文档库 最新最全的文档下载
当前位置:文档库 › 汽车质量、可靠性与耐久性的关系

汽车质量、可靠性与耐久性的关系

汽车质量、可靠性与耐久性的关系
汽车质量、可靠性与耐久性的关系

汽车质量、可靠性与耐久性的关系

“质量(Quality)广义来说,质量是包含可靠性的内容,我们

这里指的是狭义的定义。(注:以下定义参考的是美国某权威机构

对质量与可靠性的定义)。Quality is conf”

质量(Quality):广义来说,质量是包含可靠性的内容,我们这里指的是狭义的定义。(注:以下定义参考的是美国某权威机构

对质量与可靠性的定义)。Quality is conformance to customer expectations,翻译过来就是:质量是满足客户期望的能力。这个

从字面上可能不太好理解,下面我详细解释一下。大家知道,对于

任何一个产品的开发,复杂如一辆汽车,简单如一个小杯子,我们

都需要去了解客户的需求或者期望。而客户的需求很多时候是非常

主观的,比如客户往往会提出“我需要一个很酷的汽车”,或“我

需要一个耐热的杯子”等等。但是这些主观的需求,在产品开发过

程中很难衡量或测量,这就导致在产品开发过程中我们很难对其进

行验证,最终也无法判断我们的产品是否能够满足客户的期望。比

较常见的方法是通过QFD(Quality Function Deployment)的方法

与流程将客户的主观需求或期望转换到产品可以衡量的指标(一般

叫做产品的关键特性),然后在产品开发过程中,我们去设计产品,满足这些可以衡量的指标,从而间接地去满足客户的需求(注:QFD 不是本文的重点,此处不展开,网上有大量文献读者可自行查阅)。

如何判断最终的产品满足了客户的期望呢?一般我们会按照APQP或者ISO的标准来控制产品开发与制造过程,最终实现对客户

期望的控制。这个就是传统质量做的事情,即我们常说的质量管理

与过程控制,属于质量的范畴。理论上来说,最终出厂的产品质量

都是合格的,否则产品是不能上市的。所以质量是关注产品出厂之

前与出厂那一刻所有过程控制的活动(t≤0, t指的是产品开发时

间节点,t=0指的是产品上市的那一刻)。

可靠性(Reliability):Reliability is quality over time 这个定义很恰当,意思是可靠性是质量随着时间的变化,或者说可

靠性是质量加了一个时间轴。

通过质量过程控制(TS16949或ISO9001),满足了客户的期望,制造过程也稳定了,产品可以上市了。但是这个不代表你产品在存

储与使用过程中没有问题,从产品投入市场之后(t>0),甚至在交

付到客户手里之前,可能就会有失效(比如汽车在运输以及4S店存

储时间长了,可能有一些零部件会出现问题)。在产品使用过程中,产品的功能或质量有一个逐步退化的过程,从而会带来产品的失效。

如何降低与控制在使用过程中产品失效问题,就是可靠性关注

的内容。所以,可靠性是关注产品上市后(t>0)的失效问题。

下表从几个不同方面描述了质量(Quality)与可靠性(Reliability)的区别。

耐久性(Durability):耐久性实际上很多企业都在做这方面的工作,如整车耐久性测试,或者疲劳寿命分析等。国内企业很多人

提起可靠性,以为就是疲劳分析,这个是很片面的理解或者说概念

上就是错误的,因为疲劳分析只能分析理想状态下(某种设计状态下)理论的寿命预测,但是实际上每个零件的制造误差与变化以及

使用过程中环境条件的不同,会导致同一批产品每个零部件的使用

寿命的不同,如何评价一定臵信度下的零部件寿命,才是真正耐久

性需要关注的问题。当然疲劳分析也是提高耐久性的一个不可或缺

的手段。

广义上来说,耐久性是含在可靠性的范畴的,但是从定义与指

标以及工作方法上都是不同的。在讲耐久性之前,我们先来看一下

如下图所示的典型浴盆曲线。浴盆曲线是了解可靠性工程最基本的

曲线,本文简单介绍。

典型大批量产品浴盆曲线

上图横轴是产品上市后的运行时间(广义时间,也可以是里程,如整车运行里程),竖轴是产品故障率或叫失效率。对于大批量产

品如汽车等,在投放市场后,到产品报废的整个寿命期内,失效率

随着运行里程的变化基本上符合如上图所示的那条实线曲线,因为形状像浴盆,在可靠性工程领域一般称之为浴盆曲线(Bathtub curve)。

拿这个曲线来讲可靠性与耐久性就比较好理解。上面讲的可靠性,从指标上来说,实际上是关注的是竖轴,即失效率。耐久性关注的是横轴,即运行时间或里程,对于产品来说,实际上就是能够运行的时间或里程,即我们常说的寿命或耐久性的定义。

对于可靠性工程而言,一般我们既需要关注产品的失效率(即可靠性问题),也要关注产品的寿命问题(耐久性问题)。

这里还有一个概念要说明一下,就是可维修系统与不可维修系统。对于复杂的系统或者产品,如汽车、飞机或发动机等,在报废之前或者大修之前认为是可以维修的。到了上图所示的最右边的那个虚线点,即一般我们说的寿命点,就认为不可维修了,因为再使用下去,失效率激增,维修成本很高,不存在维修的价值了,到了这个点,产品基本上就报废了或者要大修。而对于单个零件或者某些小的系统单元,如果在使用过程中出现问题不维修,都是替换,我们就认为是不可修系统。不可修系统只讲寿命问题,这个概念需要清楚

衡量指标与控制方法/流程-质量(Quality)的衡量指标与控制方法,按照上面的传统质量的定义,不是一个单一指标能够用来衡量产品质量的。按照APQP的流程来说,质量的控制与产品开发是同步的,从早期的客户需求管理、到产品目标的定义、设计过程质量控制、制造过程质量控制、再到生产过程问题闭环、售后问题的问题闭环等等,在各个阶段都有相应的要求与过程控制的方法。

下图是质量控制的典型流程与活动。

如果非要量化的话,理解更多是对产品缺陷(Defect)的控制,如常见的PPM(PartsPerMillion)(如10PPM代表不合格率为

100/100万(万分之一),我们常说的6Sigma水平指的是3.4个PPM)。对于制造过程,一般会用一些过程控制的稳定性与一致性指标,如CPk(Complex Process Capability index)来控制制成品

不良率水平)或GR&R(Gauge Repeatability&Reproducibility)

来控制量具的稳定性。

质量过程控制方法一般通过APQP的流程来控制。关于APQP与

质量体系的控制流程,这个比较成熟,在此不再赘述。

同时,很多企业通过6Sigma流程来控制,如DFSS (DesignForSixSigma)与DMAIC(Define-Measure-Analysis-Improve-Control),最终实现的都是对缺陷的控制,确保最终出厂

的产品满足一定的质量要求或水平,最终满足产品规格与客户的需求。

可靠性(Reliability)的衡量指标与控制方法:前面讲到,质

量关注缺陷,那么可靠性则是关注可维修系统的失效(或者故障)。一般在汽车行业用失效率(为了便于统计,汽车行业很多用失效数

如F/U(单机失效数)、IPTV(Incidents Per Thousand Vehicles

即千台失效),3MIS (Month inService)或12MIS等)来衡量。

对一个产品来说,我们需要一个好的可靠性设计,保持失效率

在比较低的水平,即上述的浴盆曲线相对竖轴的指标比较低(但也

不是越低越好,因为失效率到了一定程度,再要降低,可能带来成

本的激增。所以可靠性的目标需要在开发周期与成本之间进行平衡)。但是很多企业如整车企业,可能无法获得过保之后的数据,

所以我们一般关注三包期内的失效率情况,或者用三包期内的数据

通过统计分析来评价失效率水平,即产品的可靠性水平。

当然,这里面还有一个概念叫使用率,下面我们用汽车为例来

解释一下。简单来说,就是一个批次的汽车在特定使用情况下(如

家用或出租)年平均使用里程。很多企业只用失效率来衡量汽车的

可靠性,这在同样的使用率情况下是可以的,但是如果汽车年均使

用里程不同,就不能只通过失效率来衡量,因为理论上来说,使用

越多,失效数也会越高。这个也比较好理解,下面我们举个例子来

说明一下。如我们比较两个车的可靠性水平,A车用于家用,一年

平均使用里程2万公里,失效数(实际应用中我们一般用失效数而

不是失效率,以便于统计,以下同)均值为1.5个/台。B车用于出

租车,一年平均里程10万公里,失效数均值为3个/台,如果只比

较失效,B的可靠性不如A,因为一年下来,B的失效为3个/台,

比A的失效高。但是如果我们考虑了使用里程,就会发现A车运行

了2两万公里就有1.5个失效,而B车运行了10万公里有2个失效,显而易见,B的可靠性比A要好。这里就需要引入另外一个概念,MTBF(Mean Time Between Failure)或MKBF (Mean KilometerBetween Failure),即平均失效间隔时间/里程,这个理

论上的定义是使用率/失效率,可以衡量产品的绝对可靠性。一般来说,同类产品,MKBF越高,说明可靠性水平越好。这个也是可靠性

常用的指标。

那么产品的可靠性如何来控制呢?经过国外多年的发展,已经

形成了一套比较完善的控制流程,这个可能每个企业叫法不太一样,如可靠性增长流程(RGP-Reliability Growth Process,或可靠性

设计流程(DFR-Design For Reliability)。

简单来说,传统的汽车开发对于产品的失效控制是比较被动的,往往都是在产品试验出了故障,或者在使用过程中出了故障再去改进。如果等产品出现了故障再去解决,需要花费大量的人力、物力

与时间。可靠性增长实际上是一种预防性的手段,即如何通过合理

地设定产品可靠性目标,在产品开发的规划阶段制定合理的预防性

措施,并在产品设计阶段就能够识别可能存在的失效风险,并通过

有效的预防性措施来尽可能控制失效,减少产品在试验与试用过程

中的失效。另外既然我们定义了可靠性的衡量指标,就需要在产品

的可靠性设计与验证过程中来量化追踪指标,否则指标的确定就是

一个噱头而已!大家都知道,产品的性能是比较容易追踪的,传统

的仿真手段与试验手段可以分析与测量各种不同的整车性能,如动

力性、经济性、安全性、各种力学性能如刚度、模态、动力学、NVH 等等,但是失效率一般来说很难通过仿真手段模拟出来,一般通过

统计或者寿命预计等方法来进行计算在一定臵信度下的概率水平。

所以完善的可靠性增长的流程除了提供了一套完整的控制流程之外,一般还提供了对于可靠性指标在设计与试验过程中量化追踪的方法,使得在产品开发的各个阶段能够实时地知道产品的可靠性达到什么

水平!

下图展示了一个典型的可靠性设计流程实例以及相关技术。

在国内尤其是汽车行业,目前大多数企业还没有形成自己完整的可靠性流程。很多企业其实也在产品开发的一些环节局部开展了一些工作,如FMEA (Failure Mode and Effect Analysis)、可靠性试验验证等,但是没有通过一套有效地可靠性流程将相关的工作串起来,不清楚各个工作之间的关联,另外也缺乏有效的手段在产品开发过程中追踪可靠性水平,逐步提高产品可靠性。同时有一点需要说明,可靠性体系的建立不是一朝一夕之功,需要企业不断积累与完善,毕竟可靠性不是某一两个部门的职责,而是需要各个相关职能一起参与,融入产品开发流程,才能够真正地发挥其作用。

耐久性(Durability)的衡量指标与控制方法:对耐久性而言,在此提一下两个方面。一个是零部件的耐久性问题,其实就是单个零部件的寿命问题。另外一个是系统(如整车、发动机等)的耐久性问题。

对于单个不可修零部件而言,不存在维修问题,所以也不存在平均维修间隔里程等,所以不能用失效数或者MKBF等可靠性指标来衡量,而应该通过零部件的寿命来衡量,B10寿命(即10%的零件失

效后对应的寿命或里程)或者可靠度是比较常见的指标。反过来,零部件到了一定里程对应的失效百分比就是不可靠度(可靠度=1-不可靠度)。这里要说明一下,B10寿命只是一个特征寿命,不代表零部件的设计寿命,比如某个零部件的B10寿命是5万公里,不代表零部件设计寿命是5万公里。

对于系统的耐久性问题,上面我们也说了,其实关注的也是寿命问题,如我设计一个产品如整车也好、发动机也好,它的使用寿命究竟应该是多少?上面我们讨论了可靠性问题,我们通过可靠性设计流程或增长流程,提高了汽车的可靠性,不代表汽车的寿命就达到了要求。所以我们除了降低汽车的失效率水平外,还得考虑设计合理的汽车寿命。当然寿命不是越长越好,这个结合汽车的市场定位与使用的要求来考虑。比如乘用车的设计寿命,与商用车的设计寿命,肯定是不一样的。

对于单个零部件或者不可修系统而言,寿命比较好理解。那么接下来的问题是,系统级别的寿命如何来评价呢?我们还是以汽车为例来说明这个问题。一般来说,在汽车保修期内出现的零部件失效(零部件寿命或性能退化问题),带来了产品(如整车)的维修问题,但是不影响整车的使用(如整车换了一些易损件还可以继续开),这些易损件实际上影响的就是产品的可靠性。而一些关键零部件,如汽车发动机5C件(曲轴、连杆与凸轮轴等),底盘关键零部件等,发生损坏后,整车就要大修,整车寿命基本上就到了(参见上面浴盆曲线的最右边那个拐点)。这些零部件的失效影响的是整个产品的耐久性或者产品使用寿命。

那么如何通过这些关键零部件的寿命来评估产品的寿命呢?不同的产品可能不一样,对于汽车而言,一般来说不会是所有关键零

部件都损坏了,整车寿命才到。一般来说,可能是一个关键零部件到寿命了,整车寿命也就到了,或者某几个零部件到了寿命,认为整车的寿命就到了。如果是前一种情况,那么这些关键零部件中寿命最短的那个零部件寿命,就是整车的寿命。如果后一种情况,就需要通过分析是否有串并联关系来通过可靠性建模预测整车寿命。下图展示了寿命设计的典型流程。

要评估整车寿命,需要先评估关键零部件的寿命。关键零部件的寿命一般很难通过三包数据或者售后数据获得,因为很少有企业会追踪产品整个生命周期的失效数据,尤其对于汽车等长寿命的产品。当然,我们也了解到某些企业试图通过抽样的方法,追踪部分产品全生命周期的失效,目前都没有获得好的结果,因为这个成本是非常高的,而且不太容易追踪。但是对于这些关键零部件,我们通常可以获得零部件在试验台架上的寿命数据(一般来说,由于这些关键零部件寿命都比较长,正常的载荷下寿命测试不太适用,比如一个零件设计寿命为10年,你不可能花10年时间去测试这个产品。所以一般通过加速寿命试验的方法来获得零部件寿命的数据,然后再等效到实际使用载荷下的零部件寿命,再通过寿命数据分析

(如Weibull的方法)评估零部件的寿命。有了这些关键零部件寿命,我们可以评估整车的寿命。当然,有的时候我们可能会发现零

部件寿命设计不足,或者寿命太长,这样就会给我们指明一个方向,是继续提升零部件寿命,还是通过寿命设计优化,解决过设计的问题,以降低零部件的成本。

总结:本文从定义、相关衡量指标以及控制流程与方法上对质量、可靠性与耐久性做了一个总体的阐述。下面通过下表做个总结。

缩略语(按文章内出现顺序)

QFD: QualityFunctionDeployment,质量功能展开,一种将主

观客户需求转换成产品特性的方法与流程

APQP: Advanced Product Quality Planning,产品质量前期策划。是质量管理体系的一部分。一种用来确定和制定确保某产品使

顾客满意所需步骤的结构化方法。目标是促进与所涉及每一个人的

联系,以确保所要求的步骤按时完成。有效的产品质量策划依赖于

高层管理者对努力达到使顾客满意这一宗旨的承诺。

ISO: International Organization forStandardization,是

一个全球性的非政府组织,是国际标准化领域中一个十分重要的组织。

DFSS: Design For Six Sigma,即六西格玛设计,公认的一种

实现高质量和营运优越的高效工具。

DMAIC: Design, Measure, Analysis, Improveand

Control,六西格玛管理中流程改善的重要工具,一般用于对现有流

程的改进,包括制造过程、服务过程以及工作过程等等

FMEA: Failure Mode and Effects Analysis,即潜在失效模式

及后果分析。FMEA是在产品设计阶段和过程设计阶段,对构成产品

的子系统、零件,对构成过程的各个工序逐一进行分析,找出所有

潜在的失效模式,并分析其可能的后果,从而预先采取必要的措施,以提高产品的质量和可靠性的一种系统化的活动。

D-FMEA:Design FMEA,即设计FMEA。在产品设计阶段开展的FMEA工作。

P-FMEA:ProcessFMEA,即工艺FMEA。在过程设计阶段开展的FMEA工作。

PPAP:Production PartApproval Process,即生产件批准程序。PPAP规定了包括生产件和散装材料在内的生产件批准的一般要求。PPAP的目的是用来确定供应商是否已经正确理解了顾客工程设计记

录和规范的所有要求,以及其生产过程是否具有潜在能力,在实际

生产过程中按规定的生产节拍满足顾客要求的产品。

PPM:Parts Per Million,即百万分率的缺陷率。

CPk:Complex ProcessCapability index的缩写,是现代企业

用于表示制程能力的指标。指工序在一定时间里,处于控制状态(稳

定状态)下的实际加工能力。它是工序固有的能力,或者说它是工序

保证质量的能力。CPK值越大表示品质越佳。

GR&R:Gauge repeatability&Reproducibility,评价量具的重

复性和再现性。目的是借助量具量测数据,验证量具是否可靠,是

否好用,还可以计算出量具的量测误差。

F/U:Failure per Unit,单机失效数。用来衡量产品在一定时

间内的平均到单台产品的失效数量,是衡量产品可靠性的一个重要

指标。

IPTV:Incidents PerThousand Vehicle,每千辆车故障率。在

汽车行业用的比较多,也是衡量整车可靠性的一个重要指标。

MTBF/MKBF:Mean Time BetweenFailure/Mean Kilometer Between Failure,即平均故障间隔时间/平均故障间隔里程。是考

虑了使用率情况下产品可靠性的指标,一般来说,MTBF/MKBF越大,表示可靠性越好。

RGP:ReliabilityGrowthProcess,即可靠性增长流程。一种系

统的可靠性流程,实现产品在整个设计周期中可靠性提升。

DFR:Design forReliability,即可靠性设计流程。一种系统

的可靠性设计流程,实现产品在整个设计周期中可靠性提升。

NVH:Noise, Vibration andHarshness,即噪声、振动与声振

粗糙度的英文缩写。车辆的NVH问题是国际汽车业各大整车制造企

业和零部件企业关注的问题之一。有统计资料显示,整车约有1/3

的故障问题是和车辆的NVH问题有关系,而各大公司有近20%的研

发费用消耗在解决车辆的NVH问题上。

FTA:Fault Tree Analysis,即故障树分析。又称事故树分析,是可靠性、安全性系统工程中重要的分析方法之一。事故树分析从

一个可能的事故开始,自上而下、一层层的寻找顶事件的直接原因

和间接原因事件,直到基本原因事件,并用逻辑图把这些事件之间

的逻辑关系表达出来。

BxLife,即Bx寿命。其称谓的来源无从考究,普遍认为B代表

Bearing(轴承),另一说是B代表德文的"Brucheinleizeit"(进入失效的初始时间)。当x等于10时称为B10寿命,表示10%的零部件发生失效对应的寿命,是衡量零部件特征寿命的一个重要指标。

SPoF:SinglePointofFailure,即单点失效模式。一般指一旦失效会导致于整个系统无法使用的元件。在寿命设计中,我们需要分析某个元件可能存在的各种单点失效模式,然后分析其可能导致的原因以及使用工况,为寿命设计模型的选择,以及后续的寿命评估提供依据。

ALT:AcceleratedLiftTest,即加速寿命试验。加速寿命试验是指采用加大应力的方法促使样品在短期内失效,以预测在正常工作条件或储存条件下的可靠性,但不改变受试样品的失效分布。对于寿命比较长的零部件,一般通过ALT方法来进行寿命测试。

AF:AccelerationFactor,加速因子。加速因子是加速寿命试验的一个重要参数。它是加速应力下产品某种寿命特征值与正常应力下寿命特征值的比值,也可称为加速系数,是一个无量纲数。加速因子反映加速寿命试验中某加速应力水平的加速效果,即是加速应力的函数。

质量管理与可靠性试题库

质量知识试题库 一、判断题(正确的划√,错误的划×) 1.质量成本是指企业为了保证满意的质量而支出的一切费用。 (× ) 2.散布图的简单象限法中,对角象限区域内点数N Ⅰ+N Ⅲ

汽车零部件可靠性常用测试标准

汽车零部件可靠性常用测试标准 1.振动试验目的: 正弦振动以模拟陆运、空运使用设备耐震能力验证以及产品结构共振频率分析和共振点驻留验证为主。 随机振动则以产品整体性结构耐震强度评估以及在包装状态下之运送环境模拟。 参考的测试标准: GMW3172 6.6.2, GMW3431 4.3.12, GM9123P 9.4, GME3191 4.26 2.复合环境试验(三综合)目的: 是一种利用温度和振动环境应力进行产品品质管制的程序,其主要作用为利用特定且低于产品设计强度的环境应力,使产品潜在缺陷提早暴露出来而加以剔除,避免在正常使用时因这类疵病的存在而发生失效。参考的测试标准: GMW3172 4.2.8/5.5.3/5.5.4, GMW3431 4.4.10, GM9123P 10.2.2, IEC60068-2-13/40/41, GB2423.21/22/25/26, SAEJ1455, MIL-STD-202G Method 105C, MIL-STD-883E Method 1001, MIL-STD-810F Method 500.4, GJB150.2. 3.机械冲击试验目的: 产品在生命周期中通有在两种情况下会遭受到冲击,一种为运输过程中因为车辆行走于颠坡道路产生碰撞与跳动或因人员搬运时掉落地面所产生之撞击。 参考的测试标准:GMW3172 5.4.2, GMW3431 4.3.11, GM9123P 9.2, VW80101 4.2, Etl_82517 8.2.2, MGRES6221001 9.4.2, SES E 001-04 6.13.1, FORD DS000005 10.8.20, FORD_WDS00.00EA_D11 4.6.3, PSA B21 7090 5.4.5, IEC60068-2-27, GB2423.5/6, GJB150.18, EIA-264, SAEJ1455, MIL-STD-202G Method 213B, MIL-STD-810F Method 516.5 4.温湿度试验目的: 温湿度测试方法是用来评估产品有可能储存或者使用在高温潮湿环境中的功能。 参考的测试标准: BMW GS95003-4, GMW3172 5.5.1/5.5.2/5.6, GMW3431 4.4.1/4.4.5/4.4.6, GM9123P 9.6/9.11/9.12, GME60202_0181, VM80101 5.1.2/5.1.3/5.3/5.5.2, FORD DS00005 10.9.1/10.9.2/10.9.3/10.9.8/10.9.9/10.9.10, FORD_WDS 00.00EA_D11 4.5.1/4.5.2/4.5.3/4.5.4/4.5.5/4.5.8/4.8.1/4.8.4, MGRES6221001 9.3, MGRES6221001 11, SES E 001-04 6.1/6.2/6.3/6.4/6.5/6.8/6.9/6.11, IEC60068-2-30, SAEJ1455, JESD22-A103C, JESD 22-A100B,EIA-364,GB2324.1/2/3/4/9/34/4, GJB 150.3/4/9, MIL-STD-810F 507.4, MIL-STD-202G 103B/106G, MIL-STD-1004.1 5.温度试验目的: 使用温度试验来获得数据评价温度对装备安全和性能的影响,效应如:使材料硬化、因不同收缩特性而使零件变形、电阻电容功能改变、缩短寿命、润滑剂失去粘性等。

质量管理与可靠性实验报告

实验1 工序能力调查实验 一、实验目的 掌握数据的抽样方法以及质量数据的统计分析方法,熟练操作Minitab软件,掌握统计分析图形的绘制,理解工序不合格品率与工序能力指数的关系。 二、实验仪器 装有Minitab软件的计算机。 三、实验步骤 实验内容: 收集待分析质量数据50组,用Minitab软件对质量数据进行分析,绘制相关分析图形,并根据分析结果估算工序不合格品率。 实验步骤: 在4M1E条件基本相同的前提下,收集待分析质量数据50组。 1.用Minitab软件对质量数据进行分析(分布规律和变化趋势,进行正态性检验); 2.用软件绘制相关分析图形并根据分析结果估算工序不合格品率。 四、实验结果 1.绘制直方图;

2.分布形状拟合; 如上图所示,成份C的数据分布曲线是近似正态分布。 3.成份C的数据变化趋势分析 4.工序能力

5.估计工序不合格品率 p=2-Ф[3C p(1+k]-Ф[3C p(1-k]=2-0.934389-0.855587=0.210024 实验2 工序质量控制实验 一、实验目的 掌握质量控制图的原理及绘制方法,掌握控制图的判异准则,学会根据控制图对工序状态进行判断。 二、实验仪器 装有Minitab软件的计算机。 三、实验内容及步骤 实验内容: 利用实验一收集数据,对其进行分组数据分组,应用Minitab的Control Chart模块,绘制工序控制图(xbar-s)并根据控制图对工序状态进行判断。 该钢铁公司内部采取以下判异准则来检验异常原因: 检验1:有1 个点离开中心线的距离超过3 倍标准差 检验2:连续7 个点在中心线的同一侧 检验3:连续7 个点有上升趋势或下降趋势 实验步骤: 1.收集50组车轴钢成份(C、Si、Mn、P、S、Al)化验数据

汽车的可靠性

汽车的可靠性 1 可靠性的定义 广义可靠性由三大要素构成:可靠性、耐久性和维修性。通常所说的可靠与不可靠,只是对汽车本身的质量而言。 1.1可靠性 汽车的可靠性是指汽车产品在规定的使用条件下和规定的时间内,完成规定功能的能力。 汽车可靠性包括四个因素:汽车产品、规定条件、规定时间和规定功能。 汽车产品是指汽车整车、总成或零部件,它们都是汽车可靠性研究的对象。 规定条件是指规定的汽车产品工作条件,它包括:气候情况、道路状况、地理位置等环境条件,载荷性质、载荷种类、行驶速度等运行条件,维修方式、维修水平、维修制度等维修条件,存放环境、管理水平、驾驶技术等管理条件。 规定时间是指规定的汽车产品使用时间,它可以是时间单位(小时、天数、月数、年数),也可以是行驶里程数、工作循环次数等。在汽车工程中,保修期、第一次大修里程、报废周期都是重要的特征时间。 规定功能是指汽车设计任务书、使用说明书、订货合同及国家标准规定的各种功能和性能要求。不能完成规定功能就是不可靠,称之为发生了故障或失效。 根据故障的危害程度不同.汽车故障通常分类: 1)致命故障。指危及人身安全、引起主要总成报废、造成重大经济损失、对周围环境造成严重危害的故障。 2)严重故障。指引起主要零部件或总成损坏、影响行驶安全、不能用易损备件和随车工具在短时间(30min)内排除的故障。 3)一般故障。指不影响行驶安全的非主要零部件故障,可用易损备件和随车工具在短时间(30min)内排除。 4)轻微故障。指对汽车正常运行基本没有影响,不需要更换零部件,可用随车工具(5min内)较容易排除的故障。 1.2 汽车的耐久性:是指汽车进入极限技术状态之前,经预防维修(不更换主要总成和大修)维持工作能力的性能。 1.3维修性:是指在规定条件下使用的产品,在规定时间内按规定的程序和方法进行维修时,保持或恢复到能完成规定功能的能力。 1.4 汽车的使用期限:是指新车开始使用直至报废为止的使用延续时间(或行程)。使用期限分为技术使用期限、经济使用期限和合理使用期限。 2 可靠性的评价指标 对产品进行可靠性评价时,可将产品分为可修产品和不可修产品两种类型。 2.1 不可修产品的可靠性评价

质量管理与可靠性

1.对于有重复事件的故障树,为了应用模块分解法对其进行简化,可应用()达到目的。 A.递推化法 B.直接化法 C.逻辑简化法 D.“割顶点法” 答案:D 2.某系统包含3个单元,其最小割集为{1,2}、{1,3}和{2,3},则该系统为()模型。 A.串联 B.表决 C.旁联 D.桥联 答案:B 3.假设表决器完全可靠的“三中取二”系统,其单元故障率均为λ,则其系统的MTBCF为()。 A.5/6λ B.6/5λ C.6/(5λ) D.5/(6λ) 答案:D 4.对于可靠性设计分析工作来说,()。 A.应由质量管理人员负责实施 B.应由可靠性专业人员实施 C.应贯彻“谁设计、谁分析”的原则 D.应由领导指派专人负责实施 答案:C 5.在故障树的模块化过程中,把原树中把分割出的模块用一个()代替,其概率即为此模块的概 A.中间事件 B.未展开事件 C.底事件 D.“准底事件” 答案:D 6.进行FMEA时,严酷度一般情况下可分为四级,通常规定其中Ⅱ类是()。 A.轻度的 B.中等的 C.致命的 D.灾难的 答案:C 7.什么既是FMECA的基础,同时也是故障树分析、事件树分析的基础?() A.故障判据

B.故障模式 C.潜在故障 D.严酷度 答案:B 8.FMECA的根本目的只有一个,即()。 A.从产品设计、生产和使用角度发现各种缺陷与薄弱环节,从而提高产品可靠性水平 B.准确估计出产品的可靠性水平 C.为可靠性建模提供可信的依据 D.为故障树分析奠定基础 答案:A 9.FMECA包括()两个步骤。 A.故障模式分析和危害性分析 B.故障模式影响分析和危害性分析 C.故障影响分析和危害性分析 D.故障原因分析和危害性分析 答案:B 10.FTA的基础及关键是()。 A.收集资料 B.建树 C.定性分析 D.定量计算 答案:B 11.故障分布服从Weibull分布,则形状参数为()于1时故障率曲线呈水平直线。 A.小 B.等 C.大 D.接近 答案:B 12.某喷气式飞机有三台发动机,至少需要两台发动机正常才能安全起落和飞行,假定飞机故障仅 A.0.99993 B.0.99995 C.0.99998 D.0.99999 答案:A 13.可靠性框图“n中取r”表决模型在假设表决器完全可靠的情况下,当表决数r =()时等价 A.0 B.1 C.r

发动机台架试验 -可靠性试验

学生实验报告实验课程名称:发动机试验技术

目录 一、试验目的 二、试验内容 1.试验依据 2.试验条件 3.试验仪器设备 4.试验样机 5.试验内容与方案 (1)交变负荷试验 (2)混合负荷试验 (3)全速负荷试验 (4)冷热冲击试验 (5)活塞机械疲劳试验 (6)活塞热疲劳试验 三、试验进度安排 四、试验结果的提供

摘要 国外在可靠性试验方面己做了许多有益的研究工作,但到目前为止尚未形成统一的试验方法,而且考虑到该试验的非普遍性及技术保密性,将来也不可能形成统一的试验规范。相对于热疲劳研究状况来讲,国内对机械疲劳的研究还比较少。为适应发动机比功率和排放法规日益提高的苛刻要求,发动机面临着更高机械负荷和热负荷的严峻考验。国内高强化发动机最大爆发压力已超过22 Mpa。活塞的机械疲劳损伤主要体现在销孔、环岸等部位。活塞环岸、销座及燃烧室等部位由于在较高的工作温度下承受着高频冲击作用的爆发压力,润滑状况较差,摩擦磨损,其他破坏可靠性的腐蚀磨损(缸套一环换向区、排气门/排气门座锥面等)、疲劳磨损(挺杆、轴瓦、齿轮表面等)、微动磨蚀(轴瓦钢背、飞轮压紧处、飞轮壳压紧处、湿缸套止口处等)、电蚀(火花塞电极等)和穴蚀(水泵叶轮等)这些都是可靠性试验的主要目标,也是实施可靠性设计、试验研究的重点部位。 众所周知,在内燃机整机上进行零部件可靠性试验成本昂贵。本文将参照原有的可靠性试验方法,通过看一些关于可靠性的零部件加速寿命实验技术制定一种评价内燃机可靠性的考核规范,包括活塞机械疲劳试验和活塞热疲劳试验,可迅速做出其可靠性恰当的评价,可以降低研发成本、缩短研发时间。 一、试验目的 1通过理解内燃机可靠性评估,评定发动机的可靠性。 1.1了解评估的多种理论方法,如数学模型法、上下限法、相似设备法、蒙特卡洛法、故障分析( 包括故障模式影响分析和故障树分析) 等。并掌握故障分析法。 1.2学会可靠性试验评估,为进行可靠性设计奠定基础理论,为发动机及相关零部件提供测试、验证以及改进的技术支持。 2掌握可靠性试验方法 2.1掌握内燃机可靠性综合性试验及专项试验。综合性试验的考核对象是零件的可靠性、零件表面性状的变化和发动机性能的保持性;专项试验是超水温( 耐热性) 、超负荷、混合负荷、交变负荷循环、超爆发压力、超速等试验。 二、试验内容 1试验依据 参考的试验标准: GB /T 19055-2003 汽车发动机可靠性试验方法 GB /T 18297-2001 汽车发动机性能试验方法 JB/T 5112-1999 中小功率柴油机产品可靠性考核 2试验条件 一般试验条件: 2.1燃料及机油:采用制造厂所规定的牌号,柴油中不得有消烟添加剂。

《汽车可靠性技术》复习题及答案

《汽车可靠性技术》复习题及答案 一、填空题 1.可靠性工程是研究如何评价、分析、提高产品可靠的工程技术。 2.产品发生故障或失效是指其不能完成规定的功能。 3.汽车产品的质量从经济学观点是指的汽车的使用价值,从管理学观点是满足用户要求所应具备的质量特性。 4. n个数据从小到大排列,居于中央位置的数,称为中位数。 5.在一批数据中,出现次数最多的一个数叫众数。 6.在一批数据中,最大与最小数值之差为样本极差。 7. 可靠性可以分为固有可靠性、使用可靠性、基本可靠性和任务可靠性。 8.基本可靠性反映了产品对维修人力费用和后勤保障资源的需求。确定基本可靠性指标时应统计产品的所有寿命单位和所有的故障. 9 可靠性寿命指标包括中位寿命、特征寿命和额定寿命。 10.汽车可靠性研究中常用的分布有:指数分布、威布尔分布、正态分布、超几何分布、二项分布、泊松分布、对数分布等。 11.可靠性模型主要有以下类型:串联系统、并联系统混联系统,此外还有备用冗长余系统、复杂系统。 12.抽样检查中,判断能力用检查水平表示,即判断能力强,检查水平高。 二、名词解释 1.可靠性:可靠性是指产品在规定的条件和规定的时间内,完成规定的功能的能力。 2.可靠性工程:为达到产品可靠性要求而开展的一系列设计、研制、生产、试验和管理工作。 3.基本可靠性:产品在规定的条件下,无故障的持续时间或概率。 4.任务可靠性:产品在规定的任务剖面内完成规定功能的能力。 5.失效概率分布函数:通常用累积故障概率的分布函数来表示产品失效概率或不可靠度,这种函数,称不可靠度函数或累积失效概率分布函数,简称失效概率分布函数。 6.故障率:工作到某时刻尚未发生故障的产品,在该时刻后单位时间内发生故障的概率。 7.可靠寿命:指给定的可靠度所对应的产品工作时间。 8.使用寿命:指产品在规定的使用条件下,具有可接受的故障率的工作时间区间。 9.可靠性模型:指的是系统可靠性逻辑框图(也称可靠性方框图)及其数学模型。

汽车发动机可靠性分析研究

可靠性工程结课论文 题目:汽车发动机可靠性分析 学院:机电学院 专业:机械电子工程 学号: 201100384216 学生姓名:郭守鑫 指导教师:尚会超 2014年6月1日

目录 摘要 (3) 关键词 (3) 前言 (3) 1. 可靠性及可靠性技术的概念 (4) 2. 可靠性分析方式 (5) 2.1 指数分布 (5) 2.2 正态分布 (5) 2.3 威布尔分布 (6) 3. 汽车发动机可靠性评定指标 (6) 4. 当前汽车发动机可靠性方面存在的主要问题 (7) 4.1 设计、工艺质量问题 (7) 4.2 常见的共性问题 (8) 5. 可靠性综合评估认定 (8) 6. 如何提高汽车发动机的可靠性 (9) 参考文献 (9)

汽车发动机可靠性分析 郭守鑫 (中原工学院机电学院河南郑州 451191) 摘要:发动机是汽车的的核心部分,其技术性能的好坏是决定汽车行驶性能的关键因素。而其中汽车发动机的可靠性是关系到主要技术性能“何时失效”的问题,这是汽车发动机至关重要的技术指标。本文针对汽车发动机可靠性及其相关问题进行分析研究,主要论述了发动机可靠性分析方法、评定指标、试验方法以及国内外发展状况、当前汽车发动机可靠性方面存在的问题和提高汽车发动机可靠性的一些意见。 【关键词】汽车发动机;可靠性;分析方法;评定指标 Abstract:The core part of the car engine, and its technical performance quality is a key factor in determining performance cars. Automotive engine reliability which is related to the main technical performance "when failure" problem, which is crucial to the car engine specifications. This paper for automotive engine reliability analysis and related issues,discusses the reliability analysis methods engines, evaluation indicators, testing methods and the development of domestic and international situation, the current existing car engine reliability problems and improve the reliability of the car engine some comments. 【Keywords】automobile engine; reliability; analysis; assessment index 前言 众所周知,当前汽车行业总体火爆,人们对汽车的需求量在日益增长。然而由于发动机质量问题而引发的汽车整体质量问题也是数见不鲜,甚至导致一些事故的发生,它所引发的一连串问题却硬生生的摆在消费者和制造厂商之间。在如何保证汽车整体质量的问题上,保证汽车发动机的质量至关重要,其中很大程度就是由汽车发动机可靠性所决定。 发动机的可靠性涉及到主机厂的设计、制造、装配、供应和售后服务等各部门;涉及到配套件、外协件的供应厂商和协作厂商;涉及到各种类型发动机用户的操作人员、维修人员和设备管理部门等。这种协同环境既有主机厂内部各个部门的协同,又有主机厂与多家配套件、外协件的供应厂商的协同,还有主机厂与多家典型用户的协同。 我国发动机水平与国外先进国家比还有较大的差距:产品的检验精度很高,但加工精度差,精度保持性差,简单模仿多,细化分析少,用户维护保养差,这

发动机可靠性试验方法

GB/T 19055-2003 汽车发动机可靠性试验方法 南京汽车质量监督检验鉴定试验所. GB/T 19055-2003 前言 本标准与GB/T 18297-2001《汽车发动机性能试验方法》属于同一系列标准,系汽车发动机试验方法的重要组成部分。 本标准自实施之日起,代替QC/T 525—1999。

本标准的附录A为规范性附录。 本标准由中国汽车工业协会提出。 本标准由全国汽车标准化技术委员会归口。 本标准起草单位:东风汽车工程研究院。 本标准主要起草人:方达淳、吴新潮、饶如麟、鲍东辉、周明彪。 引言 本标准系在JBn 3744—84即QC/T 525—1999《汽车发动机可靠性试验方法》长期使用经验的基础上参考国外的先进技术,制定了本标准。 本标准对QC/T 525—1999的重大技术修改如下: ——拓展了标准适用范围,不仅适用于燃用汽、柴油的发动机,还适用于燃用天然气、液化石油气和醇类等燃料的发动机; ——修改了可靠性试验规范,对最大总质量小于3.5t的汽车用发动机采用更接近使用工况的交变负荷试验规范;对最大总质量在3.5t~12t之间的汽车用发动机采用混合负荷试验规范,以改进润滑状态;冷热冲击试验过去仅在压燃机上进行,现扩展到点燃机,并增加了“停车”工况,使零部件承受的温度变化率加大; ——修改了全负荷时最大活塞漏气量的限值,首次推出适用于不同转速范围的非增压机、增压机、增压中冷机的限值计算公式,使评定更为合理; ——为使汽车发动机满足国家排放标准对颗粒排放物限值的要求,修改了额定转速全负荷时机油/燃料消耗比的限值(由原来1.8%改为0.3%); ——增加“试验结果的整理”的内容,并单独列为一事,要求对整机性能稳定性、零部件损坏和磨损等进行更为规范和详尽的评定; ——增加“试验报告”的内容,并单独列为一章,明确试验报告主要内容,使试验报告更为规范。 ——增加了附录A《汽车发动机可靠性评定方法》,使评定更为准确和全面, ——鉴于汽车发动机排放污染物必须满足国家排放标准的要求,在认证时按排放标准进行专项考核,故本标准不再涉及。. 汽车发动机可靠性试验方法 1 范围 本标准规定厂汽车发动机在台架上整机的一般可靠性试验方法,具中包括负荷试验规范(如交变负荷、混合负荷和全速全负荷)、冷热冲击试验规范及可靠性评定方法。 本标准适用于乘用车、商用车的水冷发动机,不适用于摩托车及拖拉机用发动机。该类发动机属往复式、转子式,不含自由活塞式。其中包括点燃机及压燃机;二冲程机及四冲程机;非增压机及增压机(机械增压及涡轮增压、水对空及空对空中冷);适用于燃用汽油、柴油、天然气、液化石油气和醇类等燃料的发动机。 新没计或重大改进的汽车发动机定型、转厂生产的发动机认证以及现生产的发动机质量检验均可按本标准规定的办法进行可靠性试验。 本标准还可作为发动机制造厂和汽车制造厂之间交往的技术依据。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适州于本标准。 GB/T 15089 机动车辆及挂车分类 GB/T 17754 摩擦学术语

汽车发动机-国标汇总

十、汽车发动机标准 GB 3847—2005 GB 11340—2005 车用压燃式发动机和压燃式发动机汽车排气烟 度排放限值及测量方法 装用点燃式发动机重型汽车曲轴箱污染物排 放限值及测量方法 GB 3843—1983、 GB 14761.6—1993、 GB 3847—1999、 GB/T 3846-1993、 GB 18285—2000中的压燃式发 动机汽车部分 GB 14761.4—1993、 GB 11340—1989 GB 14762—2008 重型车用汽油发动机与汽车排气污染物排放限 值及测量方法(中国Ⅲ、Ⅳ阶段) GB 14762—2002 GB 14763—2005 装用点燃式发动机重型汽车燃油蒸发污染物 排放限值及测量方法(收集法)GB 14761.3—1993、GB 14763—1993 GB 17691—2005 车用压燃式、气体燃料点燃式发动机与汽车排气 污染物排放限值及测量方法(中国Ⅲ、Ⅳ、Ⅴ阶 段)GB 17691—2001、 GB 14762—2002中的气体燃料点燃式发动机部分 GB 18285—2005 点燃式发动机汽车排气污染物排放限值及测量 方法(双怠速法及简易工况法)GB 14761.5—1993、 GB/T 3845—1993、 GB 18285—2000中的点燃式发动机汽车部分 GB 18296—2001 汽车燃油箱安全性能要求和试验方法 GB 18352.3—2005 轻型汽车污染物排放限值及测量方法(中国Ⅲ、 Ⅳ阶段) GB 18352.2—2001 GB 20890—2007 重型汽车排气污染物排放控制系统耐久性要求 及试验方法 GB/T 5181—2001 汽车排放术语和定义GB/T 5181—1985 GB/T 16570—1996 汽车柴油机架装直列式喷油泵安装尺寸 GB/T 17692—1999 汽车用发动机净功率测试方法 GB/T 18297—2001 汽车发动机性能试验方法 GB/T 18377—2001 汽油车用催化转化器的技术要求和试验方法 GB/T 19055—2003 汽车发动机可靠性试验方法QC/T 525-1999 GB/T 25983—2010 歧管式催化转化器 QC/T 33—2006 汽车发动机硅油风扇离合器试验方法QC/T 33—1992 QC/T 280—1999 (2009) 汽车发动机主轴瓦及连杆轴瓦技术条件ZB T12 002—1987* QC/T 281—1999 (2009) 汽车发动机轴瓦铜铅合金金相标准ZB T12 003—1987* QC/T 282—1999 (2009) 汽车发动机曲轴止推片技术条件ZB T12 004—1987* QC/T 288.1—2001 (2009) 汽车发动机冷却水泵技术条件QC/T 288—1999 QC/T 288.2—2001 (2009) 汽车发动机冷却水泵试验方法 QC/T 289—2001 (2009) 汽车发动机机油泵技术条件QC/T 289—1999 QC/T 468—2010 汽车散热器QC/T 468—1999 QC/T 469—2002(2009) 汽车发动机气门技术条件QC/T 469—1999

吉林大学《汽车可靠性技术》期末考试题(含答案)

吉林大学《汽车可靠性技术》期末考试复习题(含答案) 填空题 1.可靠性工程是研究如何评价、分析、提高产品可靠的工程技术。 2.产品发生故障或失效是指其不能完成规定的功能。 3.汽车产品的质量从经济学观点是指的汽车的使用价值,从管理学观点是满足用户要求所应具备的质量特性。 4. n个数据从小到大排列,居于中央位置的数,称为中位数。 5.在一批数据中,出现次数最多的一个数叫众数。 7. 可靠性可以分为固有可靠性、使用可靠性、基本可靠性 8.基本可靠性反映了产品对维修人力费用和后勤保障资源的需求。确定基本可靠性指标时应统计产品的所有寿命单位和所有的故障. 9 可靠性寿命指标包括中位寿命、特征寿命和额定寿命。 10.汽车可靠性研究中常用的分布有:指数分布、威布尔分布、正态分布、超几何分布、 11.可靠性模型主要有以下类型:串联系统、并联系统混联系统,此外还有备用冗长余系统、复杂系统。 12.抽样检查中,判断能力用检查水平表示,即判断能力强,检查水平高。 名词解释 1.可靠性:可靠性是指产品在规定的条件和规定的时间内,完成规定的功能的能力。 2.可靠性工程:为达到产品可靠性要求而开展的一系列设计、研制、生产、试验和管理工作。 3.基本可靠性:产品在规定的条件下,无故障的持续时间或概率。 4.任务可靠性:产品在规定的任务剖面内完成规定功能的能力。 6.故障率:工作到某时刻尚未发生故障的产品,在该时刻后单位时间内发生故障的概率。 7.可靠寿命:指给定的可靠度所对应的产品工作时间。 8.使用寿命:指产品在规定的使用条件下,具有可接受的故障率的工作时间区间。 9.可靠性模型:指的是系统可靠性逻辑框图(也称可靠性方框图)及其数学模型。 10.可靠性分配:把系统的可靠性指标合理的分配到组成此系统的每个单元。 11.可靠度分配:设备或系统的可靠度目标值转换为其零部件或子系统的可靠度的过程,即可靠度计算的逆过程。12.子系统重要度:第i个子系统失效引起系统失效的次数与第i个子系统失效次数的比值;也即第i个子系统发生失效时,整个系统发生失效的概率。

质量管理与可靠性试题

一、单项选择题(本大题共25小题,每小题1分,共25分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.下列费用中属于预防成本的是() A.进货测试费 B.质量等级的评审费 C.对测试设备的评价费 D.试制产品质量的评审费 2.著名质量管理大师戴明的主要贡献是() A.开发出了因果图 B.提出了组织的管理者必须关注的14个要点 C.提出了质量改进三步曲 D.开创了统计质量控制的新领域 3.产品质量的最终裁判者是() A.产品质量监督部门 B.公司领导 C.产品设计人员 D.顾客 4.企业经营的逻辑起点是() A.识别和细分顾客 B.产品的开发设计 C.到工商部门登记注册 D.销售产品 5.将顾客的需要描述为“金字塔”式层次结构的学者是() A.马斯洛 B.朱兰 C.石川馨 D.狩野纪昭 6.最先提出全面质量管理概念的学者是() A.朱兰 B.菲根堡姆 C.戴明 D.泰罗 7.一般来讲,预防成本占全部质量成本的() A.25%-40% B.20%-40% C.10%-50% D.0.5%-5% 8.给核心过程提供基础保证的活动过程称为() A.设计过程B.生产提供过程C.支持过程D.供应和合作过程 9.发动质量改进的第一步是() A.质量改进的制度化B.高层管理者的参与 C.产品设计人员D.顾客 10.在正态分布情况下,工序加工产品的质量特性值落在6σ范围内的概率或可能性约为() A.99.73% B.95.45% C.68.27% D.80.25% 11. 贯彻和实施质量方针和质量管理的要素是() A.质量文件 B.质量目标 C.质量体系 D.最高管理者 12. PDCA循环的关键在于() A. P阶段 B. D阶段 C.A阶段 D. C阶段 13. 在散布图中,当x增加,相应的y减少,则称x和y之间是()

GB T 12679-90汽车耐久性行驶试验方法

中华人民共和国国家标准 汽车耐久性行驶试验方法GB/T 12679—90 代替GB 1334—77 Motor vehicles—Durability running—Test method 1 主题内容与适用范围 本标准规定了汽车耐久性行驶试验方法。 本标准适用于大批量生产的汽车(矿用自卸汽车参照执行)。 2 引用标准 GB/T 12534汽车道路试验方法通则 GB/T 12545汽车燃料消耗量试验方法 GB/T 12548汽车速度表、里程表检验校正方法 GB/T 12678汽车可靠性行驶试验方法 JB 3743汽车发动机性能试验方法 3 术语 3.1 汽车耐久性 指汽车在规定的使用和维修条件下,达到某种技术或经济指标极限时,完 成功能的能力。 3.2 汽车耐久度 指汽车在规定的使用和维修条件下,能够达到预定的初次大修里程而又不 发生耐久性损坏的概率。 3.3 汽车耐久性损坏 指汽车构件的疲劳损坏已变得异常频繁;磨损超过限值;材料锈蚀老化;

汽车主要技术性能下降,超过规定限值;维修费用不断增长,已达到继续使用时经济上不合理或安全不能保证的程度。其结果是更换主要总成或大修汽车。 4 试验条件 按GB/T 12678的规定。 5 试验车辆 5.1 用于汽车耐久性行驶试验的汽车数量按表2确定。 5.2 本试验可用汽车使用试验、常规可靠性试验的同一组汽车。 5.3 整车、各总成及零部件的制造装配调整质量应符合该车技术条件的规定。 6 试验项目及方法 6.1 试验程序 试验程序按表1进行。

6.2 验收试验汽车 6.2.1 应按GB/T 12534中第4章之规定,调整内容须纳入故障统计。 6.3 磨合行驶 6.3.1 汽车磨合行驶里程及规范应按该车使用说明书的规定。出现故障须 纳入故障统计。 6.3.2 在汽车磨合行驶最后1000 km时测量机油消耗量。 6.4 发动机性能初试 按JB 3743中8.4之规定仅测量总功率。 注:在汽车耐久性行驶试验中,如果发动机大修,则在发动机大修前、后,均要按上述的规定各测量一次总功率。

汽车可靠性技术复习题一填空题1可靠性工程是研究如何评价

《汽车可靠性技术》复习题 一 填空题(''30103=?) 1 可靠性工程是研究如何评价、分析、提高 的工程技术。 2 衡量产品可靠性的四个主要指标包括:可靠度R (t )、 、 、故障率λ(t )。 3 产品发生故障或失效是指其不能完成 。 4 1983年到1984年,我国汽车行业开展了 ,试验车辆53台,里程36万km 。 5 汽车产品的质量从 是指的汽车的使用价值,从 是满足用户要求所应具备的质量特性。 6 概率加法定理表达式是P(A ∪B)= 。 7 概率乘法定理表达式是P(AB)= P(AB)= = 。 8 n 个数据从小到大排列,居于中央位置的数,称为 。 9 在一批数据中,出现次数最多的一个数叫 。 10 在一批数据中,最大与最小数值之差为 。 11 失效概率也称为不可靠度F (t ),通常用 来表示。 12 失效概率密度函数的定义式是: 。 13 当产品寿命服从指数分布时,平均故障前时间与故障率的关系表达式为: 。 14 基本可靠性反映了产品对维修人力费用和后勤保障资源的需求。确定基本可靠性指标时应统计产品的 。 15 任务可靠性是产品在规定的任务剖面中完成规定功能的能力。确定任务可靠性指标时仅考虑在任务期间 。 16 汽车可靠性研究中常用的分布有: 、超几何分布、二项分布、泊松分布、对数分布等。 17系统的可靠性设计有三个方面的含义:一是 ,二是 ,三是 。 18 可靠性模型主要有以下类型:串联系统、 、 ,此外还有 、复杂系统。 19 串联系统的数学模型表达式: 。 20 并联系统的数学模型表达式: 。 21 可靠性预测的流程是 ,自下而上。 22 可靠性分配的流程是 ,自上而下。

生产工艺过程的可靠性控制与改进

可靠性控制和改进 产品设计完成后,只是有了内在的可靠性,但在生产制造过程中,若无适当的质量控制或可靠性措施,就会引起可靠性退化现象。因此,必须加强以可靠性控制和改进为主要内容的可靠性管理。 一、生产工艺过程的可靠性控制 一般说来,生产工艺由主产制造加工方法、设备、工序、作业标准(规程)、检测方法等要素构成。同一种产品往往可采用各种不同的工艺制造,不同的工艺其构成要素的参数表述不同,对产品可靠性影响的作用也会有所不同。生产工艺对可靠性指标的作用与影响如下图所示。 显然,优良的工艺方法是生产过程中可靠性增长的保证。众所周知,产品在生产与使用过程中又常会有许多随机事件发生,

这就使直接辨识或定量表示生产工艺对可靠性指标的影响有相当困难,但我们可以把工艺引起的故障原因分析归类(见下图)。 从上图可以看出:由工艺引起的故障原因除了1.1与1.3外,其余都是生产过程中可靠性退化的原因。因此,可以归纳出在生产工艺方面实行可靠性控制的两大任务。 ①通过完善工艺结构,改进工艺方法,制定与实施作业标准等措施,保障生产过程中减少乃至消除可靠性退化。 ②通过工艺方面的可靠性分析、评审,找出影响可靠性的各种隐患,反馈给设计部门更正,改进设计质量,以提高产品的内在可靠性。 二、设备的工艺可靠性控制

设备的工艺可靠性是指在规定范围和时间内,设备保持满足工艺过程中与其有关的质量指标数值的性质。它是引起产品可靠性退化的重要因素。 依据设备在生产工艺过程中接受的任务不同,一般分为生产设备、检测设备和运输设备等,现分别简教其可靠性控制内容与要求。 1.生产设备的工艺可靠性控制 生产设备的工艺可靠性与其本身的完善程度、自动化水平、工作原理与控制方式等情况有密切联系。 用来减轻工人劳动强度或弥补人类工作能力的生产设备,因其使用效果取决于工人的技术熟练程度(如手工操作的电焊机),则其工艺可靠性控制要由操作工人素质(如技术水平、工作责任心等)来保证。为此,要重视和强化生产操作工人的质量意识教育和业务技能培训,制订与坚决实施先进合理的作业标准,通过人的控制,完成工艺任务的设备装置工艺可靠性。因加工结果与设备装置的调整及工艺参数密切相关,故应明确规定需控制的工艺参数值,严密监控工艺流程或工序,以保证工艺参数值稳定,从而保证这些设备装置的工艺可靠性。 自动控制的生产设备,则应重视和保证传感器、计算机程序等硬、软件的可靠性,以保证设备的工艺可靠性。

(完整)汽车零部件检测标准大全.(DOC),推荐文档.docx

汽车零部件检测标准大全 汽车发动机 压燃式发动机排气 污染物 ?ESC 稳态循环GB17691-2001车用压燃式发动机排气污染物试验排放限值及测试方法 ?ELR 负荷烟度0324**GB17691-2005 车用压燃式、气体燃料点燃1试验0512式发动机与汽车排气污染物排放限值及测试 ?ETC 瞬态循环方法 试验ECE R49压燃式发动机排气污染物 ?OBD ?耐久性 压燃式发动机排气0324GB3847-2005车用压燃式发动机和压燃式发2可见污染物0512动机汽车排气烟度排放限值及测量方法 ECE R24可见污染物 3 柴油机全负荷烟度 0324DB11/046-1994 汽车柴油机全负荷烟度测量 0512方法 车用点燃式发动机GB14762-2002车用点燃式发动机及装用点燃4及装用点燃式发动 0324 0512式发动机汽车排气污染物排放限值及测量方机汽车排气污染物法 GB/T17692-1999 汽车用发动机净功率测试方5发动机净功率0324 法 ECE R85发动机净功率 80/1269/EEC 发动机净功率 6发动机性能0324GB/T18297-2001 汽车发动机性能试验方法7发动机可靠性0324 GB/T19055-2003 汽车发动机可靠性试验方 法 8 发动机产品质量检 0324 QC/T901-1998 汽车发动机产品质量检验评定验评定试验方法 9冷却系0324 Q/QJX 004-2003 汽车发动机冷却系冷却能力 试验方法 QC/T630-1999 汽车排气消声器性能试验方法10排气消声器性能0324 QC/T631-1999 汽车排气消声器技术条件 GB/T 4759-1995 内燃机排气消声器测量方法 离合器1技术要求0324QC/T 25-2004 汽车干磨擦式离合器总成技术条件 QCT27-2004 汽车干磨擦式离合器台架试验方法

国产汽车使用可靠性研究与评价解析

国产汽车使用可靠性研究与评价 摘要 本文主要关注国产汽车的可靠性评价方法以及提升策略,通过介绍汽车可靠性的评价指标和相关的可靠性分布函数,对国产汽车的可靠性进行了评价。对于汽车的可靠性评价,本文采用故障分级和寿命指标的评定,同时使用了分布函数,包括指数分布、正态分布、威布尔分布等。在文中,清晰的指出国产汽车的可靠性提升应该主要集中在设计阶段和售后服务阶段,同时应该加强提升可靠性的动力和建立全面的可靠性监管体系。 关键词:国产汽车可靠性 0前言 随着社会经济的快速发展,汽车的保有量不断增加,人们对汽车的质量要求也越来越高,汽车工业的发展也收到了刺激。另一方面,汽车制造企业数量的不断增多,在制造过程中对质量的要求就必须得到保障,这给我国的汽车工业也带来了巨大的挑战。如何提高汽车产品的质量,如何增强其竞争力,迅速占领市场,成为新的汽车大国,是今后我国汽车业发展的重点。汽车产品的可靠性是衡量汽车产品安全品质与疲劳寿命的重要指标。汽车产品的可靠性与人身安全、经济效益密切相关。汽车由很多总成、部件、零件组成,如果其中一个很小的零部件损坏了或失效了,都可能造成汽车事故,引起严重的后果。提高汽车产品的可靠性是提高其安全性能的基础。 可以看出,在汽车所有性能中,可靠性是最基本的性能。只有可靠性得到了保证,汽车的安全性、快速性、舒适性、经济性及其它性能才能得到充分地发挥与体现,汽车可靠性的提高可以减少、防止故障和事故的发生,特别是避免灾难性的事故的发生。同时,提高汽车产品可靠性还可以提高顾客的满意度,改善汽车企业的声誉,增加汽车产品对顾客的吸引力,从而扩大其销路、提高其市场份额。在欲发展成为汽车大国,鼓励国内企业“走出去”的今天,这点尤其重要。 汽车可靠性的提高可以降低汽车产品整个寿命周期的费用,即从产品策划、产品设计、产品制造过程设计、试生产、正式投产、运输、存储、使用、维修一直到产品报废的全寿命周期费用。为了提高汽车产品的可靠性,需要对其进行可靠性设计、分析、试验、制造过程质量控制等,需要选用高质量的零部件、元器件,这都需要一定的费用。同时,汽车高的可靠度与低的故障率是紧密结合在一起的,汽车产品可靠性的提高可以降低保修费用、处理产品故障的成本、产品责任赔偿成本、维修成本、用于解决可靠性问题的成本费用。这些费用的节省,往往会大大超过进行可靠性工作所花费的成本费用。经相关证明,在设计和制造过程中用于提高产品可靠性的投资,在使用中节省的维修费用会比这些投资多几倍。若企图在产品可靠性上节省,往往会带来更大的损失。 1国内汽车可靠性发展现状 1.1国内汽车可靠性研究现状 国外发达国家非常重视汽车可靠性,早在上世纪50年代,美国、口本、德国等国家的汽车制造业就将可靠性技术应用于汽车设计、制造、检测、使用及管理

相关文档
相关文档 最新文档