文档库 最新最全的文档下载
当前位置:文档库 › 架空电力线路导线弧垂观测记录表

架空电力线路导线弧垂观测记录表

架空电力线路导线弧垂观测记录表
架空电力线路导线弧垂观测记录表

架空电力线路导线弧垂观测记录DQ-29

架空电力线路导线弧垂观测记录DQ-29

导线力的公式.doc

1. 导线破断应力:S T X =δ(N /cm 2)T —导线综合拉断力(牛顿);S —导线截面积(cm 2)。 2. 导线最大许可应力:K X mix δδ= (N / cm 2)K —导线安全系数。 3. 导线最大许可拉力:S F m ix m ix δ=(N )S —导线实际使用截面 4. 两根通电导体相互作用力:当电流方向相同时相吸引,反之相排斥。即电磁相互作用力:721102-?=a L i i F (N )L —档距;a —相间距离。 5. 导线架设,跨越架顺线长度:αsin a D D L += ;D —被跨越线路边线到边线距离;a D —两边线延长的安全距离和 (与电压等级有关);αsin —架设线路与被跨越线路的正弦夹角数。 6. 改变档距弧垂计算公式:02 011f l l f ??? ? ??=;1l —改变后档距;0l —原档 距;0f —原档距。 7. 实际应用弧垂:()K f f -=11;k —初伸长系数(铝绞线0.2、钢芯铝绞线0.12、铜绞线0.07-0.08) 8. 电杆有高差弧垂:β cos /f f = ;β—高差角度。 9. 原导线驰度线长计算公式:l f l L 382 +=;l —档距;f —弧垂。 10. 现调整弧垂后驰度线长计算公式:l f f l L x X 3)(82 -+=;l —档距;x f —弧垂差值(即原弧垂与调整弧垂的差值)。 11. 驰度线长差即调整导线的长度:X L L L -=? 12. 计算导线综合比载:

1) 导线自身重比载:)./(10/230mm m Kg S G g l -?=;0G —导线重量(Kg/Km );S —导线截面(㎜2)。 2) 冰重比载:)./(10/)(9.023mm m Kg S b b d g b -?+=π; d —导线直径(㎜); b —冰的厚度(㎜);S —导线截面(㎜ 2 )。 3) 风速比载:)./(1016/232mm m Kg S akdv g f -?=; a —风速(m/s ); k —比率1.2;d —导线直径(㎜); 2v —效率10.16 ;S —导线截面(㎜2)。 4) 导线综合比载:32210)(-?++=f b l g g g g 5) 安全带破断力不得小于15000N

导线应力弧垂计算

导线应力弧垂计算一、确定相关参数 表一Ⅲ气象区条件 表二LGJ-300/50型导线参数 二、相关比载计算

1. 自重比载 )/(1006.341036 .34880665 .912100 ,0331m Mpa A qg --?=??==)(γ 2. 冰重比载 )/(1060.111036 .348) 26.245(5728.2710)(728.270 ,53332m Mpa A b d b ---?=?+??=?+=)(γ3.垂直总比载 )/(1066.45050,00,53213m Mpa -?=+=), ()()(γγγ 4.无冰风压比载 5.62 6.1106.12 2=== V W V (Pa) 63.3906 .1256.12 2===V W V (Pa) 1)外过电压、安装有风: 33241036 .3485 .6226.241.185.00.110sin 10 ,0--?????=?=θμαβγA W d v sc f c )( =4.103 -10?(Mpa/m ) 2)最大设计风速: 计算强度: 33241036 .34863.39026.241.185.00.110sin 25 ,0--?????=?=θμαβγA W d v sc f c )( =25.433-10?(Mpa/m ) 低于500kv 的线路c β取1.0,计算强度时f α按表取0.85,当d ≥17mm 时sc μ取

1.1. 计算风偏: 33241036 .34863 .39026.241.175.00.110sin 25 ,0--?????=?=θμαβγA W d v sc f c )( =22.443 -10?(Mpa/m ) 计算风偏时f α取0.75 3)内过电压: 625.1406 .1156.12 2=== V W V (Pa) 33241036 .348625 .14026.241.185.00.110sin 15 ,0--?????=?=θμαβγA W d v sc f c )( =9.163 -10?(Mpa/m ) 5. 覆冰风压比载 5.626 .1106.12 2=== V W V 32510sin )2(10 ,5-?+=θμαβγA W b d B v sc f c )( 3-1036 .3485 .621026.241.12.10.10.1??+????=)( )(m Mpa /1011.83 -?= 6. 无冰综合比载 外过电压、安装有风: )/(1031.341010.406.3410 ,00,025,033-222 4216m Mpa -?=?+=+=)()()(γγγ 最大设计风速(计算强度): )/(1051.421043.2506.3425 ,00,025,033-2224216m Mpa -?=?+=+=)()()(γγγ 最大设计风速(计算风偏):

导线应力弧垂分析(1-6节).

第二章导线应力弧垂分析 ·导线的比载 ·导线应力的概念 ·悬点等高时导线弧垂、线长和应力关系 ·悬挂点不等高时导线的应力与弧垂 ·水平档距和垂直档距 ·导线的状态方程 ·临界档距 ·最大弧垂的计算及判断 ·导线应力、弧垂计算步骤 ·导线的机械特性曲线 [内容提要及要求] 本章是全书的重点,主要是系统地介绍导线力学计算原理。通过学习要求掌握导线力学、几何基本关系和悬链线方程的建立;掌握临界档距的概念和控制气象条件判别方法;掌握导线状态方程的用途和任意气象条件下导线最低点应力的计算步骤;掌握代表档距的概念和连续档导线力学计算方法;了解导线机械物理特性曲线的制作过程并明确它在线路设计中的应用。 第一节导线的比载 作用在导线上的机械荷载有自重、冰重和风压,这些荷载可能是不均匀的,但为了便于计算,一般按沿导线均匀分布考虑。在导线计算中,常把导线受到的 机械荷载用比载表示。 由于导线具有不同的截面,因此仅用单位长度的重量不宜分析它的受力情况。此外比载同样是矢量,其方向与外力作用方向相同。所以比载是指导线单位长度、单位截面积上的荷载,常用的比载共有七种,计算公式如下:1.自重比载 导线本身重量所造成的比载称为自重比载,按下式计算 (2-1) 式中:g1—导线的自重比载,N/m.mm2; m0一每公里导线的质量,kg/km;

S—导线截面积,mm2。 2.冰重比载 导线覆冰时,由于冰重产生的比载称为冰重比载,假设冰层沿导线均匀分布并成为一个空心圆柱体,如图2-1所示,冰重比载可按下式计算: (2-2) 式中:g2—导线的冰重比载,N/m.mm2; b—覆冰厚度,mm; d—导线直径,mm; S—导线截面积,mm2。 图2-1覆冰的圆柱体 设覆冰圆筒体积为: 取覆冰密度,则冰重比载为: 3.导线自重和冰重总比载 导线自重和冰重总比载等于二者之和,即 g3=g1+g2(2-3) 式中:g3—导线自重和冰重比载总比载,N/m.mm2。 4.无冰时风压比载

架空线常用计算公式和应用举例_图文

架空线常用计算公式和应用举例 前言 在基层电力部门从事输电线路专业工作的技术人员,需要掌握导线的基本的计算方法。这些方法可以从教材或手册中找到。但是,教材一般从原理开始叙述,用于实际计算的公式夹在大量的文字和推导公式中,手册的计算实例较少,给应用带来一些不便。本书根据个人在实际工作中的经验,摘取了一些常用公式,并主要应用Excel工作表编制了一些例子,以供相关人员参考。 本书的基本内容主要取材于参考文献,部分取材于网络。所用参考文献如下: 1. GB50545 -2010 《110~750kV架空输电线路设计规程》。 2. GB50061-97 《66kV及以下架空电力线路设计规范》。 3. DL/T5220-2005 《10kV及以下架空配电线路设计技术规程》。 4. 邵天晓著,架空送电线路的电线力学计算,中国电力出版社,2003。 5. 刘增良、杨泽江主编,输配电线路设计, 中国水利水电出版社,2004。 6.李瑞祥编,高压输电线路设计基础,水利电力出版社,1994。 7.电机工程手册编辑委员会,电机工程手册,机械工业出版社,1982。 8.张殿生主编,电力工程高压送电线路设计手册,中国电力出版社,2003。 9.浙西电力技工学校主编,输电线路设计基础,水利电力出版社,1988。 10.建筑电气设计手册编写组,建筑电气设计手册,中国建筑工业出版社,1998。 11.许建安主编,35-110kV输电线路设计,中国水利水电出版社,2003。 由于个人水平所限,书中难免出现错误,请识者不吝指正。 四川安岳供电公司 李荣久 2015-9-16 目录 第一章电力线路的导线和设计气象条件 第一节导线和地线的型式和截面的选择 一、导线型式 二、导线截面选择与校验的方法 三、地线的选择 第二节架空电力线路的设计气象条件 一、设计气象条件的选用 二、气象条件的换算 第二章导线(地线)张力(应力)弧垂计算 第一节导线和地线的机械物理特性与单位荷载 一、导线的机械物理特性 二、导线的单位荷载

10KV架空线路工程施工设计方案

张唐铁路丰南南站10KV配电所外部电源工程施工组织方案 第一节工程概况 1.1工程名称:张唐铁路丰南南站10KV配电所外部电源工程 1.2工程地点:丰南 1.3主要工程内容: 1.3.1柳树圈220KV变电站至丰南南10KV配电所架空及电缆电源线路1条,黄各庄110KV变电站至丰南南10KV配电所架空及电缆电源线路1条,以及2条线路的电力试验。 1.3.2丰南南10KV配电所电源线路的引入接口施工及送电前试验。 1.3.3完成丰南南10KV配电所电源进线的供用电及送电手续办理。 1.3.4完成丰南电力公司要求的相关流程手续办理,按地方要求办理完成各种规划的相关手续。 1.3.5负责协助甲方完成线路施工的青补及征占地工作及相关手续的办理。 1.4承包内容及方式:本工程包含供用电手续办理、包含线路设计、定测及线路施工、包含除甲供料(架空导线、高压电缆)外的其它所有材料设备供给及电气试验,包含工程验收及开通送电等。 1.5工程性质:新建张家口至唐山铁路10千伏及以下外电源工程,按唐山供电段和丰南电力公司要求进行线路和设备安装施工,并按供电段和丰南电力公司要求进行线路和设备试验,并提供供电段和

丰南电力公司认可的试验报告。 第二节施工期限 2.1 丰南南10KV配电所外电源开工日期2015年6月5日;竣工日期2015年6月30日。到期如乙方不能按期送电甲方将采取临时送电措施,临时送电发生的费用全部从乙方的施工费用中扣除。 2.2双电源供电线路的送电时间根据前期商量可将其中一条线路放宽时间于2015年7月30日前送电。 2.3由于甲方原因造成的工期延误,正常工期可依次顺延。 第三节设计依据和规范 1.1设计依据: 1.1.1中铁建电气化局集团第三工程有限公司张唐铁路项目经理部的设计委托。 1.1.2国网冀北唐山市供电公司批复的供电答复单 1.2设计所依据的主要规程、规范: 1.2.1《城市电力电缆线路设计技术规定》(DL/T5221-2005) 1.2.2《10kV及以下架空配电线路设计技术规程》(DL/T5220-2005)1.2.3《66kV及以下架空电力线路设计规范》(GB50061-2010) 1.2.4《电力工程地下金属构筑物防腐技术导则》(DL/T5394-2007)1.2.5《电力工程电缆设计规范》(GB50217-2007) 1.2.6《电缆防火标准》(中国大唐集团公司) 1.2.7《电气装置安装工程电缆线路施工及验收规范》(GB50168-2006)1.2.8《架空送电线路杆塔结构设计技术规定》(DL/T5154-2002)

架空光缆弧垂计算及受力分析

架空光缆弧垂计算及受力分析 在电力系统中,架设于高压输电线路的光缆主要有ADSS 、OPGW ,ADSS 主要应用于已有的输电线路,OPGW 主要用于新建电力线路,以及对旧线路的改造中。由于OPGW 具有传输信号的通道.又可作为地线的两重功效,因此得到了越来越多的应用。光缆架设后,在最恶劣的自然条件下受力,这对光缆的寿命影响很大。如何确定光缆的受力,对设计者来说也是一个重要的环节。 1 架空光缆的弧垂计算 光缆悬挂于杆塔A 、B 之间,并且在自重作用下处于平衡状态。假设在光缆上均匀分布着载荷g ,则光缆在杆塔A 、B 之间具有一定的弧垂,取光缆上最低点为坐标原点,光缆上任意一段长度为L 。(如图1所示)。 假设光缆水平方向的应力为0δ,光缆的横截面积为S ,则光缆水平方向的拉力为 00T S δ=?。光缆受到的轴向拉力x T ,且与水平方向的夹角为α,则在长度为x L 的一段内,光缆由受力平衡条件得到: 00cos sin x x x T T S T g L S αδα==??? =??? (1-1) 由以上两式相比得: x dy g tg L dx αδ= =

而: () 2 2 x d y g d tg dL dx α δ= = = dx = 两边积分得: d tg g dx α δ = ? ? ()()1 10 g sh tg x c αδ-= + ()10dy g tg sh x c dx αδ??= =+???? 又有图1知:当0x =时,0tg α=,所以10c =,因此 ()001/g y ch x m g δδ? ??? =-N ?? ????? 所以有: 0g dy sh x dx δ?? = ??? ?? 20g y ch x c g δδ??= + ??? 又因为,当0x =时,0y =,所以20/c g δ=-。从而,我们推导出了光缆在两杆塔之间的状态方程为一悬链线曲线方程。即 001g y ch x g δδ? ???=-?? ????? (1-2) 例如,设光缆两杆塔高度差为10m ,较低的杆塔高为22m ,档距为250m ,取三种 情况: ①g =0.01188(N /m *mm ),0δ=39.63(Mpa) ;②g =0.01788(N /m *mm ), 0δ=37.97(Mpa) ;⑧g =0.03797(N /m *mm ), 0δ=62.83(Mpa);利用数学软 件athematia M 得到的曲线如图2所示。由曲线方程知,曲线的位置及形状与0/g δ值的大小有关,但由于g 得变化比0δ小的多,所以曲线的形状主要取决于应力0 δ

10KV及以下架空线路的拉线

10KV及以下架空线路的拉线 1 范围 本工艺标准运用于10kV及以下架空配电线路的拉线安装工程。 2 施工准备 2.1 材料要求: 2.1.1 所采用的器材、材料应符合国家现行技术标准的规定,并应有产品合 格证。 2.1.2 钢绞线: 2.1.2.1 不应有松股、交叉、折叠、断裂及破损等缺陷。 2.1.2.2 镀锌良好,无锈蚀现象。 2.1.2.3 最小截面个应小于25mm2。 2.1.2.4 应符合国家或部颁的现行技术标准,并有合格证件。 2.1.3 镀锌铁丝: 2.1. 3.1 不应有死弯、断裂及破损等缺陷。 2.1. 3.2 镀锌良好,不应锈蚀。 2.1. 3.3 拉线主线用的铁丝直径不应小于 4.0mm,缠绕用的铁丝直径不应小于 3.2mm。 2.1.4 拉线棒: 2.1.4.1 不应有死弯、断裂、砂眼、气泡等缺陷。 2.1.4.2 镀锌良好,不应锈蚀。

2.1.4 3 最小直径不应小于16mm。 2.1.4.4 应符合国家或部颁的现行技术标准,并有合格证件。 2.1.5 混凝土拉线盘 2.1.5.1 预制混凝土拉线盘表面不应有蜂窝、露筋、裂缝等缺陷,强度应满 足设计要求。 2.1.5.2 应符合国家或部颁的现行技术标准,并有合格证件。 2.1.6 拉线绝缘子 2.1.6.1 瓷釉光滑,无裂纹、缺釉、斑点、烧痕、气泡或瓷釉烧坏等缺陷。 2.1.6.2 高压绝缘子的交流耐压试验结果必须符合施工规范规定。 2.1.6.3 应符合国家或部颁的现行技术标准,并有合格证件。 2.1.7 拉线抱箍、UT型线夹、楔形线夹、花篮螺栓、双拉线联板、平行挂板、 U形挂板、心形环、钢线卡、钢套管等。 2.1.7.1 表面应光洁、无裂纹、毛刺、飞边、砂浆眼、气泡等缺陷。 2.1.7.2 应热镀锌,且镀锌良好,无镀锌层剥落锈蚀现象。 2.1.8 螺栓: 2.1.8.1 螺栓表面不应有裂纹、砂眼、锌层剥落及锈蚀等现象。 2.1.8.2 螺杆与螺母的配合应良好。加大尺寸的内螺纹与有镀层

10KV架空线路知识

(十)10kV以下架空线路 1、工地运输,是指估价表内未计价材料从集中材料堆放点或工地仓库运至杆位上的工程运输,分人力运输和汽车运输,以“10t·km”为计量单位。 运输量计算公式如下:工程运输量=施工图用量×(1+损耗率) 预算运输重量=工程运输量+包装物重量(不需要包装的可不计算包装物重量) 运输重量可按下表的规定进行计算: 注:①W为理论重量; ②未列入者均按净重计算。 2、土石方量计算 (1)无底盘、卡盘的电杆坑,其挖方体积V=0.8×0.8×h(h——坑深m) (2)电杆坑的马道土、石方量按每坑0.2m3计算 (3)施工操作裕度按底、拉盘底宽每边增加0.1m。 (4)电杆坑(放边坡)计算公式: V=h÷[6〔ab+(a+a1)×(b+b1)+a1b1〕] 式中:V——土(石)方体积(m3) h——坑深(m) a(b)——坑底宽(m),a(b)=底、拉盘底宽+2×每边操作裕度; a1(b1)——坑口宽(m),a1(b1)=a(b)+2×h×边坡系数 放坡系数

注:a.土方量计算公式亦适用于拉线坑; b.双接腿杆坑按带底盘的土方量计算; c.木杆按不带底盘的土方量计算。 3.各类土质的放坡系数按下表计算 各类土质的放坡系数 4、冻土厚度大于300mm时,冻土层的挖方量按挖坚土项目,其基价乘以系数2.5。其他土层仍按土质性质执行本册估价表。 5、杆坑土质按一个坑的主要土质而定,如一个坑大部分为普通土,少量为坚土,则该坑应全部按普通土计算。 6、带卡盘的电杆坑,如原计算的尺寸不能满足卡盘安装时,因卡盘超长而增加的土(石)方量另计。 7、底盘、卡盘、拉线盘按设计用量以“块”为计量单位。 8、杆塔组立,分别杆塔形式和高度按设计数量以“根”为计量单位。 9、拉线制作安装按施工图设计规定,分别不同形式,以“组”为计量单位。 10、横担安装按施工图设计规定,分不同形式和截面,以“根”为计量单位,估价表按单根拉线考虑,若安装V型、Y型或双拼型拉线时,按2根计算。拉线长度按设计全根长度计算,设计无规定时可按下表计算。

导线应力弧垂计算

导线应力弧垂计算 一、确定相关参数 表二 LGJ-300/50型导线参数 二、相关比载计算 1. 自重比载 )/(1006.341036 .34880665 .912100 ,0331m Mpa A qg --?=??==)(γ 2. 冰重比载 )/(1060.111036 .348) 26.245(5728.2710)(728.270 ,53332m Mpa A b d b ---?=?+??=?+=)(γ3.垂直总比载 )/(1066.45050,00,53213m Mpa -?=+=), ()()(γγγ 4.无冰风压比载 5.626 .1106.12 2=== V W V (Pa)

63.3906 .1256.12 2===V W V (Pa) 1)外过电压、安装有风: 33241036 .3485 .6226.241.185.00.110sin 10 ,0--?????=?=θμαβγA W d v sc f c )( =4.103 -10?(Mpa/m ) 2)最大设计风速: 计算强度: 33241036 .34863 .39026.241.185.00.110sin 25 ,0--?????=?=θμαβγA W d v sc f c )( =25.433-10?(Mpa/m ) 低于500kv 的线路c β取1.0,计算强度时f α按表取0.85,当d ≥17mm 时sc μ取1.1. 计算风偏: 33241036 .34863.39026.241.175.00.110sin 25 ,0--?????=?=θμαβγA W d v sc f c )( =22.443 -10?(Mpa/m ) 计算风偏时f α取0.75 3)内过电压: 625.1406 .1156.12 2=== V W V (Pa) 33241036 .348625 .14026.241.185.00.110sin 15 ,0--?????=?=θμαβγA W d v sc f c )( =9.163 -10?(Mpa/m ) 5. 覆冰风压比载 5.626 .1106.12 2=== V W V 32510sin )2(10 ,5-?+=θμαβγA W b d B v sc f c )( 3-1036 .3485 .621026.241.12.10.10.1??+? ???=)( )(m Mpa /1011.83 -?=

10kv架空线路材料消耗量表

10kv架空线路材料消耗量表 建筑工程常用技术数据 10kv架空线路材料消耗量表序号材料名称型号或规格单位消耗量 1 高压四线抱梁套 1.00 高压四线梁 2000mm 条 2.00 结合器个 2.00 五穴板块 2.00 双板线古 225mm 对 1.00 螺栓 16*50mm 条 4.00 螺栓 16*75mm 条 4.00 螺栓 16*275mm 条 2.00 2 高压刀闸梁套 1.00 高压刀闸梁 1200mm 条 1.00 角拉带块 2.00 对古个 1.00 双板线古 225mm 对 1.00 螺栓 16*50mm 条 6.00 螺栓 16*75mm 条 6.00 螺栓 16*275mm 条 4.00 3 高压四线梁套 1.00 高压四线梁 2000mm 条 1.00 正箍个 1.00 结合器个 1.00 螺栓 16*75mm 条 2.00 4 高压双回线梁(单梁) 套 1.00 高压双回线梁 1700mm 条 1.00

高压双回线梁 2500mm 条 1.00 正箍 195mm 个 1.00 正箍 205mm 个 1.00 对古 215mm 对 1.00 角拉带 1000mm 条 2.00 角拉带 1200mm 条 2.00 结合器个 2.00 螺栓 16*50mm 条 6.00 螺栓 16*75mm 条 4.00 5 高压双回线梁(抱梁) 套 1.00 高压双回线梁 1700mm 条 2.00 高压双回线梁 2500mm 条 2.00 对古 215mm 对 1.00 角拉带 1000mm 条 4.00 角拉带 1200mm 条 4.00 结合器个 4.00 五穴板块 6.00 螺栓 16*275mm 条 2.00 1 天津中建华企业管理咨询有限公司 建筑工程常用技术数据 序号材料名称型号或规格单位消耗量 螺栓 16*250mm 条 2.00 螺栓 16*75mm 条 2.00 螺栓 16*50mm 条 20.00 6 高压丁字单梁套 1.00 丁字梁条 1.00

计算架空线路载流量

计算架空线路载流量 如何计算架空线路载流量呢? 一、通过对输电线路导线温度、接点温度,计算出导线当前的实际载流量 我们知道导线温度国标是70度,和载流量有什么关系,导线最大载流量是多少. 1.1 导线允许载流量的计算 导线的温度与导线的载流量、环境温度、风速、日照强度、导线表面状态等有关,对于确定的环境条件,导线的允许载流量直接取决于其发热允许温度,允许温度越高,允许载流量越大。但是导线发热允许温度受导线载流发热后的强度损失制约,因此架空导线的允许载流量一般是按一定气象条件下导线不超过某一温度来计算的,目的在于尽量减少导线的强度损失,以提高或确保导线的使用寿命。 允许载流量的计算与导体的电阻率、环境温度、使用温度、风速、日照强度、导线表面状态、辐射系数及吸热系数、空气的传热系数和动态黏度等因素有关。导线的最高使用温度按各国的具体情况而定,日本、美国的导线最高使用温度允许到90℃,法国为85℃,德国、荷兰、瑞士等国允许到80℃,我国和前苏联允许到70℃。 架空导线载流量的计算公式很多,但其计算原理都是由导线的发热和散热的热平衡推导出来的,热平衡方程式为 Wj+WS=WR+WF 式中,Wj为单位长度导线电阻产生的发热功率,W/m;WS为单位长度导线的日照吸热功率,W/m;WR为单位长度导线的辐射散热功率,W/m;WF为单位长度导线的对流散热功率,W/m。 各国在计算过程中考虑的各个因素有所不同,使其公式的系数不同,但计算结果相差不大。以英国摩尔根公式和法国的公式作比较,其计算值相差1%~2%。其中英国摩尔根公式考虑影响载流量的因素较多,并有实验基础。但摩尔根公式计算过程较为复杂。在一定条件下将其简化,可缩短计算过程,适用于当雷诺系数为100~3

10KV架空线路施工总承包合同(2012)

10kV电力架空线路#~#杆工程 施工总承包合同 [合同编号:] 甲方(发包方): 乙方(承包方): 签约地点: 时间:年月日

10kV电力架空线路 #~#杆工程 施工总承包合同 (甲方): (乙方): 甲方作为10kV电力架空线路#~#杆工程发包方,根据工程需要,现委托乙方承担此项目10KV线路工程总承包施工,为进一步明确双方的责任与权益,根据《中华人民共和国合同法》,甲乙双方经友好协商签订本合同,以资共同遵守。 第一条工程名称 第二条10kV电力架空线路#~#杆工程 第三条工程地点及迁改方案 地点:本合同工程位于。 初步设计及施工图方案:迁改初步方案已经业主()审定,详见附件。 第三条工程内容、范围及工程量 本合同工程内容、范围及工程量以审定的施工图为准。主要工程量为:10kV电力线路#~#杆共处、长公里 以上迁改数量均为施工图评审确定的数量,项目具体内容详见相关设计图纸。乙方需按批准施工图完成各杆线线路及设施安装、征地及青苗补偿、验收资料等工作。 第四条承包方式 乙方包工、包料,包工期、包质量、包安全、包文明施工、包征地及青赔,包组织完成施工图设计以及在工程实施中甲方委托乙方开展与本工程相关的建设内容。 第五条工程监理 本工程由(广西正远电力工程建设监理有限责任公司)进行监理,监理公司依据监理合同对工程进行“四控制”(质量、投资、进度、安全控制)、“两管理”(合同、信息管理)、“一协调”(协调业主和承包商关系)所采取的相关措施,双方均予以认可或执行。 第六条合同金额 本项目实行总价承包,合同金额为整人民币(¥),此费用已包含乙方完成

本合同工程的全部费用,并已包含各种难度及风险,由乙方包干使用,自负盈亏,除新增项目外,本合同工程的费用不能调整。 第七条费用支付及相关要求 1、首期工程预付款:合同签订后14个工作日内,在乙方人员机械全部进场、项目已正式开工的情况下,甲方将按本合同金额的20%(其中预留合同金额的10%作安全文明施工保证金)通过银行转帐的方式一次性汇入乙方银行帐户内。 2、乙方于本项目的杆、塔、导线、电缆等主要材料订货后,应将订货合同交甲方备案并提前按订购合同约定付款时间及数额向甲方申请主要材料款,甲方核实后在7个工作日内支付乙方材料采购款,甲方支付乙方主要材料款限额控制在本合同主要材料款总额范围内。 3、工程量完成达65%,乙方提出申请甲方核实后在7个工作日内再支付合同金额的12%(其中暂扣合同金额的2%作民工工资保证金); 4、工程量完成达85%,乙方提出申请甲方核实后在7个工作日内支付至合同金额的85%(含已付款); 5、工程全部完工经验收合格交付使用后,双方办理工程结算确认手续后14个工作日内,甲方一次性支付工程结算余款给乙方(留5%作为质保金,质保期一年)。 乙方收到每一相关款项后应向甲方提供正式的税务发票。 第八条施工工期 本合同工期为个月,从本合同签订当天算起共天。 工程质量 工程质量等级:质量等级以国家或行业颁发的施工及验收规程、规范和设计要求的工程质量标准为依据,要求交工验收分项工程质量合格率为100%。工程项目符合投产的要求。 第九条安全及文明施工 1、安全目标:不发生人身重伤及以上事故;不发生因施工原因引起的电网一类障碍;不发生有责任的一般电网、设备事故;不发生一般施工机械设备损坏事故;不发生负同等及以上责任的生产性重大交通事故;不发生火灾事故;不发生重大职业卫生伤害事故;不发生环境污染事故和重大垮(坍)塌事故;不发生违章、恶性误操作事故;不发生因违反调度纪律而造成的事故;不发生因施工引起的环境破坏和污染事故。 2、乙方必须认真贯彻国家、电力行业有关安全生产的法律、法规、方针、政策以及xxx电网有限责任公司、产权方和甲方的有关规定,接受甲方、监理、产权方和政府相关部门对安全文明施工、环境保护、卫生健康等的监督检查。乙方必须根据电网建设安全风险管理体系建设工作的有关规定,对施工现场及周边环境的危险源及环境因素进

导线的应力及弧垂计算

第二章导线的应力及弧垂计算 一、比载计算 本线路采用的导线为LGJ-120,本地区最大风速v=30m/s,覆冰风速v=10m/s,覆冰厚度b=10mm 表2-1 LGJ-120规格 计算外径mm 计算截面mm2单位质量kg/km 495 ==2) 2、冰重比载 =q/S=×10-3= 2) 3、自重和冰重总比载(垂直比载) =+=(+) =2) 4、无冰风压比载 =×10-3= =2) 5、覆冰风压比载

=×10-3=-3 =2) 6、无冰综合比载 ==10-3 =2) 7、覆冰综合比载 ==10-3 =2) 一、临界档距的计算及判别 查表4-2-2可知: 表2-2 LGJ-120的机械特性参数 综合瞬时破坏应力(N/mm2)弹性模数(N/mm2)线膨胀系数(1/℃) 784001910-6 []===(N/mm2) 全线采用防振锤防振,所以平均运行应力的上限为 σp=(N/mm2) L lab

= =139.7m L lac= = =152.07m L lad= = =117.01m L lbc= = =163.7m L lbd=

= =105.9m L lcd= = =0 二、导线应力弧垂计算 ㈠最低气温时(T=-20℃) 当L=50m时,应力由最低气温控制σ=(N/mm2)g=(N/m·mm2) f===0.096m 当L=100m时,应力由最低气温控制 f===0.3856m 当L=117.01m时,为临界档距 f===0.531m 当L=150m时,应力由最大比载控制 σn-=σm--(t n-t m)

σ-=-(-20+5) (N/mm2); f===0.973m 当L=200m时,应力由最大比载控制 σ-=-(-20+5) (N/mm2); f===2.133m 当L=250m时,应力由最大比载控制 σ-=-(-20+5) (N/mm2); f===4.004m 当L=300时,应力由最大比载控制 σ-=-(-20+5) (N/mm2); f===6.528m 当L=350m时,应力由最大比载控制 σ-=-

(整理)10KV及以下架空配电线路1.

10KV及以下架空配电线路安装工艺要求

一、电杆基坑及基础埋设 1、基坑施工前的定位符合下列规定: ⑴、直线杆顺线方向位移,10KV及以下架空电力线路不应超过设计档距的3%,直线杆横线路方向位移不超过50mm。 ⑵、转角杆、分支的横线路、顺线路方向的位移均不应超过50mm。 2、电杆基础坑深应符合设计规定。电杆基础坑深度允许偏差应为 +100mm、-50mm。同基基础坑在允许偏差范围内按最深一坑操平。 3、双杆基坑应符合下列规定: ⑴、根开的中心偏差不应超过±30mm。 ⑵、两杆坑深宜一致。 4、基坑回填土应符合下列规定: ⑴、土块应打碎。 ⑵、10KV及以下架空电力线路基坑每回填30mm应历夯一次。 ⑶、松软土值的基坑,回填土时应增加夯实次数或采取加固措施。 ⑷、回填土后的电杆基础宜设防沉土层。土层上部面积不宜小于坑口面积;培地高度应超出地面300mm。 二、电杆组与绝缘子安装 1、单电杆立好后应正直,位置偏差应符合下列规定: ⑴、直线杆的横向位移不应大于50mm。 ⑵、10KV及以下架空电力线路杆梢的位移不应大于杆梢直径的1/2。 ⑶、转角杆的横向位移不应大于50mm。 ⑷、转角杆应向外角预偏紧线后不应向内角倾斜,向外角的倾斜,其

杆梢位移不应大于杆梢直径。 2、终端杆立好后,应向拉线侧预偏。期预偏值不应大于杆梢直径。 紧线后不应向受力倾斜。 3、以螺栓连接的构件应符合下列规定: ⑴、螺栓应与构件面垂直,螺头平面预构件间不应有间隙。 ⑵、螺栓紧好后,螺杆丝扣露处的长度,单螺母不应少于两个螺距;双螺母可预螺母相平。 ⑶、当必须加垫圈时,每端垫圈不应超过2个。 4、螺栓的穿入方向应符合下列规定: ⑴、对立体结构:水平方向由内向外垂直方向由下向上。 ⑵、对平面结构:顺线路方向,双面构件内由向外,单面克件由送 电侧穿入或按统一方向,横线路方向,两侧由内向外,中间由 左向右(面向受电侧)或按统一方向;垂直方向,由下向上。 5、线路单横担的安装,直线杆应装于受电侧;分支杆90°转角杆 (下)及终端杆应装于拉线侧。 6、横担安装应平正,安装偏差应符合下列规定:⑴、横担端部上 下歪斜不应大于20mm; ⑵、横担端部左右扭斜不应大于20mm; ⑶、双杆的横担,横担与电杆连接处的高差不应大于连接距离的 5/1000; 7、电杆组立后(未架线),杆位横向偏离线路中心线不应大于 50mm。

第三章特殊情况导线张力弧垂计算

第三章特殊情况导线张力弧垂的计算 第一节概述 第二章所述的导线的张力弧垂计算公式都是在导线上为均匀分布荷载的情况下导出的。在实际工程中,导线、地线上还会出现非均匀分布的荷载,一般在以下几种情况出现。 山区线路施工时,由于道路交通不便,运输极为困难,往往采用滑索运输。 在超高压、特高压线路上,由于采用了分裂导线,施工人员在安装分裂导线的间隔棒时采用飞车作业。 运行检修人员修补档距中损坏导线,检测档距中压接管等,往往用绝缘爬梯挂在导线上进行高空带电作业。 国外在超高压、特别是在特高压线路上,我国在某些山区线路中,为了降低线路投资,采用镀锌钢绞线或钢丝绳制成的软横担,如图3-1-1所示。 图3-1-1特高压线路采用的软横担 在变电站户外架空母线上,悬挂引线与开关、变压器等所用的连接线。 以上介绍的几种情况,都属于档距中有集中荷载的情况。 在孤立档中,特别是档距较小时,如线路终端杆塔至变电站门型架,变电站户外母线。由于耐张绝缘子串单位长度重力和导线的单位长度重力相差很大,特别是小导线的情况。而且由于孤立档档距较小时,耐张绝缘子串在一档中所占的比重较大,因此必须考虑耐张绝缘子串的影响。 在孤立档施工紧线时,锚塔处有耐张绝缘子串,而在紧线塔处没有,如图3-1-2所示。导线张力、弧垂应按一端有耐张绝缘子串而另一端没有的架线情况进行计算。 在架空线路施工已架好导线或线路处于运行情况时,孤立档两端均有耐张绝缘子串,如图3-1-3所示。此时,导线张力、弧垂应按两端有耐张绝缘子串情况进行计算。 图3-1-2 孤立档施工紧线图3-1-3 孤立档竣工运行显然,以上两种情况的张力、弧垂大小计算结果是不同的。 在中性点直接接地的电力网中,长度超过100km的线路均应换位。换位循环长度不宜大于200km。 目前换位方式有直线换位塔,耐张换位塔等。也可采用在一般直线杆塔上悬空换位方式,如图3-1-4所示,它是在每相导线上串接一组承受相间电压的耐张绝缘子串,通过两根短跳线A相换至B相,B相换至C相,一根长跳线C相换至A相。这种换位方法在瑞典、芬兰等国用的较多。我国辽宁、山西等省也

导线弧垂观测法

输电线路档侧弧垂检测法 在线路施工中, 当线路走廊内有障碍物影响视 线时候, 可以运用“档侧弧垂检测法”, 弥补常用观测 方法的不足。 1 计算原理示意图(见图1) 图1 档侧弧垂计算原理示意图 2 计算原理分析 该方法计算原理简单, 如图1 所示, 通过三角几 何函数推导, 得出计算公式如下:

式中L———观测档档距;

2 实际操作方法简介 2.1 把经纬仪置于垂直于铁塔侧面2 倍塔高以外 的地方, 最远距离不限, 以镜头能看清导地线为宜。 2.2 调整仪器位置, 使仪器竖丝对穿铁塔左右侧中心螺栓或左右侧挂点螺栓为准, 证明仪器垂直于铁塔中心桩侧面。 2.3 分别测出a1、a2 和β1 , 然后根据公式便可计算 出弧垂值f 或观测角θ, 用以观测或检查弧垂。 3 实际应用分析 3.1 误差分析: 本方法和其他方法一样, 也会受到仪器位置和观测角度偏差等的影响, 但是由于本方法弧垂观测点在档距中央, 即导地线弧垂点上, 所以

观测更为精确。通过多次测量对比证明, 本方法受误差因素影响相对较小, 完全能够满足施工需要。 3.2 在本方法公式基础上稍加变动, 也可用于检测相邻下一档的弧垂, 此方法适用于观测档外地形不便时, 把仪器置于前一档或下一档铁塔侧面即可。3.3 根据本方法的计算原理, 可以测量档内导线任意距离点的位置, 非常适合导线间隔棒检查、安装, 从而避免了间隔棒安装在高空测量的不便和危险。用这种方法检查安装间隔棒已经在施工中应用, 并取得了良好效果。 3.4 本方法缺点: 不能进行导线子线间超平观测, 只能逐个检测每一根导线, 或按扇形面估测, 在这方面增加了工作量。

10KV及以下架空线路的拉线

10KV及以下架空线路的拉线

10KV及以下架空线路的拉线 1 范围 本工艺标准运用于10kV及以下架空配电线路的拉线安装工程。 2 施工准备 2.1 材料要求: 2.1.1 所采用的器材、材料应符合国家现行技术标准的规定,并应有产品合 格证。 2.1.2 钢绞线: 2.1.2.1 不应有松股、交叉、折叠、断裂及破损等缺陷。 2.1.2.2 镀锌良好,无锈蚀现象。 2.1.2.3 最小截面个应小于25mm2。 2.1.2.4 应符合国家或部颁的现行技术标准,并有合格证件。 2.1.3 镀锌铁丝: 2.1. 3.1 不应有死弯、断裂及破损等缺陷。 2.1. 3.2 镀锌良好,不应锈蚀。 2.1. 3.3 拉线主线用的铁丝直径不应小于 4.0mm,缠绕用的铁丝直径不应小于 3.2mm。 2.1.4 拉线棒: 2.1.4.1 不应有死弯、断裂、砂眼、气泡等缺陷。 2.1.4.2 镀锌良好,不应锈蚀。

2.1.4 3 最小直径不应小于16mm。 2.1.4.4 应符合国家或部颁的现行技术标准,并有合格证件。 2.1.5 混凝土拉线盘 2.1.5.1 预制混凝土拉线盘表面不应有蜂窝、露筋、裂缝等缺陷,强度应满 足设计要求。 2.1.5.2 应符合国家或部颁的现行技术标准,并有合格证件。 2.1.6 拉线绝缘子 2.1.6.1 瓷釉光滑,无裂纹、缺釉、斑点、烧痕、气泡或瓷釉烧坏等缺陷。 2.1.6.2 高压绝缘子的交流耐压试验结果必须符合施工规范规定。 2.1.6.3 应符合国家或部颁的现行技术标准,并有合格证件。 2.1.7 拉线抱箍、UT型线夹、楔形线夹、花篮螺栓、双拉线联板、平行挂板、 U形挂板、心形环、钢线卡、钢套管等。 2.1.7.1 表面应光洁、无裂纹、毛刺、飞边、砂浆眼、气泡等缺陷。 2.1.7.2 应热镀锌,且镀锌良好,无镀锌层剥落锈蚀现象。 2.1.8 螺栓: 2.1.8.1 螺栓表面不应有裂纹、砂眼、锌层剥落及锈蚀等现象。 2.1.8.2 螺杆与螺母的配合应良好。加大尺寸的内螺纹与有镀层

输电线路设计计算公式汇总

输电线路设计计算公式汇总 均布荷载下架空线的计算 在高压架空线路的设计中,不同气象条件下架空线的弧垂、应力、和线长占有十分重要的位置,是输电线路力学研究的主要内容。这是因为架空线的弧垂和应力直接影响着线路的正常安全运行,而架空线线长微小的变化和误差都会引起弧垂和应力相当大的改变。设计弧垂小,架空线的拉应力就大,振动现象加剧,安全系数减少,同时杆塔荷载增大因而要求强度提高。设计弧垂过大,满足对地距离所需杆塔高度增加,线路投资增大,而且架空线的风摆、舞动和跳跃会造成线路停电事故,若加大塔头尺寸,必然会使投资再度提高。因此设计合适的弧垂是十分重要的。 架空线悬链方程的积分普遍形式 假设一:架空线是没有刚度的柔性索链,只承受拉力而不承受弯矩。 假设二:作用在架空线上的荷载沿其线长均布;悬挂在两基杆塔间的架空线呈悬链线形状。 由力的平衡原理可得到一下结论: 1、架空线上任意一点C 处的轴向应力σx 的水平分量等于弧垂最低点处的轴向应力σ0,即架空线上轴向应力的水平分量处处相等。 σx cos θ=σ0 2、架空线上任意一点轴向应力的垂直分量等于该点到弧垂最低点间线长L oc 与比载γ之积。 σx sin θ=γL oc 推导出: 0 tg Loc γ θσ= dy Loc dx γ σ= 即 0'y Loc γσ= (4-3) 由(4-3)推导出 10 ()dy sh x C dx γ σ=+ (4-4) 结论:当比值γ/σ0一定时,架空线上任一点处的斜率于该点至弧垂最低点之间的线长成正比。最

后推到得到架空线悬链方程的普遍积分形式。C1、C2为积分常数,其值取决于坐标系的原点位置。 0(1)20 y ch x C C σγγσ= ++ (4-5) 等高悬点架空线的弧垂、线长和应力 等高悬点架空线的悬链方程 等高悬点是指架空线的两个挂点高度相同。由于对称性,等高悬点架空线的弧垂最低点位于档距中央,将坐标原点取在该点,如图: 0(1)0 y ch x σγγσ= - (4-6) 由上式可以看出,架空线的悬链线具体形状完全由比值σ0 /γ决定,即无论何种架空线、 何种气象条件。只要σ0 /γ相同,架空线的悬挂曲线形状就相同。在比载γ一定的情况下,架空线的水 平应力是决定悬链线形状的唯一因素,所以平时架空线的水平张力对架空线的空间形状有着决定性的影响。 等高悬点架空线的弧垂 架空线上任意一点的弧垂是指该点距两悬点连线的垂直距离。在设计中需要计算架空线任意一点x 处的弧垂f x ,以验算架空线对地的安全距离。参照图4-2 20000 2(1)24B l l f y ch sh σσγγγσγσ== -= 0(1)20 B l y ch σγγσ= - 可得到式: 0 1100 2() 22x x l x f sh sh σγγγ σσ-= (4-8) 在档距中央,弧垂有最大值,此时x=0或x 1=L/2,所以有 20000 2(1)24B l l f y ch sh σσγγγσγσ== -= (4-9) 架空线的弧垂一般指的是最大弧垂。最大弧垂在线路的设计、施工中占有重要的位置。 等高悬点架空线的线长 L oc 弧垂最低点O 与任意一点C 之间的架空线的线长。

实际环境下的架空导线弧垂及跨越限距工程计算

2010年第4卷第5期南方电网技术实践与经验 2010,V ol. 4,No. 5 SOUTHERN POWER SYSTEM TECHNOLOGY Practice & Experience 文章编号:1674-0629(2010)05-0106-04 中图分类号:TM751 文献标志码:A 实际环境下的架空导线弧垂及跨越限距工程计算 陶凯,卢艺 (华南理工大学电力学院,广州510640) 摘要:以导线抛物线模型为基础,根据《110~500 kV架空送电线路设计技术规程》提出的四种可能气象控制条件,建立架空导线的状态方程,并通过牛顿-拉夫逊迭代求得导线的应力,进而推导出弧垂和限距计算方法,提出了在实际环境下计算和校验导线弧垂变化以及对地跨越物限距变化的方法。该方法在广东电网某实际运行的220 kV线路上进行了验证,计算结果与现场测量结果相比仅有少许的误差,由此证明了所提方法是可行的。 关键词:架空导线;跨越;弧垂;应力;气象条件 Calculation of Sag and Restriction on Span of Overhead Lines under Real Environment TAO Kai,LU Yi ( School of Electric Power, South China University of Technology, Guangzhou 510640, China) Abstract: Based on the parabola model and four kinds of possible weather condition given in “the Design regulations for 110~500 kV overhead Line”, this paper establishes the state equation of transmission lines, computes the working stress through Newton-Raphson iteration, derives the sag and span restriction and hence presents a practical method calculating the sag and restriction on and span of overhead lines under real environment. This method has been verified in a 220 kV transmission line of Guangdong Power Grid, which is putting into operation. The results from the proposed method only have a little error compared with that from on-site measurement. Therefore the feasibility of this method is demonstrated. Key words: overhead lines; span; sag; working stress; weather condition 导线的限距和弧垂呈现出此消彼长的关系,因此考核限距实际上就是考核弧垂。导线的弧垂主要受载流量、环境温度、风速以及导线材质等因素的影响。Shelley L. Chen等人在文献[1]的基础上做了大量关于弧垂模型的研究,并在2003年提出了基于环境温度和电流的导线弧垂计算模型[2]。之后,Wernich de Villiers等人又提出了基于多导体自然模型(Natural Modes)理论的实时架空高压线路弧垂计算方法,该方法采用线路载波器(Power-line Carrier)频率50~500 kHz插入-还原的方法反推出水平排列导线的弧垂[3]。20世纪90年代起,随着经济的飞速发展,我国也逐渐开始重视挖掘线路的输电潜能,并在相关领域做了大量的研究[4-6]。目前对导线弧垂的限制仍偏于保守,根据《110~500 kV架空送电线路设计技术规程》(以下简称为《99设规》)[7],导线允许运行的温度为70℃。国内外大量试验研究证明,实际环境下导线载流发热对其本身以及连接金具的影响已再不是制约导线运行温度的因素,导线传输能力仍有很大的提升空间[8-10]。 影响架空导线安全运行的主要因素是导线通过一定电流后由于发热引起的对地面跨越物限距的变化。因此,提高架空导线载流量的首要工作便是解决导线对跨越物的限距计算问题,根据载流量的大小定量计算出架空导线限距的变化程度,从而为最大限度提高架空线路载流量提供可靠的依据。 本文在文献[7]和[11]的理论基础上,对限距的计算公式做进一步简化,提出了在实际环境下计算和校验导线弧垂变化以及对地跨越物限距变化的方法,并在广东电网某实际运行的220 kV线路上进行了验证。 1 导线基本力学计算 1.1 导线模型 架空输电线路的电线,由于两悬挂点之间的距 万方数据

相关文档
相关文档 最新文档