文档库 最新最全的文档下载
当前位置:文档库 › Se75射线源的主要参数及曝光公式

Se75射线源的主要参数及曝光公式

Se75射线源的主要参数及曝光公式
Se75射线源的主要参数及曝光公式

Se75射线源的主要参数及曝光公式

摘要:通过对Se75特性的分析和试验,得出了Se75的主要参数平均能量、透照厚度、半值层及透照曝光量经验公式。

主题词:能量、透照厚度、半值层、曝光量

目前工业射线照相中常用的射线源有X射线、γ射线,由于各自的缺点而存在一定的局限性,如X射线能量低、穿透力弱、透照宽容度小、现场条件制约性大,Ir192、Co60等γ射线线质硬、透照灵敏度低、透照厚度下限值较大等。九十年代末,一种名叫Se75(硒)的γ射线源在工业射线照相中得到应用,它可以较好地解决上述局限性。但查阅大量文献及有关资料均未发现一些实用性的参数及曝光量公式,使得实际使用时很不方便。本文通过对该射线的特性分析及大量的试验,得出了平均能量、半值层、透照厚度等重要参数及曝光量的经验公式。

一.Se75射线特性:

Se75(质量数为75,其中质子数为34,中子数为41)是一种人工放射性同位素,由中子俘获反应所得(说明:这种反应是反应堆中放射性同位素最普遍常用的反应,将封装在适当容器中的元素或其化合物,在反应堆中受中子照射,取出后即可直接应用或经过化学处理后使用)。半衰期120.4天,比活度1.45*104Ci/g,衰变方式为轨道电子俘获,衰变常数Kr为2.04R.cm2/h.mCi,γ当量为0.24毫克镭/毫居里,主要能线谱9根,相应能量为(MeV):0. 066、0.097、0.121、0.136、0.199、 0.265、0.280、 0.304、0.401。Se75反应过程如下:

n,γ EC

74Se 75Se 75As

σ=30b 120.4d

(式中:n:中子,γ:γ射线,σ:核反应的中子俘获截面,b:截面单位(靶),EC:轨道电子俘获,d:天)

Se75在不同活度下可制成的射源尺寸见表一。

表一:不同活度下射源尺寸

二.Se75能线的平均能量

我们平时在选择射线源时的一个重要依据是该射线的穿透能力如何,而决定穿透能力的就是该射线的能量。由于每种射线源都由许多能线组成,每根能线都有一个能量,我们不能把所有的能线能量拿来做选择依据,而必须确定一个能量,该能量就是平均能量。

查阅文献得知Se75能线谱中各能线能量的相对强度(取强度最高的四根线)分别为:以强度最高的能线能量0.265 MeV为100,那么0.136 MeV为93.1,0.280 MeV 为42.9,0.121 MeV为27.4。因此可得出Se75能线的平均能量为:

(0.265×100+0.136×93.1+0.280×42.9+0.121×27.4)/(100+93.1+42.9+27.4)

=0.206 MeV。

三.Se75射线在钢中的半值层及透照曝光量公式

射线透过一定厚度的某种材料时其强度衰减为原先的一半,我们称该厚度为该射线在该材料中的半值层,它是确定曝光量的重要参数。所谓曝光量是指使射线底片得到一定黑度时所需的射线强度与透照时间的乘积,它可以通过曝光量公式计算获得。Se75射线在钢中的半值层及曝光量公式可以按以下方法得出。

从理论上讲,为了使某一底片得到一定的黑度,射源透过工件达到胶片的曝光量是一定的。设某一γ射源的强度为A,衰变常数为τ,射源离胶片的距离为F,工件实际透照厚度为T A,射源离工件表面距离为F-T A时的照射量率为I o,透过工件后的照射量率为I p,为了达到某一黑度所需的时间为t,工件在该射源下的半值层为T h,则有:I p·t为定值,设为K/(相同胶片,相同显定影条件)。

而:I o/ I p=2TA/Th,I p·t= K/,得:I o= K//t·2TA/Th(1)又:I o=A·τ/(F-T A)2≈A*τ/F2(因F>>T A,F-T A≈F)(2)

由合并公式(1)和(2),

得:A·t·τ= K/·F2·2TA/Th

又设K//τ=K

得:A·t=K·F2·2TA/Th(3)公式(3)即为该射源的透照曝光量公式,其中K为常数。

对应某一次透照,A、t 、F、 T A是已知的,只要通过试验得出T h、K值,也就得出该射线的半值层及透照曝光量公式。

1.试件:阶梯试块(长330 mm ,宽120 mm ,厚度2~40 mm ,相邻两台阶相差2 mm ,台阶宽30 mm )

2.方法:将Se75射源(15 Ci,下同)对准阶梯试块每个台阶的正中央分别对D4和D7胶片进行透照,焦距F=500mm,然后对各已曝光的胶片用相同的方法进行暗室处理(显影时间为5分钟。经对各底片黑度的测量(取黑度D=2.5为基准值),测得的有效数据见表二。

3.分析:将表中各数据进行数学推理,得出:

T h=10 mm

D7:K=1.47×10-4; D4:K=3.87×10-4。

从而得到曝光公式如下:D=2.5

D7:A×t=1.47×10-4×F2×2TA/10(4)

D4:A×t=3.87×10-4×F2×2TA/10(5)

公式中的单位:A:Ci,t:min,F:m,T A:mm

公式(4)和(5)在其它焊缝试件中应用,符合性很好,可作为Se75透照曝光量的经验公式。

表二:在D=2.5下透照厚度与曝光时间的对应关系

四.Se75射线源的透照厚度范围

Se75的能线谱中有9条能量线,但其辐射能量主要受2条线支配,即0.265MeV 和0.132MeV(它们占有了很高的强度比例)。Se75平均能量为0.206MeV,相当于200Kv 的X射线,衰减系数μ较大,射线照相对比度D较大,射线照相的固有不清晰度μi 小(Ir192为0.17,Co60为0.350,而200Kv的X射线仅为0.09),清晰度较高。因此,Se75应比Ir192和Co60有较小的透照厚度下限值。同时Se75所辐射的是线状谱,线质较硬,比起相同能量的X射线,它的穿透力更大,因此有较大的透照厚度上限值。

有关Se75的透照厚度范围,国际标准ISO5579是这样规定的:A级为10mm~40mm,B级为14mm ~40mm,而有的地区则规定为4mm~30mm。目前中国尚无这方面的报道。因各个国家透照方法、透照条件及技术要求有差异,因此需要通过大量试验来确定一个适合中国国情的透照厚度范围。

1.试件:δ=4mm、7mm、12mm、25mm、30mm和40mm的平板焊缝及阶梯试块。

2.方法:按焦距(F=300mm、500mm)和胶片(D4、D7)不同组合,用Se75射源对上述平板焊缝按公式(4)和(5)计算的曝光量进行透照,工艺相同,暗室处理相同(显影时间为5分钟)。通过测量各底片的黑度和灵敏度,有效数据见表四(表中透照厚度栏内带括号的为平板焊缝试件,均考虑2mm的余高)。

3.分析:由表三可以看出,在满足合格底片要求的前提下,Se75射源的透照厚度下限值为9mm。对于上限值,可以透过母材厚度为40mm的平板焊缝,且底片各项指标符合要求。如果透照厚度再大,则曝光时间太长。因此,Se75射源较合适的透照范围应该是9mm~40mm

表三:Se75在不同透照厚度下底片的象质情况

五.结论

Se75γ射线为线状谱,线谱丰富(主要线谱有9根),辐射能量较小,透照灵敏度较高,因此有较小的透照厚度下限值。又因为其线质较硬,所以比起相当能量的X 射线来说有较大透照厚度上限值,通过试验表明:Se75较合适的透照厚度范围为9mm~40mm。

Se75γ射线的平均能量为0.206MeV,其半值层为T h=10 mm,

曝光量公式(D=2.5时)为

D7:A×t=1.47×10-4×F2×2TA/10

D4:A×t=3.87×10-4×F2×2TA/10

上述参数及曝光量公式具有很好的应用价值,给实际检验带来很大的便利,具有较好的社会效益和经济效益。

八.参考文献

1.日本无损检测协会编,李衍译.射线检测B.北京:机械工业出版社,1988 2.Halmshaw R. 等著.Rphysics of Industrial Radiology.1966

3.Halmshaw R. Industrial Radiology Theory and Practice.1982

4.Non-destructive testing-Radiographic examination of metallic materials by X-and gamma-rays-Basic rule.ISO5579

x射线探伤原理

X射线探伤机检测知识、原理及应用范围射线的种类很多,其中易于穿透物质的有X射线、γ射线、中子射线三种。这三种射线都被用于无损检测,其中X射线和γ射线广泛用于锅炉压力容器焊缝和其他工业产品、结构材料的缺陷检测,而中子射线仅用于一些特殊场合。射线检测最主要的应用是探侧试件内部的宏观几何缺陷(探伤)。按照不同特征(例如使用的射线种类、记录的器材、工艺和技术特点等)可将射线检测分为许多种不同的方法。射线照相法是指用X射线或γ射线穿透试件,以胶片作为记录信息的器材的无损的检测方法。该方法是最基本的,应用最广泛的一种射线检测方法。 一、射线照相法原理 X射线是从X射线管中产生的,X射线管是一种两极电子管。将阴极灯丝通电使之白炽电子就在真空中放出,如果两极之间加几十千伏以至儿百千伏的电压(叫做管电压)时,电子就从阴极向阳极方向加速飞行、获得很大的动能,当这些高速电子撞击阳极时。与阳极金属原子的核外库仑场作用,放出X射线。电子的动能部分转变为X射线能,其中大部分都转变为热能。电子是从阴极移向阳极的,而电流则相反,是从阳极向阴极流动的,这个电流叫做管电流,要调节管电流,只要调节灯丝加热电流即可,管电压的调节是靠调整X射线装置主变压器的初级电压来实现的。 利用射线透过物体时,会发生吸收和散射这一特性,通过测量材料中因缺陷存在影响射线的吸收来探测缺陷的。X射线和γ射线通过物质时,其强度逐渐减弱。射线还有个重要性质,就是能使胶片感光,当X射线或γ射线照射胶片时,与普通光线一样,能使胶片乳剂层中的卤化银产生潜象中心,经过显影和定影后就黑化,接收射线越多的部位黑化程度越高,这个作用叫做射线的照相作用。因为X射线或γ射线的使卤化银感光作用比普通光线小得多,所以必须使用特殊的X射线胶片,这种胶片的两面都涂敷了较厚的乳胶,此外,还使用一种能加强感光作用的增感屏,增感屏通常用铅箔做成把这种曝过光的胶片在暗室中经过显影、定影、水洗和干燥,再将干燥的底片放在观片灯上观察,根据底片上有缺陷部位与无缺陷部位的黑度图象不一样,就可判断出缺陷的种类、数量、大小等,这就是射线照相探伤的原理。

爆破安全距离计算76471

爆破安全距离计算 Blasting safety distance calculation. 爆破中产生对人、设备、建筑物的主要危险有:爆破地震、空气冲击波、水中爆破冲击波、飞石、殉爆、有毒气体(炮烟)、噪音等,因此,必须做好安全措施,并保证足够的安全距离;而且,为了防止杂散电流、静电、射频电引起雷管、炸药的早爆事故,亦应做好安全工作。 1、爆破震动安全距离计算 选用GB6722-2003《爆破安全规程》确定公式:R=α/1'3)/(V KK Q ?。 R —爆破震动安全距离 Q —一次所允许起爆的最大装药量或毫秒延期起爆时的单段最大装药量 K 、α—与爆破点地形、地质等条件有关的系数和衰减指数,见表1-1 K '—修正系数(在拆除爆破中引入此系数),K '=0.25~1,近爆源且临空面少时取大值,反之取小值 V —周围房屋安全允许震动速度,见表1-2 表1-1爆区不同岩性的K 、a 值 岩性 K a 坚硬岩石 50~150 1.3~1.5 中硬岩石 150~250 1.5~1.8 软岩石 250~350 1.8~2 表1-2爆破地震安全速度(V )值 建筑(构)物 V (cm/s ) 土窑洞、土坯房、毛石房屋 1 一般砖房、非抗震的大型砖块建筑物 2~3 钢筋混凝土框架房屋 5

水工隧道 10 交通隧道 15 矿山巷道 围岩不稳定有良好支护 10 围岩中等稳定有良好支护 20 围岩稳定无支护 30 2、爆破空气冲击波安全距离计算 R K Q =,m 式中:R —爆破空气冲击波安全距离,m ; Q —装药量,kg ; K —与装药条件和爆破程度有关的系数。如表2-1。 表2-1系数(K )值 破坏程度 安全级别 裸露药包 全埋药包 完全无损 1 50~150 10~50 偶然破坏玻璃 2 10~50 5~10 玻璃全破坏、门窗局部破坏 3 5~10 2~5 隔墙、门、窗、板棚破坏 4 2~ 5 1~2 砖石结构破坏 5 1.5~2 1.5~1 全部破坏 6 1.5 __ 注:炸药库的设置,空气冲击波对建筑物和人员安全距离,也按此式计算。 根据《爆破安全规程》规定:露天裸露爆破时,一次爆破的装药量不得大于20kg ,并应按下式确定爆破空气冲击波对在掩体内避炮作业人员的安全距离。 325R Q =,m 式中:R —空气冲击波对掩体内人员的安全距离,m Q —一次爆破的装药量,kg 。

球罐γ射线检测安全距离计算

球罐γ射线检测安全距离计算 一、前言 γ源射线是球罐工程施工中常用无损检测手段,γ源辐射射线穿过空气时能使空气的分子发生电离,辐射作用于生物体时能造成电离辐射,这种电离作用能够杀伤生物细胞,破坏生物组织,造成生物体的细胞、组织、器官等损伤,引起病理反应,称为辐射生物效应。因此,为保障射线作业人员自身及公众的健康和安全,要求在施工作业前要对γ射线施工作业现场进行γ射线检测安全距离的测定,以确保作业人员及公众不受γ射线电离辐射伤害。本文仅以某项目空分装置中524m3中压氮气球罐γ源射线检测施工为例,对γ射线在施工现场使用的安全性进行探讨。 二、球罐探伤条件及γ射线源选择 1、球罐参数简介 该空分装置524m3中压氮气球罐内直径10000 mm,球壳板材质07MnCrMoVR,球壳名义厚度42mm,属Ⅲ类压力容器;球罐本体球壳板组对对焊缝220米,球罐组焊完毕按要求需对该部分焊缝进行100% 射线探伤检测。该球罐无损检测由某检测有限公司负责施工,现场采用γ射线全景曝光技术透照(返修位置使用χ射线透照)。 2、γ射线源选择及使用时间 γ射线源选用铱192,2007年7月20日测量活度为:120.2±2居里;铱192射线源使用时间为2007年7月21日至2007年7月25日。 三、γ射线防护区域划分 1、γ射线源放置在球罐中心,进行γ射线全景曝光;进行探伤作业前,必须先将工作场所划分为控制区和监督区2个安全防护区,安全防护区要放置警戒灯,有专业人员警戒监护。 2、监督区位于控制区外,允许有关人员在此区活动,培训人员或探访者也可进入该区域。其边界外空气比释动能率应不大于2.5μGy·h-1,边界处应有"当心,电离辐射"警示标识,公众不得进入该区域。 3、控制区专业人员控制范围,只允许专业探伤作业操作人员在此区活动,边界外空气比释动能率应不大于40μGy·h-1。在其边界必须悬挂清晰可见的"禁止进入放射性工作场所"警示标识。未经许可人员不得进入该范围。 四、控制区、监督区的距离计算

射线检测原理

射线检测原理 射线在穿透物体过程中会与物体发生相互作用,因吸收和散射而使其强度减弱。强度衰减程度取决于物体的衰减系数和射线在物体中穿越的厚度。如果被透照物体的局部存在缺陷,且构成缺陷的物体的衰减系数又不同于试件,该局部区域的透过射线强度就会与周围产生差异。把胶片放在适当位置使其在透过射线的作用下感光,经暗室处理后得到底片。底片上各点的黑化程度取决于射线曝光量,由于缺陷部位和完好部位的射线强度不同,底片上相应部位就会出现黑度差异。底片上相邻区域的黑度差定义为“对比度”。把底片放在观片灯光屏上借助透过光线观察,可以看到由对比度构成的不同形状的影像,评片人员据此判断缺陷情况并评价试件质量。 射线检测主要优点是:它能得到物体内部状况的二维图像,根据这一图像可以直观地分析物体内部的缺陷和组织结构。物体二维图像的形成主要是由于X射线穿过物体后强度的衰减。但在底片上所呈现的图像与物体内部的实际结构并非完全相同。由于焦点、焦距和缺陷位置等因素的影像在底片上产生的投影图像,有可能放大、畸变、影像重叠等情况。因此要从图像上客观地分析出物体内部的真实情况必须了解其原理。 强度衰减成像原理 X射线强度衰减公式 I= I0 e-uT 代入公示后可得 I = I0 e-kρz3T Ρ是物体的密度,Z是物体的原子序数,λ是入射X射线的波长,T使物体的厚度,k是系数。X射线管的电压确定后,k和λ都是常熟,因此穿过物体后的射线强度I与T、Z等有关。 射线检测原理 射线在穿透物体过程中会与物体发生相互作用,因吸收和散射而使其强度减弱。强度衰减程度取决于物体的衰减系数和射线在物体中穿越的厚度。如果被透

照物体的局部存在缺陷,且构成缺陷的物体的衰减系数又不同于试件,该局部区域的透过射线强度就会与周围产生差异。把胶片放在适当位置使其在透过射线的作用下感光,经暗室处理后得到底片。底片上各点的黑化程度取决于射线曝光量,由于缺陷部位和完好部位的射线强度不同,底片上相应部位就会出现黑度差异。底片上相邻区域的黑度差定义为“对比度”。把底片放在观片灯光屏上借助透过光线观察,可以看到由对比度构成的不同形状的影像,评片人员据此判断缺陷情况并评价试件质量。 射线检测主要优点是:它能得到物体内部状况的二维图像,根据这一图像可以直观地分析物体内部的缺陷和组织结构。物体二维图像的形成主要是由于X射线穿过物体后强度的衰减。但在底片上所呈现的图像与物体内部的实际结构并非完全相同。由于焦点、焦距和缺陷位置等因素的影像在底片上产生的投影图像,有可能放大、畸变、影像重叠等情况。因此要从图像上客观地分析出物体内部的真实情况必须了解其原理。 强度衰减成像原理 X射线强度衰减公式 I= I0 e-uT 代入公示后可得 I = I0 e-kρz3T Ρ是物体的密度,Z是物体的原子序数,λ是入射X射线的波长,T使物体的厚度,k是系数。X射线管的电压确定后,k和λ都是常熟,因此穿过物体后的射线强度I与T、Z等有关。 I1 I2 如果物体的密度和成分是均匀的,而且管电压恒定不变,那么I1和I2值完全取决于厚度的变化则有I1 >I >I2 在钢焊缝中经常会产生金属和非金属夹杂,如钨夹杂和熔渣。由于非金属熔渣的主要成分的原子序数核密度都小于基体金属,因而在X射线底片上形成黑点或长条形不规则黑

射线检测及基础知识总结

基础知识 力学性能指标有:强度、硬度、塑性、韧性 应力腐蚀脆性断裂;由于拉应力与介质腐蚀联合作用引起的低应力脆性断裂叫做应力腐蚀。应力腐蚀产生的必要条件:1元件承受拉应力的作用2具有与材料种类相匹配的特定腐蚀介质环境3材料对应力腐蚀的敏感程度。对钢材而言应力腐蚀的敏感性与的成分、组织及热处理情况有关。 热处理是将固态金属及合金按预定要求进行加热,保温和冷却,以改变其内部组织,从而获得所要求性能的一种工艺过程。 热处理的基本工艺过程加热,保温和冷却三个阶段构成的,温度和时间是影响热处理的主要因素 处理工艺分:退火、正火、淬火、回火、化学热处理 退火目的:均匀组织、降低硬度、消除内应力、改善切削加工性能。 消除应力退火目的消除焊接过程中产生的内应力、扩散焊缝的氢,提高焊缝抗裂性和韧性,改善焊缝和热影响区的组织,稳定结构形状。 正火主要目的细化晶粒,均匀组织,降低内应力 承压类特种设备常用材料应具有的特点1足够的强度2良好的韧性3良好的加工工艺性能4良好的低倍组织和表面质量5良好的耐高温性6良好的抗腐蚀性能。 药皮的作用:稳弧作用、保护作用、冶金作用、掺合金作用、改善焊接工艺性能。 手工电弧焊的焊接规范:焊接电流、电弧电压、焊条直径、焊接速度、焊接层数。 坡口的形式的选择要考虑以下因素:①.保证焊透 ②.充填焊缝部位的金属要尽量少③.便于施焊,改善劳动条件④、应尽量减少焊接变形量。 焊接变形和应力的形成:1、焊件上的温度分布不均匀 2、熔敷金属的收缩 3、金属组织的转变 4、焊件的刚性拘束 焊接应力的控制措施:1.合理的装配与焊接顺序 2.焊前预热 消除焊接应力的方法:1、热处理法2、机械法3、振动法 控制焊接质量的工艺措施1预热2焊接能量参数3多层焊多道焊4紧急后热5焊条烘烤和坡口清洁 焊后热处理有利作用1减轻残余应力2改善组织,降低淬硬性3减少扩散氢 低合金钢的焊接特点1热影响区的淬硬倾向比较大 2容易出现冷裂纹 产生冷裂纹的主要原因;1氢的聚集2淬硬组织 3 焊接应力大奥氏体不锈钢的焊接时,防止或减少晶间腐蚀的主要措施 1使焊缝形成双相组织2严格控制含碳量3添加稳定剂 4焊后热处理5采用正确的焊接工艺 奥氏体不锈钢的焊接时,防止产生热裂纹的主要措施; 1在焊缝中加入形成铁素体的元素2减少母材和焊缝的含碳量3严格控制焊接规范 锅炉定义:利用各种燃料、电或其它能源,将所盛装的液体加热到一定参数,并承载一定压力的密闭设备,其范围规定为容积大于或等于30L的承压蒸汽锅炉;出口水压大于或等于(表压),且额定功率大于或等于的承压热水锅炉;有机热载体锅炉。2,锅炉的特点1连续工作;2高压、高温、工作条件恶劣;3具有爆炸危险性;4破坏性极大。 锅炉的主要参数容量、压力、温度 锅炉的三大附件安全阀、压力表、水位计 压力容器的含义:盛装气体或液体。承受一定压力的密闭设备,其范围规定为最高工作压力Pw≥,且压力与容积的乘积≥Mpa·L 的气体,液化气体或最高温度≥标准沸点的液体的固定式容器和移动式容器;盛装公称工作压力≥,且压力与容积的乘积≥·L的气体,液化气体和标准沸点≤60度的液体的气瓶,医用氧舱等,可以认为这个规定是对压力容器作出的最权威的定义。 影响压力容器设计的主要工艺参数1压力2温度3直径 压力管道的定义:指利用一定的压力,用于输送气体或液体的管状设备,其范围规定为最高工作压力大于或等于(表压)的气体,液化气体,蒸汽介质或可燃,易燃,有毒,有腐蚀性,最高工作温度高于或等于标准沸点的液体介质,且公称直径大于25mm的管道。无损检测的定义在不损坏工件的前提下,以物理或化学方法为手段,借助先进的技术和设备器材,对工件的内部及表面的结构,性质,状态进行检查和测试的方法称为无损检测。 无损检测的目的1保证产品质量2保障使用安全3改进制造工艺4降低生产成本 无损检测的应用特点1无损检测要与破坏性检测相结合2正确选用实施无损检测的时机3选用最恰当的无损检测方法4综合应用各种无损检测方法 射线照相应用了射线的那些性质1在真空中以光速直线传播;2不带电,不受电场和磁场的影响;3不可见,具有极大的能量,能穿透可见光不能穿透的物体;4在穿透物质的过程中,会与物质发生复杂的物理和化学作用, 射线检测知识 X射线和γ射线的相同点:1、都是电磁波,本质相同;2、都具有反射,折射等光学性质;3都能使胶片感光;4都是电离辐射能对人和生物造成危害;5穿过物体时具有相同的衰减规律. X射线和γ射线的不同点1产生方式不同;2能量不同:X--可控,可调,取决于管电压;γ--不可控,不可调,取决于源的性质;3强度不同:X--可控,可调,取决于U,i, Z;γ--随时间变化;4波谱形式不同 射线检测的优点1可直接得到缺陷的直观图象,检测结果缺陷形象直观,定性,定量,定位准确;2检测结果可以长期保存;3检测灵敏度高;4工业TV可实现自动检测,效率高 射线检测的局限性;1不能检出与射线方向垂直的面状缺陷;如钢板的分层;2不适用于钎焊,摩擦焊,爆炸焊,锻件,轧制等方法加工的构件;3检测周期长,成本高4对人体有害,需要采取防护措施。 影响缺陷检出率的因素:1底片像质计灵敏度2工艺参数选择的正确性(透照方向、焦距等)3良好的观片条件4评片人员的判断能力 如何提高照片灵敏度:1选择低能射线2降低散射线3选择合适的透照角度4选择适合的胶片5选择适合的显影条件6增大底片黑度7选择适合的焦距8屏与片贴紧些9选择合适的曝光量 影响射线照片灵敏度的主要因素:1射线能量2焦距3增感屏4胶片类型5控制散射线6暗室处理 影响射线照相灵敏度的三大要素射线照相对比度(缺陷影像与其周围背景的黑度差);射线照相不清晰度(影像轮廓边缘黑度过渡区的宽度)射线照相颗粒度(影像黑度的不均匀程度)

国家有规定安全距离

国家有规定安全距离,一般距离15米以上 我国输变电设施的频率为50赫兹(通常称为工频),和广播电视、通讯和微波的频率105~10 9赫兹相比,频率低得多。所以它不容易产生辐射。国际“电磁兼容”标准中规定,9000赫兹以上的频率才称为“射频”,也就是说9000赫兹以下频率的电源因辐射量太小,可以认为它们基本不会发射电磁波。输电设备工作频率在50赫兹比9000赫兹小180倍,它的辐射功率就更小,对人身基本不会产生任何影响。 在城市中的大部分输电线电压等级为10kV,所产生的电场强度是十分微小的。对于110kV以上的输电线,由于电压较高,在导线表面会产生“电晕” 现象,从而会产生十分微弱的电磁辐射。根据实际测量,即使对于500kV的高压输电线,它的辐射强度小于53dB,其单位面积的辐射功率相当于一般城市家庭中所接收到的无线电广播电磁波辐射功率强度的十分之一,当然它对人身也不会产生任何影响。因此,可以这样说;输变电设施的所产生的电磁辐射对人体健康造成的影响是微小的 但是也有资料表明:电磁辐射污染不可小视 国内外多数学者认为,电磁辐射对人体具有潜在危险。主要表现在以下几个方面——— 会导致儿童患白血病。医学研究证明,长期处于高电磁辐射的环境中,会使血液、淋巴液和细胞原生质发生改变。 能诱发癌症并加速人体的癌细胞增殖。电磁辐射污染会影响人体的循环系统、免疫、生殖和代谢功能,严重的还会诱发癌症,并会加速人体的癌细胞增殖。瑞士的研究资料指出,周围有高压线经过的住户居民,患乳腺癌的概率比常人高7.4倍。 会影响人们的生殖系统。主要表现为男子精子质量降低,孕妇发生自然

流产和胎儿畸形等。 可导致儿童智力残缺。世界卫生组织认为,计算机、电视机、移动电话的电磁辐射对胎儿有不良影响。 影响人们的心血管系统。主要表现为心悸、失眠,部分女性经期紊乱,心动过缓,心搏血量减少,窦性心率不齐,白细胞减少,免疫功能下降等。 对人们的视觉系统有不良影响。主要表现为视力下降,引起白内障等。 五种人员要特别注意 专家指出,有5种人特别要注意电磁辐射: 一是生活和工作在高压线、变电站、电台、电视台、雷达站、电磁波发射塔附近的人员; 二是经常使用电子仪器、医疗设备、办公自动化设备的人员; 三是生活在现代电气自动化环境中的工作人员;四是佩戴心脏起搏器的患者; 五是生活在以上环境里的孕妇、儿童、老人及病患者等。 防止污染有办法 一、注意室内办公和家用电器的设置。不要把家用电器摆放得过于集中,以免使自己暴露在超剂量辐射的危险之中。特别是一些易产生电磁波的家用电器,如收音机、电视机、电脑、冰箱等电器更不宜集中摆放。 二、注意使用办公和家用电器时间。各种家用电器、办公设备、移动电话等都应尽量避免长时间作,同时尽量避免多种办公和家用电器同时启用。在使用手机时应尽量使头部与手机天线的距离远一些,最好使用分离耳机和话筒接听电话。 三、注意人体与办公和家用电器距离。对各种电器的使用,应保持一定的安全距离。与电器越远,受电磁波侵害越小。

射线检测工作技术总结

射线检测技术工作总结 广州声华科技有限公司 徐业叶 2010.08.08

一、个人简介 徐业叶,男,1980年7月出生,2002年本科毕业于湘潭工学院金属材料与工程专业。2002年至2003年在广东省东莞市威尔锅炉厂从事无损检测工作,2003年至今在广州声华科技有限公司从事无损检测工作,先后取得国家质量监督检验检役总局发的射线、超声、磁粉、渗透Ⅱ级资格证书。 二、工作情况 在公司工作期间,本人主要从事现场检测、工程管理工作,包括根据现场情况编制检测工艺卡、制定检测方案并参与检测及出具检测报告。主要参与或负责的射线检测项目有广东云浮电厂、国华台电、石油储罐、火力发电厂脱硫项目的射线检测及各种特种设备制造安装射线检测等。 三、技术工作总结 《对小径管透照布置的探讨》 探讨小径管透照布置对裂纹检出的影响以及本人对标准的理解,由于本人知识有限,对不妥及不对之处请老师加以指正,谢谢! (一)实际工作暴露的问题及改进办法 检测对象:管焊接接头炉管材质:9Cr-1Mo-V-Nb 规格为:Φ89×8 mm及Φ60×6mm两种 检测执行标准:JB/T4730.2-2005

技术等级:AB级合格级别:Ⅱ级 一开始,因在预制阶段,条件较好,所以按JB/T4730.2-2005标准规定采用椭圆成像法,相隔90度透照2次,发现了少量的根部裂纹;后用垂直透照重叠成像法,相隔120度透照3次,对上述检测方法检测过的焊接接头进行重复检测时在根部发现了大量的根部裂纹。为了检出根部的裂纹,采用垂直透照重叠成像法,相隔120度透照3次更好,但这样做与JB/T4730.2-2005标准的4.1.4条有冲突,为此进行分析: (二)小径管经常采用倾斜透照椭圆成像的原因 小径管通常是指外直经D O小于或等于100mm的管子,在射线检测中倾斜透照椭圆成像通常是首选.小径管采用倾斜透照椭圆成像可以将源侧和胶片侧焊缝影像分开便于影像的评定及缺陷的定位返修,而且在大多数条件下有较少透照次数,这样既可以减少成本又可以提高检测效率保证工程进度.小径管采用倾斜透照椭圆成像检测工艺优化的体现,应是质量、费用、进度及返修定位相互平衡的共同结果.实践证明此方法确实是一种行之有效的透照方法,在可以实施的情况下也确应采用.垂直透照重叠成像的方法对于根部裂纹、根部未熔合、根部未焊透等根部面状缺陷的检出率较高,但发现缺陷后由于分不清是源侧还是胶片侧,无法对缺陷准确定位而造成返修时不利.焊缝表面的不规则也会对影像的评定造成一定的影响,此外在检测成本、检测进度上也略逊于倾斜透照,常常作为倾斜透照的一种补充方法加以应用.综上原因在射线检测中经常采用倾

下面是各电压等级安全距离

下面是各电压等级安全距离 1千伏以下 1."0米 1-10千伏 1."5米 35千伏 3."0米 66-110千伏 4."0米 154-220千伏 5."0米 330千伏 6."0米 500千伏 8."5米 一是无害论: 专家们在省电力试验研究院现场测试结果表明,当模拟电场强度达到国家标准的4千伏/米时,在场记者亲身体验了一下其影响,发现确实没有任何不适情况。而在离该变电站不远处的500千伏线路下,测试人员测得的电场强度为 3."3千伏/米,低于4千伏/米的国家限值标准。环境辐射监测站副站长兼总工程师季成富介绍,我国的限值标准高于国际标准。因此,只要按照我国

输变电设施建设的相关规定,输变电设施产生的工频电场、工频磁场对人体健康就不会产生损害。规划局的一位负责人告诉记者,目前有两种情况,一种是高压线塔修建在前,居民楼审批在后,另外一种情况是小区修建在前,高压线塔审批在后。 如果是前者,应根据《城市规划相关规定》,一般1万伏的高压线塔与居民楼的水平距离是5米,11万伏的10米,22万伏的15米,50万伏的25米,超出这些距离,即使还存在辐射,也应该是在安全范围之内了。如果是后者,高压线塔则应尽量避开居民楼。 以某条220kV输电线路为例,环保部门实测的220kV该输电线路进变电站段最低点附近电磁场强度如下: 与220kV线路距离(米)0 10 20 30国家推荐标准 电场强度(kV/m) 1."25 0."7387 0."2865 0."1196 4 磁感应强度(μT ) 3."03 2."26 1."39 0."95 100 注: 表中数据为离地

1."5米处。对比国家规定的城市架空电力线路接近或跨越建筑物的安全距离和环保部门实测的架空电力线路电磁辐射强度,可以发现,架空电力线路电磁辐射强度不但在安全距离内是达标的,就是在比安全距离更小的地方也是符合国家标准的。 二是有害论: 低频磁场辐射的强度和累积量都会影响致病的概率。1992年,瑞士对 200KV-400KV高压输电线沿线500米范围内居住1~25年的50万名居民进行医学调查,发现肿瘤、特别是儿童白血病的发生与高压电磁场有直接关系。世界卫生组织所属的国际癌症研究机构(IARC)于 2001年6月将工频电磁场(即输电线路及设备所产生的电磁场)归为人类可疑致癌物(分类号为2B)。并且,有些人是在潜伏期长达10-15年才发病的。电磁辐射就像太阳和紫外线一样的关系一样,你要享受阳光就不可避免接受紫外线的辐射。从电子闹钟、吹风机、微波炉、电熨斗到计算机、传真机、电话机,我们无时不刻不在接触电磁的“抚慰”。走出门外,电力线、各种电机设备又使我们十分容易的处于电磁场中。研究证实,生活在 0."2微斯特拉以上的低频磁场环境中将对人体产生影响,造成中枢神经机能的紊乱、心血管系统的失调、影响人的正常生活。400千伏高压线下,磁感应强度可达13微斯特拉。 国际卫生标准中规定,可以容许的磁感应强度上限为100微特斯拉(与我国的标准相同),但英国国家辐射保护委员会和美国一些专家们已于1995年提出,把国际卫生标准中规定的标准(100微特斯拉)修改为 0."2微特斯拉,瑞典规定不超过 0."2微特斯拉。 许多迹象都使研究人员强烈地怀疑低频磁场的辐射对人体健康会产生严重后果,但人们目前的知识水平又不足以对此作用充分明确的解释。调查和统计分析的结果尚不足以论证居民可以长期持续承受的低频辐射的最高限制。以及在这方面应采取哪些必要的限制。但许多专家仍然提出忠告:

爆破安全距离计算

爆破安全距离计算 一、一般规定 各种爆破、爆破器材销毁以及爆破器材仓库意外爆炸时,爆炸源与人员和其他保护对象之间的安全距离,应按各种爆破效应(地震、冲击波、个别飞散物等)分别核定并取最大值。 二、爆破地震安全距离 (一)一般建筑物和构筑物的爆破地震安全性应满足安全震动速度的要求,主要类型的建(构)筑物地面质点的安全震动速度规定如下: 1、土窑洞、土坯房、毛石房屋 1.0 cm/s V—地震安全速度,cm/s; m—药量指数,取1/3; K、α—与爆破点地形、地质等条件有关的系数和衰减指数,可按表1选取。或由试验确定。 表1 爆区不同岩性的K、α值 (三)在特殊建(构)筑物附近或爆破条件复杂地区进行爆破时,必须进行必要的爆

破地震效应的监测或专门试验,以确定被保护物的安全性。 三、爆破冲击波安全距离 (一)露天裸露爆破时,一次爆破的炸药量不得大于20kg,并应按式(2)确定空气冲击波对掩体内避炮作业人员的安全距离。 —空气冲击波对掩体内人员的最小安全距离,m; 式中:R k Q—一次爆破的炸药量,kg;秒延期爆破时,Q按各延期段中最大药量计算; 3)计算。 式中:R—水中冲击波的最小安全距离,m; Q—一次起爆的炸药量,kg; —系数,按表4选取。 K 表4 K 值 (六)在水深大于30m的水域内进行水下爆破,水中冲击波安全距离,通过实测和试

验研安确定。 (七)在重要水工、港口设施附近或其它复杂环境中进行水下爆破,应进行测试和邀请专家研究确定安全距离。 四、个别飞散物安全距离 爆破(抛掷爆破除外)时,个别飞散物对人员的安全距离不得小于表5的规定; 对设备或建筑物的安全距离,应由设计确定。 表6 ③为防止船舶、木筏驶进危险区。应在上、下游最小安全距离以外设封锁线和信号。 ④当爆破器置于钻井内深度大于50m时,最小安全距离可缩小至20m。 表6 地面爆破器材库或药堆至住宅区或村庄边缘的最小外部距离 注:表中距离适用于平坦地形,当遇到下列几种特定地形时,其数值可适当增减; ① 当危险建筑物紧靠20~30m高的山脚下布置。山的坡度为10~25度时,危险建筑

常用无损检测技术分析

158 第三篇 常用无损检测技术 第15章 射线照相检测技术 15.1射线照相检测技术概述(Ⅱ级人员仅要求本节内容) 射线是具有可穿透不透明物体能力的辐射,包括电磁辐射(X 射线和γ射线)和粒子辐射。在射线穿过物体的过程中,射线将与物质相互作用,部分射线被吸收,部分射线发生散射。不同物质对射线的吸收和散射不同,导致透射射线强度的降低也不同。检测透射射线强度的分布情况,可实现对工件中存在缺陷的检验。这就是射线检测技术的基本原理。射线照相检测技术,利用射线对胶片可以产生感光作用的原理,采用胶片记录透射射线强度,在底片上形成不同黑度的图像,完成检验。图15—1显示了射线照相检测技术的基本原理。 射线照相检测的基本过程为准备、透照、暗室处理、评片,从底片上给出的图像,判断缺陷性质、分布、尺寸,完成对工件的检验。 图15-1 射线照相检测技术基本原理 图15-2 光电效应示意图 射线照相检验技术可应用于各种材料(金属材料、非金属材料和复合材料)、各种产品缺陷的检验。检验技术对被检工件的表面和结构没有特殊要求。检验原理决定了,这种技术最适宜检验体积性缺陷,对延伸方向垂直于射线束透照方向(或成较大角度)的薄面状缺陷难于发现。射线照相检验技术特别适合于铸造缺陷和熔化焊缺陷的检验,不适合锻造、轧制等工艺缺陷检验。现在它广泛应用于航空、航天、船舶、电子、兵器、核能等工业领域。 射线照相检测技术直接获得检测图像,给出缺陷形貌和分布直观显示,容易判定缺陷性质和尺寸。检测图像还可同时评定检测技术质量,自我监控工作质量。这些为评定检测结果可靠性提供了客观依据。 射线照相检测技术应用中必须考虑的一个特殊问题是辐射安全防护问题。必须按照国家、地方、行业的有关法规、条例作好辐射安全防护工作,防止发生辐射事故。 15.2射线照相检测技术基础 15.2.1 射线与物质的相互作用 射线按其特点分为二类:电磁辐射和粒子辐射,以下仅讨论X射线与γ射线(电磁辐射)。 X射线、γ射线与物质的相互作用是光量子和物质的相互作用。包括光量子与原子、原子核、原子的电子及自由电子的相互作用。主要的作用是:光电效应、康普顿效应、电子对效应和瑞利散射。图15—2、图15—3、图15—4是光电效应、康普顿效应、电子对效应作用示意图。

焊缝X射线检测及其结果的评判方法综述

焊缝X射线检测及其结果的评判方法综述 周正干, 滕升华, 江 巍, 李和平 (北京航空航天大学机械工程及自动化学院,100083 北京) 摘 要:分析了焊缝X射线检测方法的现状,指出了目前存在的主要问题;介绍了焊缝X射线检测结果的人工评定和计算机辅助评定方法,论述了国内外焊缝X 射线检测结果计算机辅助识别的研究现状。研究结果表明,X射线数字实时成像技术是焊缝射线 检测的发展方向,焊缝射线数字图像的计算机自动分析与识别技术是射线实时成像技 术成功应用的基础。 关键词:无损检测;图像处理;模式识别;焊接 中图分类号:TP391.6 文献标识码:A 文章编号:0253-360X(20002)03-85-04周正干0 序 言 目前,焊接已作为一种基本工艺方法,应用于航 空、航天、舰船、桥梁、车辆、锅炉、电机、电子、冶金、 能源、石油化工、矿山机械、起重机械、建筑及国防等 各个工业部门[1]。由于焊接过程中各种参数的影 响,焊缝有时不可避免地会出现熔合不良、裂纹、气 孔、夹渣、夹钨、未熔合和未焊透等缺陷。为了保证 焊接构件的产品质量,必须对其中的焊缝进行有效 的无损检测和评价。射线检测是常规无损检测的重要方法之一,是保证焊接质量的重要技术,其检测结果将作为焊缝缺陷分析和质量评定的重要判定依据[2]。对X射线检测结果的评定方法有两种:人工评定和计算机辅助评定。当人工评定检测结果时,评定人员的工作量大,眼睛易受强光损伤,效率较低,而且缺陷分析受评定人员的技术素质、经验以及外界条件的影响,结果往往会因人而异 。采用计算机对X射线检测结果进行分析和识别,可以大大提高工作效率,有效地克服人工评定中由于评判人员技术素质和经验差异以及外界条件的不同而引起的误判或漏判,使评判过程客观化、科学化和规范化。 1 焊缝X射线的检测方法 目前,焊缝X射线检测最常用的方法是胶片照相法。X射线胶片照相的成像质量较高,能正确提供焊缝缺陷真实情况的可靠信息,但是,它具有操作过程复杂、运行成本高、结果不易保存且查询携带不便等缺点。随着电子技术及计算机技术的发展,一 收稿日期:2001-11-01种新兴的X射线检测技术———基于X射线图像增强器(X ray image intensifier)的实时成像技术(Ra2 dioscopy)应运而生,其工作原理如图1所示,图2是一种典型的图像增强器。X射线图像增强实时成像检测技术的出现使焊缝X射线检测的效率大大提高。但是,与胶片照相法相比,由于图像增强实时成像法成像环节较多,信噪比低,图像容易产生畸变,故成像质量相对较低,检测结果的图像对比度和空间分辨率均不是很高。 图1 图像增强实时成像检测系统原理图 Fig.1 Sketch of im age2intensifier2b ased radioscopy system 为了解决上述问题,20世纪90年代末出现了X 射线数字实时成像检测技术(Digital radioscopy,DR),亦称为X射线数字照相(Digital radiography,DR),其工作原理如图3所示。X射线数字实时成像系统中使用的平板探测器(Flat panel detector)如图4所示,其像元尺寸最小可达0.127mm,因而成像质量及分辨率明显优于X射线图像增强器系统,几乎可与胶片照相媲美,同时还克服了胶片照相中 第23卷 第3期2002年6月 焊接学报 TRANS ACTI ONS OF THE CHI NA WE LDI NG I NSTIT UTI ON Vol.23 No.3 June 2002

RT射线检测三级 射线检测原理讲课提纲(Ⅲ级)要点

射线检测原理 屠耀元 华东理工大学无损检测教研室 1997.10---2009.8 第一节原子与原子结构 * 学习原子和原子核结构理论了解射线产生的机理 一原子 1 原子的概念: * 定义:组成单质和化合物分子的最小微粒,由原子核和核外电子构成。 2 原子的构成: * 原子是由原子核和核外电子所构成。 * 电子围绕原子核作行星运动;电子在一定轨道上饶核运动。 * 原子是有质量、有尺寸的一种粒子。 (1)质量:几乎集中在原子核内,核的密度非常大!如果:把核集中在 1cm3 的体积内,那么:这1cm3的体积内核的总重量为 108吨!(一万万吨!)# (2)大小:原子半径 10-8 cm 数量级。原子核半径 10-13cm 数量级。如果:核的半径为 1cm 核(1cm)电子 * ------------------------------*(约1000米) / 10-8/10-13 = 100000 倍 (3)电荷:原子核带正电;电子带负电;原子为中性。 (4)构成:原子核(质子 + 中子)+电子 数量关系:原子量 = 质子数 + 中子数 A = Z + N 例:60钴 60 = 27 + 33 质子数Z=核的正电荷数=电子数=原子序数 3 原子结构理论---玻尔理论(玻尔模型) * 20世纪初二种不同的原子结构模型 1903年:汤姆森假设:核子与电子在原子内均匀分布 # 1911年:卢瑟福模型:行星分布图11 * α散射实验否定了汤姆森假设肯定了卢瑟福模型 * 卢瑟福模型不完善,1913年玻尔提出了完善的原子结构模型 ---玻尔模型. 玻尔理论(玻尔模型)的要点: (1)原子只能存在一些不连续的稳定状态,这些稳定状态各有一定的能量E1、E2、E3.....En。处于稳定状态中运动的电子虽然有加速度,但不发生能量辐射。能量的改变,由于吸收或放射辐射的结果或由于碰撞的结果。 (2)原子从一个能量为En的稳定状态过度到能量为Em的稳定状态时,它发射(或吸收)单色的辐射,其频率υ决定于下列关系式(称为玻尔频率条件): hυ=En-Em En、Em分别为较高、较低能级的能量值。稳定状态的改变(或能量的改变)是不连续的。 4 玻尔理论中的几个概念: * 基态:原子处于最低能量的状态称为基态,是稳定状态; * 激发态:电子获得能量从低能级轨道进入高能级轨道,该过程称为激发;此时原子处于高能量状态,称为激发态,激发态是不稳定的状态; * 原子的状态特性:任何不稳定状态的原子必将自动的回到稳定状态即回到基态;该过程将释放出原子高

安全光栅标准安全距离计算实例

安全距离(S)= 人体接近速度 × 响应时间 + 附加距离(该距离随传感器的检测能力的不同而变化) 人体的检测 S = K × T + C40 < d ≦ 70 K = 1600 mm/s(接近速度[ 假定为人的步行速度]) T = 机器停止所需的最长时间+ 光栅响应时间 C = 850 mm(穿过距离[ 与人手臂标准长度相符的值]) 手和手指的检测 S=K × T + 8(d - 14) d ≦ 40 K = 2000 mm/s(接近速度[ 假定手的穿过速度]) T = 机器停止所需的最长时间+ 光栅响应时间 d = 光栅检测能力 注:如果S 大于或等于500 mm,则以K 值等于1600 再次进行计算。如果再次计算得出的S 值小于或等于500 mm,则将S 值设置为 500 mm。 机器停止所需的最长时间与安全距离之间的关系 公式中的T 值由下面两个参数构成。 T = 机器停止所需的最长时间+ 光栅响应时间(ON OFF) 当K(穿过速度)= 2000 mm/s 时例如,使用GL-R08H 光栅(其响应时间为0.0069 s)时 S = 2000 mm/s ×(机器停止所需的最长时间+ 0.0069 s) + C 如上文所示,将机器停止所需的最长时间乘以穿过速度(2000 mm/s),因此,即使机器停止所需的最长时间只增加1 秒,安全距离也会增加(2000 mm/s × 1 s = 2000 mm)。光栅响应时间每增加1 ms,安全距离会相应增加2 mm。

公式:S = K × T + C ?S: 最小距离(mm;见下图)≥ 100 mm ?K: 从基于人体接近速度(mm/s)得出的数据中提取的参数 ?T: 整个系统停止性能(s)T = t1(GL-R 系列最长响应时间)+ t2(机器停止所需的最长时间) ?C:穿过距离(mm) 当d ≤ 40: 8 × (d - 14) , C ≥ 0 当40 < d ≤ 70: 850 ?d: GL-R 系列的检测能力(mm) 计算示例 (1)-1 使用GL-R60H (检测能力d = 25 mm 且光轴数为60)时 条件: 工业应用 K = 2000 mm/s t1(GL-R60H 响应时间)= 0.0157 s t2(机器停止所需的最长时间)= 0.1 s C = 8 × (25 - 14) = 88 mm S = K × T + C = 2000 ×(0.1157)+ 88 = 319.4mm 如果S 大于500 mm,则以K 值等于1600 mm/s 再次进行计算。如果再次计算得出的S 值小于或等于500,则应将S 值设置为500。 计算示例 (1)-2 使用GL-R08L (检测能力d = 45 mm 且光轴数为8)时 条件:工业应用 K = 1600 mm/s t1(GL-R08L 响应时间)= 0.0069 s

初、中级射线检测计算公式

1、最短波长公式:min min λνhc h eV == V 4.12m in =λ (能量公式)h 普朗克常数 2、连续谱中最大强度对应的波长与最短波长之间近似有下述关系: min 5.1λλ=IM 3、连续谱射线的总强度I :2ZiV K I i T = Ki 为比例常数、Z 靶原子序数、i 管电流/管电压 4、连续谱X 射线的转换效率η; ZV K i =η 5、放射性原子核的衰变公式:T e N N λ-=0 λ衰变常数T 时间 6、半衰期公式:(重要公式)放射性原子核数目因衰变减少至原来数目一半时所需的时间 λ 693 .02 1= T 2 1 /0 2 T T N N = 2 1T/T 0)2 1(N N =λ为衰变常数 N 为剩余的原子核数N0为原有原子核数 T 为所用时间 7:单色窄束射线的衰减规律:T e I I μ-=0 T 为透照厚度 I 为穿透后辐射强度 0I 为原辐射强度 8、线衰减系数μ:3 3λρμZ K = T I I ) /l n (0= μ T 为透照厚度 I 为穿透后辐射强度 I 为原辐射强度 K 康普顿系数、ρ混合物密度、Z 原子序数 9、半价层: μ μ 693 .02 ln 2 1= = T μ为线衰减系数 10、半价层计算公式:穿过物体后的射线强度为入射强度一半时的穿透厚度 11、影响半值层T1/2的因素: 3 32 1693.02 ln λρμ Z K T = = K 康普顿系数、ρ混合物密度、Z 原子序数 12、宽束多色射线强度衰减规律:T e n I I μ-+=)1(0 n 为散射比 I 透射强度、I0初始强度μ为平均衰减系数T 厚度 13、主因对比度公式:n T I I +?=?1μ散射比n= I s / I p 主因对比度跟透照厚度、衰减系数和散射比有关 14、胶片梯度G 公式 :E D E E D tga G lg /' 1lg 1lg 1 '??=-== D1黑度值、E1为对应曝光量、E1’切线与横轴交点曝光量G 为梯度或反差系数 15、黑度D :照射光强度与穿过底片的透射光强之比常用对数值D L L 100= L L D 0lg = L 透射光强L0照射光强 宽容度L :L=10lgE2-lgE1=E2/E1 E1、E2相对曝光量 相对灵敏度K :K=d/T*100% d 射线可认到最细线直径、T 被检工件穿透厚度 16、射线照相对比度公式:ΔD=-0.434 G μΔT/(1 + n ),G 梯度μ衰减系数ΔT 缺陷尺寸n 散射比 17、射线照相几何不清晰度:Ug = df ×L2/L1=df ×L2/(F-L2) df 焦点尺寸、L1焦点至工件表面距离、L2工件表面至胶片距离、F 焦距 固有不清晰度:Ui=0.0013(kV)0.79 焦距F =L1+L2 L1为交点、L2为透照厚度。 18、X 射线曝光量:E=it γ射线曝光量:E=At 19、平方反比定律:从一点源发出的辐射,强度I 与距离F 的平方成反比 I1/I2=(F2/F1)2 20、X 射线照相的曝光因子:Ψ=i t/F 2= i 1t 1/F 11= i 2t 2/F 22=……= i n t n /F n 2 i 为管电流、F 为焦距t 为曝光时间 γ射线照相的曝光因子:Ψ=A t/F 2= A 1 t 1/F 12= A 2t 2/F 22=……= A n t n /F n 2曝光因子与强度、曝光时间和焦距有关 19、透照厚度比K :K 值与横向裂纹检出角θ的关系:K=1/Cos θ θ=cos -1(1/K) 20 、一次透照长度L 3: L 3= 2L 1tan θ L1为焦距 21、直缝单壁单影: 底片的有效评定长度: L eff =L 3+ΔL 搭接长度ΔL =L2L3/L1 L2为工件表面到胶片距离 纵缝作双壁单投影:底片的有效评定长度应为:leff=ΔL+L3′+ΔL L3′胶片侧焊缝等分长度 22、环缝单壁外照法N=360218000 αα = α=θ-η θ=cos-1 [ 1120 +-()K T D K ] η= sin-1( D D L 0 01 2+sin θ ) K=1.1 θ=cos-1 [ 1.121.0D D T +] 当D 0>>T 时,θ≈cos -1K-1 K=1.1 θ=24.62 L3=πD0/N ; L'3=π*DI/N ΔL ≈2T ·tan θ Leff =ΔL /2+L3+ΔL /2 α:与AB/2对应的圆心角; θ:最大失真角或横裂检出角; η- -有效半辐射角; K- 透照厚度比; T- 工件厚度; D0--- 容器外直径 Di -容器内直径 23、利用曝光曲线求非钢材的曝光量 射线等效系数(φm 表示)是指在一定管电压下,达到相同射线吸收效果(或者说获得相同底片黑度)的基准材料厚度To 与被检材料厚度Tm 之比,即: φm=T 0/T m 24、椭圆成像法偏心距 L 0=(b +q )L 1/ L 2=(F-D 0-Δh)(b+q)/( D 0+Δh)=[焦距-(外径+焊缝余高)]×(焊缝宽度+开口 n I I )2 1 (0=2 1 T T n = 2 1 )2 1(0T T I I =2 1 ) 2 1(0T T I I =

相关文档
相关文档 最新文档