文档库 最新最全的文档下载
当前位置:文档库 › 显示器新名词与术语解释一

显示器新名词与术语解释一

显示器新名词与术语解释一
显示器新名词与术语解释一

显示器新名词与术语解释

显示器的发展,尽管远不如CPU、主板、图形显示卡那样一日千里,但也并不等于它止步不前,相反,新技术、新工艺、新设计等层出不穷,为此笔者深感有必要对一些新名词与术语进行解释,以正视听。

阴极射线管

阴极射线管(CRT:Cathode-Ray Tube)作为当前使用最普遍的显象管(映像管),它在画面清晰度、亮度、显示速度、对比度、彩色还原质量等方面具有独一无二优势,尽管LCD大有后来居上之势,但就当前应用现状看,在台式机等领域无论如何也不是CRT的竞争对手。当然CRT的缺点也是显而易见,不仅体积大、耗电量大、而且辐射问题一直困惑着使用者。

球面显象管

球面(Spherical)显象管历史最悠久,在早期的14英寸、16英寸、20英寸等显象管中普遍采用球面屏幕。其特点是制造工艺成熟,价格相对较低,但由于屏幕为球面形状(即水平和垂直两个方向都为曲面),这导致了画面不同程度的变形失真,特别是在四周边角部分更明显。如今球面显示器早已退出市场。

柱面显象管

柱面(Cylindrical)显象管是在水平方向有曲面,而在垂直方向屏幕则是平面,因而很多媒体也称之为弧面显象管。典型代表是SONY的Trinitron。其突出特点具有更高的分辨率,由于透光性更好,因而亮度也比球面显象管有所提高 液晶显示器

液晶显示器(LCD:LiquidCrystalDisplay)目前主要用于笔记本电脑中。它具有超薄型结构、重量轻、体积小、强光下可读性好、不易损坏、耗电量低等优点。至于PDP(PlasmaDisplayPanel:等离子体显示板)等由于受局限性很大,故实际应用领域很窄。而且在性能/价格比也根本无法与LCD相提并论。进入2000年后,通用型15英寸LCD的价格已有大幅度下降,逐步取代CRT已成为发展之必然趋势,但是以目前的售价大谈普及尚为迟过早。

涂层

为了克服CRT自身存在的缺陷(比如反光问题,带静电问题),近年来所生产的大屏幕显示器在CRT玻璃壳表面都涂有不同种类的涂层(Coating)以增加防静电、防辐射和防反光作用。使用特殊涂层的显示器还可以享受到无图像畸变色彩均衡艳丽的优质画面。目前常用的有DE涂层、AGAS涂层、ARAS涂层、UC涂层四类,此外一些厂商还有专门设计的涂层。

DE涂层

DE(DirectEtching:表面刻蚀)涂层是直接将屏幕表面刻成凹击不平形状,从而削弱光反射,达到降低光干扰目的。

AGAS涂层

AGAS(Anti-GlareAnti-Static:防强光、防静电)涂层是将一种矽涂料均匀覆盖在屏幕表面使反射光扩散,而且这种涂层里含有的导电微粒能起到防静电作用。

ARAS涂层

ARAS(Anti-ReflectionAnti-Static:防反射、防静电)涂层是一种多层涂料,能有效防止光反射,因而画面更清析更亮丽。LG公司新开发的Flatron纯平面映像管采用的就是这类涂层。

UC涂层

UC(UltraClear:超清晰)涂层是一种多层复合涂料,它能有效防止图像畸变及改善图像的色彩均衡度,同时对各种干扰有很好的抑制作用。用户使用这种显示器,就可以最大限度的避免受到显像管特有的光亮给使用者带来的眩晕和视力上的侵害。

ARt涂层

ARt涂层是SONY公司Trinitron映像管采用的专用技术。它为多层结构,每一个涂层使用了不同的折射物质,光线一旦进入就会被吸收,经过多层浸透后,那些反射光已经减少许多,而且涂层并不会影响显示器的亮度。使用该技术后,不仅可有效地避免反光,而且可以提高了屏幕色彩纯度,使图像对比更鲜明、颜色更亮丽。不仅如此,防反光涂层还能防止电磁波辐射和消除静电影响,这对保护我们健康的很有好处。

“特丽珑”

“特丽珑”(Trinitron)是SONY的显象管,第二代纯平“特丽珑”与第一代“特丽珑”显象管相比,由于加入了更多的新技术,比如:新型电子枪设计、多层高透光表面涂层(降低反光及辐射)等,不但消除了屏幕边角的画面失真,而且对比度提高50%,同时色彩饱和度更高,还原性也更好。而0.24mm的条栅间距(由Trinitron引出的新概念)能使得画面质量精确显示精益求精。正因为如此,SONY的显象管屡获世界各种大奖。

“钻石珑”

“钻石珑”(Diamondtron)是日本MITSUBISHI(三菱)公司生产的一种显像管。它在沿用了ApertureGrille技术基础上又有如下改进:采用Coating涂层技术使屏幕表面为纯黑色,在具有抗反光、防静电、防辐射等优点的同时,还具有很高的透光率;配合NX-DBF(DynamicBeamForming)四倍动态聚焦电子枪,使它对电子束的聚焦更精细,不仅是屏幕中心,就连四角也同样得到逼真的彩色图象,亮度也高出一般显像管40%。NFDiamondtron是MITSUBISHI的第二代显像管。除了是纯平显象管外,因为采用了一些新技术,所以色彩还原性更为出色。 “未来窗”

“未来窗”(Flatron)是LG纯平显示器的代名词,它所使用是其自己开发的一种新型纯平显像管。该显像管结合了Trinitron显象管条栅间距和传统的显象管点距之优点独创性的形成了两维伸展的槽状网格荫罩结构。比起Trinitron条栅

状荫罩,Flatron在栅条中间多了许多细小的横格,这使得荫罩网面的受力稳定性更好,从而消除了Trinitron显像管为支撑栅条结构网面而不得不添加的细线,所带来的直接好处是我们再也看不到SONY那似隐似现令人心中不悦的细横线了。 “丹娜”

“丹娜”(DYNAFLAT)是三星新研制的纯平面显像管。该显像管所采用的新技术使屏幕达到100%的平面,不仅有效改善了传统屏幕存在的边角失真及反光现象,而且能使对比度和亮度分别提高45%和30%左右。由于对比度和亮度的提升,使得所显示的画面也更细腻,色彩还原性更好,而且层次感更鲜明。 SonicTron

世界著名的专业生产厂商ViewSonic也拥有自己的条栅显像管技术——SonicTro,它的全称为“VerticallyFlatSonicTron”。采用该技术生产的显象管为柱面屏幕。单从工艺上看,它与Diamondtron几乎没有什么区别,都是采用三枪三束条栅设计,只不过SonicTron的屏幕玻璃是经过ViewSonic特殊的超黑晶处理过的而已。

纯平显象管

现在的纯平显示管主要有物理平面(几何平面)和视觉平面两种。前者以LG生产的“未来窗”为代表,即显示器物理结构上为100%几何平面;后者以SONY生产的FDTrinitron和MITSUBISHI生产的NFDiamondtron等为代表,即显示器外表面是平面,而内表面则不是完全平面。两类产品各有优点与缺陷。比如前者是100%纯平面,但是最棘手的问题是实际显示的画面在视觉上有内凹感觉,可见有一利必有一弊。

短颈电子枪

这是新型17英寸CRT中广泛使用的一种电子枪,由于采用了特殊设计,因而管颈比早期的显像管更短。这种设计不仅使发射电子束控制起来更精细,聚焦更准确(图像更清晰),而且还可以缩小大屏幕显示器的总体厚度。因此一经问世,即倍受显示器生产厂商的欢迎。

超黑屏幕

它是将一种经过特殊处理的碳粉微粒涂于显示屏上,它能有效的过滤掉发光点周围的杂散光,消除了每个发光点之间相互干扰,其好处是能提高色彩还原性及对比度,以达到画面清晰度更高的效果。采用这种技术后虽然比普通显像管亮度略暗一些,但以牺牲一点亮度换取图像更加清析和色彩更加艳丽还是值得的。此外,它对提高显示画面对比度,保证文本文字清晰也有一定帮助。超黑屏幕代表性产品有爱国者的700A、900A等。

荫罩

荫罩(ShadowMask)是安装在显象管内的一块超薄钢片,它上面刻蚀有40多万个微孔。荫罩可分为孔状荫罩和条栅状(ApertureGrille)荫罩两种类型。理论上讲,孔状荫罩显示器显示图像显示准确,成本相对低些,适合一般场合应用;条栅状荫罩显示器的色彩要明亮一些,加上透光率高,因而图像色彩更艳丽。它

更适合于多媒体图形、图象等专业场合应用。即便是仅凭肉眼判断,ApertureGrille 设计的显示器确实更出色一些。

点距

点距(DotPitch)是指显像管上三角形排列的红(R)、绿(G)、蓝(B)三个像素点中心位置与相邻红、绿、蓝三点中心之距离。点距越小,清晰度就越高。由于受制造工艺技术局限,点距很难作成更小,15英寸显象管一般有

0.28mm、0.27mm两种,17英寸大屏幕显象管有0.28mm、0.27mm、0.26mm三种,后一种产品价格比较贵。虽说0.22mm点距的显示器早已推出样品,但目前商品化产品还是少见。

条栅间距

条栅间距(ApertureGrilleMask)有些媒体也栅距或栅条距。它因SONY的Trinitron显像管而得名。由于是采用垂直栅条设计,因而电子束扫描屏幕时是以线条作为像素单位,不再象荫罩式显像管那样采用点(孔)作为像素单位。目前两个相邻栅条之间的距离一般为0.24-0.26mm,0.22虽然也有媒体报道,但商品化产品价格贵得惊人。

水平扫描频率

水平扫描频率(HSF:HorizontalScanningFrequency)是指电子枪按照从左至右,从上至下的顺序扫过所有像素(Pixel)的过程。HSF决定了电子枪每秒扫描的水平线数。计算单位为KHz。该频率越高说明所能达到的水平分辨率越高。比如,要想达到1280×1024@60分辨率,行频应达到70KHz。

垂直扫描频率

垂直扫描频率(VSF:Verticalscanningfrequency)也称为帧扫描频率。计算单位为Hz。它决定了每秒扫描屏幕的次数,即所显示的图象数。其该频率越高说明垂直分辨率越高。比如,一台显示器标明VSF为72Hz,则表示每秒扫描屏幕72次。

逐行扫描

逐行扫描(Non-Interlace,为隔行)是将一幅图像扫描线逐行顺序一次扫描完成。它与Interlace(隔行)扫描最大的区别显示一幅图像只需一次扫描即可。Non-Interlace扫描方式可以克服Interlace扫描在高分辨率下对人眼睛造成的损害(这正是隔行扫描显示器被淘汰的重要原因)。如今,即使是15英寸显示器普遍支持800×600以上分辨率逐行扫描方式。

液晶拖影学习总结

全面解析液晶显示器的抗拖影技术 随着BenQ第二代疾彩引擎(AMA Z)的发布,“插黑”等液晶显示抗拖影技术引起了人们的广泛关注(前期报道请参考本刊7月上的技术广角:专家讲堂栏目)。在显示高速运动物体的动态图像时,运动物体的拖影或残影现象所造成的运动模糊(Motion Blur),一直是液晶显示技术中一个比较突出的问题。 与传统的阴极射线管(CRT)显示技术相比,液晶显示器(LCD)在显示基本没有变化的静态图像时,其所具有的无闪烁等优点是显而易见的,但在显示高速变化的动态图像时则会出现比较严重的拖影问题。这使得液晶显示技术在数字电视、视频播放及游戏等方面的应用受到了很大的局限,而如何利用各种抗运动拖影技术消除拖影现象,获得更为完美、流畅的动态图像显示效果,成为新一代液晶显示技术发展的一个重要方向。 原因分析:液晶显示器拖影现象的成因 事实上,人们对于液晶显示抗拖影技术的研究已经持续了相当长的一段时间。过去人们曾寄希望于通过提高响应速度来消除或减少运动拖影现象,于是各种提高响应速度的技术如雨后春笋般涌现出来。现在液晶显示器的响应速度已经有了明显的改善,但人们发现单纯依靠这种方法虽然能够降低拖影的严重程度,却不能直接改善运动图像的显示质量,而且并不能彻底消除液晶显示器/电视机在显示动态图像时的拖影。 实验表明液晶显示器的运动拖影既有显示器本身固有显示机制的因素,又和人眼的视觉特性有着莫大的关联。换句话说,液晶显示器的运动拖影问题实际上是由液晶显示器的显示特性与人眼的视觉特性联合作用所产生的一种结果。

可以想象,当你在聚精会神地欣赏体育类节目时,如果屏幕出现拖影会是何等扫兴的一件事。 1.人类视觉系统的视觉暂留特性 我们的视觉系统具有十分复杂的感知特性,而视觉惰性就是其中非常重要的特性之一。也就是说,视觉系统所感知的主观亮度总是滞后于作用到人眼的光信号。如图2所示,当外部光信号作用于人眼时,视觉系统并不能立即产生相应的亮度感觉,而是需要经历一个逐渐由小到大、最终达到稳定的亮度感觉过程。 人眼的结构与视觉惰性曲线 同样,当作用到人眼的光信号消失后,视觉系统原有的主观亮度感觉也不会立即消失,而是有一个逐渐衰减、直至最后消失的延迟过程(图2中的t1~t2),这种现象就叫做视觉暂留特性(有时也叫做视觉残留特性),人类视觉系统的平均视觉暂留时间大约在0.1秒左右,而且会因刺激光线的颜色不同持续时间略有差异。 当人眼受到亮度周期性变化的光脉冲信号作用时,若信号变化的频率较低(光信号作用的间歇时间大于人眼的视觉暂留时间)就会使人会产生闪烁感;反之,频率足够高的光脉冲信号,作用间歇时间小于人眼的视觉暂留时间,人眼就会认为看到的是连续的、无闪烁的信号。不会使人眼产生闪烁感的最低频率就称为临界闪烁频率,现在业界认为临界闪烁频率一般在20Hz左右;但实际应用中要远远高于这个数值,如电影格式为24帧/s(换算成频率就是24Hz),我国使用的PAL制式电视广播25帧/s,国外的NTSC制式多为30帧/s,LCD显示器的帧率60Hz,而CRT高达85Hz。

液晶显示器灰尘清除

专家建议一:保持干燥的工作环境、避免与化学药品相接触 须知道,水分是液晶的天敌,如果湿度过大,液晶显示器内部就会结露,结露之后就会发生漏电和短路现象,而且液晶显示屏也会变得模糊起来。因而不要把液晶显示器放在潮湿的地方,更不要让任何带有水分的东西进入液晶显示器内。如果在开机前发现只是屏幕表面有雾气,用软布轻轻擦拭即可;如果湿气已经进入了液晶显示器,可以关闭显示器,把LCD背对阳光,或者用台灯烘烤将里面的水分蒸发掉即可。但须注意不要把LCD屏幕对着阳光,那会引起元器件老化。专家提醒消费者,像LG等国际大厂商都非常注意售后服务,如果出现较为严重的潮气事件,普通用户最好还是与当地的品牌售后服务商取得联系,向他们寻求帮助比较保险。因为,较严重的潮气会损害LCD的元器件,用户将含有较高湿度的LCD通电时,会导致液晶电极腐蚀,造成永久性的损坏。 另外,大家日常使用的发胶、夏天频繁使用的灭蚊剂等也会对液晶分子乃至整个显示器造成损伤,导致整个显示器寿命的缩短,因此应当尽量避免显示器和化学物品的接触。 专家建议二:尽量避免让液晶显示器长时间超负荷工作状态 首先,不要使LCD长时间处于高亮度状态。LCD的显示方式与CRT不同,长时间高亮的画面很容易缩短液晶显示器的背光灯管使用寿命,因此当长时间不用的时候,应当注意关闭显示器。另外,在日常的使用中可以将液晶显示器的亮度适当调低。这些措施都会对延长液晶显示器的寿命大有帮助。 其次,尽量避免长时间显示同一画面。液晶显示器会因为长时间的工作引起内部的老化或烧坏,尤其是在长时间显示同一画面的情况下。因为液晶显示器长时间工作很容易使某些像素点过热,一旦超过极限就会导致永久性损坏,且不能修复。这就形成了常说的“坏点”。由于LCD显示器的像素点是由液晶体构成,因此当连续满负荷工作96小时以上时,就会加速成其老化,严重时甚至烧坏。因此专家提醒消费者,如果用户必须长时间工作时,最好能间歇性让其休息一会,或经常以不同的时间间隔改变屏幕显示内容;如果只是暂时离开,应该启动屏幕保护程序,或者把显示屏的亮度调低,也可以调成全白屏幕,这举手之劳不仅可以延缓液晶屏老化,而且可以避免发生硬件损坏。 专家建议三:减少不必要的触碰或者振动 液晶显示屏幕是十分脆弱娇贵的,因此应当改掉用手指对屏幕指指点点的坏习惯。因为哪怕是轻微的点击都可能产生局部坏点,严重甚至会形成一片黑点,这很容易造成坏点增多现象,这正是为什么有些用户使用一段时间会发现坏点越来越多的重要原因。还有一点要注意,液晶显示器的功耗比较小,但液晶显示器后的变压器的电压还是很高的;要特别注意安全,不要在带电情况下打开显示器的后盖。即使在断电之后,留存的瞬间电压也是挺高的,背景照明组件中的CFL变压器依旧带有大约1000V的高压,因此最好不要随意触碰它。 不仅如此,液晶显示器的抗撞击能力也比较差,即便是最新推出的产品,抗撞击性还是远不及CRT显示器。这是因为液晶显示器中含有很多精密玻璃元件和灵敏娇气的电气元件,一旦受到强烈撞击就会导致LCD屏幕、相关部件或电路的损坏。大家在移动液晶显示器时,常常不注意抓住屏幕一块移动,这也可能损坏液晶显示器的表面。所以专家强烈建议一定要

液晶显示器制造工艺流程基础技术

液晶显示器制造工艺流程基础技术 一.工艺流程简述: 前段工位: ITO玻璃的投入(grading)玻璃清洗与干燥(CLEANING)涂光刻胶(PR COAT)前烘烤(PREBREAK) 曝光(DEVELOP)显影(MAIN CURE) 蚀刻(ETCHING)STRIP CLEAN)图检(INSP)清洗干燥(CLEAN) TOP涂布(TOP COAT) UV烘烤(UV CURE)固化(MAIN CURE) 清洗(CLEAN)PI PRINT) 固化(MAIN CURE)清洗(CLEAN) 丝网印刷(SEAL/SHORT PRINTING烘烤(CUPING FURNACE)喷衬垫料(SPACER SPRAY)对位压合(ASSEMBL Y)固化(SEAL MAIN CURING) 1.ITO图形的蚀刻:(ITO玻璃的投入到图检完成)A.ITO玻璃的投入:根据产品的要求,选择合适的ITO玻璃装入传递篮具中,要求ITO玻璃的规格型号符合产品要求, 切记ITO层面一定要向上插入篮具中。 B.玻璃的清洗与干燥:将用清洗剂以及去离子水(DI水)等洗净ITO玻璃,并用物理或者化学的方法将ITO表面的杂 质和油污洗净,然后把水除去并干燥,保证下道工艺的加工 质量。 C.涂光刻胶:在ITO玻璃的导电层面上均匀涂上一层光刻胶,涂过光刻胶的玻璃要在一定的温度下作预处理:(如下图) 光刻胶 膜D. 以使光刻胶中的溶剂挥发,增加与玻璃表面的粘附性。

E.曝光:用紫外光(UV)通过预先制作好的电极图形掩模版照射光刻胶表面,使被照光刻胶层发生反应,在涂有光刻胶的玻璃上覆盖光刻掩模版在紫外灯下对光刻胶进行选择性曝光:(如图所示) UV ITO F.显影:用显影液处理玻璃表面,将经过光照分解的光刻胶层除去,保留未曝光部分的光刻胶层,用化学方法使受UV光照射部分的光刻胶溶于显影液中,显影后的玻璃要经过一定的温度的坚膜处理。(如图:) ITO G.坚膜:将玻璃再经过一次高温处理,使光刻胶更加坚固。H.刻蚀:用适当的酸刻液将无光刻胶覆盖的ITO膜蚀掉,这样就得到了所需要的ITO电极图形,如图所示: ITO 注:ITO玻璃为(In2O3与SnO2)的导电玻璃,此易与酸发生反应,而用于蚀刻掉多余的ITO,从而得到相应的拉线电极。I.去膜:用高浓度的碱液(NaOH溶液)作脱膜液,将玻璃上余下的光刻胶剥离掉,从而使ITO玻璃上形成与光刻掩模版完全一致的ITO图形。(即按客户要求进行显示的部分拉

(完整版)LCD的检测方法与标准

LCD的检测方法及标准 一旦信号源提供较低的分辨率时,面板电路需要将较当的画而放大成与面板的最大分辨率一样。假如电路不能有效地进行这项工作,显示在 液晶面板上的画面将严重失真。从技术的观点来看,肖CRT面临这样的问题时、只要调整电子束的偏转电压,就可接收新的分辨率。由于液晶显示器每一个像素都采用独立主动控制。影像放大电路需要对较小的分辨率做更复杂的计算。从理论上分析。如果放大倍数为整数(例如,用最佳分辨率为1600×1200的液晶显示器显示800×600的图案,放大倍数为2)的情况较为简单:只要用相邻的两个像素显示一个视觉点即可,放大后的画面质量不会有明显下降。但是、如果用最佳分辨率为1024×768的液显示器显示800x600的图案就没这么简单了,它的放大借数为1.28(不是整数)。所以并不是原画面的每一个像素都等量放大。液晶显示器中的电路必须去决定哪--个像素该放大一倍而哪一个不须放大。数学上的模糊误差将导致放大后的图像或文字质量下降,给人视觉上以边缘模糊或者残缺不全的感觉。 为了要得到更好的效果,放大电路通常使用一个小技巧减低这种误左,那就是。假如画面资料不能整数倍放大时,用减低某些像素放大后的亮度加以改善,但仍然不能达到十全十美,因此,建议大家在使用液晶显示器的时候一定将显卡的输出信号设定为最佳分辨率状态,15寸的液晶显示器的最佳分辨率为1024×768,17寸的最佳分辨率则是1280×1024。 3. 亮度和对比度 液晶显示器亮度以平方米烛光(cd/m2)或者nits为单位,市面上的液晶显示器由于在背光灯的数量上比笔记本电脑的显示器要多,所以亮度看起来明显比笔记本电脑的要亮.亮度普遍在150nits到210nits之间,已经大大的超过CRT显示器了.需要注意的一点就是,市面上的低档液晶显示器存在严重的亮度不均匀的现象,中心的亮度和距离边框部分区域的亮度差别比较大.对比度是直接体现该液晶显示器能否体现丰富的色阶的参数,对比度越高,还原的画面层次感就越好,即使在观看亮度很高的照片时,黑暗部位的细节也可以清晰体现,目前市面上的液晶显示器的对比度普遍在150:1到350:1,高端的液晶显示器还远远不止这个数! 4. 响应时间 响应时间是液晶显示器的一个重要的参数,指的是液晶显示器对于输入信号的反应时间,组成整块液晶显示板的最基本的像素单元"液晶盒",在接受到驱动信号后从最亮到最暗的转换是需要一段时间的,而且液晶显示器从接收到显卡输出信号后,处理信号,把驱动信息加到晶体驱动管也是需要一段时间,在大屏幕液晶显示器上尤为明显.液晶显示器的这项指标直接影响到对动态画面的还原.跟CRT显示器相比,液晶显示器由于过长的响应时间导致其在还原动态画面时有比较明显的托尾现象(在对比强烈而且快速切换的画面上十分明显),在播放视频节目的时候,画面没有CRT显示器那么生动.响应时间是目前液晶显示器尚待进一步改善的技术难关,目前市面上销售的15寸液晶显示器响应时间一般在50ms左右。 5. 可视角度 很多读者第一眼看到液晶显示器,可能会觉得液晶显示器的颜色怪怪的,在不同的角度观看的颜色效果并不相同,这是由于某些低端的液晶显示器可视角度过低导致失真.液晶显示器属于背光型显示器件,其发出的光由液晶模块背后的背

LCD显示器优缺点

谁知道LCD和LED的区别。有什么优缺点。现在用哪个比较好呢? 感觉没有技术上的换代变化效果,最简单的就是更亮了! 有用的是AFFS.我机器基本都是TN屏幕,看不出区别就算了。建议别折腾,据说一旦用了高端的神马AFFS,IPS,等等以后,再也受不了低端屏幕鸟.慎重! 我在忍受,抵抗诱惑,不想换我的X200TN---AFFS. 没有用过更好屏幕的个人观点 背光技术不一样了,二极管发光和灯管发光。LED的背光要稍微均匀一些。并且LED的功耗、发热情况都比LCD好点 不过LED的光会偏冷?好像是,这点我拿不准 只是背光不一样 LCD,用的是CCFL荧光灯管,类似日光灯管。 LED,用的是发光二级管LED做背光 LED的优点,我了解有 省电,功耗低,毋庸置疑的; 亮度更高; 寿命长(LED的寿命远远比灯管长); 更容易达到大的色域; 可以将显示器做的更薄,最明显的,笔记本显示屏,LCD的最薄大概只能做到8mm,用LED背光可以做到5mm以下的厚度 从用户角度看,最直观的区别估计就是亮度大一些。 现在市面上大部分显示器应该都是LED的。应该是成本使然,减少了高压板和其他结构,能省不少钱吧LED背光的缺点貌似不明显。

这个还用问?自己GOOGLE啊 LED是发光二极管LightEmittingDiode的英文缩写。LED应用可分为两大类:一是LED单管应用,包括背光源LED,红外线LED等;另外就是LE D显示屏,目前,中国在LED基础材料制造方面与国际还存在着一定的差距,但就LE D显示屏而言,中国的设计和生产技术水平基本与国际同步。 LE D显示屏是由发光二极管排列组成的一显示器件。它采用低电压扫描驱动,具有:耗电少、使用寿命长、 成本低、亮度高、故障少、视角大、可视距离远等特点。 LCD显示器的原文是LiquidCrystalDisplay,取每字的第一个字母组成,中文多称「液晶平面显示器」或「液晶显示器」。其工作原理就是利用液晶的物理特性:通电时排列变得有序,使光线容易通过;不通电时排列混乱,阻止光线通过,说简单点就是让液晶如闸门般地阻隔或让光线穿透。LCD的好处有:与CRT显示器相比,LCD的优点主要包括零辐射、低功耗、散热小、体积小、图像还原精确、字符显示锐利等。选购LCD,有几个基本指针:高亮度:亮度值愈高,画面自然更亮丽,不会朦胧雾雾。亮度的单位为cd/m2,也就是每平方公尺分之烛光。低阶的LCD亮度值,有低到150cd/m2,而高阶的显示器,则可高达250cd/m2。高对比:对比愈高,色彩更鲜艳饱和,且会显的立体。相反的,对比低,颜色显的贫瘠,影像也会变得平板。对比值的差别颇大,有低到100:1,也有高到600:1,甚至更高。宽广的可视范围:可视范围简单的说,指的是在屏幕前画面可以看的清楚的范围。可视范围愈大,自然可以看的更轻松;愈小,只要观看者稍一变动观看位 置,画面可能就会看不清楚了。可视范围的算法是从画面中间,至上、下、左、右四个方向画面清楚的角度范围。数值愈大,范围自然愈广,但四个方向的范围不一定对称。当上下、左右对称时,某些厂商会将 两边的角度值相加,标示为水平:160°;垂直:160°;也可能分开标示为左/右:±80°;上/下:±80°。某些LCD机种的单一角度,甚至只有40°~50°.快速讯号反应时间:讯号反应是指系统接收键盘或鼠标的指示后,经CPU 计算处理,反应至显示器的时间。讯号反应对动画和鼠标移动非常重要,此现象一般而言,只发生在LCD 液晶显示器上,CRT传统显像管显示器则无此问题。讯号反应时间愈快,作业处理自是愈方便。观察的方法是之一是将鼠标快速移动(亦即鼠标不断下指示给系统,系统则不断将讯号反应给显示器),在一般低阶的LCD显示器上,光标在快速移动时,过程中会消失不见,直到鼠标定位,不再移动后一小段时间,才会再度出现;而在一般速度动作时,移动过程亦会清楚的看到鼠标移动痕迹。而VE500的超快讯号反应时间快

液晶显示器的主要技术指标

液晶显示器的主要技术指标 1、分辨率 LCD是通过液晶象素实现显示的,但由于液晶象素的数目和位置都是固定不变的,所以液晶只有在 标准分辨率下才能实现最佳显示效果,而在非标准的分辨率下则是由LCD内部的ic通过插值算法计 算而得,应此画面会变得模糊不清,然而LCD显示器的真实分辨率根据LCD的面板尺寸定,15英寸 的真实分辨率为1024×768,17英寸为1280×1024。 2、LCD的点距 LCD显示器的像素间距(pixel pitch)的意义类似于CRT的点距(dot pitch)。不过前者对于产品性能的 重要性却没有后者那么高。CRT的点距会因为遮罩或光栅的设计、视频卡的种类、垂直或水平扫描频 率的不同而有所改变。LCD显示器的像素数量则是固定的。因此,只要在尺寸与分辨率都相同的情况下,所有产品的像素间距都应该是相同的。例如,分辨率为1024×768的15英寸LCD显示器,其像 素间距皆为0.297mm(亦有某些产品标示为0.30mm)。 3、波纹 波纹(亦称作水波纹Moire),也是和相位一样是看不出来的,水波纹会在画面上显示出像水波涟漪一 般的呈相结果,在一般的情况下相当难看得出来,但是您也可以用全白的画面来检测,虽然不是很容 易察觉,但是站的稍微和显示器有一些距离,仔细瞧一瞧就可以发现,水波纹也是可以调整的。 4、响应时间 响应时间是LCD显示器的一个重要指标,它是指各像素点对输入讯号反应的速度,即像素由暗转亮 或由亮转暗的速度,其单位是毫秒(ms),响应时间是越小越好,如果响应时间过长,在显示动态影像(特别是在看看DVD、玩游戏)时,就会产生较严重的"拖尾"现象。目前大多数LCD显示器的响应速度 都在25ms左右,如明基、三星等一些高端产品反应速度以达到16ms甚至现在出现了12ms的液晶。 5、可视角度 可视角度也是LCD显示器非常重要的一个参数。由于LCD显示器必须在一定的观赏角度范围内,才能够获得最佳的视觉效果,如果从其它角度看,则画面的亮度会变暗(亮度减退)、颜色改变、甚至某 些产品会由正像变为负像。由此而产生的上下(垂直可视角度)或左右(水平可视角度)所夹的角度,就是LCD的“可视角度”。由于提供LCD显示器显示的光源经折射和反射后输出时已有一定的方向性,在超 出这一范围观看就会产生色彩失真现象。 6、LCD显示器的刷新率

液晶显示器刷新率多少合适

准确的来说LCD和LED的液晶屏幕的刷新率只和显示面板有关系,而普通的电脑的液晶显示器使用的都是液晶面板和背光光源的结构,LCD和LED只是两种不同的光源和刷新率完全没有关系。液晶显示器默认在60赫兹就可以了。 刷新率分为垂直刷新率和水平刷新率,一般提到的刷新率通常指垂直刷新率。垂直刷新率表示屏幕的图象每秒钟重绘多少次,也就是每秒钟屏幕刷新的次数,以Hz(赫兹)为单位。刷新率越高越好,图象就越稳定,图像显示就越自然清晰,对眼睛的影响也越小。刷新频率越低,图像闪烁和抖动的就越厉害,眼睛疲劳得就越快。一般来说,如能达到80Hz以上的刷新频率就可完全消除图像闪烁和抖动感,眼睛也不会太容易疲劳。 显然刷新率越高越好,但是建议你不要让显示器一直以最高刷新率工作,那样会加速CRT显像管的老化,一般比最高刷新率低一到两档是比较合适的,建议 85Hz。而液晶显示器(LCD/LED)的发光原理与传统的CRT是不一样的,由于液晶显示器每一个点在收到信号后就一直保持那种色彩和亮度,恒定发光,而不象阴极射线管显示器(CRT)那样需要不断刷新亮点。因此,液晶显示器画质高而且绝对不会闪烁,把眼睛疲劳降到了最低。而刷新率对CRT 的意义比较突出,有时,LCD/LED刷新高了,反而会影响其使用寿命般保持在60-75就可以了。 下面简单的介绍一下Win 7系统下如何调整刷新率,当然这个刷新率和游戏里面的刷新率,还有电影里面的帧/秒不是一个概念......也不会互相影响。 右键桌面;选择屏幕分辨率 在选择了正确的分辨率后,点击高级设置 进入高级设置界面后选择监视器,按照箭头的只是拉开下拉菜单。可以看到你的液晶显示器支持的刷新率是多少。显示的即为能支持的,没有多余现象即为只支持当前的刷新率。

LED显示屏技术方案

LED电子显示屏技术方案

目录 第一章公司简介 (3) 1.关于我们 (3) 第二章LED电子显示屏简介 (5) 1.LED显示屏系统简介 (5) 2.LED显示屏与其它显示器性能比较 (5) 3.LED显示屏技术特点 (6) 第三章功能简介 (10) 1.功能介绍 (10) 2.LED显示屏安装方式 (11) 3.LED显示屏指标注解 (12) 第四章显示屏方案设计及技术参数 (13) 1.系统控制结构示意框图 (13) 2.显示屏系统概述 (13) 3.显示屏方案设计 (15) 第五章工程工期及施工方案 (19) 1.工程施工时间表 (19) 2.工程实施方案 (20) 第六章工程验收 (22) 第七章培训 (24) 第八章售后服务 (25) 第九章部分工程业绩 (27)

第二章 LED电子显示屏简介 1.LED显示屏系统简介 LED电子显示屏是集微电子技术、计算机技术、信息处理于一体的大型显示屏系统。它以其色彩鲜艳,动态范围广,亮度高,寿命长,工作稳定可靠等优点,成为众多显示媒体中的佼佼者,广泛用于商业广告、体育场馆、信息传播、新闻发布、证券交易等方面,是目前国际上比较先进的显示媒体之一。 LED显示屏按其使用环境分为室内显示屏和室外显示屏。室内双色显示屏通常采用高亮度Φ3.7、Φ5.0、Φ10点阵块结构,室内全彩色显示屏通常采用PH6mm、PH7.62mm、PH8mm、PH10mm、PH12mm等表贴工艺结构。 室外显示屏多采用超高亮度像素结构,按照点间距可分为PH12mm、PH14mm、PH16mm、PH20mm、PH25mm等多种规格,能满足不同环境的需要。 2.LED显示屏与其它显示器性能比较 现代科学技术的发展反映在显示技术方面就是出现了基于科学根据的显示方式和器件。我们以为建立起对各种显示技术和器件的正确认识,是十分有助于我们进行比较和鉴别选择的。以下我们对各类显示器的性能进行比较。 各种显示器件性能比较

一、液晶显示器的主要技术指标

一、液晶显示器的主要技术指标 1、尺寸和显示屏 一般LCD显示器(即LCD屏)的对角线尺寸有以下几种:14"、15"、15.1"、17"、17 .1"。 本机为15"(304.1×228 .1mm)。 现在的LCD显示屏均采用薄膜晶体管有源矩阵显示屏(TFT Active Matrix Panel)、所有 R、G、B 像素中的每一个颜色的像素均由1 个TFT(薄膜晶体管)来控制,数百万个TFT构成一个有源矩阵,成为LCD屏。 2、点距 水平点矩指每个完整像素(含R、G、B)的水平尺寸,垂直点距指每个完整像素的垂直 尺寸。例如本机采用1024×768个像素的LCD屏,尺寸为15"(304.1mm×228.1mm),则水平点距=304.1mm÷1024=0.297mm,垂直点距=228.1÷768=0.297mm。 3、分辨率、刷新率(场频)、行频、信号模式 LCD屏的分辨率是指液晶屏制造所固有的像素的列数和行数,如1024×768(多为15",能 满足XGA信号模式要求),800×600(多为14",能满足SVGA信号模式要求。)分辨率越高,清晰度越好。刷新率即显示器的场频。刷新率越高,显示图像的闪动就越小。 LCD显示器的最高场频和最高行频,主要由液晶屏的技术参数所决定。本机的LCD屏 允许的最高行频为80KHz,最高场频为75Hz。 在LCD显示的分辨率、行频和刷新率确定后,其接收的最高信号模式就明确了,现 LCD显示器一般有以下2种产品,本产品属第一种。 15" XGA 1024×768 75Hz 60KHz (行频60KHz、场频75Hz) 17" SXGA 1280×1024 75Hz 80KHz (行频80KHz、场频75Hz) 4、对比度 对比度是表现图象灰度层次的色彩表现力的重要指标,一般在200∶1~400∶1之间,越 大越好。 5、亮度 亮度是表现LCD显示器屏幕发光程度的重要指标,亮度越高,对周围环境的适应能力 就越强。一般在150~350cd/m2之间,越大越好。 6、显示色彩 LCD显示器的色彩显示数目越高,对色彩的分辨力和表现力就越强,这是由LCD显示 器内部的彩色数字信号的位数(bit)所决定的。本显示器内采用的是R(8bit)、G(8bit)、 B(8bit)的数字信号,则显示色彩数目为28×28×28=224=16.7M。 7、响应时间 由于液晶材料具有粘滞性,对显示有延迟,响应时间就反映了液晶显示器各像素点的 发光对输入信号的反应速度。它由两个部份构成,一个是像素点由亮转暗时对信号的延迟时间tr(又称为上升时间),二个是像素点由暗转亮时对信号的延迟时间tf(又称为下降时间),而响应时间为两者之和,一般要求小于50ms。 8、可视角度 可视角度是指站在距LCD屏表面垂线的一定角度内仍可清晰看见图象的最大角度,越 大越好。 9、整机功耗 一般要求工作时≤30W,省电时≤3W。 10、其它:安规认证CCC、UL、 二、电路工作原理提要

LED显示屏使用注意事项及日常维护

LED 电子显示屏使用注意事项及日常维护 与传统的电子产品一样,要使LED电子显示屏寿命更长久,在使用过程中不仅需要注意方法,还需对显示屏进行保养维护。随着LED电子显示屏的广泛使用,伴随而来的是不断增多的使用问题,各种客观与主观因素的影响,造成了LED电子显示屏的寿命减少、无法正常显示、黑屏等问题。下面介绍些LED电子显示屏使用注意事项与保养方法。 一、开关LED电子显示屏注意事项: 1.1 开关顺序:开屏时:先开机,后开屏。关屏时:先关屏,后关机(先关计算机不关显示屏,会造成屏体出现高亮点,烧毁灯管,后果严重。) 1.2开关屏时间间隔要大于 5分钟。 1.3计算机进入工程控制软件后,方可开屏通电。 1.4避免在全白屏幕状态下开屏,因为此时系统的冲击电流最大。 1.5避免在失控状态下开屏,因为此时系统的冲击电流最大。失控状态包括计算机没有进入控制软件等程序、计算机未通电、控制部分电源未打开。 1.6环境温度过高或散热条件不好时,应注意不要长时间开屏,在强雷电天气下应避免使用。 1.7电子显示屏体一部分出现一行非常亮时,应注意及时关屏,在此状态下不宜长时间开屏。 1.8经常出现显示屏的电源开关跳闸,应及时检查屏体或更换电源开关。 1.9定期检查挂接处的牢固情况。如有松动现象,注意及时调整,重新加固或更新吊件。 1.10根据大屏幕显示屏屏体、控制部分所处环境情况,避免虫咬,必要时应放置防鼠药。 二、LED电子显示屏部分的日常维护及保养 2.1正确开关LED显示屏:先开启控制计算机使其能正常运行后再开启LED 显示屏大屏幕;先关闭LED显示屏,再关闭计算机。 2.2正确擦拭:LED显示屏表面可以采用酒精进行擦拭,或者使用毛刷、吸尘器进行除尘,不能直接用湿布擦拭。 2.3定期清洁维护:LED显示屏时间长了,屏幕上肯定是灰尘一片,这需要定期、及时地清洗以防尘土长时间包裹表面影响观看效果,另一方面可以防止空

(完整word版)液晶显示器的技术参数

原理 液晶的物理特性 液晶是这样一种有机化合物, 在常温条件下,呈现出既有液体的流动性,又有晶体的光学各向异性,因而称为“液晶”.在电场、磁场、温度、应力等外部条件的影响下,其分子容易发生再排列,使液晶的各种光学性质随之发生变化,液晶这种各向异性及其分子排列易受外加电场、磁场的控制.正是利用这一液晶的物理基础,即液晶的“电-光效应”,实现光被电信号调制,从而制成液晶显示器件.在不同电流电场作用下,液晶分子会做规则旋转90度排列,产生透光度的差别,如此在电源ON/OFF下产生明暗的区别,依此原理控制每个像素,便可构成所需图像. 液晶的物理特性是:当通电时导通,排列变的有秩序,使光线容易通过;不通电时排列混乱,阻止光线通过。让液晶如闸门般地阻隔或让光线穿透。从技术上简单地说,液晶面板包含了两片相当精致的无钠玻璃素材,称为Substrates,中间夹著一层液晶。当光束通过这层液晶时,液晶本身会排排站立或扭转呈不规则状,因而阻隔或使光束顺利通过。大多数液晶都属于有机复合物,由长棒状的分子构成。在自然状态下,这些棒状分子的长轴大致平行。将液晶倒入一个经精良加工的开槽平面,液晶分子会顺着槽排列,所以假如那些槽非常平行,则各分子也是完全平行的。 彩色LCD显示器的工作原理 对于笔记本电脑或者桌面型的LCD显示器需要采用的更加复杂的彩色显示器而言,还要具备专门处理彩色显示的色彩过滤层。通常,在彩色LCD 面板中,每一个像素都是由三个液晶单元格构成,其中每一个单元格前面都分别有红色,绿色,或蓝色的过滤器。这样,通过不同单元格的光线就可以在屏幕上显示出不同的颜色。 CRT显示可选择一系列分辨率,而且能按屏幕要求加以调整,但LCD屏只含有固定数量的液晶单元,只能在全屏幕使用一种分辨率显示(每个单元就是一个像素)。 TFT显示屏 LCD是液晶显示屏的全称:它包括了TFT,UFB,TFD,STN等类型的液晶显示屏。笔记本液晶屏常用的是TFT。TFT屏幕是薄膜晶体管,英文全称(ThinFilmTransistor),是有源矩阵类型液晶显示器,在其背部设置特殊光管,可以主动对屏幕上的各个独立的像素进行控制,这也是所谓的主动矩阵TFT的来历,这样可以大的提高反应时间,约为80毫秒,而STN的为200毫秒!也改善了STN闪烁(水波纹)模糊的现象,有效的提高了播放动态画面的能力,和STN相比,TFT有出色的色彩饱和度,还原能力和更高的对比度,太阳下依然看的非常清楚,但是缺点是比较耗电,而且成本也较高。 而LED显示器也属于液晶显示器的一种,LED液晶技术是一种高级的液晶解决方案,它用LED代替了传统的液晶背光模组。因为采用了固态发光器件,LED背光源没有娇气的部件,对环境的适应能力非常强,所以LED的使用温度范围广、低电压、耐冲击。而且LED 光源没有任何射线产生,低电磁辐射、无汞可谓是绿色环保光源。 LED与LED背光 目前市面上所谓的LED显示器,其实是“LED背光液晶显示器”;现在流行的液晶显示器,属于“CCFL背光液晶显示器”。所以此二者仍是液晶显示器,只是背光源不一样而

液晶显示器主要部件和参数解释

液晶显示器主要的部件和参数解释 (1)液晶面板 液晶面板是液晶显示器的主要组件,占去了液晶显示近80%的成本。目前世界上拥有面板制造技术的厂家并不多,只有SHARP(夏普)、SANYO(三洋)、三星、LG-Philips、台湾的友达等厂商拥有核心技术,大多数液晶显示器都是用它们的面板来组装生产的。面板的质量和身价目前分为三档:日本的三洋、夏普属于一档,多被采用在高端的产品上,如:sony,优派,纯净界等,价格也相对高昂;韩国的三星、LG 与Philips属于二级,多数使用在搭配品牌机出售的显示器上;友达等台湾厂商则属于第三档,也是低端液晶经常采用的面板。 (2)坏点 所谓的坏点是液晶面板上,不能正常显示像素点的统称。液晶面板是由众多显示点组成,靠每个显示点上的液晶物质在电信号控制下改变透光同状态完成的。在1024×768分辨率下,液晶板共有786432个显示点,如此多的点很难完全保证个别会出现问题。但以目前技术水平来看如果将有坏点的液晶面板报废,相信液晶显示也只能是橱窗中的天价商品了,因此,坏点的多少成为了面板的分级时的主要据。厂商一般会避开坏点分割液晶板,把没有坏点或者极少坏点的液晶面板以较高的价格出售,而坏点数目比较多的则低价卖给小厂生产成廉价的产品。 目前主要的分级标准为: 面板厂商标准: 韩系厂商,3个以下为A级日系厂商,5个以下为A级台系厂商,8个以下为A级主流液晶显示器品牌准: AA级:无任何坏点的LCD显示器为AA级。 A级:3个坏点以下,其中亮点不超过一个,且亮点不在屏幕中央区内。 B级:3个坏点以下,其中亮点不超过二个,且亮点不在屏幕中央区内。 (3)关键指标:对比度 液晶面板制造时选用的控制IC、滤光片和定向膜等配件,与面板的对比度有关,对一般用户而言,对比度能够达到350:1就足够了,但在专业领域这样的对比度平还不能满足用户的需求。相对CRT显示器轻易达到500:1甚至更高的对比度而言。只有高档液晶显示器才能达到,MAYA的V500的500:1,纯净界ezm19f2的600:1。由于对比度很难通过仪器准确测量,所以挑的时候还是要自己亲自去看才行。 (4)亮度 液晶是一种介于固态与液态之间的物质,本身是不能发光的,需借助要额外的光源才行。因此,灯管数目关系着液晶显示器亮度。最早的液晶显示器只有上下两个灯管,发展到现在,普及型的最低也是四灯,高端的是六灯。四灯管设计分为三种摆放形式:一种是四个边各有一个灯管,但缺点是中间会出现黑影,解决的方法就是以纯净界为代表,由上到下四个灯管平排列的方式,最后一种是“U”型的摆放形式,其实是两灯变相产生的两根灯管。六灯管设计实际使用的是三根灯管,厂商将三根灯管都弯成“U”型,然后平行放置,以达到六根灯管的效果。 (5)信号响应时间 响应时间指的是液晶显示器对于输入信号的反应速度,也就是液晶由暗转亮或由亮转暗的反应时间,通常是以毫秒(ms)为单位。信号相应时间分为两个部分即“上升时间”和“下降时间”,而我们所说的响应时间指的就是两者之和。响应时间越小越好。时间越小用户在看移动画面时就越不会出现类似残影或者拖尾的痕迹。按照人眼的生理特点,响应时间如果超过40毫秒(<1000÷40=25帧/秒),就会出现运动图像的迟滞现象。所以目前市场上响

液晶显示器亮点坏点产生的原因和液晶屏的日常维护

液晶显示器亮/坏点产生的原因和液晶 屏的日常维护 一、液晶屏构成原理 液晶屏看上去只有一张屏板,其实,它主要是由四大块(滤光片、偏光板、玻璃、冷阴极荧光灯)组合而成 滤光片:TFTLCD面板之所以能够产生色彩的变化,主要是来自彩色滤光片,所谓液晶面板是透过驱动IC的电压改变,使液晶分子排排站立,从而显示画面,而画面本身的颜色是黑白两种,通过滤光片就可以变成彩色图案。 偏光板:偏光板能将自然光转换成直线偏光的元件,其中表现的作用在于将入射而来的直线光用偏光的成分加以分离,其中一部分是使其通过,另一部分则是吸收、反射、散射等作用使其隐蔽,减少亮/坏点的产生。 冷阴极荧光灯:特点是体积很小、亮度高、寿命长。冷阴极荧光灯由经过特别设计和加工的玻璃制成,可以在快速点灯后反复使用,能够承受高达30000 次的开关操作。由于冷阴极荧光灯使用三基色荧光粉,所以其发光强度增加、光衰减少,色温性能好,从而产生的热量极低,有效的保护我们的液晶显示屏的寿命。 二、液晶亮/坏点产生的原因及其预防 1、厂商的原因: 亮/坏点也被称为液晶显示屏亮斑,是一种液晶屏的一种物理损伤,主要是由于亮斑部位的屏幕内部反射板受到外力压迫或者受热产生轻微变形所致。 液晶屏上的每个像素都有红、绿、蓝三种原色,它们共同组合使得像素产生出各种颜色。以15英寸的液晶显示器为例,其液晶屏面积 304.1mm*228.1mm,分辨率为1024*768,每个液晶像素由RGB三原色单元组成。液晶像素就是把液晶倒入固定的模具下形成的液晶盒,这样的液晶盒在15英寸的液晶显示器上的数量是1024*768*3=235万个!一个液晶盒的大小又是多少呢?我们可以简单的计算:高=0.297mm, 宽=0.297/3=0.099mm!也就是说,要在304.1mm*228.1mm 的面积下密密麻麻的排列着235万个面积仅为 0.297mm*0.099mm大小的液晶盒,而且在液晶盒背后还集成一个单独驱动该液晶盒的驱动管。显然,这种生产工艺对生产线要求是非常高的,以目前的技术和工艺,还不能保证每批生产出来的液晶屏没有亮/坏点,生产厂商一般避开亮/坏点来分割液晶板,把没有亮/坏点或者极少亮/坏点的液晶屏高价供给有实力的生产厂商,而那些亮/坏点比较多的液晶屏则一般低价供给小厂商生产廉价的液晶显示器。

TN型液晶显示器原理

?液晶的入门知识 ?LCD显示器概述 ?液晶显示器原理 ?HTPS LCD面板技术综观 ?薄膜晶体管液晶显示器技术 ?液晶显示器面板的分级 ?主流液晶面板的类型 ?液晶的多种应用途径探讨 ?LCD技术图文解说 ?LCD技术详细介绍 ?液晶的几种模式的工作原理 ?TFT-LCD液晶显示器的工作原理 ?LCM显示类型 ?液晶显示器鲜为人知的技术细节 ?关注液晶色彩技术指标 液晶的入门知识 2006-5-31 -------------------------------------------------------------------------------- 液晶的组成: LCD使用的液晶,一般是指混和液晶,由多种液晶单体及手性剂混和而成。 液晶的特性: TN液晶一般分子链较短,特性参数调整较困难,所以特性差别比较明显。STN液晶是通过STN显示数据模型,计算出所需的液晶分子长度,及其光学电学性能参数,然后化工合成多种分子链接构类似的具有不同极性分子基团的单体,互相调配成一个特性相似的系列液晶。不同系列的STN液晶往往具有完全不同的分子链,因此,不同系列的STN液晶除非制造商说明可以互相调配外,不能互相调配。 液晶分子中有带极性基团的和不带极性基团的,带极性基团分子的液晶单体主要决定混和液晶的阀值电压参数,不带极性基团分子的液晶单体主要决定混和液晶的折射率和清亮点。液晶中带极性基团的单体与不带极性基团的单体在静置条件下会出现同性异构体层析现象。 为了增加机器本身的待机时间和增强液晶显示器的驱动能力,液晶厂商开发了能满足低电压和低频率条件下使用的低阀值电压液晶。它具有以下特性: 低阀值电压液晶中带极性基团的单体与不带极性基团的单体在静置条件下出现同性异构体层析现象的时间更短。 更多的带极性基团的单体组份,也意味着液晶更容易结合水分子以及其它带极性的游离离子,从而降低了液晶的容抗电阻,从而引起漏电流和功耗的增大。 当极性液晶单体的分子链在紫外线激化后,极性分子基团容易互相缠绕形成中性分子团,变成非层列错向状态,因而造成阀值电压升高,对导向层的锚定作用不敏感,失去低电压驱动能力。

LCD响应时间

对于LCD(液晶显示器)来说,响应时间这个技术参数一直是大家关注的焦点。从最初的40ms到后来的8ms,数字的不断缩小意味着液晶显示器的性能在不断提高。短短两年时间里,LCD响应时间的提升速度已经让我们始料不及,而灰阶响应时间液晶显示器的推出,更是让我们惊叹!其原因并不是因为它又缩短了几毫秒,而是它以灰阶响应颠覆传统响应时间的计算方式。 GTG是什么? GTG就是gray to gray缩写,就是从灰阶到灰阶的意思。那么什么又是灰阶呢?只有弄清楚这个概念,才能明白灰阶响应时间的重要性。通常来说,液晶屏幕上人们肉眼所见的一个点,即一个像素,它是由红、绿、蓝(RGB)三个子像素组成的。每一个子像素,其背后的光源都可以显现出不同的亮度级别。而灰阶代表了由最暗到最亮之间不同亮度的层次级别。这中间层级越多,所能够呈现的画面效果也就越细腻。以8bit panel为例,能表现2的8次方,等于256个亮度层次,我们就称之为256灰阶。LCD屏幕上每个像素,均由不同亮度层次的红、绿、蓝组合起来,最终形成不同的色彩点。也就是说,屏幕上每一个点的色彩变化,其实都是由构成这个点的三个RGB子像素的灰阶变化所带来的。 GTG灰阶响应时间更科学 由于液晶分子的转动,LCD屏幕上每个点由前一种色彩过渡到后一种色彩的变化,会有一个时间过程,也就是我们通常所说的响应时间。因为每一个像素点不同灰阶之间的转换过程,是长短不一、非常复杂的,很难用一个客观的尺度来进行表示。因此,业内现有关于液晶响应时间的定义,试图以液晶分子由全黑到全白之间的转换速度作为面板整体响应时间的缩影,来代表液晶面板的快慢程度,通常又可称之为"On/Off"响应时间。由于液晶分子由黑到白和由白到黑的转换速度并不是完全一致的,为了能够尽量有意义的标示出液晶面板的反应速度,现又针对响应时间的定义,基本以"黑→白→黑"全程响应时间为标准。 事实上,液晶分子转换速度及扭转角度由施加电压的大小来决定。从全黑到全白液晶分子面临最大的扭转角度,需施以较大的电压,此时液晶分子扭转速度较快;而介于全黑、全白间的较小幅度灰阶变化,需施加较小电压来进行准确而精细的角度控制,因此液晶分子扭转速度反而要慢一些。通常来讲,液晶面板黑白间的响应时间最快,而其它灰阶之间也是构成绝大多数不同色彩变化的响应时间,要比黑白间的响应时间慢得多。这样看来,传统的On/Off用黑白转换时间来表示LCD响应时间,以偏概全,无法精确地表示LCD面板的整体响应时间。 在传统响应时间计算方式下,液晶显示器虽然可拥有16ms、12ms或8ms的响应时间,然而其灰阶响应速度却可能超过40ms甚至60ms。所以,以黑白黑为响应时间标准无法全面表现LCD真实的反应速度。于是,灰阶响应时间(GTG,gray to gray)概念在被忽视了很长时间之后再一次被提出。希望以灰阶响应时间的概念,全方位体现LCD在彩色切换(即灰阶变化)上的真实速度,并彻底颠覆传统响应时间计算方式,以对响应时间进行更准确的表述,力求符合消费者实际使用上的需求,并为消费者带来更大的价值。因为在日常应用中,无论看电影、游戏或浏览网页,多数屏幕内容不会只是黑白间的转换,而是五颜六色的多彩画面,或深浅不同的层次变化,这些都是灰阶间的转换。一般消费者使用显示器时画面全黑或全白的比例极低,所以尽可能缩短彩色间的转换时间才会更有意义。要分析影响响应时间

雷凌教你控制LED显示屏寿命

雷凌教你如何控制LED显示屏的使用寿命 led显示屏在使用中总是会遇到很多问题。在使用led显示屏的时候,可能会因为以下八个问题,会影响LED显示屏的使用寿命。 1、混灯 同一种颜色不同亮度档的LED需要混灯,或者按照离散规律设计的插灯图进行插灯,以保证整屏每种颜色亮度的一致性。这个工序如果出现问题,就会出现亮度不一致的现象,直接影响led显示屏的显示效果。 2、散热设计 led显示屏开启的时候会发热,温度过高会影响led的衰减速度和稳定性,因此PCB板的散热设计、箱体的通风散热设计都会影响LED的表现。 3、设计电流值 LED的标称电流为20mA,一般建议其最大使用电流为不超过标称值的80%,尤其对于点间距很小的大屏幕,由于散热条件不佳,还应降低电流值。根据经验,由于红、绿、蓝LED衰减速度的不一致性,有针对性地降低蓝、绿LED的电流值,以保持大屏幕长时间使用后白平衡的一致性。 4、驱动电路设计 大屏幕模块上的驱动电路板驱动IC的排布亦会影响到LED的亮度。由于驱动IC输出电流在PCB板上传输距离过远,会使得传输路径压降过大,影响LED的正常工作电压导致其亮度降低。我们常会发现大屏幕模块四周的LED亮度比中间低一些,就是这个原因。故要保证大屏幕亮度的一致性,就要设计好驱动电路分布图。 5、控制好灯的垂直度 对于直插式LED来说,过炉时要有足够的工艺技术保证LED垂直于PCB板。任何的偏差都会影响已经设置好的LED亮度一致性,出现亮度不一致的色块。 6、虚焊控制 led显示屏在出现LED不亮时,往往有超过50%概率为各种类型的虚焊引起的,如LED 管脚虚焊、IC管脚虚焊、排针排母虚焊等。这些问题的改善需要严格地改善工艺并加强质量检验来解决。出厂前的振动测试也不失为一种好的检验方法。 7、过波峰焊温度及时间 须严格控制好波锋焊的温度及过炉时间,建议为:预热温度100℃±5℃,最高不超过120℃,且预热温度上升要求平稳,焊接温度为245℃±5℃,焊接时间建议不超过3秒,过

相关文档
相关文档 最新文档