量子力学课后答案第一二章

量子力学课后习题详解 第一章 量子理论基础 1、1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b(常量); 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 183 3 -?=πρ, (1) 以及 λνc =, (2) ||λνρρλd d v =, (3) 有 (),1 18)(| )(|| 5 2-?=?===kT hc v v e hc c d c d d dv λνλλ πλλρλ λλρλ ρρ 这里的λρ的物理意义就是黑体内波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的就是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的就是,还需要验证λρ对λ的二阶导数在m λ处的取值就是否小于零,如果小于零,那么前面求得的m λ就就是要求的,具体如下: 01151186=??? ? ? ?? -?+--?=-kT hc kT hc e kT hc e hc d d λλλλλ πλρ

? 0115=-?+ -- kT hc e kT hc λλ ? kT hc e kT hc λλ= -- )1(5 如果令x= kT hc λ ,则上述方程为 x e x =--)1(5 这就是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解就是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4、97,经过验证,此解正就是所要求的,这样则有 xk hc T m =λ 把x 以及三个物理常量代入到上式便知 K m T m ??≈-3109.2λ 这便就是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

量子力学教程课后习题答案

量子力学习题及解答 第一章 量子理论基础 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 1 833 -? =πρ, (1) 以及 c v =λ, (2) λρρd dv v v -=, (3) 有 ,1 18)()(5-?=?=?? ? ??-=-=kT hc v v e hc c d c d d dv λλλ πλλρλλ λρλρ ρ 这里的λρ的物理意义是黑体波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下: 011511 86 ' =???? ? ?? -?+--?= -kT hc kT hc e kT hc e hc λλλλλ πρ

? 0115=-?+ -- kT hc e kT hc λλ ? kT hc e kT hc λλ= -- )1(5 如果令x= kT hc λ ,则上述方程为 x e x =--)1(5 这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有 xk hc T m =λ 把x 以及三个物理常量代入到上式便知 K m T m ??=-3109.2λ 这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。 1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。 解 根据德布罗意波粒二象性的关系,可知 E=h v , λ h P = 如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么 e p E μ22 = 如果我们考察的是相对性的光子,那么 E=pc 注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0?,因此利用非相对论性的电子的能量——动量关系式,这样,便有 p h = λ

高等量子力学习题.

高等量子力学习题 1、 对于一维问题,定义平移算符()a D x ,它对波函数的作用是() ()()a x x a D x -=ψψ,其中a 为实数。设()x ψ的各阶导数存在,试证明()dx d a x e i p a a D -=?? ? ??= ?exp 。 2、 当体系具有空间平移不变性时,证明动量为守恒量。 3、 若算符()x f 与平移算符()a D x 对易,试讨论()x f 的性质。 4、 给定算符B A ,,证明[][][]....,,! 21 ,++ +=-B A A B A B Be e A A ξξ。 5、 给定算符C B A 和、,存在对易关系[]C B A =,,同时[][]0,,0,==C B C A 。证明Glauber 公式C A B C B A B A e e e e e e e 2 12 1 ==-+。 6、 设U 为幺正算符,证明U 必可分解成iB A U +=,其中A 和B 为厄密算符,并满足 122=+B A 和[]0,=B A 。试找出A 和B ,并证明U 可以表示为iH e U =,H 为厄密 算符。 7、 已知二阶矩阵A 和B 满足下列关系:02 =A ,1=+++AA A A ,A A B + =。试证明 B B =2,并在B 表象中求出矩阵A 、B 。 8、 对于一维谐振子,求湮灭算符a ?的本征态,将其表示为谐振子各能量本征态n 的线性叠加。已知1?-=n n n a 。 9、 从谐振子对易关系[ ]1,=+ a a 出发,证明a e ae e a a a a λλλ--=+ +。 10、 证明谐振子相干态可以表示为 0*a a e ααα-+=。 11、 谐振子的产生和湮灭算符用a 和+ a 表示,经线性变换得+ +=va ua b 和 ++=ua va b ,其中u 和v 为实数,并满足关系122=-v u 。试证明:对于算符b 的任 何一个本征态,2 =???p x 。 12、 某量子体系的哈密顿量为,() 223 2 35++++= a a a a H ,其中对易关系[]1,=-≡++ + a a aa a a 。试求该体系的能量本征值。 13、 用+ a ?和a ?表示费米子体系的某个单粒子态的产生和湮灭算符,满足基本对易式

量子力学第一章习题答案

第一章 1.1 由黑体辐射公式导出维恩位移定律: 能量密度极大值所对应的波长λm 与温度T 成反 比,即λm T = b (常量);并近似计算b 的数值,准确到两位有效数字。 解:黑体辐射的普朗克公式为:) 1(833 -=kT h e c h ν νν πρ ∵ v=c/λ ∴ dv/dλ= -c/λ2 又 ∵ ρv dv= -ρλdλ ∴ ρλ=-ρv dv/dλ=8πhc/[λ5(e hc/λkT -1)] 令x=hc/λkT ,则 ρλ=8πhc(kT/hc)5x 5/(e x -1) 求ρλ极大值,即令dρλ(x)/dx=0,得: 5(e x -1)=xe x 可得: x≈4.965 ∴ b=λm T=hc/kx ≈6.626 *10-34*3*108/(4.965*1.381*10-23) ≈2.9*10-3(m K ) 1.2√. 在0 K 附近,钠的价电子能量约为3电子伏,求其德布罗意波长。 解: h = 6.626×10-34 J ·s , m e = 9.1×10-31 Kg,, 1 eV = 1.6×10-19 J 故其德布罗意波长为: 07.0727A λ=== 或λ= h/2mE = 6.626×10-34/(2×9.1×10-31×3×1.6×10-19)1/2 ≈ 7.08 ? 1.3 √.氦原子的动能是E= 32 KT (K B 为波尔兹曼常数),求T=1 K 时,氦原子的德布罗意波长。 解:h = 6.626×10-34 J ·s , 氦原子的质量约为=-26-2711.993104=6.641012 kg ???? , 波尔兹曼常数K B =1.381×10-23 J/K 故其德布罗意波长为: λ = 6.626×10-34/ (2×-276.6410?×1.5×1.381×10-23×1)1/2 ≈0 1.2706A 或λ= 而KT E 23 =601.270610A λ-==? 1.4利用玻尔-索末菲量子化条件,求: a ) 一维谐振子的能量: b ) 在均匀磁场作圆周运动的电子轨道的可能半径。 解: a )解法一:设一维谐振子的质量为m ,广义坐标为 q=Acos(ωt+φ) 根据玻尔—索末菲量子化条件 ∮pdq = nh 得:∮m(dq/dt)dq = m ωA 2∮sin 2θd θ=m ωA 2π=nh ∴ A 2 =nh/(πm ω)=2nh/m ω (其中h=h/2π) 又 ∵ 一维谐振子的周期 T =2π(m/k)0.5

清华大学《大学物理》习题库试题及答案----10-量子力学习题

清华大学《大学物理》习题库试题及答案----10-量子力学习题

一、选择题 1.4185:已知一单色光照射在钠表面上, 测得光电子的最大动能是1.2 eV ,而钠的红限波 长是5400 ?,那么入射光的波长是 (A) 5350 ? (B) 5000 ? (C) 4350 ? (D) 3550 ? 2.4244:在均匀磁场B 内放置一极薄的金 属片,其红限波长为λ0。今用单色光照射,发现 有电子放出,有些放出的电子(质量为m ,电荷 的绝对值为e )在垂直于磁场的平面内作半径为 R 的圆周运动,那末此照射光光子的能量是: (A) 0λhc (B) 0λhc m eRB 2)(2+ (C) 0λhc m eRB + (D) 0λhc eRB 2+ 3.4383:用频率为ν 的单色光照射某种金 属时,逸出光电子的最大动能为E K ;若改用频 率为2ν 的单色光照射此种金属时,则逸出光电 子的最大动能为: (A) 2 E K (B) 2h ν - E K (C) h ν - E K (D) h ν + E K 4.4737: 在康普顿效应实验中,若散射光 波长是入射光波长的1.2倍,则散射光光子能量 ε与反冲电子动能E K 之比ε / E K 为 (A) 2 (B) 3 (C) 4 (D) 5 5.4190:要使处于基态的氢原子受激发后 能发射赖曼系(由激发态跃迁到基态发射的各谱

线组成的谱线系)的最长波长的谱线,至少应向 基态氢原子提供的能量是 (A) 1.5 eV (B) 3.4 eV (C) 10.2 eV (D) 13.6 eV 6.4197:由氢原子理论知,当大量氢原子 处于n =3的激发态时,原子跃迁将发出: (A) 一种波长的光 (B) 两种波长的光 (C) 三种波长的光 (D) 连续光谱 7.4748:已知氢原子从基态激发到某一定 态所需能量为10.19 eV ,当氢原子从能量为- 0.85 eV 的状态跃迁到上述定态时,所发射的光 子的能量为 (A) 2.56 eV (B) 3.41 eV (C) 4.25 eV (D) 9.95 eV 8.4750:在气体放电管中,用能量为12.1 eV 的电子去轰击处于基态的氢原子,此时氢原子所 能发射的光子的能量只能是 (A) 12.1 eV (B) 10.2 eV (C) 12.1 eV ,10.2 eV 和 1.9 eV (D) 12.1 eV ,10.2 eV 和 3.4 eV 9.4241: 若α粒子(电荷为2e )在磁感应 强度为B 均匀磁场中沿半径为R 的圆形轨道运 动,则α粒子的德布罗意波长是 (A) )2/(eRB h (B) )/(eRB h (C) )2/(1eRBh (D) )/(1eRBh 10.4770:如果两种不同质量的粒子,其德

量子力学期末考试试卷及答案

量子力学期末试题及答案 红色为我认为可能考的题目 一、填空题: 1、波函数的标准条件:单值、连续性、有限性。 2、|Ψ(r,t)|^2的物理意义:t时刻粒子出现在r处的概率密度。 3、一个量的本征值对应多个本征态,这样的态称为简并。 4、两个力学量对应的算符对易,它们具有共同的确定值。 二、简答题: 1、简述力学量对应的算符必须是线性厄米的。 答:力学量的观测值应为实数,力学量在任何状态下的观测值就是在该状态下的平均值,量子力学中,可观测的力学量所对应的算符必须为厄米算符;量子力学中还必须满足态叠加原理,而要满足态叠加原理,算符必须是线性算符。综上所述,在量子力学中,能和可观测的力学量相对应的算符必然是线性厄米算符。 2、一个量子态分为本征态和非本征态,这种说法确切吗? 答:不确切。针对某个特定的力学量,对应算符为A,它的本征态对另一个力学量(对应算符为B)就不是它的本征态,它们有各自的本征值,只有两个算符彼此对易,它们才有共同的本征态。 3、辐射谱线的位置和谱线的强度各决定于什么因素? 答:某一单色光辐射的话可能吸收,也可能受激跃迁。谱线的位置决定于跃迁的频率和跃迁的速度;谱线强度取决于始末态的能量差。 三、证明题。

2、证明概率流密度J不显含时间。 四、计算题。 1、

第二题: 如果类氢原子的核不是点电荷,而是半径为0r 、电荷均匀分布的小球, 计算这种效应对类氢原子基态能量的一级修正。 解:这种分布只对0r r <的区域有影响,对0r r ≥的区域无影响。据题意知 )()(?0 r U r U H -=' 其中)(0r U 是不考虑这种效应的势能分布,即 2004ze U r r πε=-() )(r U 为考虑这种效应后的势能分布,在0r r ≥区域, r Ze r U 024)(πε-= 在0r r <区域,)(r U 可由下式得出, ?∞ -=r E d r e r U )( ???????≥≤=??=)( 4 )( ,43441 02 003003303 420r r r Ze r r r r Ze r r Ze r E πεπεπππε ??∞ --=0 )(r r r Edr e Edr e r U ?? ∞ - - =00 20 2 3 002 144r r r dr r Ze rdr r Ze πεπε )3(84)(82 203 020*********r r r Ze r Ze r r r Ze --=---=πεπεπε )( 0r r ≤ ?? ???≥≤+--=-=')( 0 )( 4)3(8)()(?00022 2030020r r r r r Ze r r r Ze r U r U H πεπε

吉林大学高等量子力学习题答案共11页word资料

高等量子力学习题和解答 ? 量子力学中的对称性 1、 试证明:若体系在线性变换Q ?下保持不变,则必有0]?,?[=Q H 。这里H ?为 体系的哈密顿算符,变换Q ?不显含时间,且存在逆变换1?-Q 。进一步证明,若Q ?为幺正的,则体系可能有相应的守恒量存在。 解:设有线性变换Q ?,与时间无关;存在逆变换1?-Q 。在变换 若体系在此变换下不变,即变换前后波函数满足同一运动方程 ?''?t t i H i H ?ψ=ψ?ψ=ψ h h 进而有 2、 令坐标系xyz O -绕z 轴转θd 角,试写出几何转动算符)(θd R z e ρ的矩阵表示。 解: 'cos sin 'sin cos 'O xyz z d x x d y d y x d y d z z θθθθθ -=+=-+=考虑坐标系绕轴转角 用矩阵表示 '10'10'00 1x d x y d y z z θθ?????? ? ???=- ? ??? ? ?????? ??? 还可表示为 '()z e r R d r θ=r 3、 设体系的状态可用标量函数描述,现将坐标系绕空间任意轴n ρ 转θ d 角, 在此转动下,态函数由),,(z y x ψ变为),,(),()',','(z y x d n U z y x ψθψρ =。试导出转动算符),(θd n U ρ 的表达式,并由此说明,若体系在转动),(θd n U ρ 下保持不变,则体系的轨道角动量为守恒量。 解:从波函数在坐标系旋转变换下的变化规律,可导出旋转变换算符

()z e U d θr 利用 (')()()z e r U d r θψ=ψ 及 (')()r Rr ψ=ψr r 可得 ()1z e z i U d d L θθ=-r h 通过连续作无穷多次无穷小转动可得到有限大小的转动算符 绕任意轴n 转θ角的转动算符为 1U U U -+=? 为幺正算符 若 (')()()z e r U d r θψ=ψr r r 则必有 1 (')()()()()[,] z z e e z H r U d H r U d i H r d H L θθθ-==+r r r r r h 若哈密顿量具有旋转对称性,就有[,]0z H L =→角动量守恒 4、 设某微观粒子的状态需要用矢量函数描述,试证明该粒子具有内禀自旋 1=S 。 解:矢量函数在旋转变换下 后式代入前式 '(')(')[](')[](')x x y y x y z z r r e d e r d e e r e θθψ=ψ++ψ-++ψr r r r r r r r r r 又 '(')'(')'(')'(')x x y y z z r r e r e r e ψ=ψ+ψ+ψr r r r r r r r 比较得 '(')(')(') ?[1]()[1]()[1]()() x x y z x z y z x y r r d r i i d L r d d L r i d L r d r θθ θθθθψ=ψ-ψ=-ψ--ψ=-ψ-ψr r r r r h h r r h 类似可得 ?'(')()[1]()?'(')[1]()y x z y z z z i r d r d L r i r d L r θθθψ=ψ+-ψψ=-ψr r r h r r h

高等量子力学考试知识点

1、黑体辐射: 任何物体总在吸收投射在它身上的辐射。物体吸收的辐射能量与投射到物体上的辐射能之比称为该物体的吸收系数。如果一个物体能吸收投射到它表面上的全部辐射,即吸收系数为1时,则称这个物体为黑体。 光子可以被物质发射和吸收。黑体向辐射场发射或吸收能量hv的过程就是发射或吸收光子的过程。 2、光电效应(条件): 当光子照射到金属的表面上时,能量为hv的光子被电子吸收。 临界频率v0满足 (1)存在临界频率v0,当入射光的频率v

7、一维无限深势阱(P31) 8、束缚态:粒子只能束缚在空间的有限区域,在无穷远处波函数为零的状态。 一维无限深势阱给出的波函数全部是束缚态波函数。 从(2.4.6)式还可证明,当n分别是奇数和偶数时,满足 即n是奇数时,波函数是x的偶函数,我们称这时的波函数具有偶宇称;当n是偶数时,波函数是x的奇函数,我们称这时的波函数具有奇宇称。 9、谐振子(P35) 10、在量子力学中,常把一个能级对应多个相互独立的能量本征函数,或者说,多个相互独立的能量本征函数具有相同能量本征值的现象称为简并,而把对应的本征函数的个数称为简并度。但对一维非奇性势的薛定谔方程,可以证明一个能量本征值对应一个束缚态,无简并。 11、半壁无限高(P51例2) 12、玻尔磁子 13、算符 对易子 厄米共轭算符 厄米算符:若,则称算符为自厄米共轭算符,简称厄米算符 性质:(1)两厄米算符之和仍为厄米算符 (2)当且仅当两厄米算符和对易时,它们之积才为厄米算符,因为 只在时,,才有,即仍为厄米算符

结构化学练习之量子力学基础习题附参考答案

结构化学练习之量子力学基础习题附参考答案

量子力学基础习题 一、填空题(在题中的空格处填上正确答案)1101、光波粒二象性的关系式为_______________________________________。1102、德布罗意关系式为____________________;宏观物体的λ值比微观物体的λ值_______________。1103、在电子衍射实验中,│ψ│2对一个电子来说,代表___________________。 1104、测不准关系是_____________________,它说明了_____________________。 1105、一组正交、归一的波函数ψ1,ψ2,ψ3,…。 正交性的数学表达式为,归一性的表达式为。1106、│ψ(x1,y1,z1,x2,y2,z2)│2

代表______________________。 1107、物理量xp y- yp x的量子力学算符在直角坐标系中的表达式是_____。 1108、质量为m的一个粒子在长为l的一维势箱中运动, (1)体系哈密顿算符的本征函数集为_______________________________ ; (2)体系的本征值谱为____________________,最低能量为____________ ; (3)体系处于基态时,粒子出现在0 ─l/2间的概率为_______________ ; (4)势箱越长,其电子从基态向激发态跃迁时吸收光谱波长__________ ; (5)若该粒子在长l、宽为2l的长方形势箱

中运动, 则其本征函数集为____________,本征 值 谱 为 _______________________________。 1109、质量为m 的粒子被局限在边长为a 的立方箱中运动。波函数ψ 211(x ,y ,z )= _________________________;当粒子处于状态 ψ 211 时,概率密度最大处坐标是 _______________________;若体系的能量为 2 247ma h ,其简并度是_______________。 1110、在边长为a 的正方体箱中运动的粒子,其能级E = 2 243ma h 的简并度是_____,E '= 2 2827ma h 的简 并度是______________。 1111、双原子分子的振动,可近似看作是质量为μ= 2 121m m m m +的一维谐振子,其势能为V =kx 2/2,它 的 薛 定 谔 方 程 是

量子力学思考题及解答

量子力学思考题 1、以下说法是否正确: (1)量子力学适用于微观体系,而经典力学适用于宏观体系; (2)量子力学适用于 不能忽略的体系,而经典力学适用于 可以忽略的体系。 解答:(1)量子力学是比经典力学更为普遍的理论体系,它可以包容整个经典力学体系。 (2)对于宏观体系或 可以忽略的体系,并非量子力学不能适用,而是量子力学实际上已 经过渡到经典力学,二者相吻合了。 2、微观粒子的状态用波函数完全描述,这里“完全”的含义是什么? 解答:按着波函数的统计解释,波函数统计性的描述了体系的量子态。如已知单粒子(不考虑自旋)波函数)(r ψ,则不仅可以确定粒子的位置概率分布,而且如粒子的动量、能量等其他力学量的概率分布也均可通过)(r ψ而完全确定。由于量子理论和经典理论不同,它一般只能预言测量的统计结果,而只要已知体系的波函数,便可由它获得该体系的一切可能物理信息。从这个意义上说,有关体系的全部信息显然已包含在波函数中,所以说微观粒子的状态用波函数完全描述,并把波函数称为态函数。 3、以微观粒子的双缝干涉实验为例,说明态的叠加原理。 解答:设1ψ和2ψ是分别打开左边和右边狭缝时的波函数,当两个缝同时打开时,实验说明到达屏上粒子的波函数由1ψ和2ψ的线性叠加2211ψψψc c +=来表示,可见态的叠加不是概率相加,而是波函数的叠加,屏上粒子位置的概率分布由222112 ψψψ c c +=确定,2 ψ中 出现有1ψ和2ψ的干涉项]Re[2* 21* 21ψψc c ,1c 和2c 的模对相对相位对概率分布具有重要作用。 4、量子态的叠加原理常被表述为:“如果1ψ和2ψ是体系的可能态,则它们的线性叠加 2211ψψψc c +=也是体系的一个可能态”。 (1)是否可能出现)()()()(),(2211x t c x t c t x ψψψ+=; (2)对其中的1c 与2c 是任意与r 无关的复数,但可能是时间t 的函数。这种理解正确吗? 解答:(1)可能,这时)(1t c 与)(2t c 按薛定谔方程的要求随时间变化。 (2)如按这种理解 ),()(),()(),(2211t x t c t x t c t x ψψψ+=

量子力学习题答案

量子力学习题答案 1.2 在0k 附近,钠的价电子能量约为3eV ,求其德布罗意波长。 解:由德布罗意波粒二象性的关系知: E h =ν; p h /=λ 由于所考虑的电子是非相对论的电子(26k e E (3eV)c (0.5110)-μ?) ,故: 2e E P /(2)=μ 69h /p h /hc /1.2410/0.7110m 0.71nm --λ====?=?= 1.3氦原子的动能是E=1.5kT ,求T=1K 时,氦原子的德布罗意波长。 解:对于氦原子而言,当K 1=T 时,其能量为 J 102.07K 1K J 10381.12 3 2323123---?=????== kT E 于是有 一维谐振子处于22 /2 ()x x Ae αψ-=状态中,其中α为实常数,求: 1.归一化系数; 2.动能平均值。 (22 x e dx /∞-α-∞ = α?) 解:1.由归一化条件可知: 22 * 2x (x)(x)dx A e dx 1 A /1 ∞∞-α-∞ -∞ ψψ= ==α=? ? 取相因子为零,则归一化系数1/21/4A /=απ 2.

2222 22 2222 2222 2222 2 *2x /2 x /2 2 22 x /2 x /2 2 2x /2 2x /22 2 2 2 x 2 x /2 2 2 2 4 2x 2T (x)T (x)dx A e (P /2)e dx d A e ()e dx 2dx d A e (xe )dx 2dx A {xe (xe )dx} 2A x e dx A 22∞∞-α-α-∞ -∞ ∞-α-α-∞∞-α-α-∞ ∞∞-α-α-∞ -∞ ∞-α-∞ = ψψ=μ=-μ=--αμ =--α- -αμ = α = μ μ ? ? ? ? ? ? =()==2222 22 4x 22 2 4 x x 2 2 2 2 22 242 1()xd (e )21A (){xe e dx} 221A A ()242∞-α-∞∞∞-α-α-∞ -∞ α-α =α--- μαππααα--μμ α ?? 若α,则该态为谐振子的基态,T 4 ω= 解法二:对于求力学量在某一体系能量本征态下的平均值问题,用F-H 定理是 非常方便的。 一维谐振子的哈密顿量为: 2 222d 1 H x 2dx 2 =-+μω μ 它的基态能量01 E 2 = ω选择为参量,则: 0dE 1d 2=ω;22 2dH d 2d 2 ()T d dx 2dx =-=-=μμ dH 2 0T d = 由F-H 定理知:0dE dH 21 00T d d 2 ===ω 可得: 1 T 4 =ω

高等量子力学习题汇总

第一章 1、简述量子力学基本原理。 答:QM 原理一 描写围观体系状态的数学量是Hilbert 空间中的矢量,只相差一个复数因子的两个矢量,描写挺一个物理状态。QM 原理二 1、描写围观体系物理量的是Hillbert 空间内的厄米算符(A ?);2、物理量所能取的值是相应算符A ?的本征值;3、一个任意态 总可以用算符A ?的本征态i a 展开如下:ψψi i i i i a C a C ==∑,;而物理量A 在 ψ 中出现的几率与2 i C 成正比。原理三 一个微观粒子在直角坐标下的位置算符i x ?和相应的正则动量算符i p ?有如下对易关系:[]0?,?=j i x x ,[]0?,?=j i p p ,[] ij j i i p x δ =?,? 原理四 在薛定谔图景中,微观体系态矢量()t ψ随时间变化的规律由薛定谔方程给 ()()t H t t i ψψ?=?? 在海森堡图景中,一个厄米算符() ()t A H ?的运动规律由海森堡 方程给出: ()()()[] H A i t A dt d H H ? ,?1? = 原理五 一个包含多个全同粒子的体系,在Hillbert 空间中的态矢对于任何一对粒子的交换是对称的或反对称的。服从前者的粒子称为玻色子,服从后者的粒子称为费米子。 2、薛定谔图景的概念? 答:()()t x t ψψ|,x =<>式中态矢随时间而变而x 不含t ,结果波函数()t x ,ψ中的宗量t 来自()t ψ而x 来自x ,这叫做薛定谔图景. 3、 已知.10,01??? ? ??=???? ??=βα (1)请写出Pauli 矩阵的3个分量; (2)证明σx 的本征态).(211121|βα±=??? ? ??±>=±x S 4、已知:P 为极化矢量,P=<ψ|σ|ψ>,其中ψ=C 1α+C 2β,它的三个分量为: 求证: 答案:设:C 1=x 1+iy 1,C 2=x 2+iy 2

量子力学课后习题答案

第一章 绪论 1.1.由黑体辐射公式导出维恩位移定律:C m b b T m 0 3109.2 ,??==-λ。 证明:由普朗克黑体辐射公式: ννπνρννd e c h d kT h 1 1 83 3 -= , 及λ νc = 、λλ νd c d 2 - =得 1 185 -= kT hc e hc λλλπρ, 令kT hc x λ= ,再由0=λρλd d ,得λ.所满足的超越方程为 1 5-=x x e xe 用图解法求得97.4=x ,即得 97.4=kT hc m λ,将数据代入求得C m 109.2 ,03??==-b b T m λ 1.2.在0K 附近,钠的价电子能量约为3eV,求de Broglie 波长. 解:010 A 7.09m 1009.72=?≈= =-mE h p h λ # 1.3. 氦原子的动能为kT E 2 3 = ,求K T 1=时氦原子的de Broglie 波长。 解:010 A 63.12m 1063.1232=?≈== =-mkT h mE h p h λ 其中kg 1066.1003.427-??=m ,1 23K J 1038.1--??=k # 1.4利用玻尔—索末菲量子化条件,求: (1)一维谐振子的能量。 (2)在均匀磁场中作圆周运动的电子的轨道半径。 已知外磁场T 10=B ,玻尔磁子123 T J 10 923.0--??=B μ,求动能的量子化间隔E ?,并与K 4=T 及 K 100=T 的热运动能量相比较。 解:(1)方法1:谐振子的能量2222 1 2q p E μωμ+= 可以化为 ( ) 1222 222 2=??? ? ??+ μωμE q E p 的平面运动,轨道为椭圆,两半轴分别为2 2,2μω μE b E a = =,相空间面积为 ,2,1,0,2=== = =?n nh E E ab pdq ν ω ππ 所以,能量 ,2,1,0,==n nh E ν 方法2:一维谐振子的运动方程为02 =+''q q ω,其解为 ()?ω+=t A q sin 速度为 ( )?ωω+='t A q c o s ,动量为()?ωμωμ+='=t A q p cos ,则相积分为

相关文档
相关文档 最新文档