文档库 最新最全的文档下载
当前位置:文档库 › 实验一迈克尔逊干涉仪的调整及应用

实验一迈克尔逊干涉仪的调整及应用

实验一迈克尔逊干涉仪的调整及应用
实验一迈克尔逊干涉仪的调整及应用

实验一迈克尔逊干涉仪的调整及应用

公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

实验一迈克尔逊干涉仪的调整及应用

一、实验目的

1. 了解迈克尔逊干涉仪的原理及结构。

2. 学会迈克尔逊干涉仪的调整,基本掌握其使用方法。

3. 观察各种干涉现象,了解它们的形成条件。

二、实验仪器

1. WSM-200型迈克尔逊干涉仪一台

2. HNL-55700多束光纤激光源一台

三、实验原理

迈克耳孙干涉仪的构造

图1为迈克尔逊干涉仪的结构示意图。

图1 迈克尔逊干涉仪的结构示意图

仪器包括两套调节机构,第一套调节机构是调节反光镜1的位置。旋转大转轮和微调转轮经转轴控制反光镜1在导轨上平移;第二套调节机构是调节反光镜1和反光镜2的法线方向。通过调节反光镜1、2后面的调节螺钉以及反光镜2的两个方向拉杆来控制反光镜的空间方位。

在仪器的中部和中部偏右处,分别固定安装着分光镜和补偿片,其位置对仪器的性能有重要影响,切勿变动。在补偿片的右侧是反射镜2,它的位置不可前后移动,但其空间方位是可调的。

反射镜1和反射镜2是通过金属弹簧片以及调节螺钉与支架弹性连接的,调节反射镜支架上的三颗调节螺钉,改变弹簧片的压力,从而改变反射镜面在空间的方位。显然,调节螺丝钉过紧或太松,都是不利于调节反射镜方位的错误操作。

反射镜1在导轨上的位置坐标值,由读数装置读出。该装置共有三

组读数机构:第一组位于左侧的直尺C

1

,刻度线以mm为单位,可准确读

到毫米位;第二组位于正面上方的读数窗C

2

,刻度线以为单位,可准确

读出和毫米两位;第三组位于右侧的微动转轮的标尺C

3

,刻度线以为单位,可准确读和毫米两位,再估读一位到毫米。实际测量时,

分别从C

1、C

2

各读得2位数字、从C

3

得3位(包括1位估读)数字,组成一个7位的测量数据,如图2所示。可见仪器对位移量的测定精度可达十万分之一毫米,是一种非常精密的仪器。务必精细操作,否则很容易造成仪器的损坏!

图2 关于M1位置读数值的组成方法

迈克耳孙干涉仪的原理

迈克尔逊干涉仪是利用分振幅法产生的双光束干涉,其光路图如图3

所示。G

1

的半透半反射膜将入射光束分成振幅几乎相等的两束光(1)和

(2),光束(1)经M

1反射后透过G

1

,到达观察点E;光束(2)经M

2

射后再经G

1

的后表面反射后也到达E,与光束(1)′会合干涉。补偿板

G

2的作用是保证在M

1

A与M

2

A距离相等时,光束(1)和(2)有相等的光

程。图3中的M

2′是M

2

镜通过G

1

反射面所成的虚像,因而两束光在M

1

M 2上的反射,就相当于在M

1

与M

2

′镜上的反射。这种干涉现象与厚度为d

的空气膜产生的干涉现象等效。改变M

1与M

2

′的相对方位,就可得到不

同形式的干涉条纹。当M

1与M

2

′严格平行时,产生等倾干涉条纹。当M

1

与M

2

′接近重合、且有一微小夹角时,得到的干涉条纹是等厚直条纹。

图3 迈克尔逊干涉仪的基本光路图

由干涉原理可知,自M 1和M 2′反射的两束光的光程差为

θcos 2d =?

式中d 为M 1与M 2′的间距,θ为光(1)在M 1上的入射角。当d 为某一常量时,两光的光程差完全由倾角θ来确定,其干涉条纹是一系列与不同倾角θ对应的同心圆形条纹。其中亮条纹与暗条纹所满足的条件是:

()??

?

??+==?暗条纹亮条纹 212 cos 2λλθk k d (k =0,1,2,…)

当θ=0时,光程差Δ=2d ,对应于中心处垂直于两镜面的两束光具有最大的光程差。因而中心条纹的干涉级次k 最高,偏离中心处,条纹级次越来越低。

当M 1与的M 2′的间距d 改变时,干涉条纹的疏密就会变化。以某k 级条纹为例,当d 增大时,为了满足2d cos θ=k λ的条件,cos θ必须要减小,因而θ角必须增大,所以此时第k 级的位置必然向外移动。于是在E 处,就可观察到条纹会不断向外扩张,条纹逐渐变密变细。当d 减小时,条纹会不断向里收缩,条纹逐渐变疏变粗。到达等光程位置时(M 1与M 2′重叠),干涉条纹最大最粗。

在迈克耳孙干涉仪上观察不同定域状态的干涉条纹 (1)点光源产生的非定域干涉条纹

由干涉理论可知,两个相干的单色点光源发出的球面波在空间相遇会产生非定域干涉条纹。用一个毛玻璃屏放在两束光交叠的任意位置,都可接收到干涉条纹,如图4所示。点光源S 经M 1、M 2镜反射后,

在E处产生的干涉就好比由虚点光源

S

1和S

2

所产生的干涉。其中S

1

是点光

源S经G

1和M

1

镜面反射而成的虚

像,S

2相当于S由G

1

和M

2

′镜面反射

所成的虚像。当M

1和M

2

′镜平行时,

在毛玻璃屏E处就可观察到点光源产

生的非定域的同心圆条纹。

图4 点光源产生的非定域干涉(2)扩展面光源产生的定域干涉

当使用扩展面光源(如钠灯、低压汞灯加上一块毛玻璃)做光源照明迈克耳孙干涉仪时,面光源上的每一点都会在观察屏E处产生一组干涉条纹,面光源上无数个点光源在观察屏的不同位置上产生无数组干涉条纹,这些干涉条纹非相干叠加的结果,使得毛玻璃E处出现一片均匀的光强,看不清干涉条纹。此时只有在干涉场的某一特定区域,这无数组干涉条纹才可以进行非相干叠加,干涉条纹仍可持相当的清晰度,这种干涉条纹称为定域干涉,这一特定区域称为干涉条纹的定域位置。当

M 1与M

2

′平行时,条纹的定域位置出现在透镜L的焦平面或在无穷远处,

见图5所示。观察这种条纹时,应去掉观察屏,将眼睛直接通过干涉仪

的G

1向M

1

方向望进去,在无穷远处可看到清晰的同心圆条纹。当你眼睛

上下左右移动时,干涉条纹不会有冒出或缩进去的现象,干涉条纹的圆

心随着眼睛的移动而移动,而各圆的直径不会发生变化,这样的干涉条纹才是严格的等倾干涉条纹。

当M

1与M

2

′非常接近时,微调M

2

′背后的三个螺丝,使M

2

′与M

1

间有一个微小的夹角,此时在镜面M

1

附近可观察到等厚干涉条纹。它们

的形状如图6示,在M

1与M

2

′的交棱附近的条纹是近似平行于交棱的等

间距直线,在偏离交线较远的地方,干涉条纹呈弯曲的形状,凸面对着

交棱。这种等厚干涉条纹定域在薄膜表面附近,因而观察时人眼应调焦

在反射镜M

1

附近。

图5 等倾干涉条纹图6 等厚干涉条纹

从前面的分析可以看出,无论哪种情况,M

1与M

2

′的间距d和倾角对

干涉条纹的形状和间隔的影响都是相似的,差别表现在干涉条纹的定域上。因此,我们可以得到在迈克尔孙干涉仪上观察到干涉的两个必要条件:

1)由分光板所产生的(1)、(2)两束光的光程要大致相等,即d 不能太大(参见图3);

2)反光镜M

1与M

2

要垂直或接近垂直(M

1

与M

2

′平行或接近平行)。

本实验采用HNL-55700多束光纤激光源做为光源照明迈克耳孙干涉

仪。它采用550mm中功率激光管和进口高传输性光纤,通过精密光学分束机构分至七束光纤,每束出射光纤波长为,长度为4米,每根光纤在同一实验内可拉伸到不同的工作台,这样七台迈克尔逊干涉仪只要配用一台HNL-55700多束光纤激光源。

一束激光经一个短焦距透镜(扩束器)会聚后,可认为是一个很好的点光源。因HNL-55700多束光纤激光源光纤出射的激光已经扩束,故不需另加扩束镜。使用时,将一束光纤输出端固定在迈克尔逊干涉仪的

左端,使光轴基本与固定镜M

2

垂直。

四、实验步骤

(1)调节干涉仪底脚螺丝,使仪器基本水平。调节M

2

镜座上的微调弹簧螺旋,使它处在弹簧适中的位置。

(2)转动大转轮,使得移动镜M

1的位置和固定镜M

2

相对于分光镜后

表面中心的距离大致相等。

(3)打开激光器,使光纤激光束大致垂直于固定镜M

2

。从投影屏处

观察(此时不放投影屏),可看到由M

1和M

2

各自反射形成的两排激光光

斑,每排都有几个光点,这是由于G

上与半反射面相对的另一侧的平玻

璃面上亦有部分反射的缘故。调节M

1和M

2

背面的三只螺丝,使两排中的

两个最亮的光斑大致重合,则 M

2'与M

1

大致互相平行。

(4)装上投影屏,即可在屏上观察到非定域干涉条纹,再轻轻调节

M 1和M

2

后的调节螺丝,使出现的圆条纹处于投影屏中心。转动微调转

轮,使移动镜M

1

前后移动,观察条纹的变化:从条纹的“冒出”或“缩

进”说明M1、M

2

'之间的距离d是变大还是变小,观察并解释条纹的粗细,密度和d的关系。

五、注意事项

1.调整各部件用力要适当,均匀缓慢,不可强旋硬搬。

2.反射镜、分束板的光学表面不可用手触摸,不允许擦拭。

3.使用完毕,应适当放松M

1和M

2

背面的三个螺钉、水平拉簧螺钉和

竖直拉簧螺钉,以免弹簧片、拉簧和支杆弹性疲劳。

六、思考题

1、在迈克尔逊用激光做光源时的调整过程中,为什么看到的是两排光点,而不是两个

2、怎样调节迈克尔逊干涉仪使干涉条纹出现

3、迈克尔孙干涉仪所产生的干涉条纹的疏密程度是由什么因素决定的变化规律怎样

4、如何由干涉条纹的疏密变化、条纹的“冒”出或“陷”进来判断

M 2′与M

1

的间距d的大小及M1在M2′前后的位置

迈克尔逊干涉仪及其应用

迈克尔逊干涉仪及其应用 迈克尔逊干涉仪的应用 迈克尔逊干涉仪是一种利用分振幅法实现干涉的精密光学仪器.自1881 年问世以来,迈克尔逊曾用它完成了三个著名的实验:否定“ 以太” 的迈克尔逊—莫雷实验;光谱精细结构和利用光波波长标定长度单位.迈克尔逊干涉仪结构简单、光路直观、精度高,其调整和使用具有典型性.根据迈克尔逊干涉仪的基本 原理发展的各种精密仪器已广泛应用于生产和科研领域. 【预习要求】 1. 阅读实验十六,理解光的干涉、等倾干涉与等厚干涉 . 2. 了解定域干涉与非定域干涉概念 . 3. 了解迈克尔逊干涉仪的结构和使用 . 【实验目的】 1. 研究迈克尔逊干涉仪上各种光的干涉现象 . 2. 了解迈克尔逊干涉仪的应用 . 【实验仪器】 迈克尔逊干涉仪,法布里-珀罗干涉仪,氦氖激光器,钠光灯,白炽灯, 扩束镜 【实验要求】 1. 定域干涉与非定域干涉的研究 (1)观察激光产生的定域干涉与非定域干涉; (2)粗略测定激光定域等倾干涉条纹和等厚干涉条纹的定域位置(精确到 mm ); (3)观察钠光产生的定域干涉与非定域干涉 . 2. 钠光双线波长差与相干长度的测定 (1)用迈克耳孙干涉仪测定钠光双线波长差; (2)用迈克耳孙干涉仪测定钠光相干长度;

(3)用迈克耳孙干涉仪考察氦-氖激光的相干长度 . 3. 钠光双线波长差的测定与考察补偿板的作用 (1)用迈克耳孙干涉仪测定钠光双线波长差; (2)用法布里-珀罗干涉仪测定钠光双线波长差; (3)观察无补偿板的迈克耳孙干涉仪中条纹的特点 . 【实验提示】 1. 如何获得点光源和面光源?如何测定干涉条纹的定域位置? 2. 钠光包含中心波长分别为589.0nm 和589.6nm 的两条谱线,在迈克耳逊干涉仪中它的干涉条纹有什么特点? 测波长差的公式;能用测出的波长差计算相干长度吗?测定光源相干长度的方法,实际可能达到的精度 . 3. 钠光包含中心波长分别为589.0nm 和589.6nm 的两条谱线,在迈克耳逊干涉仪和法布里-珀罗干涉仪中它的干涉条纹各有什么特点? 4. 迈克耳逊干涉仪中补偿板有哪些作用? 5.考虑实际可能达到的精度,确定是否要用微动手轮,应如何安排测量次数,如何处理数据 . 【设计报告要求】 1 . 写明实验的目的和意义 2 . 阐明实验原理和设计思路 3 . 说明实验方法和测量方法的选择 4 . 列出所用仪器和材料 5 . 确定实验步骤 6 . 设计数据记录表格 7 . 确定实验数据的处理方法 【思考题】

迈克尔逊干涉仪测He-Ne激光的波长

实验十 迈克尔逊干涉仪测He-Ne 激光的波长 迈克尔逊干涉仪是1883年美国物理学家迈克尔逊和莫雷合作设计制作出来的精密光学仪器。它利用分振幅法产生双光束以实现光的干涉,可以用来观察光的等倾、等厚和多光束干涉现象,测定单色光的波长和光源的相干长度等。在近代物理和计量技术中有广泛的应用。 【实验目的】 1.了解迈克尔逊干涉仪的特点,学会调整和使用。 2.学习用迈克尔逊干涉仪测量单色光波长及薄玻璃片厚度的方法。 【实验仪器】 WSM-100型迈克尔逊干涉仪,HNL -55700型H e -N e 激光器、扩束镜,白赤灯,毛玻璃片,光具座,薄玻璃片。 【实验原理】 迈克尔逊干涉仪工作原理:如图10-1所示。在图中S 为光源,G 1是分束板,G 1的一面镀有半反射膜,使照在上面的光线一半反射另一半透射。G 2是补偿板,M 1、M 2为平面反射镜。 光源H e -N e 激光器S 发出的光经会聚透镜L 扩束后,射入G 1板,在半反射面上分成两束光:光束(1)经G 1板内部折向M 1镜,经M 1反射后返回,再次穿过G 1板,到达屏E ;光束(2)透过半反射面,穿过补偿板G 2射向M 2镜,经M 2反射后,再次穿过G 2,由G 1下表面反射到达屏E 。两束光相遇发生干涉。 补偿板G 2的材料和厚度都和G 1板相同,并且与G 1板平行放置。考虑到光束(1)两次穿过玻璃板,G 2的作用是使光束(2)也两次经过玻璃板,从而使两光路条件完全相同,这样,可以认为干涉现象仅仅是由于M 1镜与M 2镜之间的相对位置引起的。 为清楚起见,光路可简化为图10-2所示,观察者自E 处向G 1板看去,透过G 1板,除直接看到M 1镜之外,还可以看到M 2镜在G 1板的反射像M 2',M 1镜与M 2'构成空气薄膜。事实上M 1、M 2镜所引起的干涉,与M 1、M 2'之间的空气层所引起的干涉等效。 1.干涉法测光波波长原理: 考虑M 1、M 2'完全平行,相距d 时的情况。点光源S 在镜M 1、M 2'中所成的像s '、s ''构成相距d 2的相干光源,光路如图10-3所示。设s ''到0点的距离 为h 。这种情况下,干涉现象发生在两光相遇的所有空间中,因此干涉是非定域 的。对于屏幕上任意一点P 处,设s ''到0点的距离为h 。两像光源发出的光相 遇时的光程差为δ,P 点处发生相长干涉的条件为: λ=θ-θ+=δk h d 2h 2 1cos cos (10—1) 由(10-1)式,结合图3可以看出,保持h 与d 不变,令P 点向外移动时,1θ、2θ将增大,对应级次K 将伴随δ减小,所以中央条纹的级次高。 2E 图10-1 迈克尔逊干涉仪原理图 M M '图10-3干涉光程计算 2S 图10-2 迈克尔逊干涉仪简化光路

迈克尔逊干涉仪器介绍

迈克尔逊干涉仪调整和应用仪器 一.实验装置组成 迈克尔逊干涉仪(WSM100/200型)、多束光纤激光源(HNL-55700,He-Ne)、WAN-12B 型数显空气折射率测量仪、观察屏。 二.仪器主要用途(迈克尔逊干涉仪(WSM100/200型)) 1.观察光的干涉现象(等厚条纹、等倾条纹、白光彩色条纹),测定单色光波长; 2.测定光源和滤光片相干长度、配发布里——珀罗系统观察多光束干涉现象,配条纹计数器标准毫米刻尺等。 3.附加适当装置,还可以扩大实验范围(如演示偏振光的干涉、测量压电陶瓷静态特性等)。 三.仪器主要技术参数和规格 迈克尔逊干涉仪(WSM100/200型) 1.移动镜行程:WSM-100型100mm WSM-200型200mm 2.微动手轮分度值:0.0001mm 3.波长测量精度:当条纹计数为100时,测定单色光波长的相对误差<2%。 4.导轨直线性误差:WSM-100型±16" WSM-200型±24" 5.分光板、补偿板平面度:λ/30。 多束光纤激光源(HNL-55700,He-Ne) 1.波长:632.80nm

2.工作电流:10mA±10% 3.输出功率:大于10mW 4.工作电压:220V±10% 5.额定功率:50Hz WAN-12B型数显空气折射率测量仪 1.输入电压:220V 50HZ 2.测量范围:0~0.12Mpa(与大气压差) 3.仪器精度:2.5% 四.使用注意事项 1.激光属强光,会灼伤眼睛,注意不要让激光直接照射眼睛。 2.光纤为传光介质,可弯曲,但不可折压。 3.调整迈克尔逊干涉仪的反射镜时,须轻柔操作,不能把螺钉拧的过紧或过松。 4.工作时切勿震动桌子与仪器,测量中一旦发生震动,使干涉仪跳动,必须重新测量。 5.数条纹变化时,应细致耐心,切勿急躁。

迈克尔逊干涉仪测‘

实验四 用迈克尔逊干涉仪空气的折射率 一、实验目的 用分离的光学元件构建一个迈克尔逊干涉仪。 通过降低空气的压强测量其折射率。 二、仪器和光学元件 光学平台;HeNe 激光;调整架,35x35mm ;平面镜,30x30mm ;磁性基座;分束器50:50;透镜,f=+20mm ;白屏;玻璃容器,手持气压泵,组合夹具,T 形连接,适配器,软管,硅管 三、实验原理 借助迈克尔逊干涉仪装置中的两个镜,光线被引进干涉仪。通过改变光路中容器内气体的压强,推算出空气的折射率。 If two Waves having the same frequency ω , but different amplitudes and different phases are coincident at one location , they superimpose to ()()2211sin sin αα-?+-?=wt a wt a Y The resulting can be described by the followlng : ()α-?=wt A Y sin w ith the amplitude δ cos 22122212?++=a a a a A (1) and the phase difference 21ααδ-= In a Michelson interferometer , the light beam is split by a half-silvered glass plate into two partial beams ( amplitude splitting ) , reflected by two mirrors , and again brought to interference behind the glass plate . Since only large luminous spots can exhibit circular interference fringes , the Iight beam is expanded between the laser and the glass plate by a lens L . If one replaces the real mirror M3 with its virtual image M3 /, , Which is formed by reflection by the glass plate , a point P of the real light source appears as the points P / , and P " of the virtual light sources L l and L 2 · Due to the different light paths , using the designations in Fig . 2 , 图 2 the phase difference is given by : θλπδcos 22???=d (2) λis the wavelength of the laser ljght used . According to ( 1 ) , the intensity distribution for a a a ==21 is 2cos 4~2 22δ??=a A I (3) Maxima thus occur when δis equal to a multiple of π2,hence with ( 2 ) λθ?=??m d cos 2;m=1,2,….. ( 4 )

迈克尔逊干涉仪实验报告

迈克尔逊和法布里-珀罗干涉仪 摘要:迈克尔逊干涉仪是一种精密光学仪器,在近代物理和近代计量技术中都有着重要的应用。通过迈克尔逊干涉的实验,我们可以熟悉迈克尔逊干涉仪的结构并掌握其调整方法,了解电光源非定域干涉条纹的形成与特点和变化规律,并利用干涉条纹的变化测定光源的波长,测量空气折射率。本实验报告简述了迈克尔逊干涉仪实验原理,阐述了具体实验过程与结果以及实验过程中的心得体会,并尝试对实验过程中遇到的一些问题进行解释。 关键词: 迈克尔逊干涉仪;法布里-珀罗干涉仪;干涉;空气折射率; 一、引言 【实验背景】 迈克尔逊干涉仪是1883年美国物理学家迈克尔逊和莫雷合作,为研究“以太”漂移而设计制造出来的精密光学仪器。它是利用分振幅法产生双光束以实现干涉。通过调整该干涉仪,可以产生等厚干涉条纹,也可以产生等倾干涉条纹,主要用于长度和折射率的测量。法布里-珀罗干涉仪是珀罗于1897年所发明的一种能现多光束干涉的仪器,是长度计量和研究光谱超精细结构的有效工具; 它还是激光共振腔的基本构型,其理论也是研究干涉光片的基础,在光学中一直起着重要的作用。在光谱学中,应用精确的迈克尔逊干涉仪或法布里-珀罗干涉仪,可以准确而详细地测定谱线的波长及其精细结构。 【实验目的】 1.掌握迈克尔逊干涉仪和法布里-珀罗干涉仪的工作原理和调节方法; 2.了解各类型干涉条纹的形成条件、条纹特点和变化规律; 3.测量空气的折射率。 【实验原理】 (一) 迈克尔逊干涉仪 1M 、2M 是一对平面反射镜,1G 、2G 是厚度和折射率都完全相同的一对平行玻璃板,1G 称 为分光板,在其表面 A 镀有半反射半透射膜,2G 称为补偿片,与1G 平行。 当光照到1G 上时,在半透膜上分成两束光,透射光1射到1M ,经1M 反射后,透过2G ,在1G 的半透膜上反射到达E ;反射光2射到2M ,经2M 反射后,透过1G 射向E 。两束光在玻璃中的 光程相等。当观察者从E 处向1G 看去时,除直接看到2M 外还可以看到1M 的像1 M 。于是1、2

迈克尔逊干涉仪调节与应用

4.1迈克尔逊干涉仪调节与应用 迈克尔逊干涉仪是一种典型的分振幅的双光束干涉装置。它是较理想的教学仪器,可以用来研究多种干涉现象,并可进行较精密的测量。同时它又是近代干涉装置的原型。一、实验目的要求 1.了解迈克尔逊干涉仪的结构、掌握其调节使用的方法。 2.通过实验考察等倾干涉、等厚干涉形成的条件、花纹特点、变化规律及相互间的区别,加深对干涉理论的理解。 3.利用迈克尔逊干涉仪测钠光波长和钠光双线波长差。4.观测等厚干涉条纹和钠光源的相干长度。二、仪器用具 迈克尔逊干涉仪,钠光灯,带有小孔的光屏。三、实验原理 (一)迈克尔逊干涉仪光路 迈克尔逊干涉仪是一种分振幅双光束的干涉仪。图一是迈克尔逊干涉仪的光路图,从扩展光源S 射来的光,到达平行平面板1G 上(此板后表面是镀有半反射膜,镀有铬)后分成两部分,反射光l 在1G 处反射后向着1M 前进,透射光2透过1G 后向着2M 前进,这两列光分别在1M 和2M 上反射后逆着各自的入射方向返回,最后都到达E 处,既然这两列光波来自光源上同一点O ,所以是相干光,因而眼睛在E 处可观察到干涉条纹,2G 是补偿板,其材料和厚度与1G 相同,是为了保证两束光在玻璃中光程相等而设置的。 由于光在分光板1G 的第二面上反射,使2M 在1M 附近形成一平行1M 的虚像M'2,因而光在迈克尔逊干涉仪中自 1M 和2M 的反射,相当于自1M 和2 M '的反射,所以在迈克尔逊干涉仪中所产 生的干涉与厚度为d 的空气膜所产生的干涉是等效的。 另外,反射镜2M 是固定不动的,1M 可在精密导轨上前后移动,从而改变反射光1和透射光2两光束之间的光程差。精密导轨与1G 成45°角。为了使光束1与导轨平行,光源应垂直导轨方向射向迈克尔逊干涉仪。(二)干涉花纹的图样 M 2反射镜2 分光镜 补偿片 S d M '2 M 1 反射镜1 图一

迈克尔逊干涉仪实验

迈克尔逊干涉实验 无非2班袁鹏 一实验目的 1、学习按一定原理自行组装仪器的技能,通过自行组装迈克尔逊干涉仪学 习光路的调整。 2、学习在组装的迈克尔逊干涉仪上开拓应用的技能。 3、在组装的迈克尔逊干涉仪上进行压电晶片电致伸缩效应的观测。粗略测 出压电晶片的压电系数。 二实验原理 1、迈克尔逊干涉仪的原理。 迈克尔逊干涉仪是应用分振幅法产生双光束以实现干涉的仪器,仪器的光学 系统由两个平面反射镜M 1和M 2 及两块材质相同、厚度相等的平行平面玻璃板G 1 和G2所组成,如上图所示。从光源S发出的光,射到分光板G1上,分光板G1后表面有半反射膜,将一束光分解成两束光;一束为反射光(1),另一束为透射光(2),他们的强度近似相等。由于G1与M1、M2均成45度角,所以两束光都垂直的射到M1和M2,并经反射后回到G1上的半反射膜,再在观察处E相遇。因为光束(1)、(2)是相干光,若仪器调整得当,便可在E处观察到干涉图样。

G2为补偿板,其物理性能和几何形状与G1相同,它的作用是为了补偿光束(2)的光程,使光束(1)和光束(2)在玻璃中的光程完全相等。 2、干涉条纹的形成。 由于半反射膜实质上是一块反射镜,它使M2在M1附近形成一个虚像M'2。由 于是从观察处E看到的两束光好像是从M 1和M' 2 射来的,故可将M' 2 看成一个虚 平面。因M' 2不是实物,它的表面和M 1 的表面所夹的空气薄膜可以任意调节。如 使M 1、M' 2 平行则形成等厚的空气薄膜,产生等倾干涉;若不平行则形成空气劈 尖,形成等厚干涉。从而在实验过程中可以观察到不同的干涉图样。 (1)等倾干涉使M 2垂直M 1 (即M 1 平行M'2),S又为面光源时,这就相 当于空气平面板所产生的等倾干涉。自M 1和M 2 反射后两光束的光程差(如果光 束(1)、(2)在半反射膜上反射时无附加光程差)为i d cos 2 = ?,式中d为M1 和M' 2间的距离,即为空气膜厚度。i为入射光M 1 、M' 2 镜表面的入射角。由上式 可知,当d一定时,光程差只决定于入射角。面光源上具有相同倾角i的所有光束的光程差?也相同,它们在干涉区域里将形成同一条干涉条纹,这种干涉即为等倾干涉。对应不同入射角的光束光程差不相同,形成不同级次的干涉条纹,便得到一组明暗相间的同心圆环,条纹定域在无穷远处,在E处直接用眼睛就可以观察到等倾干涉的同心圆环。 (2)等厚干涉当M 1、M' 2 相距很近,并把M' 2 调成与M 1 相交呈很小的角 度时,就形成一空气劈尖。在劈尖很薄的情况下,从E处便可看到等厚干涉条纹。这时,两相干光程差仍可近似的表示为i d cos 2 = ?,在M1和M'2的交线处的直线纹称为中央条纹。在交线上,d=0,光程差?为零,条纹为一条直线;在交线附近d很小,i的变化可以忽略,即cosi视为常数,条纹为一组近似与中央条纹平行的等间距的直条纹,可视为等厚条纹;离交线较远处d变大,光程差?的改变,除了与膜厚度d有关外,还受i角的影响,cosi的影响不能忽略。实际上i 很小,i d cos 2 = ?≈2d(1-i2/2),条纹发生弯曲。 三实验仪器 防振台氦氖激光光源凸透镜可变光栏直尺光屏分束镜反射镜支架压电晶片等

迈克尔逊干涉仪

迈克尔逊干涉仪是利用干涉条纹精确测定长度或长度改变的仪器.它是迈克尔逊在1881年设计成功的。迈克尔逊和莫雷应用该仪器进行了测定以太风的著名实验.后人根据此种干涉仪研制出各种具有实用价值的干涉仪。 预备知识 ?光程:光波实际传播的路径与折射率的乘积, 光程差:,在杨氏干涉的例子里,它的光程差就可以表示 ? ?光程差与相位差的变换关系为: ?相干条件:两束光满足频率相同,振动方向相同,相位差恒定时即可成 为相干光源,这时的光强应表达为: 令;对应的位相差为

?获得相干光光源的两种常见方法 1.分波阵面法:从同一波阵面上获取对等的两部分作为子光源成 为相干光源;如杨氏实验等。 2.分振幅法:当一束光投射到两种介质的分界面时,它的所有的 反射光线或所有的透射光线会聚在一起时即可发生相干;如薄膜 干涉等。 ?迈克尔逊干涉仪的结构和工作原理 G2是一面镀上半透半反膜,M1、M2为平面反射镜,M1是固定的,M2和精密丝相连,使其可前后移动,最小读数为10-4mm,可估计到10-5mm, M1和M2后各有几个小螺丝可调节其方位。当M2和M1’严格平行时,M2移动,表现为等倾干涉的圆环形条纹不断从中心“吐出”或向中心“消失”。两平面镜之间的“空气间隙”距离增大时,中心就会“吐出”一个个条纹;反之则“吞进”一个个条纹。M2和M1’不严格平行时,则表现为等厚干涉条纹,M2移动时,条纹不断移过视场中某一标记位置,M2平移距离d 与条纹移动数N 的关系满足。

迈克尔逊干涉仪示意 经M2反射的光三次穿过分光板,而经M1反射的光只通过分光板一次.补偿板就是为了消除这种不对称而设置的.在使用单色光源时,补偿板并非必要,可以利用空气光程来补偿;但在复色光源时,因玻璃和空气的色散不同,补偿板则是不可缺少的。 若要观察白光的干涉条纹,两相干光的光程差要非常小,即两臂基本上完全对称,此时可以看到彩色条纹;若M1或M2稍作倾斜,则可以得到等厚的交线处(d=0)的干涉条纹为中心对称彩色直条纹,中央条纹由于半波损失为暗条纹。 实验内容 ?观察非定域干涉条纹,干涉条纹的形状、疏密及中心“吞”、“吐”条纹 随光程差的改变而变化情况; ?测量He-Ne激光的波长,利用公式计算,用适当的数据处理 方法求出值; ?测钠黄光波长及钠黄光双线的波长差,观察条纹的可见度的变化; ?测量钠黄光的相干长度,观察氦氖激光的相干情况; ?调节观察白光干涉条纹,测定透明薄片的折射率.

迈克尔逊干涉仪实验与最佳测量区间的分析

迈克尔逊干涉仪实验与最佳测量区间的分析 摘要:用迈克尔逊干涉仪能观察到等倾干涉、等厚干涉条纹和白光干涉的彩色条纹。产生等倾干涉与等厚干涉不仅与M 1与2'M 之间的夹角α有关,还受其间空气 层厚度d 的影响。在测H e-N e 激光波长时,通过分析,在一定的测量区间内,测得的波长误差较小。本文主要对等倾干涉等厚干涉所遇到的现象、特点及仪器的调节图像的判断进行分析,接着分析白光干涉现象中央条纹的亮暗,最后对测波长的最佳区间分析,并经过实验得出最佳测量范围。 关键词:迈克尔逊干涉仪 等倾干涉 等厚干涉 白光干涉 最佳测量区间 Michelson interferometer experiment with the best measurement interval analysis Abstract: Such dumping intervention, uniform thickness interference, white stripe and color interference fringes as can be observed in the Michelson interferometer. Inclined to interfere in the formation and the thickness intervention with the M 1 and 2'M the angle, which is also affected by the air layer thickness d effects. The He – Ne laser wavelength measurement, after analysis, in a certain interval measurement, the measurement error of wavelength is smaller. In this paper, such as the dumping of interference encountered thick interference phenomena, characteristics and the regulatory apparatus judgment image analysis then analyzes white interference fringes of the central-darkness, in the final test ,after the best wavelength interval analysis, we carry out some experiments and make out the best measurement range Key words: Michelson interferometer dumping intervention uniform thickness interference the white light interference best sampling interval

迈克尔逊干涉仪实验报告

实验目的: 1)学会使用迈克尔逊干涉仪 2)观察等倾、等厚和非定域干涉现象 3)测量氦氖激光的波长和钠光双线的波长差。 实验仪器: 氦氖激光光源、钠光灯、迈克尔逊干涉仪、毛玻璃屏 实验原理: 1:迈克尔逊干涉仪的原理: 迈克尔逊干涉仪的光路图如图所示,光源S 出发的光经过称。45放置的背面镀银的半透玻璃板1P 被分成互相垂直的强度几乎相等的两束光,光 路1通过1M 镜反射并再次通过1P 照射在观察平 面E 上,光路2通过厚度、折射率与1P 相同的玻 璃板2P 后由2M 镜反射再次通过2P 并由1P 背面 的反射层反射照射在观察平面E 上。图中平行于1M 的'2M 是2M 经1P 反射所成的虚像,即1P 到2M 与1P 到'2M 的光程距离相等,故从1P 到2M 的光路可用1P 到'2M 等价替代。这样可以认为1M 与'2M 之间形成了一个空气间隙,这个空气间隙的厚度可以通过移动1M 完成,空气间隙的夹角可以通过改变1M 镜或2M 镜的角度实现。当1M 与' 2M 平行时可以在观察平面E 处观察到等倾干涉现象,当1M 与'2M 有一定的夹角时可以在观察平面E 处观察到等厚干涉现象。 2:激光器激光波长测量原理: 由等倾干涉条纹的特点,当θ =0 时的光程差δ 最大,即圆心所对应的干

涉级别最高。转动手轮移动 M1,当 d 增加时,相当 于增大了和 k 相应的θ 角 ,可以看到圆 环一个个从中心“冒出” ;若 d 减小时,圆环逐渐 缩小,最后“淹没”在中心处。 每“冒”出或“缩”进一个干涉环,相应的光程差改变了一个波长,也就是 M 与M ’之间距离 变化了半个波长。 若将 M 与 M ’之间距离改变了△d 时,观察到 N 个干涉环变化,则△d =N 由此可测单色光的波长。 3:钠光双线波长差的测定: 在使用迈克尔逊干涉仪观察低压钠黄灯双线的等倾干涉条纹时,可以看到随着动镜1M 的移动,条纹本身出现了由清晰到模糊再到清晰的周期性变化,即反衬度从最大到最小再到最大的周期性变化,利用这一特性,可测量钠光双线波长差,对于等倾干涉而言,波长差的计算公式为: 实验内容与数据处理: (1)观察非定域干涉条纹 1)通过粗调手轮打开激光光源,调节激光器使其光束大致垂直于平面反光镜2M 入射,取掉投影屏E ,可以看到两排激光点 2)粗调手轮移动1M 镜的位置,使得通过分光板分开的两路光光程大致相等 3)调节1M 、2M 镜后面的两个旋钮,使两排激光点重合为一排,并使两个最亮的光点重合在一起。此时再放上投影屏E ,就可以看到干涉条纹。 4)仔细调节1M 、2M 镜后面的两个旋钮,使1M 与' 2M 平行,这时在屏上可以看到同心圆条纹,这些条纹为非定域条纹。 5)转动微调手轮,观察干涉条纹的形状、疏密及中心“吞”、“吐”条纹随光程差改变的变化情况。

大学物理实验之迈克尔逊干涉仪的调整与应用方法及步骤详解

迈克尔逊干涉实验 实验前请认真阅读本要点: (1)听完课后,同学们结合仪器请仔细阅读教材的相关内容,特别是P189的干涉仪光路图(图5-61)、P191公式(5-123、5-124)的由来及应用、P193至P194的仪器说明与练习一。 测量固体试件的线膨胀系数还要阅读教材的P136与P138的实验内容1。 注:迈克尔逊干涉仪有仿真实验,同学们可以在实验之前用其进行预习。 仿真实验位于: 桌面\大学物理仿真实验\大学物理仿真实验(第二部分),其中 大学物理仿真实验(第二部分).exe为正式版,大学物理仿真实验示教版(第二部分).exe为示教版,同学们在使用之前可先看示教版。 (2)实验内容 1)掌握迈克尔逊干涉仪的调节方法,并记录位置改变时干涉条纹的变化,如条纹的“冒出”和“缩进”、条纹的疏密、条纹间距与“空气薄膜”的关系等。 2)根据逐差法的要求确定如何合理测量数据,规范记录实验数据及已知参数等。 3)拟定利用迈克尔逊干涉仪测量透明薄片的折射率(厚度)的实验方案,并利用仿真实验来验证实验方案。 4)(选做)利用仿真实验测量测量钠光的波长、钠黄光双线的波长差、钠光的相干长度等。 (3)阅读F盘上的数据处理文件(迈克尔逊干涉仪的调整与应用数据处理、线膨胀系数测量数据处理(据环数记温度)、线膨胀系数测量数据处理(据温度记

环数)),了解需测量的数据要求(处理需用逐差法),确定如何进行数据测量。根据需测量的数据,在实验仪器上进行预测量与观察相应的实验现象,即先测量一小部份数据,弄清测量的重点与难点,确定测量方法,然后进行正式测量。 (4)测波长与测线膨胀系数的主要调节方法是一样的,需掌握迈克尔逊干涉光路的调节方法,并了解干涉条纹的变化情况,如条纹的“冒出”和“缩进”、条纹的疏密、条纹间距与“空气薄膜”的关系等。(一些问题详见附录4 疑难解答) 测量He-Ne激光的波长的同学还要掌握如何正确使用读数结构(包括如何读数、校零、消空程等)。 测量固体试件的线膨胀系数的同学还要掌握如何正确进行控温(详见38的实验内容1)。 (5)测波长的同学(后十位同学)需每冒出(或缩进)50环,读一次 M镜 1 的位置,至少连续测8组,将数据填入表格,并观察其实验现象。 测线膨胀系数的同学(前十位同学)可以采用按升高(降低)一定的温度(例如2℃)测量试件伸长量的方法(采用逐差法)进行测量,要求连续测量8组;也可以采用按试件一定的伸长量(例如由20个干涉环变化算出的光程差),测出所需升高(降低)温度的方法进行测量,要求连续测量8组。 注:测波长或测线膨胀系数只需做其中之一,但两个实验都需要掌握;请注意数据处理文件(迈克尔逊干涉仪的调整与应用数据处理、线膨胀系数测量数据处理(据环数记温度)、线膨胀系数测量数据处理(据温度记环数))。 (6)将所测量数据输入相应的数据处理文件(位于F盘,共有迈克尔逊干涉仪的调整与应用数据处理、线膨胀系数测量数据处理(据环数记温度)、线膨胀系数测量数据处理(据温度记环数)三个文件),不要关闭文件,让老师检查数据是否合格。 (7)数据合格后重新用新报告纸按要求记录所测数据(并记录其标准值或

“迈克尔逊干涉仪”实验报告

“迈克尔逊干涉仪”实验报告 【引言】 迈克尔逊干涉仪是美国物理学家迈克尔逊(A.A.Michelson)发明的。1887年迈克尔逊和莫雷(Morley)否定了“以太”的存在,为爱因斯坦的狭义相对论提供了实验依据。迈克尔逊用镉红光波长作为干涉仪光源来测量标准米尺的长度,建立了以光波长为基准的绝对长度标准,即1m=1 553 164.13个镉红线的波长。在光谱学方面,迈克尔逊发现了氢光谱的精细结构以及水银和铊光谱的超精细结构,这一发现在现代原子理论中起了重大作用。迈克尔逊还用该干涉仪测量出太阳系以外星球的大小。 因创造精密的光学仪器,和用以进行光谱学和度量学的研究,并精密测出光速,迈克尔逊于1907年获得了诺贝尔物理学奖。 【实验目的】 (1)了解迈克尔逊干涉仪的原理和调整方法。 (2)测量光波的波长和钠双线波长差。 【实验仪器】 迈克尔逊干涉仪、He-Ne激光器、钠光灯、扩束镜 【实验原理】 1.迈克尔逊干涉仪结构原理 图1是迈克尔逊干涉仪光路图,点光源 S发出的光射在分光镜G1,G1右表面镀有半 透半反射膜,使入射光分成强度相等的两束。 反射光和透射光分别垂直入射到全反射镜M1 和M2,它们经反射后再回到G1的半透半反射 膜处,再分别经过透射和反射后,来到观察区 域E。如到达E处的两束光满足相干条件,可 发生干涉现象。 G2为补偿扳,它与G1为相同材料,有 相同的厚度,且平行安装,目的是要使参加干 涉的两光束经过玻璃板的次数相等,波阵面不会发生横向平移。 M1为可动全反射镜,背部有三个粗调螺丝。 M2为固定全反射镜,背部有三个粗调螺丝,侧面和下面有两个微调螺丝。 2.可动全反镜移动及读数 可动全反镜在导轨上可由粗动手轮和微动手轮的转动而前后移动。可动全反镜位置的读数为: ××.□□△△△ (mm) (1)××在mm刻度尺上读出。

迈克尔逊干涉仪的调节和使用

迈克尔逊干涉仪的调节和使用 迈克尔逊干涉仪是一种典型的分振幅双光束干涉装置,可以用来研究多种干涉现象,并进行较精密的测量。其在近代物理和近代计量技术中有着重要的应用,如测量标准长度等。从迈克尔逊干涉仪发展而成的各种干涉仪(如泰曼干涉仪),在制造精密光学仪器的工作中应用得相当广泛。 【实验目的】 1.了解迈克尔逊干涉仪的构造,并学会该仪器的调节与使用。 2.用迈克尔逊干涉仪测定钠光的波长。 【实验仪器】 迈克尔逊干涉仪、钠灯及其电源、叉丝。 【实验原理】 1.仪器构造简介 实验室中最常用的迈克耳逊干涉仪,其原理图和结构图如图1和图2所示。M 1和M 2 是在相互垂直的 图1 图2 两臂上放置的两个平面反射镜,其背面各有三个调节螺旋,用来调节镜面的方位;M2是固定的,M1由精密丝杆控制,可沿臂轴前后移动,其移动距离由转盘读出。仪器前方粗动手轮分度值为10-2mm,右侧微动手轮的分度值为10-4mm,可估读至10-5mm,两个读数手轮属于蜗轮蜗杆传动系统。在两臂轴相交处,有一与两臂轴各成45o的平行平面玻璃板P 1 ,且在P1的第二平面上镀以半透(半反射)膜,以便将入射光分成振幅近乎相等的反射光1和透射 光2,故P 1板又称为分光板。P 2 也是一平行平面玻璃板,与P1平行放置,厚度和折射率均

与P 1相同。由于它补偿了1与2之间附加的光程差,故称为补偿板。 从扩展光源S 射来的光,到达分光板P 1后被分成两部分。反射光1在P 1处反射后向着M 1前进;透射光2透过P 1后向着M 2前进。这两列光波分别在M 1、M 2上反射后沿着各自的入射方向返回,最后都到达E 处。既然这两列光波来自光源上同一点O ,因而是相干光,在E 处的观察者能看到干涉图样。 由于从M 2返回的光线在分光板P 1的第二面上反射,使M 2在M 1附近形成一平行于M 1 的虚像M?2,因而光在迈克耳逊干涉仪中自M 1和M 2的反射,相当于自M 1和M?2的反射。由此可见,在迈克耳逊干涉仪中所产生的干涉与厚度为d 的空气膜所产生的干涉是等效的。 2.实验原理 当M 1和M?2严格平行时,所得的干涉为等倾干涉。所有倾角为i 的入射光束,由M 1和M?2反射光线的光程差Δ均为 2cos d i ?= (1) 式中i 为光线在M 1镜面的入射角,d 为空气薄膜的厚度,它们将处于同一级干涉条纹,并定位于无限远。这时,在图1中的E 处,放一会聚透镜,在其焦平面上(或用眼在E 处正对P 1观察),便可观察到一组明暗相间的同心圆纹。这些条纹的特点是: 干涉条纹的级次以中心为最高。在干涉纹中心,因i =0,由圆纹中心出现亮点的条件 2d k λ?== (2) 得圆心处干涉条纹的级次 2d k λ = (3) 当M 1和M ′2的间距d 逐渐增大时,对于任一级干涉条纹,例如第k 级,必定以以其 cos k i 的值来满足2cos k d i k λ=,故该干涉条纹向k i 变大(cos k i 变小)的方向移动,即向外扩展。这时,观察者将看到条纹好像从中心向外“涌出”,且每当间距d 增加/2λ时,就有一 个条纹涌出。反之,当间距由大逐渐变小时,最靠近中心的条纹将一个一个地“陷入”中心,且每陷入一个条纹,间距的改变亦为/2λ。 因此,只要数出涌出或陷入的条纹数,即可得到平面镜M 1以波长λ为单位的移动距离。显然,若有N 个条纹从中心涌出时,则表明M 1相对于M′2移远了 2d N λ ?= (4) 反之,若有N 个条纹陷入时,则表明M 1和M?2移近了同样的距离。根据(4)式,如果已知光波的波长λ,便可由条纹变动的数目,计算出M 1移动的距离和干涉条纹变动的数目,便可算出光波的波长。 2d N λ?= 本次实验每组测量N 取50个条纹的“涌出”或“陷入”,并在迈氏干涉仪上读出12 ,d d ,便 可知d ?的值,则 2 2410 50 d d λ-= ?=???mm 4 410d =???nm 【注意事项】 ①该仪器很精密,各镜面必须保持清洁,切忌用手触摸光学面,精密丝杆和导轨的精度也是很高的,操作时要轻调慢拧。 ②为了使测量结果正确,必须消除螺距差(回程误差),也就是说,在测量前,应将微动手轮按某一方向(例如顺时针方向)旋转几圈,直到干涉条纹开始移动以后,才可开始读数测量(测量时仍按原方向转动)。 ③做完实验后,要把各微动螺丝恢复到放松状态。

迈克尔逊干涉仪测量空气折射率

空气折射率的测量 学习要点和重点: 1、迈克尔逊干涉仪原理, 2、利用迈克尔逊干涉原理测量气体折射率的方法。 学习难点: 1、 光路的调整, 2、 干涉条纹变化数目的读取。 迈克尔逊干涉仪中的两束相干光各有一段光路在空间上是分开的,在其中一支光路上放进被研究对象不会影响另一支光路。本实验利用迈克尔逊原理测量空气折射率。 一、 实验目的与要求 1、 学习一种测量气体折射率的方法; 2、 进一步了解光的干涉现象及其形成条件; 3、 学习调整光路的方法。 二、 实验仪器 He-Ne 激光器、反射镜2个、分束镜、扩束镜、气室、打气球、气压表、毛玻璃等。 三、 实验原理 迈克尔逊干涉仪光路示意图如图1所示。其中,G 为平板玻璃,称为分束镜,它的一个表面镀有半反射金属膜,使光在金属膜处的反射光束与透射光束的光强基本相等。 M 1、M 2为互相垂直的平面反射镜,M 1、M 2镜面与分束镜G 均成450角;M 1可以移动,M 2固定。2M '表示M 2对G 金属膜的虚像。 从光源S 发出的一束光,在分束镜G 的半反射面上被分成反射光束1和透射光束2。光束1从G 反射出后投向M 1镜,反射回来再穿过G ;光束2投向M 2镜,经M 2镜反射回来再通过G 膜面上反射。于是,反射光束1与透射光束2在空间相遇,发生干涉。 由图1可知,迈克尔逊干涉仪中,当光束垂直入射至M 1、M 2镜时,两束光的光程差δ为 M 2M 图1 迈克尔逊干涉仪光路示意图

)(22211L n L n -=δ (1) 式中,1n 和2n 分别是路程1L 、2L 上介质的折射率。 设单色光在真空中的波长为λ,当 ,3 ,2 ,1 ,0 ,==K K λδ (2) 时干涉相长,相应地在接收屏中心的总光强为极大。由式(1)知,两束相干光的光程差不但与几何路程有关,还与路程上介质的折射率有关。 当1L 支路上介质折射率改变1n ?时,因光程的相应改变而引起的干涉条纹的变化数为N 。由(1)式和(2)式可知 1 12L N n λ = ? (3) 例如:取nm 0.633=λ和mm L 1001=,若条纹变化10=N ,则可以测得0003.0=?n 。可见,测出接收屏上某一处干涉条纹的变化数N ,就能测出光路中折射率的微小变化。 正常状态(Pa P C t 501001325.1,15?==)下,空气对在真空中波长为nm 0.633的光的折射率 00027652.1=n ,它与真空折射率之差为410765.2)1(-?=-n 。用一般方法不易测出这个折射率差, 而用干涉法能很方便地测量,且准确度高。 四、 实验内容及步骤 (一)实验装置 实验装置如图2所示。用He-Ne 激光作光源(He-Ne 激光的真空波长为nm 0.633=λ),并附加小孔光栏H 及扩束镜T 。扩束镜T 可以使激光束扩束。小孔光栏H 是为调节光束使之垂直入射在M 1、M 2镜上时用的。另外,为了测量空气折射率,在一支光路中加入一个玻璃气室,其长度为L 。气压表用来测量气室内气压。在O 处用毛玻璃作接收屏,在它上面可看到干涉条纹。 (二)测量方法 图2 测量空气折射率实验装置示意图 气压表

用迈克尔逊干涉仪测量激光波长

用迈克尔逊干涉仪测量激光波长 〔引课:〕 在大学物理中我们学习了光的薄膜干涉,知道薄膜干涉现象分为两种: 在物理课上,我们只是从理论上研究了薄膜干涉的原理,那么在实验课上我们通过什么方法获得等倾或等厚干涉的图像呢? ***************************** 迈克尔逊干涉仪 ***************************** ***注意*** 本实验只利用迈克尔逊干涉仪测量等倾干涉图像 〔正课:〕 实验目的与要求 迈克尔逊干涉仪的构造 迈克尔逊干涉仪的原理 迈克尔逊干涉仪的使用 实验原理 1.迈克尔逊干涉仪的构造 等厚干涉等倾干涉

2.迈克尔逊干涉仪的原理 (1) 光路图 图30—2 迈克尔逊干涉仪光路图 光源S发出的光到达分光板 1 G后,被分成振幅(强度)几乎相等的反射光(1)和透射光(2)。光束(1)向着 1 M前进,光束(2)经过 2 G后向着 2 M前进,这两束光分别在 1 M和2 M上反射后逆着各自的入射方向返回,最后到达光屏E。由于这两束光是来自同一光源S的同一束光,因此他们是两列相干光束,在E 处必有干涉图样形成。

(2) 光程差的计算 1M 和2M ˊ平行时(1M ⊥ 2M ),将观察屏垂直置于S 1和S 2ˊ连线处,就可以观察到等倾干涉圆环条纹。由于1M 和2M ˊ之间 为空气,折射率n =1,故光程差 θδcos 2d =。 并且有: θδcos 2d == ?? ? ? ?----+--------暗条纹明条纹λλ)2/1(k k ( k=0、1、2…) 对光程差δ作进一步的分析: 图30—4 非定域等倾干涉

迈克尔逊干涉仪的调节与使用

迈克尔逊干涉仪的调节与使用 【实验目的】 1学习精密干涉仪的调节与使用。 2 ?观察等倾干涉条纹,加深对干涉理论的理解。 3.学习一种测量光波长的方法。 【实验原理】 干涉仪是根据光的干涉原理制成的。迈克尔逊干涉仪是近代许多干涉仪的典型,用它 可以来测量光波波长和微小长度,检查透镜和棱镜的光学性质,测量各种物镜的像差等。它 在近代物理和近代测量技术中应用甚为广泛。图4-14-1是迈克尔逊干涉仪的光路示意图。自光源发出的光线,被分光板G i后表面的半透膜分成光强近似相等的两束:反射光(1)和透射光(2)。由于G i与平面镜M i、M2均成45°角,所以,反射光(1)在近于垂直地入射到平面反光镜M i后,经反射又沿原路返回,透过G i到达E处。透射光(2)在透过补偿板G2后,近于垂直地入射到平面镜M2上,经反射又沿原路返回,在分光板后表面反射后向 E 处传播,与光线(i)相遇后形成干涉。 i.等倾干涉图样 当迈克尔逊干涉仪的两个平面镜M i和M2严格垂直,即当M i和M2 (M2经G i膜面反射的像)严格平行时,所得干涉为等倾干涉,其条纹在无限远处。若在E处放置凸透镜,则条纹成像在透镜焦平面上。当M i与M2相距为d,单色光波长为入,光对平面镜的入射角为i 时,等倾干涉图样中的第k级亮条纹满足 2dcoS k=k 入(4-i4-i) 等倾干涉条纹的形状决定于平面镜法线与观察方向的夹角。当此夹角为零时,干涉条纹是一组同心圆,如图4-i4-2所示。同一条纹上的不同点处所对应的入射角i相同,就是入射光线对平面镜的倾角相等,所以这样的干涉条纹叫做等倾干涉条纹。由公式(4-i4-i)可见, i k 越大,即条纹角半径越大,条纹级次k越小。也就是说中央条纹的级次高于外围的条纹级次,中心条纹级次最高。 实验中当M i与M M2平行,M i与M M2的间隔d逐渐增大时,对于任一级干涉条纹,例如k 级,它必以减少其cosi k值来保证满足2dcosi k=k入,故该干涉条纹向i k变大(cosi k变小)的方向移动,即向外扩展,中心条纹向外“涌出”。且每当间隔d增加入/2时,中心条纹向外“涌 出”一个。反之,当间隔d由大变小时,最靠近中心的条纹将一个一个地陷人中心,且每当陷入一个条纹,间隔的改变亦必为入/2。因而当数出“涌出”或“陷入”的中心条纹数目时,即可得到平面镜M i以半波长为单位移动的距离。显然,如果有N个条纹从中心“涌出”或“陷入” 时,贝U表明M i与M2的距离改变量△ d为 图4-i4-i 迈克尔逊干涉仪原理图图4-i4-2 等倾干涉条纹

相关文档
相关文档 最新文档