文档库 最新最全的文档下载
当前位置:文档库 › 简明物理习题详解 2016版 (12)

简明物理习题详解 2016版 (12)

简明物理习题详解   2016版 (12)
简明物理习题详解   2016版 (12)

习题7

7.1 选择题

(1) 下面说法正确的是: [ ]

(A )若高斯面上的电场强度处处为零,则该面内必无电荷; (B )若高斯面内无电荷,则高斯面上的电场强度处处为零;

(C )若高斯面上的电场强度处处不为零,则高斯面内必定有电荷; (D )若高斯面内有净电荷,则通过高斯面的电通量必不为零; (E )高斯定理仅适用于具有高度对称性的电场。 [答案:D]

(2)点电荷Q 被曲面S 所包围 , 从无穷远处引入另一点电荷q 至曲面外一点,如题7.1(2)图所示,则引入前后, [ ] (A) 曲面S 的电场强度通量不变,曲面上各点场强不变.

(B) 曲面S 的电场强度通量变化,曲面上各点场强不变. (C) 曲面S 的电场强度通量变化,曲面上各点场强变化.

(D) 曲面S 的电场强度通量不变,曲面上各点场强变化. 题7.1(2)图

[答案D ]

(3)在电场中的导体内部的 [ ]

(A )电场和电势均为零; (B )电场不为零,电势均为零;

(C )电势和表面电势相等; (D )电势低于表面电势。 [答案:C]

(4)两个同心均匀带电球面,半径分别为R a 和R b (R a <R b ), 所带电荷分别为Q a 和Q b .设某点与球心相距r ,当R a <r <R b 时,该点的电场强度的大小为: [ ]

(A) 2014a b Q Q r ε+?π. (B) 2

014a b

Q Q r

ε-?π. (C)

220

14a b b Q Q r R ε???+ ???π. (D) 20

14a Q r ε?π.

[答案 D]

(5)如果某带电体其电荷分布的体密度增大为原来的2倍,则其电场的能量变为原来的 [ ] (A) 2倍. (B) 1/2倍.

(C) 4倍. (D) 1/4倍.

[答案 C]

7.2 填空题

(1)在静电场中,电势不变的区域,场强必定为 。 [答案:相同]

(2)一个点电荷q 放在立方体中心,则穿过某一表面的电通量为 ,若将点电荷由中心向外移动至无限远,则总的电通量将 。

[答案: q / (6ε0),0 ]

(3)有一个球形的橡皮膜气球,电荷q 均匀地分布在表面上,在此气球被吹大的过程中,被气球表面掠过的点(该点与球中心距离为r ),其电场强度的大小将由____________变为______.

[答案:2

04r

q

επ, 0]

(4)一导体外充满相对介电常量为r ε的均匀电介质,若测得导体表面附近电场强度大小为E ,则导体球面上的自由电荷面密度为______.

[答案:E r 0εε]

(5)一平板电容器,两板间充满各向同性均匀电介质,已知相对介电常量为εr .若极板上的自由电荷面密度为σ ,则介质中电位移的大小D =____________,电场强度的大小E =____________________.

[答案: σ, σ/(ε0 εr )]

7.3 电量都是q 的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题7.3图示

(1) 以A 处点电荷为研究对象,由力平衡知:q '为负电荷

2

0220)33(π4130cos π412a q q a q '=?εε 解得 q q 3

3-=' (2)与三角形边长无关.

题7.3图 题7.4图

7.4 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ ,如题7.4图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所带的电量.

解: 如题7.4图示

???

??

===220)sin 2(π41

sin cos θεθθl q F T mg T e

解得 θπεθtan 4sin 20mg l q =

7.5 在真空中有A ,B 两平行板,相对距离为d ,板面积为S ,其带电量分别为+q 和-q .则这两板之间有相互作用力f ,有人说f =

2

024d

q πε,又有人说,因为

f =qE ,S q E 0ε=,所以f =S

q 02

ε.试问这两种说法对吗?为什么? f 到底应等于多少?

解: 题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第

二种说法把合场强S

q

E 0ε=看成是一个带电板在另一带电板处的场强也是不对的.正

确解答应为一个板的电场为S q

E 02ε=,另一板受它的作用力S

q S q

q f 02

022εε=

=,这是两板间相互作用的电场力.

7.6 长l =15.0cm 的直导线AB 上均匀地分布着线密度λ=5.0x10-9C ·m -1 的正电荷.试求:(1)在导线的延长线上与导线B 端相距1a =5.0cm 处P 点的场强;(2)在导线的垂直平分线上与导线中点相距2d =5.0cm 处Q 点的场强.

解: 如题7.6图所示

(1) 在带电直线上取线元x d ,其上电量q d 在P 点产生场强为2

0)

(d π41d x a x

E P -=λε 2220)

(d π4d x a x

E E l

l P P -==??-ελ ]2

121[π40

l a l a +

--=ελ

)

4(π2

2

0l a l

-=

ελ

题7.6图 用15=l cm ,9100.5-?=λ1m C -?, 5.12=a cm 代入得

21074.6?=P E 1C N -?

方向水平向右

(2)同理 2

2

20d d π41d +=x x

E Q λε 方向如题7.6图所示 由于对称性?=l

Qx E 0d ,即Q E

只有y 分量,

∵ 2

2

2

222

20d

d d d π41d ++=

x x x E Qy

λε

2

2π4d d ελ?==l

Qy

Qy E E ?

-+22

2

3

222)

d (d l l x x

22

2

0d

4π2+=

l l

ελ

以9100.5-?=λ1cm C -?, 15=l cm ,5d 2=cm 代入得

21096.14?==Q y Q E E 1C N -?,方向沿y 轴正向

7.7 (1)点电荷q 位于一边长为a 的立方体中心,试求在该点电荷电场中穿过立方体的一个面的电通量;(2)如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体各面的电通量是多少?

解: (1)由高斯定理0

d εq

S E s

?=?

立方体六个面,当q 在立方体中心时,每个面上电通量相等

∴ 各面电通量0

6εq

e =Φ.

(2)电荷在顶点时,将立方体延伸为边长a 2的立方体,使q 处于边长a 2的立方体

中心,则边长a 2的正方形上电通量0

6εq

e =Φ

对于边长a 的正方形,如果它不包含q 所在的顶点,则0

24εq

e =Φ,

如果它包含q 所在顶点则0=Φe .

7.8 均匀带电球壳内半径6cm ,外半径10cm ,电荷体密度为2×510-C ·m -3求距球心5cm ,8cm ,12cm 各点的场强.

解: 高斯定理0d ε∑?=?q S E s

,0

2π4ε∑=

q r E

当5=r cm 时,0=∑q ,0=E

8=r cm 时,∑q 3

π4p

=3(r )3

内r -

∴ ()

2

02

3π43π4r

r r E ερ

-=41048.3?≈1C N -?, 方向沿半径向外. 12=r cm 时,3

π4∑=ρq -3(外r )

内3

r ∴ ()

42

0331010.4π43π4?≈-=r

r r E ερ内

外 1C N -? 沿半径向外.

7.9 半径为1R 和2R (2R >1R )的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各点的场强.

解: 高斯定理0

d ε∑?=?q

S E s

取同轴圆柱形高斯面,侧面积rl S π2=

则 rl E S E S

π2d =??

对(1) 1R r < 0,0==∑E q (2) 21R r R << λl q =∑

∴ r

E 0π2ελ

=

沿径向向外 (3) 2R r > 0=∑q

∴ 0=E

题7.10图

7.10 两个无限大的平行平面都均匀带电,电荷的面密度分别为1σ和2σ,试求空间各处场强.

解: 如题7.10图示,两带电平面均匀带电,电荷面密度分别为1σ与2σ,

两面间, n E

)(21210σσε-= 1σ面外, n E

)(21210

σσε+-= 2σ面外, n E

)(21210

σσε+=

n

:垂直于两平面由1σ面指为2σ面.

7.11 电荷q 均匀分布在长为2L 细杆上,求在杆外延长线上与杆端距离为a 的P 点的

电势(设无穷远处为电势零点)。

解:假设单位长度上的电量为λ,任取一电荷元电量为dq dx λ= 则在P 点的电势为

04()

dq

du a L x πε=

+- 则整个导体棒在P 点的电势

00

2ln

4()8L L dx q L a

u a L x L a λπεπε-+==+-?

7.12 如题7.12图所示,四个点电荷81234 1.2510q q q q C -====?,分别放置在正方形的四个顶点上,各顶点到正方形中心O 点的距离为2510r m -=?.

求:(1)中心O 点的电势;

(2)若把试验电荷91.010q C -=?从无穷远处移到中心O 点,电场力所做的功。

(1)点电荷q1单独存在时,O 点的电势为

r q u 01

14πε=

根据电势叠加原理,四个点电荷同时存在时,O 点的电势为

V u u o 2

2

8911099.81051025.11099.844?=?????==--

(2)根据电势差的定义,有0()O O W q u u ∞∞=- 选取无穷远处为电势零点J u u q W O O

7

01099.8)(-∞∞?-=-= 电场力做负功,说明实际需要外力克服电场力做功。

题7.13图

7.13 如题7.13图所示,在A ,B 两点处放有电量分别为+q ,-q 的点电荷,AB 间距离为2R ,现将另一正试验点电荷0q 从O 点经过半圆弧移到C 点,求移动过程中电场力作的功.

解: 如题7.13图示

0π41

ε=

O U 0)(=-R

q R q

0π41ε=

O U )3(R q R q -R

q 0π6ε-= R

q

q U U q W o C O A 00π6)(ε=-=

7.14 如题7.14图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R .试求环中心O 点处的场强和电势.

解: (1)由于电荷均匀分布与对称性,AB 和CD 段电荷在O 点产生的场强互相抵消,取θd d R l =

则θλd d R q =产生O 点E

d 如图,由于对称性,O 点场强沿y 轴负方向

题7.14图

θεθ

λπ

π

cos π4d d 22

2

0??-==R R E E y

R

0π4ελ

=

[)2sin(π-2sin π

-]

R

0π2ελ

-=

(2) AB 电荷在O 点产生电势,以0=∞U

??===A B 200

012ln π4π4d π4d R R x x x x U ελελελ

同理CD 产生 2ln π402ελ

=U

半圆环产生 0

034π4πελ

ελ=

=R R U ∴ 0

032142ln π2ελ

ελ+

=++=U U U U O

7.15 两个平行金属板A 、B 的面积为200cm2,A 和B 之间距离为2cm ,B 板接地,

如图7.15所示。如果使A 板带上正电7.08?10-7C ,略去边缘效应,问:以地的电势为零。则A 板的电势是多少?

解:如图7.15所示,设平行金属板A 、B 的四个面均匀带电的面电荷密度分别为4321,,,σσσσ

接地时04=σ 对于平行金属板A 中的a 点有

02220

3

0201=--εσεσεσ

对于平行金属板B 中的b 点有

02220

3

0201=-+εσεσεσ S

Q =

+21σσ 得到:01=σ,04=σ,

2532/1054.3m C -?=-=σσ

平行金属板A 、B 之间的电场强度大小为0

2

εσ=

E A 板的电势V Ed U 4108?==

7.16 两个半径分别为1R 和2R (1R <2R )的同心薄金属球壳,现给内球壳带电+q ,试计算:(1)外球壳上的电荷分布及电势大小;(2)先把外球壳接地,然后断开接地线重新绝缘,此时外球壳的电荷分布及电势.

解: (1)内球带电q +;球壳内表面带电则为q -,外表面带电为q +,且均匀分布,

其电势??∞∞=

=?=22020

π4π4d d R R R q r r q r E U εε

题7.16图

(2)外壳接地时,外表面电荷q +入地,外表面不带电,内表面电荷仍为q -.所以球壳电势由内球q +与内表面q -产生:

0π4π42

020=-=R q

R q U εε

7.17 在半径为1R 的金属球之外包有一层外半径为2R 的均匀电介质球壳,介质相对介电常数为r ε,金属球带电Q .试求:

(1)电介质内、外的场强; (2)电介质层内、外的电势; (3)金属球的电势.

解: 利用有介质时的高斯定理∑?=?q S D S

d

(1)介质内)(21R r R <<场强

3

03π4,π4r

r

Q E r r Q D r εε ==内; 介质外)(2R r <场强

3

03π4,π4r r

Q E r Qr D ε =

=外 (2)介质外)(2R r >电势

r

Q E U 0r π4r d ε=

?=?∞

外 介质内)(21R r R <<电势

2

020π4)11(π4R Q

R r q

r εεε+

-=

)11(π42

0R r Q r r -+=εεε (3)金属球的电势

r d r d 2

2

1 ?+?=??

∞R R R E E U 外内

?

?

+=22

2

020π44πdr

R R R r r Qdr

r Q εεε

)11(π42

10R R Q r r -+=εεε

7.18 计算球形电容器的电容和能量。已知球形电容器的内外半径分别为R 1和

R 2,带电量分别为Q 和-Q 。为简单起见,设球内外介质介电常数均为ε0。

解:21R r R <<, r r Q E

3

04πε=

1R r <和2R r >, 0=E

体积元dr r dV 24π=

能量?=V

wdV W ?=21d π4)π4(2122200R R r r r Q εε ?

-==2

1

)1

1(π8π8d 21022

02R R R R Q r

r Q εε 电容器的电容W Q C 22=1

21202104)1

1/(π4R R R R R R -=-=πεε

第七章补充内容的答案:

7.1 (1) D (2)D (3)C (4)D (5)C

r

d r d ?+?=??∞∞r

r

E E U 外

7.2 (1) 相同;(2)q / (6ε0), 0 (3)

2

04r

q επ, 0 (4) E r 0εε (5) σ, σ/(ε0 εr )

大学物理简明教程习题解答9

第12章 量子物理学 12-1 氦氖激光器发射波长632.8nm 的激光。若激光器的功率为1.0mW ,试求每秒钟所发射的光子数。 解 一个光子的能量λ νhc h E ==,激光器功率P 数值上等于每秒钟发射光子的总能量, 故每秒钟所发射的光子数 1/s 1018.315?=== hc P E P N λ 12-2 某种材料的逸出功为3.00eV ,试计算能使这种材料发射光电子的入射光的最大波长。 解 光子的能量λ hc E =,要使这种材料发射光电子,入射光子的能量不能小于逸出功W , 即有 W hc E == min λ 解得入射光的最大波长为 nm 4141014.470=?== -W hc λ 12-3 从铝中移去一个电子需要能量4.20eV 。用波长为200nm 的光投射到铝表面上,求: (1)由此发射出来的最快光电子和最慢光电子的动能; (2)遏止电势差; (3)铝的红限波长。 解 (1)根据爱因斯坦光电效应方程 W E h km +=ν 最快光电子的动能 W hc W h m E -=-== λ ν2m max k 21v eV 2.02J 1023.319=?=- 最慢光电子逸出铝表面后不再有多余的动能,故0min k =E (2)因最快光电子反抗遏止电场力所做的功应等于光电子最大初动能,即max k E eU a =, 故遏止电势差 V 02.2max k == e E U a (3)波长为红限波长λ0的光子,具有恰好能激发光电子的能量,由λ0与逸出功的关系W hc =0 λ 得铝的红限波长 nm 296m 1096.270=?== -W hc λ 12-4 在一个光电效应实验中测得,能够使钾发射电子的红限波长为562.0nm 。 (1)求钾的逸出功; (2)若用波长为250.0nm 的紫外光照射钾金属表面,求发射出的电子的最大初动能。 解 (1)波长为红限波长λ0的光子具有恰能激发光电子的能量,即光子能量等于逸出功 由W hc =0λ,得钾的逸出功 eV 2.21J 1054.3190 =?==-λhc W

大学物理简明教程(吕金钟)第四章习题答案

第四章电磁学基础 静电学部分 4.2解:平衡状态下受力分析 +q受到的力为: 处于平衡状态: (1) 同理,4q 受到的力为: (2) 通过(1)和(2)联立,可得:, 4.3解:根据点电荷的电场公式: 点电荷到场点的距离为: 两个正电荷在P点产生的电场强度关于中垂线对称: 所以: 当与点电荷电场分布相似,在很远处,两个正电荷q组成的电荷系的电场分布,与带电量为2q的点电荷的电场分布一样。 4.4解:取一线元,在圆心处 产生场强: 分解,垂直x方向的分量抵消,沿x方向 的分量叠加: 方向:沿x正方向 4.5解:(1 (2)两电荷异号,电场强度为零的点在外侧。 4.7解:线密度为λ,分析半圆部分: 点电荷电场公式: + +

在本题中: 电场分布关于x 轴对称:, 进行积分处理,上限为,下限为: 方向沿x轴向右,正方向 分析两个半无限长: ,,, 两个半无限长,关于x轴对称,在y方向的分量为0,在x方向的分量: 在本题中,r为场点O到半无限长线的垂直距离。电场强度的方向沿x轴负方向,向左。那么大O点的电场强度为: 4.8解:E的方向与半球面的轴平行,那么 通过以R为半径圆周边线的任意曲面的 电通量相等。所以 通过S1和S2的电通量等效于通过以R为半 径圆面的电通量,即: 4.9解:均匀带电球面的场强分布: 球面 R 1 、R2的场强分布为: 根据叠加原理,整个空间分为三部分: 根据高斯定理,取高斯面求场强: 图4-94 习题4.8用图 S1 S2 R O

场强分布: 方向:沿径向向外 4.10解:(1)、这是个球对称的问题 当时,高斯面对包围电荷为Q 当,高斯面内包围电荷为q 方向沿径向 (2)、证明:设电荷体密度为 这是一个电荷非足够对称分布的带电体,不能直接用高斯定理求解。但可以把这一带电体看成半径为R、电荷体密度为ρ的均匀带电球体和半径为R`、电荷体密度为-ρ的均匀带电体球相叠加,相当于在原空腔同时补上电荷体密度为ρ和-ρ的球体。由电场 叠加原理,空腔内任一点P的电场强度为: 在电荷体密度为ρ球体内部某点电场为: 在电荷体密度为-ρ球体内部某点电场为: 所以 4.11解:利用高斯定理,把空间分成三部分

简明物理习题详解---2016版-(7)

习题12 12.1选择题 (1) 已知一单色光照射在钠表面上,测得光电子的最大动能是 1.2 eV ,而钠的红限波长是540nm ,那么入射光的波长是 (A) 535nm . (B) 500nm . (C) 435nm . (D) 355nm . [ ] 答: D ; (2) 设用频率为ν1和ν2的两种单色光,先后照射同一种金属均能产生光电效应.已知金属的红限频率为ν0,测得两次照射时的遏止电压|U a 2| = 2|U a 1|,则这两种单色光的频率有如下关系: (A) ν2 = ν1 - ν0. (B) ν2 = ν1 + ν0. (C) ν2 = 2ν1 - ν0. (D) ν2 = ν1 - 2ν0. [ ] 答: C ; (3) 在康普顿效应实验中,若散射光波长是入射光波长的 1.2倍,则散射光光子能量ε与反冲电子动能E K 之比ε / E K 为 (A) 2. (B) 3. (C) 4. (D) 5. [ ] 答:D ; (4) 氢原子光谱的巴耳末系中波长最大的谱线用λ1表示,其次波长用λ2表示,则它们的比值λ1/λ2为: (A) 20/27. (B) 9/8. (C) 27/20. (D) 16/9. [ ] 答: C ; (5) 假定氢原子原是静止的,质量为1.67×10-27 kg ,则氢原子从n = 3 的激发状态直接通过辐射跃迁到基态时的反冲速度大约是 [ ] (A) 4 m/s . (B) 10 m/s . (C) 100 m/s . (D) 400 m/s . 答: A ; (6) 电子显微镜中的电子从静止开始通过电势差为U 的静电场加速后,其德布罗意波长是 0.4 ?,则U 约为 (A) 150 V . (B) 330 V . (C) 630 V . (D) 940 V . [ ] 答: D ; (7) 如果两种不同质量的粒子,其德布罗意波长相同,则这两种粒子的 (A) 动量相同. (B) 能量相同. (C) 速度相同. (D) 动能相同. [ ] 答: A ; (8) 已知粒子在一维矩形无限深势阱中运动,其波函数为: a x a x 23cos 1)(π?= ψ, ( - a ≤x ≤a ) 那么粒子在x = 5a /6处出现的概率密度为 (A) 1/(2a ). (B) 1/a . (C) a 2/1. (D) a /1. [ ] 答: A ;

2016年高考新课标全国卷II理综(物理)真题及标准答案

2016·全国卷Ⅱ(物理) 14.[2016·全国卷Ⅱ]质量为m的物体用轻绳AB悬挂于天花板上.用水平向左的力F缓慢拉动绳的中点O,如图1-所示.用T表示绳OA段拉力的大小,在O点向左移动的过程中() 图1- A.F逐渐变大,T逐渐变大 B.F逐渐变大,T逐渐变小 C.F逐渐变小,T逐渐变大 D.F逐渐变小,T逐渐变小 15. [2016·全国卷Ⅱ] 如图1-所示,P是固定的点电荷,虚线是以P为圆心的两个圆.带电粒子Q在P的电场中运动.运动轨迹与两圆在同一平面内,a、b、c为轨迹上的三个点.若Q 仅受P的电场力作用,其在a、b、c点的加速度大小分别为a a、a b、ac,速度大小分别为v a、vb、vc,则() 图1- A.a a>ab>a c,v a>vc>v b B.a a>a b>ac,vb>v c>va C.ab>a c>a a,v b>vc>v a D.ab>a c>a a,va>v c>vb 16.C5、D6、E2[2016·全国卷Ⅱ]小球P和Q用不可伸长的轻绳悬挂在天花板上,P 球的质量大于Q球的质量,悬挂P球的绳比悬挂Q球的绳短.将两球拉起,使两绳均被水平

拉直,如图1-所示.将两球由静止释放,在各自轨迹的最低点() 图1- A.P球的速度一定大于Q球的速度 B.P球的动能一定小于Q球的动能 C.P球所受绳的拉力一定大于Q球所受绳的拉力 D.P球的向心加速度一定小于Q球的向心加速度 17.I3J1[2016·全国卷Ⅱ]阻值相等的四个电阻、电容器C及电池E(内阻可忽略)连接成如图1-所示电路.开关S断开且电流稳定时,C所带的电荷量为Q1;闭合开关S,电流再次稳定后,C所带的电荷量为Q2.Q1与Q2的比值为() 图1- A. B. C. D.错误! 18.K2[2016·全国卷Ⅱ] 一圆筒处于磁感应强度大小为B的匀强磁场中,磁场方向与筒的轴平行,筒的横截面如图所示.图中直径MN的两端分别开有小孔,筒绕其中心轴以角速度ω顺时针转动.在该截面内,一带电粒子从小孔M射入筒内,射入时的运动方向与MN成30°角.当筒转过90°时,该粒子恰好从小孔N飞出圆筒.不计重力.若粒子在筒内未与筒壁发生碰撞,则带电粒子的比荷为( ) 图1-

2016学年全国高考统一物理试卷(新课标Ⅲ)

2016年全国高考统一物理试卷(新课标Ⅲ)学校:___________姓名:___________班级:___________考号:___________ 一、单选题(本大题共5小题,共30.0分) 1.关于行星运动的规律,下列说法符合史实的是() A.开普勒在牛顿定律的基础上,导出了行星运动的规律 B.开普勒在天文观测数据的基础上,总结出了行星运动的规律 C.开普勒总结出了行星运动的规律,找出了行星按照这些规律运动的原因 D.开普勒总结出了行星运动的规律,发现了万有引力定律 2.关于静电场的等势面,下列说法正确的是() A.两个电势不同的等势面可能相交 B.电场线与等势面处处相互垂直 C.同一等势面上各点电场强度一定相等 D.将一负的试探电荷从电势较高的等势面移至电势较低的等势面,电场力做正功 3.一质点做速度逐渐增大的匀加速直线运动,在时间间隔t内位移为s,动能变为原来的9倍,该质点的加速度为() A. B. C. D. 4.如图,两个轻环a和b套在位于竖直面内的一段 固定圆弧上:一细线穿过两轻环,其两端各系一质 量为m的小球,在a和b之间的细线上悬挂一小物 块.平衡时,a、b间的距离恰好等于圆弧的半径.不 计所有摩擦,小物块的质量为() A. B.m C.m D.2m 5.平面OM和平面ON之间的夹角 为30°,其横截面(纸面)如图所 示,平面OM上方存在匀强磁场, 磁感应强度大小为B,方向垂直于 纸面向外.一带电粒子的质量为 m,电荷量为q(q>0).粒子沿 纸面以大小为v的速度从PM的某 点向左上方射入磁场,速度与OM 成30°角.已知粒子在磁场中的运 动轨迹与ON只有一个交点,并从OM上另一点射出磁场.不计重力.粒子离开磁场的射点到两平面交线O的距离为() A. B. C. D.

大学物理学-第1章习题解答

大学物理简明教程(上册)习题选解 第1章 质点运动学 1-1 一质点在平面上运动,其坐标由下式给出)m 0.40.3(2 t t x -=,m )0.6(3 2 t t y +-=。求:(1)在s 0.3=t 时质点的位置矢量; (2)从0=t 到s 0.3=t 时质点的位移;(3)前3s 内质点的平均速度;(4)在s 0.3=t 时质点的瞬时速度; (5)前3s 内质点的平均加速度;(6)在s 0.3=t 时质点的瞬时加速度。 解:(1)m )0.6()0.40.3(322j i r t t t t +-+-= 将s 0.3=t 代入,即可得到 )m (273j i r +-= (2)03r r r -=?,代入数据即可。 (3)注意:0 30 3--=r r v =)m/s 99(j i +- (4)dt d r =v =)m/s 921(j i +-。 (5)注意:0 30 3--=v v a =2)m/s 38(j i +- (6)dt d v a ==2)m/s 68(j -i -,代入数据而得。 1-2 某物体的速度为)25125(0j i +=v m/s ,3.0s 以后它的速度为)5100(j 7-i =v m/s 。 在这段时间内它的平均加速度是多少? 解:0 30 3--= v v a =2)m/s 3.3333.8(j i +- 1-3 质点的运动方程为) 4(2k j i r t t ++=m 。(1)写出其速度作为时间的函数;(2)加速度作为时间的函数; (3)质点的轨道参数方程。 解:(1)dt d r =v =)m/s 8(k j +t (2)dt d v a = =2m/s 8j ; (3)1=x ;2 4z y =。 1-4 质点的运动方程为t x 2=,22t y -=(所有物理量均采用国际单位制)。求:(1)质点的运动轨迹;(2)从0=t 到2=t s 时间间隔内质点的位移r ?及位矢的径向增量。 解:(1)由t x 2=,得2 x t = ,代入22t y -=,得质点的运动轨道方程为 225.00.2x y -=; (2)位移 02r r r -=?=)m (4j i - 位矢的径向增量 02r r r -=?=2.47m 。 (3)删除。 1-6 一质点做平面运动,已知其运动学方程为t πcos 3=x ,t πsin =y 。试求: (1)运动方程的矢量表示式;(2)运动轨道方程;(3)质点的速度与加速度。 解:(1)j i r t t πsin πcos 3+=; (2)19 2 =+y x (3)j i t t πcos πsin 3π+-=v ; )πsin πcos 3(π2j i t t a +-= *1-6 质点A 以恒 定的速率m/s 0.3=v 沿 直线m 0.30=y 朝x +方 向运动。在质点A 通过y 轴的瞬间,质点B 以恒 定的加速度从坐标原点 出发,已知加速度2m/s 400.a =,其初速度为零。试求:欲使这两个质点相遇,a 与y 轴的夹角θ应为多大? 解:提示:两质点相遇时有,B A x x =,B A y y =。因此只要求出质点A 、B 的运动学方程即可。或根据 222)2 1 (at y =+2(vt)可解得: 60=θ。 1-77 质点做半径为R 的圆周运动,运动方程为 2021 bt t s -=v ,其中,s 为弧长,0v 为初速度,b 为正 的常数。求:(1)任意时刻质点的法向加速度、切向加速度和总加速度;(2)当t 为何值时,质点的总加速度在数值上等于b ?这时质点已沿圆周运行了多少圈? 题1-6图

大学物理简明教程课后习题答案解析

大学物理简明教程习题答案解析 习题一 1-1 |r ?|与r ? 有无不同t d d r 和t d d r 有无不同 t d d v 和t d d v 有无不同其不同在哪里试举例 说明. 解:(1)r ?是位移的模,?r 是位矢的模的增量,即 r ?12r r -=,12r r r ??-=?; (2)t d d r 是速度的模,即t d d r ==v t s d d . t r d d 只是速度在径向上的分量. ∵有r r ?r =(式中r ?叫做单位矢),则 t ?r ?t r t d d d d d d r r r += 式中t r d d 就是速度径向上的分量, ∴t r t d d d d 与 r 不同如题1-1图所示. 题1-1图 (3)t d d v 表示加速度的模,即 t v a d d ? ?= ,t v d d 是加速度a 在切向上的分量. ∵有ττ??(v =v 表轨道节线方向单位矢),所以 t v t v t v d d d d d d ττ???+= 式中dt dv 就是加速度的切向分量. (t t r d ?d d ?d τ??Θ与 的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出 r =22y x +,然后根据v =t r d d ,及a =22d d t r 而求得结果;又有人先计算速度和加速度的 分量,再合成求得结果,即 v =2 2 d d d d ??? ??+??? ??t y t x 及a = 2 22222d d d d ? ??? ??+???? ??t y t x 你认为两种方法哪一种正确为什么两者差别何在 解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r ? ??+=,

关于简明物理习题详解版

习题8 选择题 (1)在真空中有一根半径为R的半圆形细导线,流过的电流为I,则圆心处的磁感强度为[] (A) 0 4I R μπ; (B) 0 2 I R μ π ; (C) 0; (D) 0 4 I R μ . [答案:D] (2)对于安培环路定理的理解,正确的是:[] (A)若环流等于零,则在回路L上必定是H处处为零; (B)若环流等于零,则在回路L上必定不包围电流; (C)若环流等于零,则在回路L所包围传导电流的代数和为零; (D)回路L上各点的H仅与回路L包围的电流有关。 [答案:C] (3)磁场由沿空心长圆筒形导体的均匀分布的电流产生,圆筒半径为R,x坐标轴垂直圆筒轴线,原点在中心轴线上.图(A)~(E)哪一条曲线表示B-x的关系 [ ]

[答案:B] (4)对半径为R载流为I的无限长直圆柱体,距轴线r处的磁感应强度 B [ ] (A)内外部磁感应强度B都与r成正比; (B)内部磁感应强度B与r成正比,外部磁感应强度B与r成反比; (C)内外部磁感应强度B都与r成反比; (D)内部磁感应强度B与r成反比,外部磁感应强度B与r成正比。 [答案:B] (5)在匀强磁场中,有两个平面线圈,其面积A 1 = 2 A 2 ,通有电流I 1 = 2 I 2 , 它们所受的最大磁力矩之比M 1 / M 2 等于[] (A) 1; (B) 2; (C) 4; (D) 1/4; [答案:C] (6)质量为m电量为q的粒子,以速率v与均匀磁场B成θ角射入磁场,轨迹为一螺旋线,若要增大螺距则要 [ ] (A)增加磁场B; (B)减少磁场B;

(C)内外部磁感应强度B都与r成反比; (D)内部磁感应强度B与r成反比,外部磁感应强度B与r成正比。\ [答案:B] (7)一个100匝的圆形线圈,半径为5厘米,通过电流为安,当线圈在的磁场中从θ=0的位置转到180度(θ为磁场方向和线圈磁矩方向的夹角)时磁场力做功为() (A);(B);(C);(D)14J。 [答案:A] (8)质量为m电量为q的粒子,以速率v与均匀磁场B成θ角射入磁场,轨迹为一螺旋线,若要增大螺距则要[] (A)增加磁场B;(B)减少磁场B;(C)增加θ角;(D)减少速率v. [答案:B] (9)磁介质有三种,用相对磁导率μ r 表征它们各自的特性时, (A)顺磁质μ r >0,抗磁质μ r <0,铁磁质μ r >>1; (B)顺磁质μ r >1,抗磁质μ r =1,铁磁质μ r >>1;

大学物理简明教程(吕金钟)第四章习题答案

第四章 电磁学基础 静电学部分 4.2 解:平衡状态下受力分析 +q 受到的力为: 20''41 r q q F qq πε= ()()2 4441l q q F q q πε= 处于平衡状态:()04'=+q q qq F F ()0441'41 2 020=+l q q r q q πεπε (1) 同理,4q 受到的力为:()()()20'44'41 r l q q F q q -= πε ()()204441 l q q F q q πε= ()()04'4=+q q q q F F ()()()04414'41 2020=+-l q q r l q q πεπε (2) 通过(1)和(2)联立,可得: 3 l r =,q q 94'-= 4.3 解:根据点电荷的电场公式: r e r q E 2041 πε= 点电荷到场点的距离为:22l r + 2 2041 l r q E += +πε 两个正电荷在P 点产生的电场强度关于中垂线对称: θcos 2//+=E E 0=⊥E 2 2 cos l r r += θ 所以: ( ) 2 32 202 2 2 2021 412 cos 2l r qr l r r l r q E E += ++==+π επεθ q l q +

当l r >> 2 02024121 r q r q E πεπε== 与点电荷电场分布相似,在很远处,两 个正电荷q 组成的电荷系的电场分布,与带电量为2q 的点电荷的电场分布一样。 4.4 解:取一线元θλRd dq =,在圆心处 产生场强:2 0204141 R Rd R dq dE θλπεπε== 分解,垂直x 方向的分量抵消,沿x 方向 的分量叠加: R R Rd dE x 00 202sin 41πελ θθλπεπ ==? ? 方向:沿x 正方向 4.5 解:(1)两电荷同号,电场强度为零的点在内侧; (2)两电荷异号,电场强度为零的点在外侧。 4.7 解:线密度为λ,分析半圆部分: θλλrd dl dq == 点电荷电场公式: r e r q E 2 041 πε= 在本题中: 2 41r rd E θ λπε= 电场分布关于x 轴对称:θθ λπεθsin 41sin 2 r rd E E x ==,0=y E 进行积分处理,上限为2π ,下限为2π-: r d r r rd E E 0000 2 2sin 4sin 41sin πελ θθπελθθ λπεθππ == ==?? ? 方向沿x 轴向右,正方向 分析两个半无限长: )cos (cos 4d sin 4210021 θθπελ θθπελθθ-===? ?x x dE E x x )sin (sin 4d cos 412002 1 θθπελθθπελθθ-===? ?x x dE E y y x

简明物理习题详解版

习题10 10.1选择题 (1)在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是[ ] (A) 使屏靠近双缝. (B) 使两缝的间距变小. (C) 把两个缝的宽度稍微调窄. (D) 改用波长较小的单色光源. [答案:C] (2)两块平玻璃构成空气劈形膜,左边为棱边,用单色平行光垂直入射.若上面的平玻璃以棱边为轴,沿逆时针方向作微小转动,则干涉条纹的[ ] (A) 间隔变小,并向棱边方向平移. (B) 间隔变大,并向远离棱边方向平移. (C) 间隔不变,向棱边方向平移. (D) 间隔变小,并向远离棱边方向平移. [答案:A] (3)一束波长为?的单色光由空气垂直入射到折射率为n的透明薄膜上,透明薄膜放在空气中,要使反射光得到干涉加强,则薄膜最小的厚度为[ ] (A) ?????.(B) ? / (4n). (C) ?????.(D) ? / (2n). [答案:B] (4)在迈克耳孙干涉仪的一条光路中,放入一折射率为n,厚度为d的透明薄片,放入后,这条光路的光程改变了[ ] (A) 2 ( n-1 ) d.(B) 2nd. (C) 2 ( n-1 ) d+? / 2.(D) nd. (E) ( n-1 ) d. [答案:A] (5)在迈克耳孙干涉仪的一条光路中,放入一折射率为n的透明介质薄膜后,测出两束光的光程差的改变量为一个波长?,则薄膜的厚度是[] (A) ?????.(B) ? / (2n). (C) ???? n.(D) ? / [2(n-1)]. [答案:D] (6)在夫琅禾费单缝衍射实验中,对于给定的入射单色光,当缝宽度变小时,除中央亮纹的中心位置不变外,各级衍射条纹[ ] (A) 对应的衍射角变小.(B) 对应的衍射角变大. (C) 对应的衍射角也不变.(D) 光强也不变. [答案:B] (7)波长??????nm (1nm=10-9m)的单色光垂直照射到宽度a=0.25mm的单缝上,单缝后面放一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹。今测得屏幕上中央明条纹一侧第三个暗条纹和另一侧第三个暗条纹之间的距离为d=12mm,则凸透镜的焦距是[ ] (A)2m. (B)1m. (C)0.5m. (D)0.2m. (E)0.1m [答案:B] (8)波长为?的单色光垂直入射于光栅常数为d、缝宽为a、总缝数为N的光栅上.取k=0,±1,±2....,则决定出现主极大的衍射角??的公式可写成[ ] (A) N a sin?=k?.(B) a sin?=k?.

关于简明物理习题详解 版

习题8 8.1选择题 (1)在真空中有一根半径为R的半圆形细导线,流过的电流为I,则圆心处的磁感强度为[] (A) 0 4I R μπ;(B) 0 2 I R μ π ;(C) 0;(D) 0 4 I R μ . [答案:D] (2)对于安培环路定理的理解,正确的是:[] (A)若环流等于零,则在回路L上必定是H处处为零; (B)若环流等于零,则在回路L上必定不包围电流; (C)若环流等于零,则在回路L所包围传导电流的代数和为零; (D)回路L上各点的H仅与回路L包围的电流有关。 [答案:C] (3)磁场由沿空心长圆筒形导体的均匀分布的电流产生,圆筒半径为R,x坐标轴垂直圆筒轴线,原点在中心轴线上.图(A)~(E)哪一条曲线表示B-x的关系? [ ] [答案:B] (4)对半径为R载流为I的无限长直圆柱体,距轴线r处的磁感应强度B [ ](A)内外部磁感应强度B都与r成正比; (B)内部磁感应强度B与r成正比,外部磁感应强度B与r成反比; (C)内外部磁感应强度B都与r成反比; (D)内部磁感应强度B与r成反比,外部磁感应强度B与r成正比。 [答案:B] (5)在匀强磁场中,有两个平面线圈,其面积A1 = 2 A2,通有电流I1 = 2 I2,它们所受的最大磁力矩之比M1 / M2等于[] (A) 1;(B) 2;(C) 4;(D) 1/4; [答案:C] (6)质量为m电量为q的粒子,以速率v与均匀磁场B成θ角射入磁场,轨迹为一螺旋线,若要增大螺距则要[ ] (A)增加磁场B; (B)减少磁场B; (C)内外部磁感应强度B都与r成反比; (D)内部磁感应强度B与r成反比,外部磁感应强度B与r成正比。\ [答案:B] (7)一个100匝的圆形线圈,半径为5厘米,通过电流为0.1安,当线圈在1.5T的磁场中从θ=0的位置转到180度(θ为磁场方向和线圈磁矩方向的夹角)时磁场力做功为()(A)0.24J;(B)2.4J;(C)0.14J;(D)14J。 [答案:A] (8)质量为m电量为q的粒子,以速率v与均匀磁场B成θ角射入磁场,轨迹为一螺旋线,若要增大螺距则要[] (A)增加磁场B;(B)减少磁场B;(C)增加θ角;(D)减少速率v. [答案:B] (9)磁介质有三种,用相对磁导率μr表征它们各自的特性时,

2016年高考物理试卷天津word解析

2016年普通高等学校招生全国统一考试(天津卷) 理科综合物理部分 理科综合共300分,考试用时150分钟。 物理试卷分为第Ⅰ卷(选择题)和第Ⅱ卷两部分,共120分。 答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,并在规定位置粘贴考试用条形码。答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。考试结束后,将本试卷和答题卡一并交回。 祝各位考生考试顺利! 第Ⅰ卷 注意事项: 1.每题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,在选涂其他答案标号。 2.本卷共8题,每题6分,共48分。 一、单项选择题(每小题6分,共30分。每小题给出的四个选项中,只有一个选项是正确的) 1、我国成功研发的反隐身先进米波雷达堪称隐身飞机的克星,它标志着我国雷达研究又创新的里程碑,米波雷达发射无线电波的波长在1~10m范围内,则对该无线电波的判断正确的是 A、米波的频率比厘米波频率高 B、和机械波一样须靠介质传播 C、同光波一样会发生反射现象 D、不可能产生干涉和衍射现象 【答案】C 2、右图是a、b两光分别经过同一双缝干涉装置后在屏上形成的干涉图样,则 A、在同种均匀介质中,a光的传播速度比b光的大 B、从同种介质射入真空发生全反射时a光临界角大 C、照射在同一金属板上发生光电效应时,a光的饱和电流大 D、若两光均由氢原子能级跃迁产生,产生a光的能级能量差大 【答案】D 3、我国即将发射“天宫二号”空间实验室,之后发射“神舟十一号”飞船与“天宫二号”对接。假设“天宫二号”与“神舟十一号”都围绕地球做匀速圆周运动,为了实现飞船与空间实验室的对接,下列措施可行的是

大学物理简明教程习题

17级临床医学《大学物理》复习题 班级:____________ 姓名:_________ 学号:___________________

习题1 1.1选择题 (1) 一运动质点在某瞬时位于矢径),(y x r 的端点处,其速度大小为 ( ) (A)dt dr (B)dt r d (C)dt r d || (D)22)()(dt dy dt dx + 答案:(D)。 (2) 一质点作直线运动,某时刻的瞬时速度s m v /2=,瞬时加速度2 /2s m a -=,则 一秒钟后质点的速度 ( ) (A)等于零 (B)等于-2m/s (C)等于2m/s (D)不能确定。 答案:(D)。 (3) 一质点沿半径为R 的圆周作匀速率运动,每t 秒转一圈,在2t 时间间隔中,其平均速度大小和平均速率大小分别为 ( ) (A) t R t R ππ2,2 (B)t R π2,0 (C)0,0 (D)0,2t R π 答案:(B)。 1.2填空题 (1) 一质点,以1 -?s m π的匀速率作半径为5m 的圆周运动,则该质点在5s 内,位移的大小是 ;经过的路程是 。 答案: 10m ; 5πm 。 (2) 一质点沿x 方向运动,其加速度随时间的变化关系为a=3+2t (SI),如果初始时刻质点的速度v 0为5m·s -1,则当t 为3s 时,质点的速度v= 。 答案: 23m·s -1 . (3) 一质点从静止出发沿半径R=1 m 的圆周运动,其角加速度随时间t 的变化规律是α=12t 2-6t (SI),则质点的角速度ω =__________________;切向加速度τa =_________________. 答案:4t 3 -3t 2 (rad/s), 12t 2 -6t (m/s 2 ) 1.5 一质点沿x 轴作直线运动,t 时刻的坐标为x = 4.5 t 2 – 2 t 3 (SI) .试求: (1) 第2秒内的平均速度;(2)第2秒末的瞬时速度; (3) 第2秒内的路程.

2016年山东高考物理试题及答案

2016年山东高考理综物理试题 14.一平行电容器两极板之间充满云母介质,接在恒压直流电源上,若将云母介质移出,则电容器 A.极板上的电荷量变大,极板间的电场强度变大 B.极板上的电荷量变小,极板间的电场强度变大 C.极板上的电荷量变大,极板间的电场强度不变 D.极板上的电荷量变小,极板间的电场强度不变 15.现代质谱仪可用来分析比质子重很多的离子,其示意图如图所示,其中加速电压恒定。质子在入口处从静止开始被加速电场加速,经匀强磁场偏转后从出口离开磁场。若某种一价正离子在入口处从静止开始被同一加速电场加速,为使它经匀强磁场偏转后仍从同一出口离开磁场,需将磁感应强度增加到原来的12倍。此离子和质子的质量比约为 A.11 B.12 C.121 D.144 16.一含有理想变压器的电路如图所示,图中电阻R1,R2和R3的阻值分别为3Ω,1Ω,4Ω, 为理想交流电流表,U为正弦交流电压源,输出电压的有效值恒定。当开关S断开时,电流表的示数为I;当S闭合时,电流表的示数为4I。该变压器原、副线圈匝数比为 A.2 B.3 C.4 D.5

17.利用三颗位置适当的地球同步卫星,可使地球赤道上任意两点之间保持无线电通讯,目前地球同步卫星的轨道半径为地球半径的6.6倍,假设地球的自转周期变小,若仍仅用三颗同步卫星来实现上述目的,则地球自转周期的最小值约为 A.1h B.4h C.8h D.16h 18.一质点做匀速直线运动,现对其施加一恒力,且原来作用在质点上的力不发生改变,则 A.质点速度的方向总是与该恒力的方向相同 B.质点速度的方向不可能总是与该恒力的方向垂直 C.质点加速度的方向总是与该恒力的方向相同 D.质点单位时间内速率的变化量总是不变 19.如图,一光滑的轻滑轮用细绳OO'悬挂于O点;另一细绳跨过滑轮,其一端悬挂物块a,另一端系一位于水平粗糙桌面上的物块b。外力F向右上方拉b,整个系统处于静止状态。若F方向不变,大小在一定范围内变化,物块b仍始终保持静止,则 A.绳OO'的张力也在一定范围内变化 B.物块b所受到的支持力也在一定范围内变化 C.连接a和b的绳的张力也在一定范围内变化 D.物块b与桌面间的摩擦力也在一定范围内变化

大学物理简明教程课后习题加答案《完整版》

大学物理简明教程习题解答 习题一 1-1 |r ?|与r ?有无不同?t d d r 和t d d r 有无不同? t d d v 和t d d v 有无不同?其不同在哪里?试 举例说明. 解:(1)r ?是位移的模,?r 是位矢的模的增量,即 r ?12r r -=,12r r r -=?; (2)t d d r 是速度的模,即t d d r ==v t s d d . t r d d 只是速度在径向上的分量. ∵有r r ?r =(式中r ?叫做单位矢),则 t ?r ?t r t d d d d d d r r r += 式中t r d d 就是速度径向上的分量, ∴t r t d d d d 与 r 不同如题1-1图所示. 题1-1图 (3)t d d v 表示加速度的模,即 t v a d d = ,t v d d 是加速度a 在切向上的分量. ∵有ττ (v =v 表轨道节线方向单位矢),所以 t v t v t v d d d d d d ττ += 式中dt dv 就是加速度的切向分量. (t t r d ?d d ?d τ 与 的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求 出r =22y x +,然后根据v =t r d d ,及a =22d d t r 而求得结果;又有人先计算速度和加速度 的分量,再合成求得结果,即 v =2 2 d d d d ??? ??+??? ??t y t x 及a = 2 22222d d d d ? ??? ??+???? ??t y t x 你认为两种方法哪一种正确?为什么?两者差别何在? 解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r +=,

大学物理简明教程第版赵近芳习题答案习题静电场

习题7 7-1 电量都是q 的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题7-1图示 (1) 以A 处点电荷为研究对象,由力平衡知:q '为负电荷 解得 q q 3 3-=' (2)与三角形边长无关. 题7-1图 题7-2图 题7-2图 7-2 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ,如题7--2图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所带的电量. 解: 如题7-2图示 解得 θπεθtan 4sin 20mg l q = 7-3 在真空中有A ,B 两平行板,相对距离为d ,板面积为S ,其带电量分别为+q 和-q .则这 两板之间有相互作用力f ,有人说2 204q f d πε=,又有人说,因为f =qE ,0q E S ε=,所以2 0q f S ε= 试问这两种说法对吗?为什么?f 到底应等于多少? 解: 题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法把合场强S q E 0ε= 看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一个板的电场为S q E 02ε=,另一板受它的作用力S q S q q f 02 022εε= =,这是两板间相互作用的电场力. 7-4 长l =15.0 cm 的直导线AB 上均匀地分布着线密度9 5.010C m λ-=?的正电荷.试求:(1) 在导线的延长线上与导线B 端相距1 5.0a cm =处P 点的场强;(2)在导线的垂直平分线上与导线 中点相距2 5.0d cm =处Q 点的场强. 解: 如题7-4图所示 题7-4图 (1)在带电直线上取线元x d ,其上电量q d 在P 点产生场强为 用15=l cm ,9100.5-?=λ1m C -?, 5.12=a cm 代入得 21074.6?=P E 1C N -? 方向水平向右 (2)同理 22 20d d π41d += x x E Q λε 方向如题7-4图所示

简明物理习题详解2017年版

习题1 1.1选择题 (1) 一运动质点在某瞬时位于矢径),(y x r 的端点处,其速度大小为 ( ) (A)dt dr (B)dt r d (C)dt r d | | (D) 22)()(dt dy dt dx + 答案:(D)。 (2) 一质点作直线运动,某时刻的瞬时速度s m v /2=,瞬时加速度2 /2s m a -=,则 一秒钟后质点的速度 ( ) (A)等于零 (B)等于-2m/s (C)等于2m/s (D)不能确定。 答案:(D)。 (3) 一质点沿半径为R 的圆周作匀速率运动,每t 秒转一圈,在2t 时间间隔中,其平均速度大小和平均速率大小分别为 ( ) (A) t R t R ππ2, 2 (B) t R π2,0 (C) 0,0 (D) 0,2t R π 答案:(B)。 (4) 质点作曲线运动,r 表示位置矢量,v 表示速度,a 表示加速度,S 表示路程,τa 表示切向加速度,下列表达式中, ( ) ① a t = d /d v , ② v =t r d /d , ③ v =t S d /d , ④ τa t =d /d v . (A) 只有①、④是对的. (B) 只有②、④是对的. (C) 只有②是对的. (D) 只有③是对的. 答案:(D)。 (5)一质点在平面上作一般曲线运动,其瞬时速度为v ,瞬时速率为υ,某一时间内的平均速度为v ,平均速率为v ,它们之间的关系必定有: ( ) (A )v v v,v == (B )v v v,v =≠

(C )v v v,v ≠≠ (D )v v v,v ≠= 答案:(D)。 1.2填空题 (1) 一质点,以1 -?s m π的匀速率作半径为5m 的圆周运动,则该质点在5s 内,位移的大小是 ;经过的路程是 。 答案: 10m ; 5πm 。 (2) 一质点沿x 方向运动,其加速度随时间的变化关系为a=3+2t (SI),如果初始时刻质点 的速度v 0为5m ·s -1 ,则当t 为3s 时,质点的速度v= 。 答案: 23m ·s -1 . (3) 一质点从静止出发沿半径R=1 m 的圆周运动,其角加速度随时间t 的变化规律是α=12t 2 -6t (SI),则质点的角速度ω =__________________;切向加速度τa =_________________. 答案:4t 3 -3t 2 (rad/s), 12t 2 -6t (m/s 2 ) (4) 一质点作直线运动,其坐标x 与时间t 的关系曲线如题1.2(4)图所示.则该质点在第___ 秒瞬时速度为零;在第 秒至第 秒间速度与加速度同方向. 题1.2(4)图 答案:3, 3 6; (5) 一质点其速率表示式为 v s =+12 ,则在任一位置处其切向加速度a τ 为 。 答案:)1(22 s s + 1.3 下面几个质点运动学方程,哪个是匀变速直线运动? (1)x=4t-3;(2)x=-4t 3+3t 2+6;(3)x=-2t 2+8t+4;(4)x=2/t 2 -4/t 。

简明物理习题详解 2016版 (11)

习题6 6.1选择题 (1) 置于容器内的气体,如果气体内各处压强相等,或气体内各处温度相同,则这两种情况下气体的状态 (A) 一定都是平衡态. (B) 不一定都是平衡态. (C) 前者一定是平衡态,后者一定不是平衡态. (D) 后者一定是平衡态,前者一定不是平衡态. [ ] 答:B; . (2) 用公式T C E V ?=?ν(式中V C 为定体摩尔热容量,视为常量,ν 为气体摩尔数)计算 理想气体内能增量时,此式 (A) 只适用于准静态的等体过程. (B) 只适用于一切等体过程. (C) 只适用于一切准静态过程. (D) 适用于一切始末态为平衡态的过程. [ ] 答: D; (3) 一定量的理想气体,经历某过程后,温度升高了.则根据热力学定律可以断定: ① 该理想气体系统在此过程中吸了热. ② 在此过程中外界对该理想气体系统作了正功. ③ 该理想气体系统的内能增加了. ④ 在此过程中理想气体系统既从外界吸了热,又对外作了正功. 以上正确的断言是: (A) ① 、③ . (B) ②、③. (C) ③. (D) ③、④. (E) ④. [ ] 答: C; (4) 如题6.1(4)图所示,理想气体经历abc 准静态过程,设系统对外作功W ,从外界吸收的热量Q 和内能的增量E ?,则正负情况是: (A) ΔE >0,Q >0,W <0. (B) ΔE >0,Q >0,W >0. (C) ΔE >0,Q <0,W <0. (D) ΔE <0,Q<0,W <0. [ ] 答: B; (5) 有人设计一台卡诺热机(可逆的).每循环一次可从 400 K 的高温热源吸热1800 J ,向 300 K 的低温热源放热 800 J .同时对外作功1000 J ,这样的设计是 (A) 可以的,符合热力学第一定律. (B) 可以的,符合热力学第二定律. (C) 不行的,卡诺循环所作的功不能大于向低温热源放出的热量. (D) 不行的,这个热机的效率超过理论值. [ ] 题6.1(4)图

高考 物理 真题 (2016年全国Ⅰ卷)

2016年全国高考理科综合Ⅰ卷物理部分(真题) 二、选择题:本题共8小题,每小题6分。在每小题给出的四个选项中,第14~17小题只有一项符合题目要求,第18~21题有多项符合题目要求。全部选对的得6分,选对但不全的得3分,有选错的得0分。 14. 一平行板电容器两极板之间充满云母介质,接在恒压直流电源上,若将云母介质移出,则电容器() A. 极板上的电荷量变大,极板间电场强度变大 B. 极板上的电荷量变小,极板间电场强度变大 C. 极板上的电荷量变大,极板间电场强度不变 D. 极板上的电荷量变小,极板间电场强度不变 15. 现代质谱仪可用来分析比质子重很多的离子,其示意图如图所示,其中加速电压恒定。质子在入口处从静止开始被加速的电场加速,经匀强磁场偏转后从出口离开磁场。若某种一价正离子在入口处从静止开始被同一加速电场加速,为使它经匀强磁场偏转后仍从同一出口离开磁场,需将磁感应强度增加到原来的12倍。此离子和质子的质量比约为() A.11 B. 12 C. 121 D. 144 16. 一含理想变压器的电路如图所示,图中电阻R1、R2、R3的阻值分别为3Ω、1Ω、4Ω,○A为理想交流电流表,U为正弦交流电压源,输出电压的有效值恒定。当开关S断开时,电流表的示数为I;当S闭合时,电流表的示数为4I。该变压器原、副线圈匝数之比为() A.2 B. 3 C. 4 D. 5 17. 利用三颗位置适当的地球同步卫星,可使地球赤道上任意两点之间保持无线电通讯。目前地球同步卫星的轨道半径约为地球半径的6.6倍。假设地球的自转周期变小,若仍仅用三颗同步卫星来实现上述目的,则地球自转周期的最小值约为() A. 1h B. 4h C. 8h D. 16h

相关文档
相关文档 最新文档