文档库 最新最全的文档下载
当前位置:文档库 › 锂电池实验

锂电池实验

锂电池实验
锂电池实验

硅光电池特性及其应用

硅光电池的特性及其应用 一、实验目的 1、初步了解硅光电池机理 2、测量硅光电池开路电动势、短路电流、内阻和光强之间关系 3、在恒定光照下测量光电流、输出功率与负载之间关系 二、实验原理 在P 型半导体上扩散一薄层施主杂质而形成的p-n 结(如右图),由于光照,在A 、B 电极之间出现一定的电动势。在有外电路时,只要光照不停止,就会源源不断地输出电流,这种现象称为光伏效应。 实验表明:当硅光电池外接负载电阻L R ,其输出电压和电流均随L R 变化而变化。只有当L R 取某一定值时输出功率才能达到最大值m P ,即所谓最佳匹配阻值LB L R R ,而LB R 则取决于硅光电池的内阻Ri= SC OC I V ,因此OC V 、SC I 和i R 都是太阳能电池的重要参数。 FF 是表征硅光电池性能优劣的指标,称为填充因子。 FF 越大,硅光电池的转换效率越高。 FF= VocIsc Pm (1) 图b 是硅光电池的等效电路,在一定负载电阻L R 范围内硅光电池可以近似地视为一个电流源PS I 与内阻i R 并联,和一个很小的电极电阻S R 串联的组合。 三、实验内容 图a 开路电动势、短路电流 与光强关系曲线 图b 太阳能电池等效电路

1、测量开路电动势OC V 与光强D I 的关系,将数据记录表1,并绘制并绘制D I ~OC V 曲线。(将功能开关切换到OC V ) 2、短路电流SC I 的测量 将功能开关切换到SC I ,调节DC 0-1V 电源S U 输出,使微安表读数0I 为10.00-18.00μA (建议取10.00μA )。 在某一光强D I 下,改变可调电阻R ,使流过检流计(G )的电流G I 为零。此时AB 两点之间和AC 两点之间的电压应相等,即AB V =AC V 。因而I R=00r I ,即短路电流 SC I =I = R r I 0 0 (r 0为微安计内阻,为10K Ω) 测量不同光强下,短路电流SC I 与光强D I 的关系,将数据记入表2,并绘制SC I ~D I 曲线。 测量开路电压OC V 线路图 测量短路电流SC I 线路图

锂电池是否是危险品

锂电池是否是危险品

————————————————————————————————作者:————————————————————————————————日期:

锂电池是危险品吗? 来源:吴江电池产品检测实验室| 时间:2011-9-8 20:49:00 | 【字号:大中小】 根据《联合国关于危险货物运输建议书规章范本》的规定,锂电池是列明危 险品被列为第9类危险品,其联合国编号情况如下:锂离子电池(包括锂离 子聚合物电池)(UN3480)、与设备一起包装的锂离子电池(包括锂离子聚 合物电池)(UN3481)、包含在设备中的锂离子电池(包括锂离子聚合物电 池)(UN3481);锂原电池(UN3090)、与设备一起包装的锂原电池(UN3091) 以及包含在设备中的锂原电池(UN3091)。 联合国编 号 名称和说明类别或项别特殊规定包装规范 3090 锂金属电池组(包括锂合金电池 组)9 SP188 /SP230 /SP310 P903 3091 装在设备中的锂金属电池组或同 设备包装在一起的锂金属电池组 (包括锂合金电池组) 9 SP188 /SP230 /SP360 P903 3480锂离子电池组(包括聚合物锂离子电池)9 SP188 /SP230 /SP310 /SP348 P903

3481装在设备中的锂离子电池组或同 设备包装在一起的锂离子电池组 (包括聚合锂离子电池组) 9 SP188 /SP230 /SP348 /SP360 P903 但在一定条件下,锂电池可以作为不受限制的货物进行运输。 一. IMDG CODE(国际海运) PSN: BATTERY containing lithium. Class: 9 Un no.: 3090. Definition: 含有锂或锂合金的锂电池装在刚性金属体内,锂电池也可能装在设备中或设备中含 有锂电池. SP188: 满足以下, 可以按普货运输. 1. 对于液体阴极电池,含锂量不大于0.5g, 对于电池组, 总含锂量不超过1g;, 对于锂离子电池,不大于1.5g. 对于固体阴极电池,含锂量不超过1g, 对于电池组, 不超过2g.对于锂离子电池组, 不大于8克. 2. 液体的气密封口. 3. 电池隔开. 4. 电池组隔开.或装在设备中. 如超过以上1的规定,则: 1. 完全充电后,每个电池的阳极含锂量不超过5g.电池组不超过25g. 2. 通过联合国关于危险品运输的建议书中的38.3测试. 正确包装以防止短路. SP230: 满足以下,可以做为UN3090运. 1. 按38.3规定, 可以划为9类. 2. 不会突然爆裂. 3. 应防止短路设施. 4. 装有反向电流的有效设备. SP287.废话. 总之: 锂离子电池通过了38.3的测试,注意是通过,不是做过.而且, 锂的含量不要超过8G, 加上正确的包装防止短路等, 就可以按照非危险品运输.

硅光电池特性测试实验报告

硅光电池特性测试实验报告 系别:电子信息工程系 班级:光电08305班 组长:祝李 组员:贺义贵、何江武、占志武 实验时间:2010年4月2日 指导老师:王凌波 2010.4.6

目录 一、实验目的 二、实验内容 三、实验仪器 四、实验原理 五、注意事项 六、实验步骤 七、实验数据及分析 八、总结

一、实验目的 1、学习掌握硅光电池的工作原理 2、学习掌握硅光电池的基本特性 3、掌握硅光电池基本特性测试方法 4、了解硅光电池的基本应用 二、实验内容 1、硅光电池短路电路测试实验 2、硅光电池开路电压测试实验 3、硅光电池光电特性测试实验 4、硅光电池伏安特性测试实验 5、硅光电池负载特性测试实验 6、硅光电池时间响应测试实验 7、硅光电池光谱特性测试实验 设计实验1:硅光电池光控开关电路设计实验 设计实验2:简易光照度计设计实验 三、实验仪器 1、硅光电池综合实验仪 1个 2、光通路组件 1只 3、光照度计 1台 4、2#迭插头对(红色,50cm) 10根 5、2#迭插头对(黑色,50cm) 10根 6、三相电源线 1根 7、实验指导书 1本 8、20M 示波器 1台 四、实验原理 1、硅光电池的基本结构 目前半导体光电探测器在数码摄像﹑光通信﹑太阳电池等领域得到广泛应用,硅光电池是半导体光电探测器的一个基本单元,深刻理解硅光电池的工作原理和具体使用特性可以进一步领会半导体PN结原理﹑光电效应理论和光伏电池产生机理。 零偏反偏正偏 图 2-1. 半导体PN结在零偏﹑反偏﹑正偏下的耗尽区 图2-1是半导体PN结在零偏﹑反偏﹑正偏下的耗尽区,当P型和N型半导体材料结合

2019年锂电池实验报告-实用word文档 (8页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除! == 本文为word格式,下载后可方便编辑和修改! == 锂电池实验报告 篇一:锂离子电池的制备合成及性能测定实验报告 实验二锂离子电池的制备合成及性能测定 一.实验目的 1.熟悉锂离子电极材料的制备方法,掌握锂离子电极材料工艺路线; 2.掌握锂离子电池组装的基本方法; 3.掌握锂离子电极材料相关性能的测定方法及原理; 4.熟悉相关性能测试结果的分析。二.实验原理 锂离子电池的结构与工作原理:所谓锂离子电池是指分别用二个能可逆地嵌入 与脱嵌锂离子的化合物作为正负极构成的二次电池。人们将这种靠锂离子在正 负极之间的转移来完成电池充放电工作的,独特机理的锂离子电池形象地称为“摇椅式电池”,俗称“锂电”。以LiCoO2为例:⑴电池充电时,锂离子从正极中脱嵌,在负极中嵌入,放电时反之。这就需要一个电极在组装前处于嵌锂 状态,一般选择相对锂而言电位大于3V且在空气中稳定的嵌锂过渡金属氧化物做正极,如LiCoO2、LiNiO2、LiMn2O4、LiFePO4。⑵为负极的材料则选择电位 尽可能接近锂电位的可嵌入锂化合物,如各种碳材料包括天然石墨、合成石墨、碳纤维、中间相小球碳素等和金属氧化物,包括SnO、SnO2、锡复合氧化物SnBxPyOz(x=0.4~0.6,y=0.6~0.4,z=(2+3x+5y)/2)等。三.实验装置及材料 1.实验装置: 恒温槽,冰箱,搅拌器,管式电阻炉,真空干燥箱,鼓风干燥箱,铁夹,分液 漏斗,研钵,烧杯,pH试纸,循环水真空泵,漏斗,抽滤瓶,滤纸,玻璃皿, 温度计; 2.实验材料: 乙醇,醋酸镍,醋酸钴,醋酸锰,碳酸钠,去离子水,氨水,乙炔黑,PVDF,NMP,LiOH; 四.实验内容及步骤

硅光电池实验课堂指导及实验报告要求

硅光电池实验课堂指导及实验报告要求 提示:本材料始终实验室保存,并供所有实验同学使用。保持材料的整洁,不作标记、批注。本周内实验中心将开始提供实验指导册,其中包含本材料内容。请及时与中心联系,tel:66366787。 硅光电池测量实验室 编号: 硅光电池基本特性研究 光电池又称光伏电池。光电池的种类较多,如硒光电池,氧化亚铜光电池,硫化铊光电池,锗光电池,硅光电池,砷化镓光电池等。其中硅光电池具有较多的优点,如性能稳定、光谱范围宽、频率特性好、能量转换效率高、结构简单、重量轻、寿命长、价格便宜、使用方便,因而得到广泛应用。本实验研究硅光.电池的基本特性。 硅光电池可以用作光信号探测器,在光电转换、自动控制和计算机输入和输出等现代化科学技术中发挥重要作用。另一方面硅光电池可将太阳能转换成电能,如果把许多硅光电池科学地串联或并联起来,可以建成太阳能发电站,为人类更有效地利用太阳能开辟新道路。 本实验要求通过对硅光电池基本特性的测量,了解和掌握其特性及有关的测量方法,进而对日益广泛使用的各种光

电器件有更深入的了解。 实验原理在P型硅片上扩散一层极薄的N型层,形成PN结,再在该硅片的上下两面各制一个电极,这样构成了硅光电池,如图一所示。负极增透膜N型PN结P型正极图一硅光电池的结构及符号当光照射在硅光电池的光照面上时,若入射光子能量大于硅的能隙时,光子能量将被半导体吸收,产生电子-空穴对。它们在运动中一部分重新复合,其余部分在到达PN结附近时受PN结内电场的作用,空穴向P 区迁移,使P区显示正电性,电子向N区迁移,使N区带负电,因此在PN结上产生了电动势。如果在硅光电池两端连接电阻,回路内就形成电流,这是硅光电池发生光电转换的原理。 硅光电池(以下简称光电池)的简化等效电路如图二所示。 1.在无光照时,光(生)电流Iph0,光电池可以简化为二极管。根据半导体理论,流经二 极管的电流Id与其两端电压的关系符合以下经验公式2 IdII0eV1 式中和I是常数。 0IdI+IphIphV-图二光电池简化等效电路图三光电池等效为二极管2.有光照时,Iph>0,光电池端电压与电流的关系为:IIdIphI0eV1Iph ,可以得到以下结论:①当外电路短路时,短路电流IscIph,光电流全部流向外电路。②当外

硅光电池特性的研究实验报告2

硅光电池基本特性的研究 太阳能是一种清洁能源、绿色能源,许多国家正投入大量人力物力对太阳能接收器进行研究和利用。硅光电池是一种典型的太阳能电池,在日光的照射下,可将太阳辐射能直接转换为电能,具有性能稳定,光谱范围宽,频率特性好,转换效率高,能耐高温辐射等一系列优点,是应用极其广泛的一种光电传感器。因此,在普通物理实验中开设硅光电池的特性研究实验,介绍硅光电池的电学性质和光学性质,并对两种性质进行测量,联系科技开发实际,有一定的新颖性和实用价值。 [实验目的] 1.测量太阳能电池在无光照时的伏安特性曲线; 2.测量太阳能电池在光照时的输出特性,并求其的短路电流I SC、开路电压 U OC、最大FF 3.测量太阳能电池的短路电流I及开路电压U与相对光强J /J0的关系,求出它们的近似函数关系; [实验原理] 1、硅光电池的基本结构 目前半导体光电探测器在数码摄像﹑光通信﹑太阳电池等领域得到广泛应用,硅光电池是半导体光电探测器的一个基本单元,深刻理解硅光电池的工作原理和具体使用特性可以进一步领会半导体PN结原理﹑光电效应理论和光伏电池产生机理。 零偏反偏正偏 图 2-1. 半导体PN结在零偏﹑反偏﹑正偏下的耗尽区 图2-1是半导体PN结在零偏﹑反偏﹑正偏下的耗尽区,当P型和N型半导体材料结合时,由于P型材料空穴多电子少,而N型材料电子多空穴少,结果P 型材料中的空穴向N型材料这边扩散,N型材料中的电子向P型材料这边扩散,扩散的结果使得结合区两侧的P型区出现负电荷,N型区带正电荷,形成一个势垒,由此而产生的内电场将阻止扩散运动的继续进行,当两者达到平衡时,在PN结两侧形成一个耗尽区,耗尽区的特点是无自由载流子,呈现高阻抗。当PN 结反偏时,外加电场与内电场方向一致,耗尽区在外电场作用下变宽,使势垒加强;当PN结正偏时,外加电场与内电场方向相反,耗尽区在外电场作用下变窄,

锂电池基础知识100问

锂电池基础知识100问

11、什么是电池的容量? 电池的容量有额定容量和实际容量之分。电池的额定量是指设计与制造电池时规定或保证电池在一定的放电条件下,应该放出最低限度的电量。Li-ion规定电池在常温、恒流(1C)恒压(4.2V)控制的充电条件下充电3h,电池的实际容量是指电池在一定的放电条件下所放出的实际电量,主要受放电倍率和温度的影响(故严格来讲,电池容量应指明充放电条件)。容量常见单位有:mAh、Ah=1000mAh)。 12、什么是电池内阻? 是指电池在工作时,电流流过电池内部所受到的阻力。有欧姆内阻与极化内阻两部分组成。电池内阻大,会导致电池放电工作电压降低,放电时间缩短。内阻大小主要受电池的材料、制造工艺、电池结构等因素的影响。是衡量电池性能的一个重要参数。注:一般以充电态内阻为标准。测量电池的内阻需用专用内阻仪测量,而不能用万用表欧姆档测量。 13、什么是开路电压? 是指电池在非工作状态下即电路无电流流过时,电池正负极之间的电势差。一般情况下,Li-ion充满电后开路电压为4.1-4.2V左右,放电后开压为3.0V左右,通过电池的开路电压,可以判断电池的荷电状态。 14、什么是工作电压? 又称端电压,是指电池在工作状态下即电路中有电流过时电池正负极之间电势差。在电池放电工作状态下,当电流流过电池内部时,不需克服电池的内阻所造成阻力,故工作电压总是低于开路电池,充电时则与之相反。Li-ion 的放电工作电压在3.6V左右。 15、什么是放电平台? 放电平台是恒压充到电压为4.2V并且电电流小于0.01C时停充电,然后搁置10分钟,在任何们率的放电电流下下放电至3.6V时的放电时间。是衡量电池好坏的重要标准。 16、什么是(充放电)倍率?时率? 是指电池在规定的时间内放出其额定容量时所需要的电流值,它在数据值上等于电池额定容量的倍数,通常以字母C表示。如电池的标称额定容量为600mAh为1C(1倍率),300mAh则为0.5C,6A(600mAh)为10C.以此类推. 时率又称小时率,时指电池以一定的电流放完其额定容量所需要的小时数.如电池的额定容量为600mAh,以600mAh的电流放完其额定容量需1小时,故称600mAh的电流为1小时率,以此类推. 17、什么是自放电率? 又称荷电保持能力,是指电池在开路状态下,电池所储存的电量在一定条件下的保持能力。主要受电池制造工艺、材料、储存条件等因素影响。是衡量电池性能的重要参数。 注:电池100%充电开路搁置后,一定程度的自放电正常现象。在GB标准规定LI-ion后在20±2℃条件下开条件下开路搁置28天。可允许电池有容量损失。 18、什么是内压?

锂离子电池的制备及性能测试

福州大学化学化工学院 本科实验报告 课程名称:综合化学实验 实验项目名称:锂离子电池的制备及性能测试实验室名称:六号楼206 学生姓名:陈世昌 学号:11S040902103 学生所在学院:化学化工学院 年级、专业:09级化学类 实验指导教师:郭永榔 2012年10 月8 日

一、实验目的 传统使用的小型可充电电池是镍镉电池,随着便携式电子产品对电池性能要求的不断提高,人们对环境意识的不断增强,对环境友好、性能更优良的绿色电源越来越迫切。与镍镉电池、金属氢化物电池、铅酸蓄电池及可充碱性电池等传统电池相比,可充锂离子电池能量密度大(约为镍镉电池的两倍),循环寿命长,工作电压高(3.6V),环境污染小,已经广泛应用于手机、计算机,便携式电子电器,数码产品等电源,有望成为动力车的理想动力电源。锂离子电池技术是 21 世纪具有战略意义的军民两用技术以及在电子信息、新能源、环境保护等重大技术领域发展中具有举足轻重的地位和作用,这对锂离子电池性能提出了更高的要求,因此对电池材料的开发改进仍然是当前的研究热点。 本实验研究目的: 1、了解可充锂离子电池的工作原理 2、了解电解质溶液的导电机理 3、掌握纽扣锂离子电池的电极材料、电极的制备工艺及纽扣锂离子电池的装配 4、掌握锂离子电池电性能的测试方法 二、实验试剂和仪器 1、实验仪器 管式气氛炉,行星式球磨机,真空干燥箱,真空手套箱,Land 电池充放电测试系统(与计算机连接),低温试验箱,真空泵,扣式电池封口机,电子天平,粉末压片机,玛瑙研钵,干燥器等。 2、试剂 高压氩气(瓶), NH4VO3,LiOH·H2O,氢氧化钠,草酸,1mol/L LiPF6+EC/DMC(体积比 1:1)电解液,粘结剂 PVDF,导电碳黑(CABOT),N-甲基吡咯烷酮(NMP),Celgard2325 隔膜,金属锂片,电池壳(CR2025),铝集流片,360 目砂纸等。试剂名称及分子式、厂家和纯度;主要仪器型号及厂家。 三、实验结果与讨论 1、将实验数据列成表格(如表1所示),标注条件。 表1 实验数据列表 序号姓名铝片重 /g 正极片 重/g 活性物 质重 /mg 理论容 量 (C/mAh ) 0.2C容 量/mAh 0.2C电 流/mA 开路电 压/V 活性物 质重 /mg 11 陈世昌0.0518 0.0534 1.6 0.3808 0.0762 0.076 3.5 1.36 12 陈世昌0.0544 0.0566 2.2 0.5236 0.1047 0.105 2.9 1.87 2、标出 XRD 图中各个峰所对应的晶面,通过对比 XRD 实验数据和标准图谱判断合成材料属何种物质和结构;

传感器测试实验报告

实验一 直流激励时霍尔传感器位移特性实验 一、 实验目的: 了解霍尔式传感器原理与应用。 二、基本原理: 金属或半导体薄片置于磁场中,当有电流流过时,在垂直于磁场和电流的方向上将产生电动势,这种物理现象称为霍尔效应。具有这种效应的元件成为霍尔元件,根据霍尔效应,霍尔电势U H =K H IB ,当保持霍尔元件的控制电流恒定,而使霍尔元件在一个均匀梯度的磁场中沿水平方向移动,则输出的霍尔电动势为kx U H ,式中k —位移传感器的灵敏度。这样它就可以用来测量位移。霍尔电动势的极性表示了元件的方向。磁场梯度越大,灵敏度越高;磁场梯度越均匀,输出线性度就越好。 三、需用器件与单元: 霍尔传感器实验模板、霍尔传感器、±15V 直流电源、测微头、数显单元。 四、实验步骤: 1、将霍尔传感器安装在霍尔传感器实验模块上,将传感器引线插头插入实验模板的插座中,实验板的连接线按图9-1进行。1、3为电源±5V , 2、4为输出。 2、开启电源,调节测微头使霍尔片大致在磁铁中间位置,再调节Rw1使数显表指示为零。 图9-1 直流激励时霍尔传感器位移实验接线图 3、测微头往轴向方向推进,每转动记下一个读数,直到读数近似不变,将读数填入表9-1。 表9-1 X (mm ) V(mv) 作出V-X 曲线,计算不同线性范围时的灵敏度和非线性误差。 五、实验注意事项: 1、对传感器要轻拿轻放,绝不可掉到地上。 2、不要将霍尔传感器的激励电压错接成±15V ,否则将可能烧毁霍尔元件。 六、思考题:

本实验中霍尔元件位移的线性度实际上反映的时什么量的变化 七、实验报告要求: 1、整理实验数据,根据所得得实验数据做出传感器的特性曲线。 2、归纳总结霍尔元件的误差主要有哪几种,各自的产生原因是什么,应怎样进行补偿。 实验二集成温度传感器的特性 一、实验目的: 了解常用的集成温度传感器基本原理、性能与应用。 二、基本原理: 集成温度传器将温敏晶体管与相应的辅助电路集成在同一芯片上,它能直接给出正比于绝对温度的理想线性输出,一般用于-50℃-+150℃之间测量,温敏晶体管是利用管子的集电极电流恒定时,晶体管的基极—发射极电压与温度成线性关系。为克服温敏晶体管U b电压生产时的离散性、均采用了特殊的差分电路。集成温度传感器有电压型和电流型二种,电流输出型集成温度传感器,在一定温度下,它相当于一个恒流源。因此它具有不易受接触电阻、引

手触电池实验报告

竭诚为您提供优质文档/双击可除 手触电池实验报告 篇一:36.手触蓄电池 实验三十六手触式蓄电池 【仪器介绍】 如图36-1所示,手触式蓄电池演示仪由三块金属板(两块铝板和一块铜板)和一台检流计组成,其中铝板1接检流计负极,铜板和铝板2接检流计正极,通过演示理解接触电位差的概念。 【操作与现象】 1.用左手握住铝板1,同时用右手握住铝板2,观察表盘读数的变化,然后交换左右手再观察结果; 2。用左手握住铝板1、同时用右手握住铜板,观察表盘读数的变化,然后交换左右手再观察结果。 3.改变两手湿润程度、按压力度时,重复以上步骤观察指针偏转的格数有何不同。 铝 板1

铜板 图36-1手触式蓄电池 铝板2 【原理解析】 (a) (b) 图36-2原理图 要使金属内电子脱离金属表面的束缚所需的功,称为该金属的逸出功。不同的金属有不同的逸出功,逸出功越小表明该金属越容易失去电子。两种不同的金属相互接触时,逸出功小的金属将失去电子而电位升高,逸出功大的金属将获得电子而电位降低(如图36-2(a))。结果这两种金属之间就产生了电位差,称之为接触电位差。 设wA、wb为金属A与b的逸出功(且wA?wb),则它们的接触电势差为: VA?Vb??wA?wbe 因此,相互接触的两块金属就相当于一个电池,如果在它们之间接一个电流计,当回路闭合,电流计就发生偏转,表明回路中有电流。 现将双手分别按住铜板(wcu?4.5eV)和铝板 (wAl?4.28eV)时,由于人手上带有汗液,而汗液是一种电介质,里面含有一定量的正负离子,同时铝板比铜板活泼,

铝板上汗液中的负离子发生化学反应,而把外层电子留在铝板上,使铝板集聚大量负电荷,铜板上集聚大量正电荷。当用导线把铜板和铝板连接起来,铝板上的电子通过电流计将向铜板移动,导线中有电流通过,故电流计指计偏转。此时两块金属板通过人体连接构成了一个等效电池(如图36-2(b)所示),即手触蓄电池。 【知识拓展】 意大利物理学家伏打(1745~1827)对电流的早期研究作出了重要贡献,他将导体分为第一类导体(金属)和第二类导体(潮湿导体),并发现产生电循环的本质条件是必须由两种不同的第一类导体和第二类导体组成回路。1799年,他发明了一种直接倍增两类导体的组合接触法,这就是一片片潮湿的纸板隔开的一对对锌版和铜板组成的伏打电堆。他还发明了第一个伏打电池组。他的发明和运用开拓了电学的研究领域。后人为纪念伏打在电学上的贡献,将电动势和电势差的单位以他的姓氏命名为伏特。 篇二:锂电池实验报告 篇一:锂离子电池的制备合成及性能测定实验报告 实验二锂离子电池的制备合成及性能测定 一.实验目的 1.熟悉锂离子电极材料的制备方法,掌握锂离子电极材料工艺路线; 2.掌握锂离子电池组装的基本方法;

实验报告三(金属锂电池的制作与性能表征)12550701021钟如达.

实验报告 实验三:纽扣金属锂电池(商品)的制造与性能表征 班级: 12应化A班学号:12550701021 姓名:钟如达 一、实验原理 一次性金属锂离子电池是由金属锂负极,过渡金属氧化物正极(如MnO2),隔膜为微孔薄膜和电解质为LiPF6、LiAsF6或LiClO4等有机溶液所组成。下面以MnO2为正极材料,金属锂为负极,叙述金属锂电池的工作原理: (1)正极 放电时,正极从外部电子线路获取电子,Mn4+被还原为Mn3+。电极反应为:MnO2 + e- = MnO2 (2)负极 放电时电极反应为: Li - e- = Li+ 总反应: MnO2 + Li = LiMnO2[E = 3.5 V] 由于金属锂电池电容量大、放电持续稳定、价格低廉而被广泛使用。 二、实验材料仪器 1、实验材料: 二氧化锰(MnO2)、KS6石墨、铜箔、铝箔、隔膜(Celgard2400)、锂片、电解液(LB-315,1M LiPF6溶于体积比EC: DEC: EMC=1:1:1的溶液)、扣式电池壳(CR2032)、纽扣电池座等。 2、实验仪器 CorreTest CS350电化学工作站、电子分析天平、YP-24T压片机、XYM-Z(?13 mm)压片模具、JK-CMJ-02扣式电池冲模机(?19 mm)、手套箱+JK-YYFKJ-20纽扣电池液压封口机(附带高纯氮气气源)等。 三、实验流程与步骤 (一)实验流程 A搅拌→B压片→烘干→C切膜→D封装→F测试

(二)实验流步骤 1、正、负极的制备 a、正极的制备 按4: 1的质量比,分别称取2.40 g MnO2和0.60 g KS6导电剂碳黑混合均匀。准确称量混合物0.7605 g,并转移到压片机模具中,在8.0 T/cm2(仪器指针刻度为10)压力下压片,制成正电极片。把制备好的正电极片放置在120 ℃烘箱中烘1~2小时后待用。 b、负极、电解液、隔膜 负极极片是厚度为1.50 mm直径为15 mm的锂金属片;电解液为LB-315(1M LiPF6溶于体积比EC: DEC: EMC=1:1:1的溶液);隔膜为Celgard2400,将隔膜纸裁剪/冲模成直径为Φ19 mm的圆片。把裁剪好后的隔膜、正极片、负极片、电解液、扣式电池壳(CR2032)、电池垫片、电池弹片等转移到充满纯N2的手套箱内。 2、实验电池的组装 实验电池装配过程在充满氩气的手套箱中进行,手套箱中氧含量、水含量均须低于10 ppm。干燥的电极移入手套箱后,分别将MnO2正极、隔膜、Li负极电解液按顺序装入实验电池的模具中,然后小心地转移到封装机上,使用液压装置小心压紧,密封电池的上下壳,确保电池密闭不漏电解液。 3、实验电池的测试 将待测的电池与测试仪器相连,注意避免正负极的短路,从工作站上启动软件,确认已连接的通道。分别进行开路电位、恒电位极化、恒电位阶越、线性扫描伏安法、循环伏安法、交流阻抗和放电测试。放电测试能长时间正常点亮绿色的LED为佳。 四、结果与讨论 LED灯点亮展示图:

硅光电池特性的研究

硅光电池特性的研究 一、实验目的 1.掌握PN 结形成原理及其工作机理; 2.掌握硅光电池的工作原理及其工作特性。 二、仪器设备 MD-GD-3型硅光电池特性实验仪; 三、实验原理 1.引言 目前半导体光电探测器在数码摄像﹑ 光通信﹑太阳电池等领域得到广泛应用,硅光电池是半导体光电探测器的一个基本单元,深刻理解硅光电池的工作原理和具体使用特性可以进一步领会半导体PN 结原理﹑光伏电池产生机理。 图1是半导体PN 结在零偏﹑反偏﹑正偏下的耗尽区,当P 型和N 型半导体材料结合时,由于P 型材料空穴多电子少,而N 型材料电子多空穴少,结果P 型材料中的空穴向N 型材料这边扩散,N 型材料中的电子向P 型材料这边扩散,扩散的结果使得结合区两侧的P 型区出现负电荷,N 型区带正电荷,形成一个势垒,由此而产生的内电场将阻止扩散运动的继续进行,当两者达到平衡时,在PN 结两侧形成一个耗尽区, 耗尽区的特点是无自由载流子,呈现高阻抗。当PN 结反 偏时,外加电场与内电场方向一致,耗尽区在外电场作用 下变宽,使势垒加强;当PN 结正偏时,外加电场与内电 场方向相反,耗尽区在外电场作用下变窄,势垒削弱,使 载流子扩散运动继续形成电流,此即为PN 结的单向导电 性,电流方向是从P 指向N 。 2.硅光电池的工作原理 硅光电池是一个大面积的光电二极管,它被设计用于 把入射到它表面的光能转化为电能,因此,可用作光电 探测器和光电池,被广泛用于太空和野外便携式仪器等 的能源。 光电池的基本结构如图2,当半导体PN 结处于零偏或反偏时,在它们的结合面耗尽区存在一内电场,硅光电池在没有光照时其特性可视为一个二极管,在没有光照时其正向偏压U 与通过电流I 零偏 反偏 正偏 图 1. 半导体PN 结在零偏﹑反偏﹑正偏下的耗尽区 图 2.光电池结构示意 硅光零偏 图 3.光电池光电信号接

锂离子电池性能测试.

华南师范大学实验报告 学生姓名:蓝中舜学号:20120010027 专业:新能源材料与器件勷勤创新班年级、班级:12新能源课程名称:化学电源实验 实验项目:锂离子电池性能测试 实验类型:验证设计综合实验时间:2014年5月5日-17日实验指导老师:马国正组员:黄日权郭金海 一、实验目的 1. 熟悉、掌握锂离子电池的结构及充放电原理。 2. 熟悉、掌握锂离子正极材料的制备过程及工艺。 3. 熟悉、掌握锂离子电池的封装工艺及模拟电池测试方法。 二、实验原理 锂离子电池是指正负极为Li +嵌入化合物的二次电池。正极通常采用锂过渡金属氧化物 Li x CoO 2,Li x NiO 2或Li x Mn 2O 4,负极采用锂-碳层间化合物Li x C 6。电解质为溶有锂盐LiPF 6,LiAsF 6,LiClO 4等的有机溶液。溶剂主要有碳酸乙烯酯(EC )、碳酸丙烯酯(PC )、碳酸二甲酯(DMC ) 和氯碳酸酯(CIMC )等。在充放电过程中,Li +在两极间往返嵌入和脱出,被形象的称之为 “摇椅电池”。 锂离子电池充放电原理和结构示意图如下。

锂离子电池的化学表达式为: -)Cn|LiPF6-EC+DMC|LiMx O y (+ 其电池反应为: LiM x O y +nCLi 1-x M x O y +Lix C n 本实验以高温固相法制备的尖晶石型LiMn2O4为正极材料,纯锂片为负极,制备扣式锂离子模拟电池,并对制备的扣式半电池进行充放电测试。 三、仪器与试剂 电化学工作站,蓝点测试系统、手套箱、电子天平、真空干燥箱、切片机、对辊机、鼓风干燥机 LiMn 2O 4、乙炔黑、PVDF 、无水乙醇、电解液(1M LiPF6溶与体积比 EC:DEC:EMC=1:1:1 的溶液)、锂片、去离子水、碳甲基吡咯烷酮。 四、实验步骤 1. 正极片的制备

锂电池基础知识

(一)锂电池的构成 锂电池主要由两大块构成,电芯和保护板PCM(动力电池一般称为电池管理系统BMS),电芯相当于锂电池的心脏,管理系统相当于锂电池的大脑。 电芯主要由正极材料、负极材料、电解液、隔膜和外壳构成,而保护板主要由保护芯片(或管理芯片)、MOS管、电阻、电容和PCB板等构成。 锂电池的产业链结构如下图: 电芯的构成如下面两图所示: 锂电池的PACK的构成如下图所示: (二)锂电池优缺点 锂电池的优点很多,电压平台高,能量密度大(重量轻、体积小),使用寿命长,环保。 锂电池的缺点就是,价格相对高,温度范围相对窄,有一定的安全隐患(需加保护系统)。

(三)锂电池分类 锂电池可以分成两个大类:一次性不可充电电池和二次充电电池(又称为蓄电池)。 不可充电电池如锂二氧化锰电池、锂-亚硫酰胺电池。 二次充电电池又可以分为下面根据不同的情况分类。 1.按外型分:方形锂电池(如普通手机电池)和圆柱形锂电池(如电动工具的18650);2.按外包材料分:铝壳锂电池,钢壳锂电池,软包电池; 3.按正极材料分:钴酸锂(LiCoO2)、锰酸锂(LiMn2O4)、三元锂(LiNi x Co y Mn z O2)、磷酸铁锂(LiFePO4);

4.按电解液状态分:锂离子电池(LIB)和聚合物电池(PLB); 5.按用途分:普通电池和动力电池。 6.按性能特性分:高容量电池、高倍率电池、高温电池、低温电池等。 (四)常用术语解释 1. 容量(Capacity) 指一定的放电条件下可以从电池锂获得的电量。 我们在高中学物理是知道,电量的公式为Q=I*t,单位为库伦,电池的容量单位规定为Ah (安时)或mAh(毫安时)。意思是1AH的电池在充满电的情况下用1A的电流放电可以放1个小时。 以前的NOKIA的老手机的电池(像BL-5C)一般是500mAh,现在的智能手机电池800~1900mAh,电动自行车一般都是10~20Ah,电动汽车一般都是20~200Ah等。 2. 充放电倍率(Charge-Rate/Discharge-Rate) 表示以多大的电流充电、放电,一般以电池的标称容量的倍数为计算,一般称为几C。

硅光电池特性研究实验

硅光电池特性研究实验 【实验原理】 在p 型硅片上扩散一层极薄的n 型层,形成pn 结,再在该硅片的上下两面各制一个电极(其中光照面的电极成“梳状”,并在整个光照面镀上增透膜,利于光的入射),这样就构成了硅光电池,如图5.7.1(a)所示。光电池的符号见图5.7.1(b)。 当光照射在硅光电池的光照面上时,若入射光子能量大于硅的能隙时,光子能量将被半导体吸收,产生电子一空穴对。它们在运动中一部分重新复合,其余部分在到达pn 结附近时受pn 结内电场的作用,空穴向p 区迁移,使p 区显示正电性,电子向n 区迁移,使n 区带负电,因此在pn 结上产生电动势。如果在硅光电池两端连接电阻,回路内就形成电流,这是硅光电池发生光电转换的原理。 硅光电池(以下简称光电池)的简化等效电路如图5.7.2所示。 (1)在无光照时,光(生)电流0ph I =,光电池可以简化为二极管如图5.7.3。根据半导体理论,流 经二极管的电流d I 与其两端电压的关系符合以下经验公式 0(1)V d I I I e β==- (5.7.1) 式中:β和0I 是常数。 (2)有光照时,ph I >o ,光电池端电压与电流的关系为

0(1)V d ph ph I I I I e I β=-=-- (5.7.2) 由式(5.7.2),可以得到以下结论: ①当外电路短路时,短路电流sc ph I I =-,光电流全部流向外电路。 ②当外电路开路时,开路电压1ln 1ph oc o I V I β??= +????即1ln 1sc oc o I V I β??=+????,开路电压oc V 与短路电流sc I 满足对数关系;如果sc I 与光通量(或照度)有线性关系,则oc V 与光通量也满足对数关系。 由于二极管的分流作用,负载电阻愈大,光电池的输出电流愈小,实验可以证明这时输出电压却愈大。因此,在入射光能量不变化的情况下,要从光电池获取最大功率,负载电阻要取恰当的值。 【预习要求】 (1)通过预习,了解硅光电池的工作原理,大致了解实验内容。 (2)写预习报告,按要求在数据记录纸上画好待填表格。 【实验报告要求】 (1) 记录实验过程,包括实验步骤、各种实验现象和数据处理等。 (2)分析各实验结果并要得到结论。可就实验中涉及的、你感兴趣的1~2个问题作较深入讨论。 (3)实验曲线可用计算机绘制(推荐用Excel 软件),也可手画。 ①用原始数据表5.7.1的数据,画出InI~v 曲线。如果是直线,计算β和O I (利用条件I>>O I ),写出在没有光照情况下光电池的端电压(正向偏压)与电流之间的经验公式,由此可以间接验证经验公式(5.7.1)。 ②利用数据表5.7.2的数据,作出Isc 与光通量?的关系曲线,设?与1/L2的比系数等于1,由曲线得到什么结论? ③根据表5.7.3,画出sc I α-曲线,它是什么曲线? ④根据表5.7.4、5.7.5,在一张图上分别画出光电池输出电压与负载电阻、输出电流与负载电阻的关系曲线,并由此在同一图上得到负载电阻与输出功率的关系;确定光电池的最大输出功率Pm 以及最大输出功率时的负载电阻Re(最佳匹配电阻)。 ⑤利用表5.7.6、5.7.7、5.7.8、5.7.9,在一张图上分别画出上下两片光电池的伏安特性以及它们串、并联后的伏安特性,从四条曲线能得到什么结论? ⑥根据表5.7.10,画出sc I λ-关系图,此图说明什么? 【思考题】 (1)光电流与短路电流有什么关系? (2)对实验中所用滤光片的透射曲线应有什么要求? (3)严格地说,本实验得到的光电池光谱特性并不能准确描述光电池对入射光中各频率分量的响应特性,或者说,这样得到的光谱特性,还包含了其他因素的影响,这些影响因素是什么? (4)通过实验,对光电池总体有什么认识? (5)硅光电池是一种半导体元件,人们在研究半导体元件的外特性时,通常要研究它们的温度

锂电池生产技术测试题及答案

四川鑫唐新能源科技有限公司 技术部培训后考核试题(满分120分) 姓名:工号:部门:分数: 一、填空题(每空1分,共40分) 1、混料浆料出料前检验项目:固含量、粘度、细度。 2、配料的工艺有干法、湿法、螺杆式三种;配料的体系有水系和油系两种。 3、配料工序潜在的问题有加料顺序错误、搅拌时间过长、搅拌时间过短、搅拌速度过慢、搅拌速度过快、真空度过低、搅拌设备漏油、浆料有气泡、颗粒、粉尘大(答对6项得分)等。 4、涂布工序控制点:环境温湿度、涂布面密度、箔材尺寸、涂布速度、烘箱温度、敷料宽度、极带上下涂层错位(答对4项得分)等。 5、涂布的方式有单面连续涂布、单面间隙涂布、双面连续涂布、双面间隙涂布。 6、涂布工序潜在的问题有料槽液面高度过低或过高、走速过慢、走速过快、烘箱温度过高、烘箱温度过低、激光测厚仪失效、导轨不干净、纠偏和张力失效、刀口损伤、挡板磨损(答对6 项得分)等。 7、压实密度的算法:极带涂布净面密度/(极带辊压后厚度-基材厚度),磷酸铁锂材料的压实密度一般不超过cm3,压实密度对电池容量、充放电效率、内阻、循环性(答对2项得分)等电性能有一定的影响,辊压有冷压、热压工艺,辊压方式有一次辊压成型和二次辊压成型。 8、锂电池制造过程中的天敌:水分、毛刺或金属颗粒、粉尘。 9、配料、涂布、辊压、制片、电芯烘烤、电池烘烤(答对4项得分)是本公司的关键工序。 10、叠片的作用是将正、负极片与隔膜良好的叠和,常见的有叠片和卷绕两种方式,本公司的叠片方式为Z字型叠片。 11、组装是将电芯与极柱、外壳组装成电池;方式有螺杆连接、热熔焊接、超声焊接、激光焊接。 12、组装潜在的问题有孔直径不符合要求、包胶不完整、连接松动、极片损伤、壳内有杂物、焊接强度不够、条码混乱、电池漏测(答对5项得分)等。 13、注液的作用是定量对电池注入电解液及检测电池密封性。 14、电池化成即为小电流激活电池,其电极材料与电解液产生化学反应,在电极材料表面形成一层钝化层,固体电解质界面膜,简称 SEI膜;这层

实验-锂离子电池电极制备

实验1.3 锂离子电池电极制备 一. 实验目的 1.了解锂离子电池电极的构成 2.了解锂离子电池电极的充放电机理 3.掌握锂离子电池电极制备的关键技术 二. 实验原理 锂离子电池是指正负极为Li+嵌入化合物的二次电池。正极通常采用过渡金属氧化物LiCoO2、LiNiO2、LiMn2O4或LiFePO4等高氧化还原电势的材料,负极采用石墨、碳、或者Li4Ti5O12、LiTi2(PO4)3等氧化还原电势较低的材料。电解质为可分为有机电解质和水相电解质两类,有机电解质以LiPF6、LiAsF6或LiClO4等锂盐,混合碳酸酯作为溶剂;水相以硫酸锂、硝酸锂、LiOH溶液作为电解质。充放电过程中,Li+在正负极之间往返嵌入或脱出,被形象地称为“摇椅式”(rock chair)电池。 实际上,电化学活性材料通常因为导电性差,需要添加石墨导电剂,与其混合,并以聚合物分子作为粘合剂,将活性物质、导电剂均匀混合涂布成薄膜,作为锂离子电池的电极片。以西门子的电池电极片制备工序为例,介绍电极片的制备流程。 混涂压干切 图1.4.1 西门子锂离子电池电极制备工艺示意图 1.混料 将负极材料(碳为主)与导电剂和粘结剂,加极性溶剂经混料机混合成均一的浆料。 目标最大可能分散,注意无活性物质溶解或结构破坏。正极材料以过渡金属锂氧化物为活性物质。 2.涂布 正极:铝箔;负极:铜箔。涂布厚度达到150-300微米,注意厚度偏差1-2微米 以内。 3.压片

在干燥流水线上逐步升温至150℃干燥除去溶剂,减少压片过程中产生的气泡,避免极片产生裂缝。 4.干燥 可在真空干燥箱中进一步干燥除去极片中的水分,达到水分低于0.5%. 5.切片 通过高精度切割技术,有时采用激光切割达到高精度尺寸;避免产生毛刺、碎屑。 图1.4.2 电极片制备流程图 三.仪器设备 鼓风干燥箱、真空干燥箱、超声清洗机、电子天平、剪刀、红外灯 四.实验原料 电极材料LiTi2(PO4)3、导电剂super P, 粘结剂聚偏氟乙烯PVDF, 溶剂NMP, 不锈钢片,玛瑙研钵 五.实验步骤 以得到高导电性的电极片为目的。 1.准备集流片:剪取约3×3 cm2的不锈钢片,依次在去离子水和乙醇中超声波清洗 10 min,取出50~60 ℃干燥10分钟,并测量质量待用。 2.按质量比 80:10:10 计算电极活性材料、导电碳黑以及PVDF的质量; 3.称量电极材料进行研磨20分钟;称量导电炭黑、PVDF加到上述电极材料中,继 续研磨30分钟混合; 4.并加少量NMP溶剂作为分散剂,在玛瑙研钵中研磨20分钟调匀,得到黑色墨汁 状混合物。 5.然后在不锈钢片上成膜, 6.将60度下干燥的电极膜在烘箱箱中控温125 ℃,干燥24小时,

锂电池保护板基础知识

锂电池保护板的基础知识普及 第一章保护板的构成和主要作用一、保护板的构成 锂电池(可充型)之所以需要保护,是由它本身特性决定的。由于锂电池本身的材料决定了它不能被过充、过放、过流、短路及超高温充放电,因此锂电池锂电组件总会跟着一块精致的保护板和一片电流保险器出现。锂电池的保护功能通常由保护电路板和PT协同完成,保护板是由电子电路组成,在-40℃至+85℃的环境下时刻准确的监视电芯的电压和充放回路的电流,即时控制电流回路的通断;PTC在高温环境下防止电池发生恶劣的损坏。 保护板通常包括控制IC、MOS开关、电阻、电容及辅助器件NTC、ID存储器等。其中控制IC,在一切正常的情况下控制MOS 开关导通,使电芯与外电路沟通,而当电芯电压或回路电流超过规定值时,它立刻(数十毫秒)控制MOS开关关断,保护电芯的安全。NTC是Negative temperature coefficient的缩写,意即负温度系数,在环境温度升高时,其阻值降低,使用电设备或充电设备及时反应、控制部中断而停止充放电。ID 存储器常为单线接口存储器,ID是Identification 的缩写即身份识别的意思,存储电池种类、生产日期等信息。可起到产品的可追溯和应用的限制。

二、保护板的主要作用 一般要求在-25℃~85℃时Control(IC)检测控制电芯电压与充放电回路的工作电流、电压,在一切正常情况下C-MOS开关管导通,使电芯与保护电路板处于正常工作状态,而当电芯电压或回路中的工作电流超过控制IC中比较电路预设值时,在15~30ms (不同控制IC与C-MOS有不同的响应时间),将CMOS关断,即关闭电芯放电或充电回路,以保证使用者与电芯的安全。 第二章保护板的工作原理 保护板的工作原理图:

相关文档
相关文档 最新文档