文档库 最新最全的文档下载
当前位置:文档库 › 砂黏土变形与强度特性的大型三轴试验研究

砂黏土变形与强度特性的大型三轴试验研究

砂黏土变形与强度特性的大型三轴试验研究
砂黏土变形与强度特性的大型三轴试验研究

材料力学_强度理论与组合变形1

第八章强度理论与组合变形 §8-1 强度理论的概念 1.不同材料在同一环境及加载条件下对“破坏”(或称为失效)具有不同的抵抗能力(抗力)。 例1常温、静载条件下,低碳钢的拉伸破坏表现为塑性屈服失效,具有屈服极限 σ, s 铸铁破坏表现为脆性断裂失效,具有抗拉强度 σ。图9-1a,b b 2.同一材料在不同环境及加载条件下也表现出对失效的不同抗力。 例2常温静载条件下,带有环形深切槽的圆柱形低碳钢试件受拉时,不再出现塑性变形,而沿切槽根部发生脆断,切槽导致的应力集中使根部附近出现两向和三向拉伸型应力状态。图(9-2a,b)

例3 常温静载条件下,圆柱形铸铁试件受压时,不再出现脆性断口,而出现塑性变形,此时材料处于压缩型应力状态。图(9-3a ) 例4 常温静载条件下,圆柱形大理石试件在轴向压力和围压作用下发生明显的塑性变形,此时材料处于三向压缩应力状态下。图9-3b 3.根据常温静力拉伸和压缩试验,已建立起单向应力状态下的弹性失效准则,考虑安全系数后,其强度条件为 []σσ≤ ,根据薄壁圆筒扭转实验,可建立起纯剪应力状态下的弹性失效准则,考虑安全系数后,强度条件为 []ττ≤ 。 建立常温静载一般复杂应力状态下的弹性失效准则——强度理论的基本思想是: 1)确认引起材料失效存在共同的力学原因,提出关于这一共同力学原因的假设; 2)根据实验室中标准试件在简单受力情况下的破坏实验(如拉伸),建立起材料在复杂应力状态下共同遵循的弹性失效准则和强度条件。 3)实际上,当前工程上常用的经典强度理论都按脆性断裂和塑性屈服两类失效形式,分别提出共同力学原因的假设。 §8-2四个强度理论 1.最大拉应力准则(第一强度理论) 基本观点:材料中的最大拉应力到达材料的正断抗力时,即产生脆性断裂。 表达式:u σσ=+ max 复杂应力状态

第八章组合变形构件的强度习题

第八章组合变形构件的强度习题 一、填空题 1、两种或两种以上基本变形同时发生在一个杆上的变形,称为()变形。 二、计算题 1、如图所示的手摇绞车,最大起重量Q=788N,卷筒直径D=36cm,两轴承间的距离l=80cm,轴的许用应力[]σ=80Mpa。试按第三强度理论设计轴的直径d。 2、图示手摇铰车的最大起重量P=1kN,材料为Q235钢,[σ]=80 MPa。试按第三强度理论选择铰车的轴的直径。 3、图示传动轴AB由电动机带动,轴长L=1.2m,在跨中安装一胶带轮,重G=5kN,半径R=0.6m,胶带紧边张力F1=6kN,松边张力F2=3kN。轴直径d=0.1m,材料许用应力[σ]=50MPa。试按第三强度理论校核轴的强度。 4、如图所示,轴上安装有两个轮子,两轮上分别作用有F=3kN及重物Q,该轴处于

平衡状态。若[σ]=80MPa。试按第四强度理论选定轴的直径d。 5、图示钢质拐轴,AB轴的长度l AB=150mm, BC轴长度l BC=140mm,承受集中载荷F 的作用,许用应力[σ]=160Mpa,若AB轴的抗弯截面系数W z=3000mm3,。试利用第三强度理论,按AB轴的强度条件确定此结构的许可载荷F。(注:写出解题过程) 6、如图所示,由电动机带动的轴上,装有一直径D=1m的皮带轮,皮带紧边张力为2F=5KN,松边张力为F=2.5KN,轮重F P=2KN,已知材料的许用应力[σ]=80Mpa,试按第三强度理论设计轴的直径d。 7、如图所示,有一圆杆AB长为l,横截面直径为d,杆的一端固定,一端自由,在自由端B处固结一圆轮,轮的半径为R,并于轮缘处作用一集中的切向力P。试按第三强度理论建立该圆杆的强度条件。圆杆材料的许用应力为[σ]。

岩块的变形与强度性质

岩块的力学属性: 1.弹性(elasticity):在一定的应力范围内,物体受外力产生的全部变形当去除外力后能够立即恢复其原有的形状和大小的性质。 2.塑性(plasticity):物体受力后产生变形,在外力去除(卸荷)后不能完全恢复原状的性质。不能恢复的变形叫塑性变形或永久变形、残余变形。 3.粘性(viscosity):物体受力后变形不能在瞬时完成,且应变速率随应力增加而增加的性质。应变速率随应力变化的变形叫流动变形。 4.脆性(brittle):物质受力后,变形很小时就发生破裂的性质。 5.延性(ductile):物体能承受较大塑性变形而不丧失其承载力的性质。 第一节岩块的变形性质 一、单轴压缩条件下的岩块变形性质 1.连续加载下的变形性质 (1)加载方式: 单调加载(等加载速率加载和等应变速率加载) 循环加载(逐级循环加载和反复循环加载) (2)四个阶段: ①Ⅰ:OA段,孔隙裂隙压密阶段; ②Ⅱ:AC段,弹性变形至微破裂稳定发展阶段(AB段和BC段) 弹性极限→屈服极限 ③Ⅲ:CD段,非稳定破裂发展阶段(累进破裂阶段)→“扩容”现象发生 “扩容”:在岩石的单轴压缩试验中,当压力达到一定程度以后,岩石中的破裂(裂纹)继续发生和扩展,岩石的体积应变增量由压缩转为膨胀的力学过程。 —峰值强度或单轴抗压强度 ④Ⅳ:D点以后阶段,破坏后阶段(残余强度) 以上说明: 岩块在外荷作用下变形→破坏的全过程,具有明显的阶段性,总体上可分为两个阶段: 1)峰值前阶段(前区) 2)峰值后阶段(后区) (3)峰值前岩块的变形特征(Miller,1965) ①应力—应变曲线类型 米勒(Miller,1965)6类(σ—εL曲线),如图4.3所示: Ⅰ:近似直线型(坚硬、极坚硬岩石):如玄武岩、石英岩等; Ⅱ:下凹型(较坚硬、少裂隙岩石):如石灰岩、砂砾岩; Ⅲ:上凹型(坚硬有裂隙发育):如花岗岩、砂岩; Ⅳ:陡“S”型(坚硬变质岩):如大理岩、片麻岩; Ⅴ:缓“S”型(压缩性较高的岩石):如片岩; Ⅵ:下凹型(极软岩)。 法默(Farmer,1968),根据峰前σ—ε曲线把岩石划分三类,如图4.4所示: 准弹性岩石:细粒致密块状岩石,如无气孔构造的喷出岩、浅成岩浆岩和变质岩等。 具弹脆性性质。 半弹性岩石:空隙率低且具有较大内聚力的粗粒岩浆岩和细粒致密的沉积岩。 非弹性岩石:内聚力低,空隙率大的软弱岩石,如泥岩、页岩、千枚岩等。

结构面的变形与强度性质

1、岩体稳定性分析和地下水渗流分析通常把岩体视为由岩块(结构体)与结构面组成的地质体。 2、岩体工程中的软弱夹层问题: 如黄河小浪底水库工程左坝肩的泥化夹层; 葛洲坝水利工程坝基的泥化夹层; 黑河水库左坝肩单薄山梁的断层引发的渗漏问题; 长江三峡自然坡中的软弱夹层等。 这些软弱结构面在不同程度上影响和控制着工程岩体的稳定性。因此,结构面变形与强度性质的研究,在工程实践中具十分重要的实际意义: 1)大量工程实践表明:在工程荷载(小于10Mpa)范围内,工程岩体的失稳破坏有相当一部分是沿软弱结构面破坏的。因此,结构面的强度性质的研究是评价岩体稳定性的关键。 2)在工程荷载作用,结构面及其充填物的变形是岩体变形的主要组成部分,控制着工程岩体的变形特性。3)结构面是岩体中渗透水流的主要通道。 4)工程荷载作用下,岩体中的应力分布受结构面及其力学性质的影响。 第一节结构面的变形性质(特性) 结构面的变形包括法向变形和剪切变形两个方面。 一、结构面的法向变形 1.法向变形特征(Normal deformation) 设不含结构面岩块的变形为ΔVr,含结构面岩块的变形为ΔVt,那么结构面的法向闭合变形 ΔVj为: ΔVj=ΔVt-ΔVr 由结构面法向应力σn与变形的关系曲线可得如下特征: 1)σn↑,ΔVj↑↑,曲线呈上凹型; σn→σ0,σn-ΔVt变陡,与σn-ΔVr大致变形; 2)初始压缩阶段,ΔVt主要由结构面闭合造成的; 3)试验研究表明,当开始,含结构面岩块的变形由以结构面的闭合→岩块的弹性变形; 4)σn-ΔVj曲线的渐近线大致为: ΔVj=Vm 5)结构面的最大闭合量小于结构面的张开度(e)。 含结构面的岩块和不含结构面的岩块在法向上加荷、卸荷后的应力—变形曲线,见教材P76-77(Bandis 等,1983)。 2.法向变形本构方程(法向应力与变形之间的关系) 这方面的研究目前仍处于探索阶段,已提出的本构方程都在试验的基础上总结出来的经验方程,如Goodman,Bandis及孙广忠等人。 1)古德曼(Goodman,1974)双曲线函数拟合结构面法向应力σn与闭合变形ΔVj(mm)间的本构关系: 或式中:σi为结构面所受的初始应力。 2)班迪斯等(Bandis等,1983) 当σn→∞时,ΔVj→ 由初始法向强度的定义得:

组合变形及强度理论

组合变形和强度理论习题及解答 题1.图示,水平放置圆截面直角钢杆(2 ABC p ?),直径100d mm =,2l m =,1q k N m =,[]MPa 160=σ,试校核该杆的强度。 解: 1)各力向根部简化,根截面A 为危险面 扭矩:212nA M ql = ,弯矩 23 2 zA M ql =+,剪力2A Q ql = 2) 2348ZA M ql W d s p ==, 3132W d p =,3 116 p W d p =, 扭转剪应力:2 3 810.18n P M ql MPa W d t p ===, 3) []364.42r MPa s s = =<, ∴梁安全 题2、 平面曲杆在C 端受到铅重力P 作用。材料的 [σ]=160MPa 。若P=5KN ,l =1m ,a=0.6m 。试根据第四强度理论设计轴AB 的直径d. 解:属于弯扭组合变形 危险面A 处的内力为: 题3、平面曲拐在C 端受到铅垂力P 作用,材料的[σ]=160MPa ,E=2.1?10 5 MPa ,。 杆的直径 d=80mm ,l =1.4m ,a=0.6m ,l 1=1.0m 。若P=5KN (1) 试用第三强度理论校核曲拐的强度。 (2) 求1-1截面顶端处沿45?方向的正应变。 解: (1)危险A 上的内力为:5 1.4 7z M kN m =?? B

曲拐安全 (2)1-1截面内力:5,3z M kN m T kN m =?? 顶点的应力状态 题4. 图示一悬臂滑车架,杆AB 为18 号工字钢,其长度为 2.6l m =。试求当荷载F =25kN 作用在AB 的中点D 处时,杆内的最大正应力。设工字钢的自重可略去不计。 B 解:18号工字钢4 3421851030610.,.W m A m --=?? AB 杆系弯庄组合变形。 题5. 砖砌烟囱高30h m =,底截面m m -的外径13d m =,内径22d m =,自重 2000P kN =,受1/q kN m =的风力作用。试求: (1)烟囱底截面上的最大正应力; (2)若烟囱的基础埋深04h m =,基础及填土自重按21000P kN =计算,土壤的许用应力 []0.3MPa s =圆形基础的直径D 应为多大? 注:计算风力时,可略去烟囱直径的变化,把它看作是等截面的。 解:烟囱底截面上的最大正应力:

组合变形的强度计算

§9.1 组合变形概述 前面研究了杆件在拉伸(压缩)、剪切、扭转和弯曲四种基本变形时的强度和刚度问题。但在工程实际中,许多构件受到外力作用时,将同时产生两种或两种以上的基本变形。例如建筑物的边柱,机械工程中的夹紧装置,皮带轮传动轴等。 我们把杆件在外力作用下同时产生两种或两种以上的基本变形称为组合变形。常见的组合变形有: 1.拉伸(压缩)与弯曲的组合; 2.弯曲与扭转的组合; 3.两个互相垂直平面弯曲的组合(斜弯曲); 4.拉伸(压缩)与扭转的组合。 本章只讨论弯曲与扭转的组合。 处理组合变形问题的基本方法是叠加法,将组合变形分解为基本变形,分别考虑在每一种基本变形情况下产生的应力和变形,然后再叠加起来。组合变形强度计算的步骤一般如下: (1) 外力分析将外力分解或简化为几种基本变形的受力情况; (2) 内力分析分别计算每种基本变形的内力,画出内力图,并确定危险截面的位置; (3) 应力分析在危险截面上根据各种基本变形的应力分布规律,确定出危险点的位置及其应力状态。 (4) 建立强度条件将各基本变形情况下的应力叠加,然后建立强度条件进行计算。 §9.2 弯扭组合变形强度计算 机械中的转轴,通常在弯曲和扭转组合变形下工作。现以电机为例,说明此种组合变形的强度计算。图10-1a所示电机轴,在轴上两轴承中端装有带轮,工作时,电机给轴输入一定转矩,通过带轮的皮带传递给其它设备。带紧边拉力为F T1,松边拉力为F T2,不计带轮自重。

图10-1 (1) 外力分析将作用于带上的拉力向杆的轴线简化,得到一个力和一个力偶,如图10-1(b),其值分别为 力F使轴在垂直平面内发生弯曲,力偶M1和电机端产生M2的使轴扭转,故轴上产生弯曲和扭转组合变形。 (2) 内力分析画出轴的弯矩图和扭矩图,如图10-1(c)、(d)所示。由图知危险截面为轴上装带轮的位置,其弯矩和扭矩分别为

4-1 岩块的变形与强度性质(1)

作业
1.什么是岩体?岩体的结构一般根据什么来划分?岩体结构 可以分为哪几种结构类型? 2.什么是结构面?结构面按地质成因分为哪几种?各有什么 特征? 3.结构面具有哪些特征?结构面的存在对岩体的力学性质和 岩体稳定性有什么影响?试举例说明。 4.岩块的主要物理性质(包括水理性质)有哪些?各有什么工 程意义?

第四章 岩块的变形与强度性质
? ? ? ? 有关的基本概念 岩块的变形性质 岩块的强度性质 岩石的破坏判据

第一节 概述
(一)研究岩块力学性质的意义
岩石的力学性质
岩体

(水) 岩块 结构面 (地应力) 境
主要力学性质:变形与强度、破坏 研究岩块力学性质的主要方法:室内试验

(二)材料受力所表现出的 σ 几种基本力学性质 ? 弹性 物体受外力作用产生变形,除去外
力(荷载)后,变形立刻完全恢复 的性质,称为弹性。该变形为弹性 变形,该物体为弹性介质。
岩石的力学性质
直线关系
0
ε
? 塑性 物体受外力作用产生变形,除去 外力(荷载)后,变形不能完全 恢复的性质,称为塑性。不能恢 复的变形称为塑性变形(永久变 形或残余变形)。 在外力作用下,或者在一定应力 范围内,只发生塑性变形的物体 称为塑性介质。
线弹性(理想弹性)
σ
σs
0
ε
理想弹塑性材料

物体受外力作用后变形不能在瞬间 σ ? 粘性 完成,且变形速率随应力增加而增 加的性质,称为粘性。 ? 脆性 物体受外力作用后,变形很小时就 dε & ε dt 发生破裂的性质,称为脆性。相应 0 理想粘性材料 的破坏称为脆性破坏。 物体受外力作用后,发生较大变形时发生破坏,称为 塑性破坏。 脆性破坏与塑性破坏的区别:以材料受力破坏前的总应变和 全应力-应变曲线上负坡的坡降大小划分。破坏前总应变小, 负坡较陡的为脆性破坏,反之为塑性破坏。工程上以5%进行 划分。脆性破坏--破坏前的总应变<5%;塑性破坏--破坏前的 总应变>5%。
岩石的力学性质

非饱和土的强度及变形特性

目录 1概述 2非饱和土基本特性 3应力状态变量 3.1吸力 3.2有效应力 3.3应力状态变量. 4强度理论 4.1Mohr一Coulomb准则 4.2非饱和土的破坏准则 4.3非饱和土抗剪强度公式的讨论 5变形特性

岩土工程中的非饱和土比比皆是,主要是自然干燥土和压实土。在地基工程、边坡工程和洞室工程中尤为常见,因此研究非饱和土的性质实属必要。非饱和土力学涉及的一系列工程,如土坝的建造与运行、环境条件变化情况下的天然土坡、竖直挖方的边坡稳定、膨胀土造成的地面隆起及湿陷性土中的许多实际问题,均要对土的渗流、体变和抗剪强度特性有所了解才能解决。非饱和土是由固相、液相和气相组成的复合介质,其性质远比饱和土复杂。目前对非饱和土的研究还停留在初步阶段,对非饱和土力学涉及的实际问题还缺乏建立在非饱和土三相特性基础之上的严密理论和正确解决方案。非饱和土分布广,并且应用广,但对其特性研究不足的矛盾使得对非饱和土问题的解决成为日益紧迫的研究课题。 1 概述 1936年召开的第一届国际土力学和基础工程会议为建立饱和土力学的原理和公式提供了论坛,这些原理和公式在随后几十年的研究工作中始终起着关键性的作用。在同一会议上讨论了有关非饱和土性状的许多论文,但遗憾的是没有出现适用于非饱和土的类似的原理和公式。随后的岁月非饱和土理论发展缓慢(Fredlund,1979),一直到50年代后期,解释非饱和土性状的若干概念才在英国帝国大学建立起来(Bishop,1959)。 20世纪60年代前,非饱和土力学研究的主要特点是以毛细作用为主要研究内容。在30年代进行大规模城市建设的时候,兴建了大量与城市建设有关的灌溉工程和交通工程,使工程师感到困难的就是地下水位以上土体中水的流动问题。他们使用了毛细作用来描述水从地下水位向上的流动,以后对土中毛细水流动的研究至少长达20年。在1936年的国际会议上,Ostashev 提出了两篇有关土中毛细作用的论文,他指出了土中存在毛细作用;Boulichev 介绍了计算毛细水压力和毛细水高度的方法。Terzaghi 在《理论土力学》中总结和吸收Hogentogle 和Barder 的研究成果,假定土的孔隙率n 和渗透系数k 不变,提出毛细水上升到某个高度z 所需要的时间t :log nh h z t k h z h ????=- ???-???? 式中:h ——毛细水的最大高度。 这一阶段研究的主要精力都在毛细水,局限性明显,因此研究进展缓慢,所取得的成功有限。 20世纪60年代到80年代末,这一阶段研究的特点是将饱和土力学有关理论借用到非饱和土力学研究中,以Bishop 和Fredlund 为代表。Hogentogle 和Barder 就已经认识到毛细水的应力状态对非饱和土强度的影响,并认为毛细水的流动严格符合公认的表面张力、重力和水力学原理;Bernatizk 也已经观测到水-气弯液面会使土的强度增加,并建议用土的无侧限抗压强度来研究毛细张力;Black 和Crony (1957),Williams (1957),Bishop (1960)等和Aitchison (1967)将饱和土有效应力原理引进非饱和土中,提出非饱和土有效应力的概念,并用其解决非饱和土的强度问题;Coleman (1962),Matyas 和Radhakrishna (1968),以及Fredlund 和Morgenstern (1977)用两个独立的应力状态变量来研究非饱和土的力学性质。这阶段对非饱和土强度问题取得一些公认的结果,对变形问题还处于探索阶段。 20世纪80年代后,对非饱和土的变形进行了更深入地研究。Alonso(1990)和Toll(1990)分别提出了土的弹塑性本构模型;Alonso(1992)根据非饱和土(膨胀土)的变形特性提出了描述膨胀土体积和剪切变形的本构模型;陈正汉(1998)

第十二章 组合变形的强度计算

第十二章 组合变形的强度计算 思 考 题 1 何谓组合变形?如何计算组合变形杆件横截面上任一点的应力? 2 何谓平面弯曲?何谓斜弯曲?二者有何区别? 3 何谓单向偏心拉伸(压缩)?何谓双向偏心拉伸(压缩)? 4 将斜弯曲、拉(压)弯组合及偏心拉伸(压缩)分解为基本变形时,如何确定各基本变形下正应力的正负? 5 对斜弯曲和拉(压)弯组合变形杆进行强度计算时,为何只考虑正应力而不考虑剪应力? 6 什么叫截面核心?为什么工程中将偏心压力控制在受压杆件的截面核心范围内? 习 题 1 矩形截面悬臂梁受力如图所示,F通过截面形心且与y轴成角,已知F=1.2kN ,l=2m,5.1, 12==?b h ?,材料的容许正应力[σ]=10MPa ,试确定b和h的尺寸。 2 承受均布荷载作用的矩形截面简支梁如图所示,q与y轴成?角且通过形心,已知l=4m,b=10cm,h=15cm,材料的容许应力[σ]=10MPa ,试求梁能承受的最大分布荷载m ax q 。 题 1 图 题 2 图 3 如图所示斜梁横截面为正方形,a =10cm,F=3kN作用在梁纵向对称平面内且为铅垂方向,试求斜梁最大拉压应力大小及其位置。

4 矩形截面杆受力如图所示,F 1和F2的作用线均与杆的轴线重合,F3作用在杆的对称平面内,已知F1=5kN ,F2=10kN ,F3.=1.2kN , =2m,b=12cm ,h=18cm ,试求杆中的最大压应力。 题 3 图 题 4 图 5 图为起重用悬臂式吊车,梁AC由№18工字钢制成,材料的许用正应力[σ] =100MPa 。当吊起物重(包括小车重)Q=25kN,并作用与梁的中点D时,试校核梁AC的强度。 6 柱截面为正方形,边长为a,顶端受轴向压力F作用,在右侧中部挖一个槽(如图),槽深4 a 。求开槽前后柱内的最大压应力值。 题 5 图 题 6 图 7 砖墙及其基础截面如图,设在1m长的墙上有偏心力F=40kN 的作用,试求截面1-1和2-2上的应力分布图。 8 矩形截面偏心受拉木杆,偏心力F=160kN ,e=5cm ,[σ]=10MPa ,矩形截面宽度b=16cm ,试确定木杆的截面高度h

软土强度与变形特性的微细观分析

第四章软土强度与变形特性的微细观分析 §4.1 微观测试仪器简介 §4.1.1环境扫描电子显微镜(ESEM) 借助电子显微技术技术,可直接观察到土体的微观结构,从微观层次解释土体的工程性质。环境扫描电子显微镜(ESEM)是现阶段研究土体微结构重要的、最常用的显微观察仪器,该仪器能对含水土样直接观察,不需干燥和镀膜处理,可在接近天然原状条件下观测土体的微观结构图像,是一种很有前景的土体微观试验研究手段。扫描电子显微镜(ESEM)的工作原理如图4-1所示;图4-2所示为荷兰FEI 公司生产的型号为Quanta 200的环境扫描电子显微镜,其主要技术参数如下: 1 分辨率: 二次电子像: 高真空模式 1.2nm @ 30kV; 3.0nm @ 1kV 低真空模式 1.5nm @ 30kV; 3.0nm @ 3kV 环境真空模式 1.5nm @ 30kV

背散射电子: 高真空和低真空模式: 2.5nm @ 30kV 扫描透射STEM探测器: 0.8nm @ 30kV 图4-1 扫描电镜原理示意图

2 加速电压200V ~30kV,连续可调 3 放大倍数:12倍~100万倍 4 电子枪:高亮度肖特基热场发射电子枪,4 极电子枪单 5 最大电子束流:100nA 6 样品室压力最高达4000Pa 7 样品台:全对中样品台,5轴马达驱动 X≥100mm,Y≥100mm,Z≥60mm,T≥-5~+70°(手动)R=360°连续旋转,最大样品尺寸: 左右284mm。 图4-2 Quanta 200环境电子扫描显微镜 图4-3所示为膨润土粉末在不同放大倍数的电子扫描图片。

第五章 结构面的变形与强度性质

第五章结构面的变形与强度性质 1、岩体稳定性分析和地下水渗流分析通常把岩体视为由岩块(结构体)与结构面组成的地质体。 2、岩体工程中的软弱夹层问题: 如黄河小浪底水库工程左坝肩的泥化夹层; 葛洲坝水利工程坝基的泥化夹层; 黑河水库左坝肩单薄山梁的断层引发的渗漏问题; 长江三峡自然坡中的软弱夹层等。 这些软弱结构面在不同程度上影响和控制着工程岩体的稳定性。因此,结构面变形与强度性质的研究,在工程实践中具十分重要的实际意义: 1)大量工程实践表明:在工程荷载(小于10Mpa)范围内,工程岩体的失稳破坏有相当一部分是沿软弱结构面破坏的。因此,结构面的强度性质的研究是评价岩体稳定性的关键。 2)在工程荷载作用,结构面及其充填物的变形是岩体变形的主要组成部分,控制着工程岩体的变形特性。 3)结构面是岩体中渗透水流的主要通道。 4)工程荷载作用下,岩体中的应力分布受结构面及其力学性质的影响。 第一节结构面的变形性质(特性) 结构面的变形包括法向变形和剪切变形两个方面。 一、结构面的法向变形 1.法向变形特征(Normal deformation) 设不含结构面岩块的变形为ΔV r,含结构面岩块的变形为ΔV t,那么结构面的法向闭合变形ΔV j为: ΔV j=ΔV t-ΔV r 由结构面法向应力σn与变形的关系曲线可得如下特征: 1)σn↑,ΔV j↑↑,曲线呈上凹型; σn→σ0,σn-ΔV t变陡,与σn-ΔV r大致变形;

2)初始压缩阶段,ΔV t 主要由结构面闭合造成的; 3)试验研究表明,当c n σσ3 1=开始,含结构面岩块的变形由以结构面的闭合→岩块的弹性变 形; 4)σn -ΔV j 曲线的渐近线大致为: ΔV j =V m 5)结构面的最大闭合量小于结构面的张开度(e )。 含结构面的岩块和不含结构面的岩块在法向上加荷、卸荷后的应力—变形曲线,见教材P 76-77 (Bandis 等,1983)。 2.法向变形本构方程(法向应力与变形之间的关系) 这方面的研究目前仍处于探索阶段,已提出的本构方程都在试验的基础上总结出来的经验方程,如Goodman ,Bandis 及孙广忠等人。 1)古德曼(Goodman ,1974)双曲线函数拟合结构面法向应力σn 与闭合变形ΔV j (mm )间的本构关系: i j m j n V V V σσ??? ? ??+?-?=1 或 n i m m j V V V σσ1 -=? 式中:σi 为结构面所受的初始应力。 2)班迪斯等(Bandis 等,1983) 图5.1 典型岩块和结构面法向变形曲线

组合变形与强度理论

组合变形和强度理论习题及解答 题1.图示,水平放置圆截面直角钢杆(2 ABC p ?),直径100d mm =,2l m =,1q k N m =,[]MPa 160=σ,试校核该杆的强度。 解: 1)各力向根部简化,根截面A 为危险面 扭矩:212nA M ql = ,弯矩 23 2 zA M ql =+,剪力2A Q ql = 2) 23 48ZA M ql W d s p ==, 3132W d p =,3 116p W d p =, 扭转剪应力:2 3 810.18n P M ql MPa W d t p ===, 3) []364.42r MPa s s = =<, ∴梁安全 题2、 平面曲杆在C 端受到铅重力P 作用。材料的 [σ]=160MPa 。若P=5KN ,l =1m ,a=0.6m 。试根据第四强度理论设计轴AB 的直径d. 解:属于弯扭组合变形 危险面A 处的内力为: 53z M kN m T kN m =?

4 5.6371r M kN m d mm = = = 题3、平面曲拐在C 端受到铅垂力P 作用,材料的[σ]=160MPa ,E=2.1?105 MPa ,。 杆的直径d=80mm ,l =1.4m ,a=0.6m ,l 1=1.0m 。若P=5KN (1) 试用第三强度理论校核曲拐的强度。 (2) 求1-1截面顶端处沿45?方向的正应变。 解: (1)危险A 上的内力为:5 1.47z M kN m =? 50.6 3T kN m =? []33 3344 6 4 7.6280 5.031032 7.62101511605.0310r z r r z M kN m W mm M MPa MPa W p s s = ?? ′===<=′ 曲拐安全 (2)1-1截面内力:5,3z M kN m T kN m =? 顶点的应力状态 6 4 510 99.45.0310MPa s ′==′ 6 4 31029.82 5.0310MPa t ′==创 B

第三章 土的变形特性

第三章 土的变形特性 3.1 应力-应变试验与试验曲线 目前,为了测定土的变形和强度特性,在土工试验方面经常使用的土工仪器有固结仪、直剪仪和常规三轴仪。另外,还有真三轴仪、平面应变仪和扭剪仪等,但使用不很普遍。由于能施加复合应力的试验设备的设计、制造和使用都比较困难,因此目前通常采用的研究方法是通过少量简单的试验,求取在比较简单的应力状态下的应力应变关系试验曲线,然后利用一些理论,如增量弹塑性理论,把这些试验结果推广应用到复杂的应力状态上去,建立所需要的应力-应变模型。土的应力-应变模型建立后,再用应力路径不同的试验以及用复杂应力状态的试验来验证模型的正确性。必要时,可对建立的应力应变模型进行修正。 下面简要介绍各向等压力固结试验和三轴压缩试验的情况,以及相应的试验曲线的特性。 3.1.1 各向等压力固结试验和土的固结状态 各向等压力固结试验,即123σσσ==条件下的排水压缩试验,可用常规三轴仪进行。 试验得到的应力-应变关系曲线,通常称为压缩和回弹曲线,如图3-1 所示。一般情况下,土体压缩时,土体孔隙比e 与平均有效应力p '的关系在半对数坐标图上可简化为直线关系,压缩曲线的方程可表示为: 0ln e e p λ'=- (3.1.1) 式中0e ——p '等于单位应力时土体的孔隙比; λ——半自然对数坐标图上压缩曲线的斜率。 当卸荷及重复加荷时,土体孔隙比与平均有效应力的关系在半对数坐标上也可近似表示为直线关系,回弹曲线的方程可表示为: ln e e p κκ'=- (3.1.2) 式中e κ——回弹曲线上p ′等于单位压力时土体的孔隙比; κ——半自然对数坐标图上压缩曲线的斜率。

常见岩石的强度性质

当前位置:课程学习/第四章岩块的变形与强度性质/第三节岩块的强度性质 第三节岩块的强度性质 岩块的强度是指岩块抵抗外力破坏的能力。 根据受力状态不同,岩块的强度可分为单轴抗压强度、单轴抗拉强度、剪切强度、三轴压缩强度等。 一、单轴抗压强度σc 1、定义 在单向压缩条件下,岩块能承受的最大压应力,简称抗压强度(MPa)。 2、研究意义 (1)衡量岩块基本力学性质的重要指标。 (2)岩体工程分类、建立岩体破坏判据的重要指标。 (3)用来估算其他强度参数。 3、测定方法 抗压强度试验 点荷载试验 4、常见岩石的抗压强度 常见岩石的抗压强度 二、单轴抗拉强度σt 1、定义 单向拉伸条件下,岩块能承受的最大拉应力,简称抗拉强度。 2、研究意义 (1)衡量岩体力学性质的重要指标

(2)用来建立岩石强度判据,确定强度包络线 (3)选择建筑石材不可缺少的参数 3、测定方法 直接拉伸法 间接法(劈裂法、点荷载法) 4、常见岩石的抗拉强度 常见岩石的抗拉强度 5、抗拉强度与抗压强度的比较 岩石中包含有大量的微裂隙和孔隙,岩块抗拉强度受其影响很大,直接削弱了岩块的抗拉强度。相对而言,空隙对岩块抗压强度的影响就小得多,因此,岩块的抗拉强度一般远小于其抗压强度。 通常把抗压强度与抗拉强度的比值称为脆性度,用以表征岩石的脆性程度。 岩块的几种强度与抗压强度比值

三、剪切强度 1、定义 在剪切荷载作用下,岩块抵抗剪切破坏的最大剪应力,称为剪切强度。 2、类型 (1)抗剪断强度:指试件在一定的法向应力作用下,沿预定剪切面剪断时的最大剪应力。 (2)抗切强度:指试件上的法向应力为零时,沿预定剪切面剪断时的最大剪应力。 (3)摩擦强度:指试件在一定的法向应力作用下,沿已有破裂面(层面、节理等)再次剪切破坏时的最大剪应力。 3、研究意义 反映岩块的力学性质的重要指标。 用来估算岩体力学参数及建立强度判据。 4、抗剪断强度的测试方法 直剪试验 变角板剪切试验 三轴试验 5、常见岩石的剪切强度 常见岩石的剪切强度

组合变形的强度计算.

第8章 组合变形的强度计算 8.1 组合变形的概念 在前面几章中,研究了构件在发生轴向拉伸(压缩)、剪切、扭转、弯曲等基本变形时的强度和刚度问题。在工程实际中,有很多构件在荷载作用下往往发生两种或两种以上的基本变形。若有其中一种变形是主要的,其余变形所引起的应力(或变形)很小,则构件可按主要的基本变形进行计算。若几种变形所对应的应力(或变形)属于同一数量级,则构件的变形为组合变形。例如,如图8.1(a)所示吊钩的AB 段,在力P 作用下,将同时产生拉伸与弯曲两种基本变形;机械中的齿轮传动轴(如图8.1(b)所示)在外力作用下,将同时发生扭转变形及在水平平面和垂直平面内的弯曲变形;斜屋架上的工字钢檀条(如图8.2(a)所示),可以作为简支梁来计算(如图8.2(b)所示),因为q 的作用线并不通过工字截面的任一根形心主惯性轴(如图8.2(c)所示),则引起沿两个方向的平面弯曲,这种情况称为斜弯曲。 图8.1 吊钩及传动轴 屋架 屋面 檀条 q (a) (b)(c) (a) (b) (c) 图8.2 斜屋架上的工字钢檀条 求解组合变形问题的基本方法是叠加法,即首先将组合变形分解为几个基本变形,然

材料力学 180 后分别考虑构件在每一种基本变形情况下的应力和变形。最后利用叠加原理,综合考虑各基本变形的组合情况,以确定构件的危险截面、危险点的位置及危险点的应力状态,并据此进行强度计算。实验证明,只要构件的刚度足够大,材料又服从胡克定律,则由上述叠加法所得的计算结果是足够精确的。反之,对于小刚度、大变形的构件,必须要考虑各基本变形之间的相互影响,例如大挠度的压弯杆,叠加原理就不能适用。 下面分别讨论在工程中经常遇到的几种组合变形。 8.2 斜 弯 曲 前面已经讨论了梁在平面弯曲时的应力和变形计算。在平面弯曲问题中,外力作用在截面的形心主轴与梁的轴线组成的纵向对称面内,梁的轴线变形后将变为一条平面曲线,且仍在外力作用面内。在工程实际中,有时会遇到外力不作用在形心主轴所在的纵向对称面内,如上节提到的屋面檀条的受力情况(如图8.2所示)。在这种情况下,杆件可考虑为在两相互垂直的纵向对称面内同时发生平面弯曲。实验及理论研究指出,此时梁的挠曲线不再在外力作用平面内,这种弯曲称为斜弯曲。 现在以矩形截面悬臂梁为例(如图8.3(a)所示),分析斜弯曲时应力和变形的计算。这时梁在F 1和F 2作用下,分别在水平纵向对称面(Oxz 平面)和铅垂纵向对称面(Oxy 平面)内发生对称弯曲。在梁的任意横截面m —m 上,由F 1和F 2引起的弯矩值依次为 1y M F x =,2()z M F x a =- 在横截面m —m 上的某点(C y ,)z 处由弯矩M y 和M z 引起的正应力分别为 y y M z I σ'= ,z z M y I σ''=- 根据叠加原理,σ'和σ''的代数和即为C 点的正应力,即 y z y z M M z y I I σσ'''+=- (8-1) 式中,I y 和I z 分别为横截面对y 轴和z 轴的惯性矩;M y 和M z 分别是截面上位于水平 和铅垂对称平面内的弯矩,且其力矩矢量分别与y 轴和z 轴的正向一致(如图8.3(b)所示)。在具体计算中,也可以先不考虑弯矩M y 、M z 和坐标y 、z 的正负号,以其绝对值代入,然后根据梁在F 1和F 2分别作用下的变形情况,来判断式(8-1)右边两项的正负号。 (a) (b) 图8.3 斜弯曲

浅谈土的变形特性

2010年 第4期(总第194期) 黑龙江交通科技 HEIL ONGJI A NG JI A OTONG KEJI No .4,2010(Sum No .194) 浅谈土的变形特性 李连志1,王 佳2 (1 黑龙江工程学院土木与建筑工程学院;2 黑龙江省公路局) 摘 要:土的力学性质研究是建立在三大力学基础之上,但又因为土的多相性、散体性和自然变异性,使其与 金属材料有着本质的区别。在土的非线性、剪胀性、硬化与软化、应力路径和应力历史等方面分析了土有别于金属材料的变形特性。 关键词:土体;变形特性;本构关系 中图分类号:U 416 1 文献标识码:C 文章编号:1008-3383(2010)04-0004-01 收稿日期:2010-02-08 0 概 述 土是一种具有多相性、散体性和自然变异性的材料,与材料力学中的金属有着本质的区别。为了研究土的变形往往应用压缩固结仪、三轴压缩仪、平面应变仪、真三轴仪等进行试验,得出土的应力 应变关系。这种关系反映了土体变形的特性。但试验有一定的局限性,试验总是在某种简化条件下进行的,即使真三轴仪能考虑三维受力状态,试验也只能按某种应力状态,某种加荷方式进行。为了更好的了解土的变形特性,仅就土区别于金属材料的变形特性阐述。1 非线性和非弹性 大部分坚硬材料,如金属和混凝土,在受轴向拉压时,应力 应交关系如图1(a)所示,初始阶段为直线,材料处于弹性变形状态。当应力达到某一临界值时,应力 应交关系明显地转为曲线,材料同时存在弹性变形和塑性变形。土体也有类似的特性,图1(b)为土的三轴试验得出的轴向应力 1- 3与轴向应变 之间的关系曲线。与金属等材料不同的是,初始的直线阶段很短,对于松砂和正常固结黏土,几乎没有直线阶段,加荷一开始就呈非线性。土体的非线性变形特性比其他材料明显得多。 这种非线性变化的产生,就是因为除弹性变形以外还出现了不可恢复的塑性变形。土体是松散介质,受力后颗粒之间的位置调整在荷载卸除后,不能恢复,形成较大的塑性变形。如果加荷到某一应力后再卸荷,曲线将如图1(b)虚线所示。oa 为加荷段,ab 为卸荷段。卸荷后能恢复的应变 e 即弹性应变。不可恢复的那部分应变 p 为塑性应变。经过一个加荷退荷循环后,再加荷,将如图1(b)中的bc 段所示,它并不与ab 线重合,而存在一个环,叫回滞环。回滞环的存在表示卸荷再加荷过程中能量消耗了,要给以能量的补充。再加荷还会产生新的不可恢复的变形,不过同一荷载多次重复后塑性变形逐渐减小。 土体在各种应力状态下都有塑性变形,甚至在加荷初始应力 应变关系接近直线的阶段,变形仍然包含弹性和塑性两部分。卸荷后不能恢复到原点。非线性和非弹性是土体变形的突出特点。 2 塑性体积应变和剪胀性 土体受力后会有明显的塑性体积变形。由土样在三轴仪中逐步施加各向相等的压力P 后,再卸除,所得到的P 与体积应变 v 之间的关系曲线,可见存在不可恢复的塑性体积应变,而且它往往比弹性体积应变更大。这一点与金属不同,金属被认为是没有塑性体积变形的。塑性变形是由于晶格之间的错动滑移而造成的,它只体现形状改变,不产生体积变化。土体的塑性变形也与颗粒的错位滑移有关。在各向相等的压力作用下,从宏观上来说,是不受剪切的,但在微 观上,颗粒间是有错动的。压缩前,颗粒架空,存在较大孔隙,压缩后,有些颗粒挤入原来的孔隙中,颗粒错动,相对位置调整,颗粒之间发生着剪切位移。当荷载卸除后,不能再使它们架空,无法恢复到原来的体积,就形成较大的塑性体 积变形。 (a)金属;(b)土体 图1 材料的应用 应变关系 不仅压力会引起塑性体积变形,而且剪切也会引起塑性体积变形。剪切引起的体积收缩叫剪缩。软土和松砂常表现为剪缩。若剪切引起体积膨胀,则称之为剪胀。紧密砂土,超固结黏土,常表现为剪胀。文献中常把剪切引起的体积变化,不管剪缩还是剪胀,统称为剪胀性,剪缩是负的剪胀。剪胀性是散粒体材料的一个非常重要的特性。3 硬化和软化 三轴试验测得的轴向应力 1- 3与轴向应变 a 的关系曲线有两种形态。图2(a)所示曲线有一直上升的趋势直至破坏,这种形状的应力应变关系称为硬化型。软土和松砂表现为这种形态,图2(b)所示曲线前面部分是上升的,应力达到某一峰值后转为下降曲线,即应力在降低,而应变却在增加,这种形态称之为软化型。紧密砂和超压密黏土表现为这种形态。 密砂受剪时,由于顺位排列紧密,一部分颗粒要滚过另一部分颗粒而产生相对错动,须克服较大的 咬合 作用力,故表现为较高的抗剪强度。而一旦一部分颗粒绕过了另一部分颗粒,结构便变松,抗剪能力减小了,因而表现为软化。超固结黏土剪切破坏后结构黏聚力丧失,也降低强度,表现为软化。对于松砂和软土,剪切过程中结构变得紧密,一般表现为剪缩,因而强度也在提高,呈现硬化特性。硬化和软化与剪缩和剪胀,常有一定联系,但也不是必然联系,软化类型的土往往是剪胀的,剪胀土未必都是软化的。 (下转第7页) 4

《材料力学》第8章 组合变形及连接部分的计算 习题解

第八章 组合变形及连接部分的计算 习题解 [习题8-1] 14号工字钢悬臂梁受力情况如图所示。已知m l 8.0=,kN F 5.21=, kN F 0.12=,试求危险截面上的最大正应力。 解:危险截面在固定端,拉断的危险点在前上角点,压断的危险点在后下角,因钢材的拉压 性能相同,故只计算最大拉应力: 式中,z W ,y W 由14号工字钢,查型钢表得到3 102cm W z =,3 1.16cm W y =。故 MPa Pa m m N m m N 1.79101.79101.168.0100.11010228.0105.2363 63363max =?=???+?????=--σ [习题8-2] 受集度为 q 的均布荷载作用的矩形截面简支梁,其荷载作用面与梁的纵向对称面间的夹角为 030=α,如图所示。已知该梁材料的弹性模量 GPa E 10=;梁的尺寸为 m l 4=,mm h 160=,mm b 120=;许用应力MPa 12][=σ;许用挠度150/][l w =。试校核梁的强度和刚度。

解:(1)强度校核 )/(732.1866.0230cos 0m kN q q y =?== (正y 方向↓) )/(15.0230sin 0m kN q q z =?== (负z 方向←) )(464.34732.181 8122m kN l q M y zmaz ?=??== 出现在跨中截面 )(24181 8122m kN l q M z ymaz ?=??== 出现在跨中截面 )(51200016012061 61322mm bh W z =??== )(3840001201606 1 61322mm hb W y =??== 最大拉应力出现在左下角点上: y y z z W M W M max max max + = σ MPa mm mm N mm mm N 974.1138400010251200010464.33 636max =??+??=σ 因为 MPa 974.11max =σ,MPa 12][=σ,即:][max σσ< 所以 满足正应力强度条件,即不会拉断或压断,亦即强度上是安全的。 (2)刚度校核 =

土的应力应变特性

1.4 土的应力应变特性 1.4.1 土应力应变关系的非线性 1.4.2 土的剪胀性 1.4.3 土体变形的弹塑性 1.4.4 土应力应变的各向异性 1.4.5 土的结构性 1.4.6 土的流变性 1.4.7 影响土应力应变关系的应力条件 由于土是岩石风化而成的碎散颗粒的集合体,一般包含有固、液、气三相,在其形成的漫长的地质过程中,受风化、搬运、沉积、固结和地壳运动的影响,其应力应变关系十分复杂,并且与诸多因素有关。其中主要的应力应变特性是其非线性、剪胀(缩)性和弹塑性。主要的影响因素是应力水平(Stress level)、应力路径(Stress path)和应力历史(Stress history),亦称3S 影响。 1.4.1 土应力应变关系的非线性 由于土由碎散的固体颗粒组成,土宏观的变形主要不是由于颗粒本身变形,而是由于颗粒间位置的变化。这样在不同应力水平下由相同应力增量而引起的应变增量就不会相同,亦即表现出非线性。 图2‐3‐1 表示土的常规三轴压缩试验的一般结果,其中实线表示密实砂土或超固结粘土,虚线表示松砂或正常固结粘土。 从图(a)可以看到,正常固结粘土和松砂的应力随应变增加而增加,但增加速率越来越慢,最后逼近一渐近线;而在密砂和超固结土的试验曲线中,应力开始随应变增加而增加,达到一个峰值之后,应

力随应变增加而下降,最后也趋于稳定。在塑性理论中,前者称为应变硬化(或加工硬化),后者称为应变软化(或加工软化)。应变软化过程实际上是一种不稳定过程,有时伴随着应力的局部化——剪切带的产出现,其应力应变曲线对一些影响因素比较敏感。而且由于其应力应变间不成单值函数关系,所以反映土的应变软化的数学模型一般形式复杂,难以准确反映这种应力应变特点;此外,反映应变软化的数值计算方法也有较大难度。 1.4.2 土的剪胀性 由于土是碎散的颗粒集合,在各向等压或等比压缩时,孔隙减少,从而发生较大的体积压缩。这种体积压缩大部分是不可恢复的,如图2‐3‐2 所示。 在图2‐3‐1(b)中,可以发现,在三轴试验中,对于密砂或强超固结粘土偏差应力σ1-σ3增加引起了轴应变ε1 的增加,但除开始时少量体积压缩(正体应变)外,发生明显的体胀(负体应变)。由于在常规三轴压缩试验中,平均主应力增量?p =1/3(σ1?σ3)在加载过程中总是正的,不可能是体积的弹性回弹,因而这种体应变只能是由剪应力引起的,被称为剪胀性(Dilatancy)。 广义的剪胀性指剪切引起的体积变化,包括体胀,也包括体缩。后者也常被称为“剪缩”。土的剪胀性实质上是由于剪应力引起土颗粒间相互位置的变化,使其排列发生变化而使颗粒间的孔隙加大(或减小),从而发生了体积变化。 1.4.3 土体变形的弹塑性 在加载后卸载到原应力状态时,土一般不会恢复到原来的应变状态。其中有部分应变是可恢复的,部分应变是不可恢复的塑性应变,并且后者往往占很大比例。可以表示为: ε=εe+εp(2.3.1) 其中εe表示弹性应变,εp表示塑性应变。图2‐3‐3表示的承德中密砂(一种天然均匀细砂)在σ3= 100kPa的三轴试验结果。 其中单调加载试验曲线用虚线表示;循环加载试验曲线用实线表示。可见每一次应力循环都有可恢复的弹性应变及不可恢复的塑性应变,亦即永久变形。 对于结构性很强的原状土,如很硬的粘土,可能在一定的应力范围内,它的变形几乎是“弹性”的,

相关文档
相关文档 最新文档