文档库 最新最全的文档下载
当前位置:文档库 › 甲醇羰基化合成醋酸技术新进展及我国现状

甲醇羰基化合成醋酸技术新进展及我国现状

甲醇羰基化合成醋酸技术新进展及我国现状
甲醇羰基化合成醋酸技术新进展及我国现状

甲醇羰基化合成醋酸技术新进展及我国现状

王晓东

西南化工研究设计院,成都,610225

化学工业的主要原料是煤、石油、天然气等能源资源,我国的煤炭资源十分丰富,全国的煤炭保有储量达1万亿吨。从可持续发展战略的观点出发,新世纪将是以一碳化学为基础的新一代煤化工发展新时期。发展新一代煤化工具有最大竞争力的是含氧化合物类产品,其中最具代表性的是用途广、产量大的有机酸棗醋酸。

醋酸广泛用于化工、轻工、纺织、农药、医药、电子、食品等工业部门,醋酸下游产品很多,其衍生化学品多达数百种。

自70年代美国孟山都公司首创低压羰基合成醋酸工艺以后,该方法已成为当今世界生产醋酸的主要方法。甲醇低压羰基合成醋酸工艺确立了一碳化学含氧化合物的产业优势,从此,醋酸及其衍生物的工艺和技术创新一直成为世人追求的发展目标。

1.甲醇羰基化合成醋酸技术发展概况

近年来甲醇羰基化法工业化生产醋酸技术的主要进展包括:BP公司的Cativa工艺、Celanese公司开发出的Celanese低水含量工艺、UOP/Chiyoda开发出UOP/Chiyoda Acetica工艺、Haldor Topsoe的合成气经甲醇/二甲醚生产醋酸新工艺、我国西南化工研究设计院开发的蒸发流程。以上新技术有的已用于工业化生产装置的改进,有的正在准备用于工业装置的建设或改造。

1.1BP公司的Cativa工艺

1986年,BP化学公司从孟山都购买了基于铑系催化剂的甲醇羰基化法制醋酸技术,在此后的多年中该公司一直在寻求对这项技术进行改进。到1996年,终于宣布开发成功了基于甲醇羰基化的CATIVA醋酸新工艺。

Cativa工艺以金属铱作主要催化剂,并可加入一部分铼、钌和锇等作助催

]、氢碘酸和醋酸水溶液于120℃回流化剂。新催化剂的制备由羰基铱[Ir(CO)

12

反应而成。

与传统的孟山都/BP技术相比,Cativa工艺具有以下优势:由于铱的价格明显低于铑,所以在经济上更具竞争力;铱催化体系活性高于铑催化体系;反应副产物少;可在较低含水量条件下操作(Cativa工艺不到8%,而孟山都工艺为14%~15%)。这些技术若用于现有装置改造,可在较低投资情况下增加装置产能,而且,由于水含量低也带来了蒸汽消耗下降和CO转化率的改善。

该工艺于1995年末在Sterling公司Texas城装置实现工业化。该装置经用新工艺改造后产能已从28万t/a增加到34万t/a。进一步的扩能尚在进行中,估计扩能完成后产能将达到45.36万t/a。1997年3季度,在位于韩国Ulsan的BP/Samsung合资装置用该工艺改造原有装置产能从21万t/a提高到了35万t/a。此外,BP公司位于英格兰Hull的甲醇羰基化制醋酸装置也于1998年改为用Cativa工艺,产能增加了10万t/a。

1.2 Celanese低水含量工艺

在孟山都工艺中,为使催化剂具有足够高的活性和维持足够的稳定性,反应系统中必须有大量水存在。反应器中高质量分数水的存在(14%~15%)导致从醋酸中分馏水分成为最大的耗能步骤,同时也成为装置产能扩大的“瓶颈”。若能够发现一条途径能在低水含量的条件下补偿反应速度的下降和催化剂的稳定性,那么,采取低水含量操作就一定会带来操作费用的极大降低。

在1978年Hoechst公司,即现今的Celanese化学公司在Texas的Clear Lake 建成一套用孟山都工艺的大型醋酸生产装置。在此基础上,该公司于80年代初期开发成功Celanese低水醋酸生产新工艺。低水含量醋酸技术的核心是在铑系

催化剂中添加高浓度的无机碘化物(主要是碘化锂)以增强催化剂体系的稳定性,加入碘化锂与碘甲烷助剂后,允许反应器中的水含量大大降低而同时又可稳定保持具有较高的反应速度,从而使新工艺的分离成本得以大大降低。在Celanese 低水醋酸生产新工艺中催化剂组成的改变,允许反应器在低水含量和高醋酸甲脂反应浓度下操作,结果增加了反应器和净化系统的产能。

Celanese低水醋酸工艺流程与传统孟山都/BP工艺相似,其主要技术优势有:装置产能增加,单位产品的公用工程消耗和投资成本降低;缺点是使用高浓度的碘盐导致腐蚀增加,产品中残留碘盐量升高。产品中高的碘盐含量可能会在醋酸下游产品,如醋酸乙烯单体(VAM)的生产中导致催化剂中毒,因而必须脱除。

为克服醋酸产品中高碘化物浓度的问题,Celanese已开发出从醋酸中分离微量碘化物杂质的Silverguard工艺。该工艺用银金属离子交换树脂从醋酸中分离碘化物杂质,经处理后醋酸中碘化物的质量分数低于2×10-9,远低于普通工艺10×10-6的水平。该公司还公布了另一项从醋酸中分离碘化物的新技术,采用聚合物树脂与金属盐结合,用其与来自含卤化物液体卤化物杂质反应。该方法的优势是一步有效地分离卤化物杂质,可避免增加蒸馏和回收系统。

1.3 UOP/Chiyoda Acetica工艺

对于液相羰基化反应来说,催化剂固定在固体载体上具有一些潜在的优势,尤其是易于从反应母液中分离出来。碘化物促进的多相羰基化反应机理与均相系统类似,已报道用这种负载催化剂在反应条件下可获得高的反应速度。BP已开发出一种多相催化剂系统,新催化剂体系是将铑、镍、钴或铱等催化剂浸渍在活性炭载体上,然后再将催化剂在400℃用氢气还原,得到具有反应活性的催化剂。使用该催化剂甲醇转化率为98.4%,醋酸选择性为58%。具有热稳定性的聚合物载体种类较多,如Chiyoda公司开发出的聚乙烯吡啶和聚乙烯基吡咯烷酮(PVP)交联共聚物。以此为基础,该公司开发出了Acetica醋酸生产新工艺。

Acetica醋酸生产工艺由Chiyoda和UOP联合开发成功,它采用多相负载催化剂和鼓泡塔反应器进行甲醇羰基化。以甲醇和CO为原料,使用添加有碘甲

烷助剂的聚乙烯吡啶树脂的负载铑系催化剂。据称,多相催化剂可得到高的产率,改善铑系催化剂的性能,醋酸产率以甲醇计高于99%。该工艺合成反应器可在低水含量(3%~8%)条件下操作。反应器内碘化氢浓度低,腐蚀问题小,而且,与传统工艺相比,新工艺的另一大特点是反应器用鼓泡塔,消除了搅拌塔式反应器的密封问题,操作压力可增加到6.2Mpa。此外,UOP还开发出了专利碘化物分离技术,可降低醋酸产品中碘化物质量分数到1×10-9~2×10-9。

为使该工艺在中国得到推广应用,UOP/Chiyoda与西南化工研究设计院签定了共同开发协议,并于1998~1999年在四川成都进行了放大验证试验,各项指标均达到或超过了设计值。

1.4 Haldor Topsoe的合成气经甲醇/二甲醚生产醋酸工艺

Haldor Topsoe的甲醇醋酸联产工艺是一种全新的醋酸生产技术。传统的羰基化生产醋酸工艺的原料甲醇一般是从外部购买。为取消外供甲醇的需要,Haldor Topsoe采取了将甲醇的合成结合进醋酸生产中的方法,将甲醇生产和CO 的生产并列。该工艺的主要不足是甲醇合成压力远高于醋酸合成的压力。然而,用甲醇二甲醚联合生产已基本上克服了这一缺陷。工艺分两步:第一步,从合成气生产甲醇和二甲醚(DME);第二步,甲醇和二甲醚羰基化生产醋酸。

在甲醇合成和甲醇脱水催化剂存在下合成气转化为甲醇和二甲醚混合物:

CO + 2H

2 = CH

3

OH

2CH

3OH = CH

3

OCH

3

+ H

2

O

反应生成水通过水气变换反应转化为CO

2和H

2

H

2O + CO = CO

2

+ H

2

为降低水气变换反应生成CO

2

的量,工艺采取进甲醇/二甲醚反应器原料气在高V(H2)/V(CO)比操作(2∶1到3∶1),在2.5~5.0Mpa下,转化率与传统

甲醇合成工艺相当。这种合成压力与醋酸合成部分的压力相当。从甲醇/二甲醚反应器出来的物流经冷却分离出甲醇、二甲醚和水。

在醋酸合成部分,二甲醚和甲醇经催化羰基化生成醋酸,为满足羰基化反应对CO的需求,原料CO保持过量,一般为V(CO)/V(甲醇+二甲醚)=1~1.5∶1。

CH

3OH + CO = CH

3

COOH

CH

3OCH

3

+ 2CO + H

2

O = 2CH

3

COOH

羰基化反应在液相中于100~250℃和2.5~5.0Mpa的较高压力下进行。

1.5 西南化工研究设计院的蒸发流程工艺

我国西南化工研究设计院在七十年代便开始进行羰基合成醋酸的研究开发工作,取得了大量的研究成果,最终形成了具有我国自主知识产权的专利棗国家知识产权局授权的“甲醇低压液相羰基合成醋酸反应方法”。该专利以铑的羰基络合物为催化活性物质,采用不同于BP铑催化剂技术的反应工程与分离工程技术,通过增加一个第二转化反应釜,降低反应液中的水含量及配合其他反应工程的方法来提高反应深度,同时使容易分解沉淀的铑催化剂转化为能承受加热蒸发时不分解不沉淀的稳定的铑络合物,因此,该工艺可采用不同于BP技术的蒸发工艺,可较大地提高粗产品中的醋酸含量,减少蒸发器母液的循环量和蒸馏工段的负荷。

西南化工研究设计院开发的羰基合成醋酸工艺具有以下特点:

a.转化率、选择性均很高,副产物少,三废排放少,产品质量好;接近或达到了世界先进水平;

b.由于采用了蒸发流程,使反应器的生产能力提高,能耗降低;

c.反应条件温和,催化剂虽为贵金属,但稳定性增强,寿命长,用量减少;

d.生产成本不高于其他任何一种羰基合成生产方法;

e.工艺流程组织合理,易于控制,操作稳定可靠。

2、国内现状

我国醋酸生产主要有羰化法、乙烯法及乙醇法,现生产能力为128万吨/年,其中甲醇羰化法为37.5万吨,乙烯法为45.5万吨,乙醇法为45万吨。乙炔法因为严重的汞污染已于二年前停产。从近几年的情况来看,新建的三套羰化法生产装置投产后,均较快地达到并超过了设计能力。乙烯法生产基本正常,但因乙烯原料紧缺价高,开工时有不足。而几十家乙醇法生产厂,因产品成本高,开工严重不足,最近二年只有少数几家厂在生产,所以实际上我国醋酸的总生产能力只有90万吨/年左右,见表2-1。

表2-1 我国近十年醋酸生产能力(万吨/年)

随着我国化学工业和经济的发展,醋酸的需求量快速增长。自1995年~2000年,醋酸消费量由1995年的48万吨增加到2000年的97万吨。满足如此快速增长的消费量,除了新建的三套甲醇羰化法装置新增加的产量外,1996年~2000年,每年还要进口10万吨以上的醋酸和醋酸衍生物。甲醇低压羰基化合成醋酸技术经济指标极具竞争力,加之1994~1995年国内醋酸市场货紧价扬,给许多企业带来了巨大的利润,因此最近申请扩建、筹建甲醇羰基化法醋酸装置的总能

力远远超过市场需求,对此国家决策部门必须借助经济杠杆进行宏观调控,统一规划部署。

目前,醋酸工业比较合理的工艺构成比例是羰基化法占总能力的70%左右。国外主要醋酸生产国家已经完成上述比例的调整;而国内至今仍是羰基化法、乙烯法、乙醇法各占30%左右。因此,今后我国醋酸工业的发展是调整工艺结构比例,重点发展羰基化法合成醋酸技术,见表2-2。

表2-2 我国醋酸生产技术及企业产能(万吨/年)

由此可见,我国醋酸工业无论是生产能力还是工艺技术都存在很大差距。因此,国外一些公司瞄准了中国巨大的醋酸市场,尤其中国周边国家如新加坡、韩国、马来西亚等已建成或扩建了大型醋酸装置,是有力的竞争对手,面对这一严峻的形式,我们必须认真对待,抓住机遇,尽快把具有我国自主知识产权的醋酸工艺技术工业化,迅速改变我国醋酸工业的落后面貌,提高我国醋酸的生产能力和技术水平,这对占领国内外醋酸市场具有深远的经济和战略意义。

3.我国发展甲醇羰基化法合成醋酸技术的建议

3.1 甲醇羰基化制醋酸技术是当前大规模醋酸生产的首选技术路线,占全球醋酸总产能的70%左右,并且作为新建大型装置的首选技术,所占份额还将不断增大。因此我国应大力发展甲醇羰基化制醋酸技术,以改变我国醋酸生产技术构成的不合理状况。

3.2因甲醇羰基化制醋酸技术的优越性,近几年来,有十家左右的单位申请上该项目。不仅装置生产能力大大超过市场容量,且还会造成重复投资,产生不良竞争。因此,国家有关部门应进行宏观控制,除在原有生产厂的基础上扩建外,根据市场容量适当布点。

3.3我国西南化工研究设计院经过二十多年的努力,在甲醇羰基合成醋酸技术上取得了突破性进展,并获得了国家知识产权局授予的发明专利。西南化工研究设计院具有长期羰基合成醋酸研究的科研成果和工业开发的经验,使得采用具有我国自主知识产权的醋酸工艺技术与国外公司进行竞争成为可能。

3.4醋酸、醋酐联产工艺已开发成功并工业化,成为新一代煤化工的典范。国内在该领域也进行了大量的研究开发工作,已接近国际先进水平。在“六五”至“九五”科技攻关成果的基础上,力争在“十五”期间,对醋酸-醋酐-醋酸乙烯联产的“三醋”工艺进行产业化示范工程。

甲醇生产工艺及国内外市场分析.docx

甲醇生产工艺及国内外市场分析市场化工生产是工业建设的主要内容,化工产品在国家生产生活的各个领域中都有应用。加强对化工生产工艺的研究,能够完善化工生产结构,提高产品质量。甲醇是化工生产的重要原料,在国内外的工业化进程中有重要作用。 1甲醇生产工艺分析 甲醇的生产工艺分很多种,但截至到目前,合成气制甲醇仍是全球甲醇生产商采用的最主要生产方法,按合成气来源区分,国内主要以煤基甲醇为主,国外则以天然气基甲醇为主,而目前煤基甲醇、天然气基甲醇均面临着巨大的环保压力和能源危机。因此,符合绿色化工、环境友好、以可再生资源为原料的甲醇制备技术,如:二氧化碳加氢、甲烷直接氧化、生物质合成甲醇等工艺具有很大的发展潜力,下面简要分析以上几种工艺主要的生产技术,研究进展以及发展前景。 1.1二氧化碳加氢制甲醇技术进展 以二氧化碳和氢气为原料来制取甲醇的历史比较悠久,至今已经有七十年的历史,该制甲醇的技术在二十世纪末得到高度重视。这类甲醇生产工艺的温度和压力都比较低,相对来说安全性比较高,所用的溶剂一般为非极性溶剂或者弱极性溶剂。由于在整个生产加工过程中没有过渡金属当催化剂,因此产品的杂质少,基本没有副产物生成,这就是二氧化碳加氢制取甲醇生产工艺的最大优点。反应的过程主要分为两个部分,第一步是路易斯酸(B(C6F5)3)和路易斯碱(吡啶)组成的路易斯对使氢发生异裂,第二步是二氧化碳直接加氢制甲醇。

关于该生产工艺所用的催化剂的研究取得了良好的成果,我国研究表明,在催化积淀选择上要应用片状的氧化锌晶型,因为片状氧化锌晶体的面与铜的协同作用比较好。这样就能够大幅度提高甲醇的选择性。所以,在这种生产工艺中,要注意氧化锌的形状,从而保证催化剂的作用发挥到最好。 1.2甲烷直接氧化制甲醇技术进展 以甲烷作为原料来制备甲醇可以分为两种方式,一是直接转化,二是间接转化。在实际的生产中,应用甲烷间接转化成甲醇的工艺比较多。具体的生产工艺主要分为两步,第一步是通过蒸汽裂解来得到所需要的碳氢化合物,第二步经由合成技术来制成甲醇。这种生产工艺的优点是生产技术纯熟,缺点是反应条件不容易达到且整个工艺的耗能比较大。因此,在甲烷氧化制取甲醇的研究领域中,国内外专家的目标集中在直接氧化法上。当下研究核心的难题是反应系统的研发,研究的要点是发掘适用于直接合成工艺的催化剂。现阶段,各个研究机构取得了进展。DOW开发的甲烷直接氧化制备甲醇工艺突破了传统气相工艺与液相工艺的局限,能在温和条件下进行。大连工业大学在离子液体中研究了负载型金属催化剂催化甲烷直接氧化制甲醇的反应。XXX大学研究了等离子体反应器中铜基催化剂催化甲烷直接氧化制甲醇的反应。虽然在甲烷氧化制取甲醇的工艺上取得了不同的进展,但是在大规模生产上依旧有很大的优化空间。 2甲醇国内外市场分析 2.1国外市场需求分析

合成气制甲醇(精品)

合成气制甲醇(精品) 合成气制甲醇( 合成气可以由煤、焦炉煤气、天然气等生产) 一、甲醇合成工艺技术 合成甲醇工艺技术概况: 自从1923年德国BASF公司首次用一氧化碳在高温下用锌铬催化剂实现了甲醇 合成工业化之后,甲醇的工业化合成便得以迅速发展。当前,合成法甲醇生产几乎 成为目前世界上生产甲醇的唯一方法。半个多世纪以来,随着甲醇工业的迅速发 展,合成甲醇的技术也得以迅速改进。目前世界上合成甲醇的方法主要有以下几种: 1、高压法(19.6~29.4 MPa) 这是最初生产甲醇的方法,采用锌铬催化剂,反应温度为360~400?,压力 19.6~29.4Mpa。随着脱硫技术的发展,高压法也在逐步采用活性高的铜系催化剂, 以改善合成条件,达到提高效率和增产甲醇的效果。高压法虽然有70多年的历 史,但是,由于原料及动力消耗大,反应温度高,投资大,成本高等问题,其发展 长期以来处于停滞状态。 2、低压法(5.0~8.0 MPa) 这是20世纪60年代后期发展起来的甲醇合成技术。低压法基于高活性的铜 系催化剂。铜系催化剂活性明显高于锌铬催化剂,反应温度低(240~270?),在较低 的压力下获得较高的甲醇收率,而且选择性好,减少了副作用,改善了甲醇质量, 降低了原材料的消耗。此外,由于压力低,不仅动力消耗比高压法降低很多,而且 工艺设备的制造也比高压法容易,投资得以降低,总之低压法比高压法有显著的优 越性。 3、中压法(9.8~12.0 MPa)

随着甲醇单系列规模的大型化(目前已有日产2000吨的装置甚至更大单系列的装置),如采用低压法,势必导致工艺管道和设备非常庞大,因此在低压法的基础上,适当提高合成压力,即成为中压法。中压法仍采用与低压法相同的铜系催化剂,反应温度也与低压法相同,因此它具有与低压法相似的优点,但由于提高了合成压力,相应的动力消耗略有增加。目前,世界上新建或扩建的甲醇装置几乎都采用低压法或中压法,其中尤以低压法为最多。英国I.C.I公司和德国Lurgi公司是低压甲醇合成技术的代表,这两种低压法的差别主要在甲醇合成反应器及反应热回收的形式有所不同。目前世界上合成甲醇主要采用低压法工艺技术,它是大型甲醇装置的发展主流。甲醇合成系统包括合成气压缩(等压合成除外)、甲醇合成热量回收、甲醇精馏等工序,其核心设备是甲醇合成塔。有多种形式的合成塔在工业化装置中应用,经实际验证都是成熟可靠的。但在选择中要精心比较。二、甲醇精制 甲醇精制目前工业上采用的有两塔流程和三塔流程,两塔流程已能生产优质的工业品甲醇,但从节能降耗角度出发,选择三塔流程是较好的。三塔流程将以往的主精馏塔分为加压精馏塔和常压精馏塔,将加压精馏塔塔顶出来的甲醇蒸汽作为常压精馏塔的热源,降低了蒸汽消耗。通常情况下可降低能耗30%,但投资略有增加试析甲醇行业未来发展方向 甲醇是一种重要的有机化工原料,应用广泛,可以用来生产甲醛、合成橡胶、甲胺、对苯二甲酸二甲脂、甲基丙烯酸甲脂、氯甲烷、醋酸、甲基叔丁基醚等一系列有机化工产品,而且还可以加入汽油掺烧或代替汽油作为动力燃料以及用来合成甲醇蛋白。随着当今世界石油资源的日益减少和甲醇单位成本的降低,用甲醇作为新的石化原料来源已经成为一种趋势。尽管目前全球甲醇生产能力相对过剩,并且不排除由于某种原因而引起甲醇市场的波动,但是对于有着丰富的煤、石油、天然

全球甲醇工业生产现状与发展趋势2.doc

全球甲醇工业生产现状与发展趋势2 1 甲醇工业技术发展现状 甲醇的生产始于1923年,德国巴斯夫公司采用ZnCr氧化物[wiki]催化剂[/wiki],在30~35MPa,300~400℃条件下合成甲醇,并在洛伊纳建成3000t/d装置。1966年英国ICI公司开发成功了以天然气为原料,采用冷激式绝热反应器在250℃、5MPa和铜基催化剂存在下合成甲醇技术,简称ICI低压合成法。1971年,德国鲁奇公司开发成功了以天然气或渣油为原料的低压鲁奇法工艺。采用管壳式反应器,在200~300℃、5~8MPa下合成甲醇,简称鲁奇低压法(中石化齐鲁分公司第二化肥厂1987年建成的100kt/a甲醇生产装置,就是引进鲁奇低压法工艺)。与此同时,丹麦的托普索公司,日本三菱瓦斯化学公司等相继开发成功了各自的低压法技术。20世纪70年代以来,世界各国新建与改进的甲醇装置几乎全部是低压法,其中采用ICI公司、鲁奇公司技术生产甲醇约占世界甲醇总量的80%左右。 低压法工艺存在着致命的缺点:单程转化率低,有大量未转化气体被循环;反应气体的H2/CO为(5~10)∶1,而不是理论量的2∶1;原料气只能靠蒸汽转化成纯氧部分氧化,工艺制造不能使用节能型的空气部分氧[wiki]化工[/wiki]艺技术,能耗很高。为此各国都致力于开发工艺更加先进的节能型液相甲醇合成技术,现在已经取得了突破。目前液相法工艺有2种,一种是浆态床工艺,采用CuCrO2/KOCH3或CuOZnOAl2O3催化剂,催化剂以极细的粉末状分布在有机溶剂中,美国空气产品和化学品有限公司开发的技术具有领先水平,并建成万吨级工业试验装置。另一种是液相络合催化剂法工艺技术,目前仍处在实验室研究开发阶段。现在甲醇生产技术主要以HaldorTopse公司、Kvaerner/Synetix工艺技术、克虏伯—乌德公司、鲁奇公司、Synetix公司的技术最为典型。现在国际上标准甲醇装置的生产规模为2500~3000t/d,最近在天然气丰富廉价地区投资建设的装置规模都在5000t/d的水平,由此可见,目前甲醇装置建设正向大型化的规模经济发展。现在商业的甲醇合成工艺均为气相合成,存在合成效率低、能耗高等多种缺陷。所以人们对甲醇的合成研究,无论是在催化剂的研制,还是在合成工艺路线的开发上,一直没有停止过。

甲醇羰基化法

甲醇羰基化法 甲醇低压羰基化法的经济性集中表现在两点:其一,甲醇和一氧化碳在较低的压力就能反应,甲醇的转化率和选择性都高达99%,粗乙酸的浓度高,因此提纯简单,流程紧凑,催化剂长期运转安全可靠,排放的三废少,没有严重的污染;其二,羰基化工艺的初始原料为一氧化碳和甲醇原料来源广泛,价格低廉,不与其他化学加工争夺原料,由于是一步合成,能耗不高,因此生产成本较低。 1880年Geuther在研究甲醇与一氧化碳反应时就发现有痕量的乙酸。1925-1928年英国Celanese公司的Henry Dreyfus开始研究此反应的催化剂,反应必须在高温和高压才能进行,他们发现以银或铜为促进剂的磷酸是一种有效的催化剂。反应器的材料只有石墨或黄金作衬里时,才能经受310℃和20MPa (199atm)这样严格条件下的腐蚀.在甲醇羰基化反应中,甲醇的转化率为400,选择性约70%,试验的规模为100kg/天,但在30年代初期就停止了生产。 此后,美国、法国和德国都进行过类似的研究。1942年德国法本工业公司建设了10吨/夭规模的试验工厂,二次大战后工作重新进行,并开发了碘化镍催化体系,碘化镍比钴等许多其他金属羰基化合物具有较高的催化活性。反应条件为215℃和14MPa (138atm),反应在气相中进行,所以腐蚀问题并不严重。 BASF公司着重研究了有碘存在下的铜和钴的催化体系,开发了另一条高压羰基化工艺路线1966年美国B0rden化学公司引进BASF技术建r最高生产桃力曾达135000吨/年。BASF工艺的操作压力高达76MPa (693atm),反应器需用Hastell0yc合金钢来制造。 1966年美国孟山都化学公司开发了另一种完全不同的方法,他们最初用铑—膦一碘系催化剂,可以在较低的温度和压力时反应。应用此项工艺的总装置生产能力已达180万吨,而且远有增长的趋势。孟山都低压甲醇碳基化法开发成功后,BASF高压甲醇羰基化工艺实际上已失去工业意义。 a、高压甲醇羰基化法甲醇、一氧化碳在含水的乙酸溶液中,以羰基钴为催化剂,碘甲烷为助催化剂组成的钴一碘催化体系,反应在约250℃和70MPa (693atm)下进行。甲醇羰基化是放热反应,每公斤乙酸放热2219kJ,反应器中的热量依靠连续加进原料甲醇和一氧化碳予以吸收,反应热平衡则由甲醇原料预热器来调节。粗酸和未反应的气体从反应器顶 部排出,冷却后,膨胀降压至1.01MPa(约l0atm),粗酸送分离系统放空气经碘甲烷回收后放空。 粗酸先经脱轻塔,脱除低沸物,再脱除催化剂,脱水,精制获得99.8%的成品乙酸。以甲醇计乙酸的收率约90%,以一氧化碳计乙酸的收率为59%。副产3.5%的甲烷和4.5%的液体物料(以生成乙酸计)。 主反应和主副反应如下:

年产50万吨甲醇合成工艺初步设计

年产50万吨甲醇合成工艺初步设计 摘要 本设计重点讨论了合成方案的选择,首先介绍了国内外甲醇工业的现状、甲醇原料的来源和甲醇本身的性质及用途。其次介绍了合成甲醇的基本原理以、影响合成甲醇的因素、甲醇合成反应速率的影响。在合成方案里面主要介绍了原料路线、不同原料制甲醇的方法、合成甲醇的三种方法、生产规模的选择、改善生产技术来进行节能降耗、引进国外先进的控制技术,进一步提高控制水平,来发展我国甲醇工业及简易的流程图。在工艺条件中,主要介绍了温度、压力、氢与一氧化碳的比例和空间速度。主要设备冷激式绝热反应器和列管式等温反应器介绍。最后进行了简单的物料衡算。 关键词:甲醇,合成塔

一、综述 (一)国内外甲醇工业现状 甲醇是重要的化工原料,应用广泛,主要用于生产甲醛,其消耗量约占甲醇总量的30%~40%;其次作为甲基化剂,生产甲胺、丙烯酸甲酯、甲基丙烯酸甲酯、甲基叔丁基醚、对苯二甲酸二甲酯;甲醇羰基化可生产醋酸、酸酐、甲酸甲酯、碳酸二甲酯等。其次,甲醇低压羰基化生产醋酸,近年来发展很快。随着碳化工的发展,由甲醇出发合成乙二醇、乙醛、乙醇等工艺正在日益受到重视。国内甲醇装置规模普遍较小,且多采用煤头路线,以煤为原料的约占到78%;单位产能投资高,约为国外大型甲醇装置投资的2倍,导致财务费用和折旧费用高,这些都会影响成本。据了解,我国有近200家甲醇生产企业,但其中10万吨/年以上的装置却只占20%,最大的甲醇生产装置产能也就是60万吨/年,其余80%都是10万吨/年以下的装置。根据这样的装置格局,业内普遍估计,目前我国甲醇生产成本大约在1400,1800元/吨(约200美元/吨),一旦出现市场供过于求的局面,国内甲醇价格有可能要下跌到约2000元/吨,甚至更低。这对产能规模小,单位产能投资较高的国内大部分甲醇生产企业来讲会加剧增。 而以中东和中南美洲为代表的国外甲醇装置普遍规模较大。目前国际上最大规模的甲醇装置产能以达到170万吨/年。2008年4月底,沙特甲醇公司170万吨/年的巨型甲醇装置在阿尔朱拜勒投产,使得

合成气制备甲醇原理与工艺

合成气制备甲醇原理与工艺 简要概述 班级:xxxxxxxxxxxxxxxxxxxxx 专业:化学工程与工艺 姓名:xxxxx 学号:201473020108 指导教师:xxxxx

一、甲醇的认识 1.物理性质 无色透明液体,易挥发,略带醇香气味;易吸收水分、CO2和H2S,与水无限互溶;溶解性能优于乙醇;不能与脂肪烃互溶,能溶解多种无机盐磺化钠、氯化钙、最简单的饱和脂肪醇。 2.化学性质 3.甲醇的用途 (1)有机化工原料 甲醇是仅次于三烯和三苯的重要基础有机化工原料 (2)有机燃料 (1)、甲醇汽油混合燃料;(2)、合成醇燃料;(3)、与异丁烯合成甲基叔丁基醚(MTBE)、高辛烷值无铅汽油添加剂;(4)、与甲基叔戊基醚(TAME)合成汽油含氧添加剂

4.甲醇的生产原料 甲醇合成的原料气成分主要是CO 、 CO2、 H2 及少量的N2 和CH4。主要有煤炭、焦炭、天然气、重油、石脑油、焦炉煤气、乙炔尾气等。 天然气是生产甲醇、合成氨的清洁原料,具有投资少、能耗低、污染小等优势,世界甲醇生产有90%以上是以天然气为原料,煤仅占 2%。 二、合成气制甲醇的原理 1.合成气的制备 a.煤与空气中的氧气在煤气化炉内制得高 CO 含量的粗煤气; b.经高温变换将 CO 变换为 H2 来实现甲醇合成时所需的氢碳比; c.经净化工序将多余的 CO2 和硫化物脱除后即是甲醇合成气。 说明: 由于煤制甲醇碳多氢少,必需从合成池的放气中回收氢来降低煤耗和能耗,回收的氢气与净化后的合成气配得生产甲醇所需的合成气, 即( H2-CO2) /( CO+CO2)=2.00~2.05。 2.反应机理 主反应 OH CH H CO 322→+ △H 298=-90.8kJ/mol CO 2 存在时 O H OH CH H CO 23222+→+ △H 298=-49.5kJ/mol 副反应 O H OCH CH H CO 233242+→+ O H CH H CO 2423+→+ O H OH H C H CO 2942384+→+ O H CO H CO 222+→+ 增大压力、低温有利于反应进行,但同时也有利于副反应进行,故通过加入催化剂,提高反应的选择性,抑制副反应的发生。 3. 影响合成气制甲醇的主要因素 (1)合成甲醇的工业催化剂

年产10万吨甲醇低压羰基化合成醋酸精制工段工艺设计-文献综述

第一章文献综述 摘要: 本文介绍了生产醋酸的几种工艺方法、特点以及主要工艺技术研究进展情况。特别介绍了甲醇低压羰基合成醋酸工艺及其改进工艺。 关键词: 醋酸;工艺;综述 Abstract: Several process methods, characteristics and the progress of main technology for producing acetic acid were introduced in brief. A new method of Monsanto Acetic Acid Process as an important method for the manufacture of acetic acid by catalytic carbonylation of methanol was especially introduced. Key words: acetic acid; technics; review 前言 醋酸是一种重要的基本有机化工原料,主要用于制取醋酸乙烯单体(VCM)、醋酸纤维、醋酐、对苯二甲酸、氯乙酸、聚乙烯醇、醋酸酯及金属醋酸盐等。醋酸也被用来制造电影胶片所需要的醋酸纤维素和木材用胶粘剂中的聚乙酸乙烯酯,以及很多合成纤维。在染料、医药、农药及粘合剂、有机溶剂等方面有着广泛的用途,是近几年来发展较快的重要的有机化工产品之一。 但我国目前醋酸的产量还不能满足需求。在醋酸的生产工艺中,甲醇羰基化法应用最广,占全球总产能的60%以上,且这种趋势还在不断增长。该法虽然有许多优点,但需特别指出的是在该工艺中精制工段还存在许多诸如能耗高、转化率低等问题。为促进国内工业化生产,解决存在的技术问题。鉴于这种情况,设计一套甲醇低压羰基化合成醋酸(10万t/a)工艺装臵,以促进醋酸基础研究,有利于平衡我国对醋酸的供需矛盾。 1.1醋酸的性质 1.1.1醋酸的物理性质 乙酸又名醋酸(acetic acid)、冰醋酸(glacial acetic acid),分子式为 C2H 4O2(常简写为HAc)或CH 3 COOH,分子量为60.05。

甲醇羰基法制醋酸

醋酸生产工艺 工业上合成醋酸的方法主要有①乙烯—乙醛—醋酸两步法②乙醇—乙醛—醋酸两步法③烷烃和轻质油氧化法④甲醇羰化法。目前,甲醇低压羰基合成醋酸是世界上生产醋酸的主要生产方法。 甲醇羰基化法工业化生产醋酸技术的主要进展包括:BP公司的Cativa工艺、Celanese公司开发出的Celanses低水含量工艺、UOP/Chiyoda开发出的UOP/Chiyoda Acetica工艺、Haldor Topsoe的合成气经甲醇/二甲醚生产醋酸新工艺、我国西南化工研究设计院开发的蒸发流程。 甲醇羰基化合成醋酸(MCA)的反应活化能非常高,必须在催化剂作用下才能实现,羰基化法生产乙酸的核心课题一直是高性能的催化体系及其相应的工艺技术的开发。MCA的催化剂经历了三个发展阶段:①碘化钴催化剂(存在条件苛刻,选择性低)②铑基催化剂(较①反应条件温和,选择性高,但存在昂贵铑的流失和腐蚀严重的问题)③铱基催化剂(铱基催化剂的发展从非均相(如IrI3)到均相(如Ir4(CO)4)),考虑到醋酸及时产物又是溶剂的反应环境,最佳催化剂形态为醋酸铱(Cativa)。工艺设备方面的发展:①鼓泡塔式反应器②双反应器串联工艺(第一反应器为普通带搅拌的釜式,第二反应器为泡罩塔式)③多种产品联产工艺④联合转换工艺 西南化工研究设计院开发的羰基合成醋酸工艺具有以下特点: ①转化率、选择性均很高,副产物少,三废排放少,产品质量好;接近或 达到了世界先进水平; ②由于采用了蒸发流程,使反应器的生产能力提高,能耗降低; ③反应条件温和,催化剂虽为贵金属,但稳定性增强,寿命长,用量减少; ④生产成本不高于其他任何一种羰基合成生产方法; ⑤工艺流程组织合理,易于控制,操作稳定可靠。 西南化工研究设计院甲醇低压法合成醋酸工艺主要包括CO造气和醋酸合成工段。其中造气工段主要包括造气、预脱硫、压缩、脱硫脱碳工序。醋酸工段合成主要包括合成、转化、蒸发、脱轻、脱水、提馏、脱烷、吸收再生、成品等工段。尾气提纯CO工段主要是对醋酸装置的尾气进行处理。甲醇低压羰基法合成醋酸的基本工艺流程如图一。

甲醇合成工艺

甲醇合成工艺 当今甲醇的生产主要采用低压法和中压法这两种,很少采用高压法,目前高压法的发展已处于停滞的状态,主要以低压法为主。用中压法和低压法这两种工艺生产出来的甲醇约占世界甲醇总产量的一半以上。 1. 低压合成工艺(5.0- 8. 0MP a) 是20世纪50年代后期发展起来的一种甲醇合成技术。低压法主要采用CuO- ZnO- Al2 O3- V2O5 催化剂,其活性较高,能耗低,反应温度最佳,一般反应温度在(240- 265)℃,在压力较低的的条件下即可获得较高的甲醇产率。并且其选择性好,减少了很多副反应的发生,降低了原料的损耗,并且提高了甲醇的质量。除此之外,由于压力要求较高,可以有效的减少动力的消耗,使工艺设备的制造更加容易。这一方法被英国ICI公司在1966 年研究使用成功,从而打断了甲醇合成高压法的垄断制度。这一制度的应用,在很大程度上提高了甲醇的产量,为日后甲醇的高产带来了合适的方法。 2. 中压合成工艺(9.8- 12. 0MP a) 随着社会的不断发展,甲醇的需求越来越大,如果继续采用低压法就要改造工艺管道,使工艺管道变得更大,设备也就变得更大,这样就浪费了空间和成本,因此在低压的基础上适当的加大压力,即发展为中压法。中压法采用的催化剂和低压法的相 同,都为C uO- ZnO- Al2O3 - V2O5催化剂,因此反应温度与低压法大致相同,由于压力的提高使动能的消耗也增加了。齐鲁石化公司第二化肥厂引进了联邦德国公司的中压甲醇合成装置。使得该公司的日产量有了很大程度的提高。 3. 高压合成工艺(30- 32 MP a) 是比较原始的一种方法,采用ZnO- C r 2O3 催化剂,其活性远不如铜系催化剂,反应温度在(350- 400)℃。随着科学技术的发展,高压法也开始逐步采用活性相对较高的铜系催化剂,以改善合成的条件。高压法虽然存在了70 多年,但由于材质苛刻,投资高,能耗物高,反应温度高,且生成的粗甲醇中杂志含量较多不易提纯,所以其发展前景不可观,目前处于停滞状态。

我国甲醇发展现状及未来预测

我国甲醇发展现状及未来预测 近年来,中国甲醇市场非常火爆:甲醇价格持续高位,甲醇生产装置开工率不断提高,各地甲醇新建项目陆续开工。出现这种局面的原因,一是甲醇传统消费领域,如甲醛、醋酸等产品的产量稳步提升,对甲醇的需求量逐步增加;二是新的消费领域,如醇醚燃料、甲醇制烯烃等由于发展前景广阔,也引发了国内对甲醇装置的投资热。 中国甲醇发展现状 2005年,我国消费甲醇666万t,进口甲醇136万t,出口5.4万t,净进口130万t。同年,国内甲醇产能720万t,产量536万t,开工率74.4%。2000年,我国甲醇产能只有348万t,表观消费量为329.4万t。从2000年至2005年的5年间,我国甲醇产能年均增长率为15.6%,表观消费量年均增长率为15.1%。目前,我国甲醇消费主要集中在甲醛、醋酸、醇醚等领域。 中国石油和化学工业协会提供的调研报告显示,2006年,我国甲醇生产、消费继续同步增长。国家统计局的数据显示,2006年国内共有甲醇生产企业142家,产能合计为1036万t,产量为762.3万t。其他途径的数据显示,除上述142家甲醇企业外,我国还有25个已投产的甲醇项目,产能合计308.4万t,产量为112.4万t。在这25个项目中,有的是2006年建成投产或者完成技术改造的,由于投产时间较晚,实际产量不大;有的是因为技术等方面的原因导致开工率不足,产量较低。综合这两部分数据可知:2006年我国共有甲醇生产企业167家,产能合计1344.4万t,产量874.7万t。 2006年,我国进口甲醇112.7万t,出口19万t,净进口量94万t,表观消费量968.4万t,甲醇消费同比增长45%。由此可见,2006年国内甲醇供应存在着一定的缺口,需要进口来弥补。 “十一五”我国甲醇发展预测 据统计,“十一五”期间我国新建、拟建甲醇项目共42个(不包括二甲醚、甲醇制烯烃生产企业自身配套的甲醇生产装置)。其中,“十一五”期间可以投产的项目为35个,产能合计1198万吨/年。另外7个项目尚处于前期工作阶段,尚未开工建设,这7个项目产能共计670万吨/年。预计到“十一五”末期,我国甲醇生产企业将为200家左右,产能将达到2500万吨/年至3200万吨/年。 “十一五”甲醇下游市场预测

对二甲苯生产技术研究进展及发展趋势

对二甲苯生产技术研究进展及发展趋势 摘要:现如今,我国的经济在迅猛发展,社会在不断进步,阐述了甲苯歧化和 烷基转移、二甲苯异构化、甲醇芳构化、甲苯选择性歧化及甲醇甲苯选择性烷基 化等对二甲苯生产技术的研究进展,并分析了各种技术的优势及不足。分析表明,与甲醇制芳烃技术相比,甲醇甲苯选择性烷基化制对二甲苯技术具有对二甲苯选 择性高、流程短、无需吸附分离等方面的显著优势,是实现煤经甲醇(和甲苯或苯)制对二甲苯产业发展的最佳选择;采用芳烃联合装置与甲醇甲苯选择性烷基 化技术耦合,理想状况下可实现对二甲苯增产40%以上,同时不副产苯。提出了 对二甲苯生产工艺技术的发展趋势:发展甲醇甲苯选择性烷基化制对二甲苯技术,既利于煤炭的清洁高效利用,保障聚酯产业链安全,还有助于形成煤化工和石油 化工技术互补、协调发展的新格局。 关键词:二甲苯;生产技术;研究进展 引言 对二甲苯作为炼油和化工的桥梁,既是芳烃产业中最重要的产品,亦是聚酯 产业的龙头原料。目前,对二甲苯应用中约97%用于生产精对苯二甲酸(PTA),其 余用于医药、溶剂、涂料等领域。近年来,随着我国聚酯产业的飞速发展,对二 甲苯供不应求,利润率居高不下,引发项目建设热潮。未来几年,对二甲苯产能 将集中释放,供需格局将发生巨大变化。本文就对分离技术进行简要介绍并对市 场进行分析,为企业应对未来市场变化提供参考。 1对二甲苯生产工艺技术 现在全球美国环球油品公司(UOP)和法国Axens公司拥有整套且比 较成熟的对二甲苯生产工艺技术,2011年我国拥有了自主知识产权的对二甲 苯整套生产技术。其中UOP是世界领先的芳烃生产工艺技术供应商,截至20 14年,UOP已经为100多套联合成套装置和700多套单独芳烃生产工艺 装置发布了许可。本文主要以混合二甲苯为原料,装置采用无歧化流程,即由二 甲苯精馏、异构化、产品分离三个单元组成。其中二甲苯精馏是通过精馏除去混 合二甲苯原料中除二甲苯之外的其它组分;异构化是将精馏后二甲苯中的1,2 -二甲苯(邻二甲苯)、1,3-二甲苯(间二甲苯)和乙苯转化为1,4-二 甲苯(对二甲苯),最大限度地生产需要的PTA原料;PTA原料分离是将异 构化产物中的1,4-二甲苯与反应后还存在的1,2-二甲苯和1,3-二甲 苯等进一步分离,从而得到纯度符合要求的1,4-二甲苯。工艺全部采用美国 UOP(环球油品公司)的成套专利技术。其中,吸附分离采用ParexTM 工艺技术和ADS-37吸附剂,该工艺利用吸附分离原理选择分离生产高纯度 的1,4-二甲苯,利用模拟移动床原理实现固液相连续逆向分离;异构化工艺 采用IsomarTM工艺技术和乙苯异构型催化剂I-400,可充分利用C 8芳烃资源,最大限度地生产1,4-二甲苯。 2二甲苯异构化技术 2.1甲苯一甲醇烷基化工艺 以甲苯和甲醇为原料,在一定的反应条件和催化剂存在的条件下,就会发生烷基化反应,从而得到对二甲苯以及其他附加产品,这个过程就是甲苯一甲醇烷基化工艺。甲苯一甲醇烷基化工艺以分子筛为催化剂,采用氢气或氮气或水蒸气为反应载气,对二甲苯选择性可达到百分之九十以上。甲苯一甲醇烷基化工艺作为一种新型 的生产工艺,与传统生产工艺相比具有诸多优点。首先,极大地降低了原料的消耗,

甲醇低压羰基化制醋酸

甲醇低压羰基化制醋酸 醋酸是最重要的有机酸之一。全世界产量约 6.0Mt/a,主要用于合成醋酸乙烯、醋酸纤维、醋酸酯、金属醋酸盐等,也是制药、染料、农药、感光材料以及其他有机合成的重要原料。 1.醋酸生产方法评述 工业上生产醋酸的方法主要有3种:乙醛法、丁烷或轻油氧化法以及甲醇羰基化法。 (1)乙醛法这是比较古老的生产方法。乙醛可由乙炔、乙烯和乙醇制得,1959年用乙烯直接氧化制乙醛(常称瓦克法)获得成功,现在已成为生产乙醛的主要方法。 乙醛生产醋酸的反应式为:

工艺过程为:将含5%~10%乙醛的醋酸液通入空气或氧气氧化,催化剂为醋酸锰或醋酸钴,反应温度50~80℃,反应压力0.1~1.0MPa。除主产物醋酸外,还有甲醛和甲酸等副产物生成。乙醛转化率90%以上,醋酸选择性大于94%。 (2)丁烷(或轻油)液相氧化法20世纪50年代初在美国首先实现工业化。丁烷或轻油在Co,Cr,V或Mn的醋酸盐催化下在醋酸溶液中被空气氧化,反应温度95~100℃,压力1.0~5.47MPa,反应产物众多,分离困难,而且对设备和管路腐蚀性强,虽然能用廉价的丁烷和轻油作原料,除美国、英国等少数国家还继续采用外,其他国家对该法兴趣不大。

(3)甲醇羰基化法以甲醇为原料合成醋酸,不但原料价廉易得,而且生成醋酸的选择性高达99%以上,基本上无副产物,现在世界上有近40%的醋酸是用该法生产的,新建生产装置多考虑采用这一生产方法,表5-5-04列出了目前世界上生产醋酸的2种主要方法的生产成本比较。由表5-5-04不难看出甲醇法不仅投资省,而且生产费用也低,对乙醛法有明显的优势。

甲醇合成的工艺方法介绍

甲醇合成的工艺方法介绍 自1923年开始工业化生产以来,甲醇合成的原料路线经历了很大变化。20世纪50年代以前多以煤和焦碳为原料;50年代以后,以天然气为原料的甲醇生产流程被广泛应用;进入60 年代以来,以重油为原料的甲醇装置有所发展。对于我国,从资源背景来看,煤炭储量远大于石油、天然气储量,随着世界石油资源的紧缺、油价的上涨和我国大力发展煤炭洁净利用技术的背景下,在很长一段时间内煤是我国甲醇生产最重要的原料。下面简要介绍一下甲醇生产的各种方法。按生产原料不同可将甲醇合成方法分为合成气(CO+H2方法和其他原料方法。 一、合成气(CO+H2生产甲醇的方法 以一氧化碳和氢气为原料合成甲醇工艺过程有多种。其发展的历程与新催化剂的应用,以及净化技术的进展是分不开的。甲醇合成是可逆的强放热反应,受热力学和动力学控制,通常在单程反应器中,CO和CO2的单程转化率达不到100%,反应器出口气体中,甲醇含量仅为6~12%,未反应的CO、CO2和H2需与甲醇分离,然后被压缩到反应器中进入一步合成。为了保证反应器出口气体中有较高的甲醇含量,一般采用较高的反应压力。根据采用的压力不同可分为高压法、中压法和低压法三种方法。 1、高压法 即用一氧化碳和氢在高温(340~420℃高压(30.0~50.0MPa下使用锌-铬氧化物作催化剂合成甲醇。用此法生产甲醇已有八十多年的历史,这是八十年代以前世界各国生产甲醇的主要方法。但高压法生产压力过高、动力消耗大,设备复杂、产品质量较差。其工艺流程如图所示。 经压缩后的合成气在活性炭吸附器1中脱除五羰基碳后,同循环气一起送入管式反应器2中,在温度为350℃和压力为30.4MPa下,一氧化碳和氢气通过催化剂层反应生成粗甲醇。含粗甲醇的气体经冷却器冷却后,迅速送入粗甲醇分离器3中分离,未反应的一氧化碳与氢经压缩机压缩循环回管式反应器2。冷凝后的粗甲醇经粗

甲醇合成原理方法与工艺

甲醇合成原理方法与工艺 图1煤制甲醇流程示意图 煤气经过脱硫、变换,酸性气体脱除等工序后,原料气中的硫化物含量小于0.1mg/m3。进入合成气压缩机,经压缩后的工艺气体进入合成塔,在催化剂作用下合成粗甲醇,并利用其反应热副产3.9MPa中压蒸汽,降温减压后饱和蒸汽送入低压蒸汽管网,同时将粗甲醇送至精馏系统。 一、甲醇合成反应机理 自CO加氢合成甲醇工业化以来,有关合成反应机理一直在不断探索和研究之中。早期认为合成甲醇是通过CO在催化剂表面吸附生成中间产物而合成的,即CO是合成甲醇的原料。但20世纪70年代以后,通过同位素示踪研究,证实合成甲醇中的原子来源于CO2,所以认为CO2是合成甲醇的起始原料。为此,分别提出了CO和CO2合成甲醇的机理反应。但时至今日,有关合成机理尚无定论,有待进一步研究。 为了阐明甲醇合成反应的模式,1987年朱炳辰等对我国C301型铜基催化剂,分别对仅含有CO或CO2或同时含有CO和CO2三种原料气进行了甲醇合成动力学实验测定,三种情况下均可生成甲

醇,试验说明:在一定条件下,CO和CO2均可在铜基催化剂表面加氢生成甲醇。因此基于化学吸附的CO连续加氢而生成甲醇的反应机理被人们普遍接受。 对甲醇合成而言,无论是锌铬催化剂还是铜基催化剂,其多相(非匀相)催化过程均按下列过程进行: ①扩散——气体自气相扩散到气体一催化剂界面; ②吸附——各种气体组分在催化剂活性表面上进行化学吸附; ③表面吸附——化学吸附的气体,按照不同的动力学假说进行反应形成产物; ④解析——反应产物的脱附; ⑤扩散——反应产物自气体一催化剂界面扩散到气相中去。 甲醇合成反应的速率,是上述五个过程中的每一个过程进行速率的总和,但全过程的速率取决于最慢步骤的完成速率。研究证实,过程①与⑤进行得非常迅速,过程②与④的进行速率较快,而过程③分子在催化剂活性界面的反应速率最慢,因此,整个反应过程的速率取决于表面反应的进行速率。 提高压力、升高温度均可使甲醇合成反应速率加快,但从热力学角度分析,由于CO、C02和H2合成甲醇的反应是强放热的体积 缩小反应,提高压力、降低温度有利于化学平衡向生成甲醇的方向移动,同时也有利于抑制副反应的进行。 二、甲醇合成的主要反应 (1)甲醇合成主要反应 CH3OH CO+2H CO2CH3OH+H2O 同时CO2和H2发生逆变换反应 CO 2CO+H2O

合成气生产甲醇工艺流程

编号:No.20 课题:合成气生产甲醇工艺流程 授课内容:合成气制甲醇工艺流程 知识目标: ? 了解合成气制甲醇过程对原料的要求 ?掌握合成气制甲醇原则工艺流程 能力目标: ?分析和判断合成气组成对反应过程及产品的影响 ?对比高压法与低压法制甲醇的优缺点 思考与练习: ?合成气制甲醇工艺流程有哪些部分构成? ?对比高压法与低压法制甲醇的优缺点 ?合成气生产甲醇对原料有哪些要求?如何满足?

授课班级: 授课时间: 四、生产甲醇的工艺流程 (一)生产工序 合成气合成甲醇的生产过程,不论采用怎样的原料和技术路线,大致可以分为以下几个 工序,见图5-1。 图5-1 甲醇生产流程图 1.原料气的制备 合成甲醇,首先是制备原料氢和碳的氧化物。一般以含碳氢或含碳的资源如天然气、石 油气、石脑油、重质油、煤和乙炔尾气等,用蒸汽转化或部分氧化加以转化,使其生成主要由氢、一氧化碳、二氧化碳组成的混合气体,甲醇合成气要求(出—CO2)/(CO+CO2)=2.1 左右。合成气中还含有未经转化的甲烷和少量氮,显然,甲烷和氮不参加甲醇合成反应,其 含量越低越好,但这与制备原料气的方法有关;另外,根据原料不同,原料气中还可能含有 少量有机和无机硫的化合物。 为了满足氢碳比例,如果原料气中氢碳不平衡,当氢多碳少时(如以甲烷为原料),则 在制造原料气时,还要补碳,一般采用二氧化碳,与原料同时进入设备;反之,如果碳多,则在以后工序要脱去多余的碳(以CO2形式)。 2.净化 净化有两个方面: 一是脱除对甲醇合成催化剂有毒害作用的杂质,如含硫的化合物。原料气中硫的含量即 使降至1ppm,对铜系催化剂也有明显的毒害作用,因而缩短其使用寿命,对锌系催化剂也有一定的毒害。经过脱硫,要求进入合成塔气体中的硫含量降至小于0.2ppm。脱硫的方法 一般有湿法和干法两种。脱硫工序在整个制甲醇工艺流程中的位置,要根据原料气的制备方 法而定。如以管式炉蒸汽转化的方法,因硫对转化用镍催化剂也有严重的毒害作用,脱硫工

甲醇合成塔介绍

甲醇合成塔介绍 2011-09-01 16:17 【打印】【收藏】百川资讯更新时间:来源:甲醇合成塔关键字: 甲醇合成塔设计的关键技术之一就是要高效移走和利用甲醇合成反应所放出的巨大热量。摘要:甲醇合成塔设计的关键技术之一就是要高效移走和利用甲醇合成反应所放出的巨大热量。甲醇合成反应器根据反应热回收方式不同有许多不同的类型,下面将应用较广的几种合成器分别予以简单介绍。一、I.C.I反应器 英国ICI公司低压法甲醇合成塔采用多层冷激式绝热反应器,内设3-6层催化剂,催化剂用量较大,合成气大部分作为冷激气体由置于催化剂床层不同高度平行设立的菱形分布器喷入合成塔,另一部分合成气由顶部进入合成塔,反应后的热气体与冷激气体均匀混合以调节催化床层反应温度,并保证气体在催化床层横截面上均匀分布。反应最终气体的热量由废热锅炉产生低压蒸汽或用于加热锅炉给水回收。该法循环气量比较大,反应器内温度分布不均匀,呈锯齿形。 ICI冷激塔结构简单、用材省且要求不高、并易于大型化。单塔生产能力大。但由于催化剂床层各段为绝热反应,使催化剂床层温差较大,在压力为8.4MPa和12000h-1空速下,当出塔气甲醇浓度为4%时,一、二两段升温约50℃,反应副产物多,催化剂使用寿命较短,循环气压缩功耗大,用冷原料气喷入各段触媒之间以降低反应气温度。因此在降温的同时稀释了反应气中的甲醇含量,影响了触媒利用率,而且反应热只能在反应器出口设低压废锅回收低压蒸汽。为了防止触媒过热,采用较大的空速,出塔气中甲醇含量不到4%。最大规模3000t/d,全世界现有40多套。 二、德国林德Lurgi管壳式反应器 水冷型。图2Lurgi甲醇合成反应器是管壳式的结构。管内装催化剂,管外充满中压沸腾水进行换热。合成反应几乎是在等温条件下进行,反应器能除去有效的热量,可允许较高CO含量气体,采用低循环气流并限制最高反应温度,使反应等温进行,单程转化率高,杂质生成少,循环压缩功消耗低,而且合成反应热副产中压蒸汽,便于废热综合利用。可以看出Lurgi公司正是根据甲醇合成反应热大和现有铜基触媒耐热性差的特点而采用列管式反应器。管内装触媒,管间用循环沸水,用很大的换热面积来移去反应热,达到接近等温反应的目的,故其出塔气中甲醇含量和空时产率均比冷激塔高,触媒使用寿命也较长。其主要性能特点是:该塔反应时触媒层温差小,副产物低,需传热面大。但该反应器比I.C.I反应器结构复杂,上下管板处联结点和焊点多,制作困难,为防壳体和管板、反应管之间焊接热应力,对材料及制造方面的要求较高,投资高。反应器催化剂装填系数也不如I.C.I反应器大,只有30%,且装卸触媒不方便。塔径大,运输困难 Lurgi管壳式反应器已在国内不少甲醇厂使用,但在大型化甲醇装置中因结构复杂、反应管数较多、体积大,国内目前。单塔最大生产能力为1250吨/天。产量增大时,反应器直径过大,而且由于管数太多,反应管长度只能做到10米,因此在设计与制造时就有困难了。1 / 5 近年来又提出与冷管型串联的流程以适应大型化生产的需鲁奇公司曾提出两塔并联的流程,座套甲醇装置(约40两个塔),全世界现有29求,但是都还未工业化。最大规模3000t/d( /年。,总产能810万吨合成塔) MRF型反应器三、东洋公司(TEC)的反应器为多段间接冷却径向流动反应器,采用套管锅炉水强制循环冷却副产蒸气,MRF字分温度分布呈多段Z反应气体呈径向流过沿径向分布的多级冷却套管管外分布的触媒层,径向流动使气体通过床层的阻力降低;温度分布有所改善,从而有利于提高催化剂寿命;布,有催化剂在管外装填,反应器催化剂装填系数得到适当增大,多孔板可保证气体分布均匀;利于实现大型化,但其结构复杂,制造难度大。 米,反应器吨的产能,甲醇塔直径5MRF-Z型反应器达到日产5000据了解,TEC可用单台催化米,米,床高12按14万吨/年的反应器直径2.5管长22.4m,催化剂装填量为350m3。。工业业绩:

年产10万吨甲醇低压羰基化合成醋酸精制工段工艺设计

年产10万吨甲醇低压羰基化合成醋酸精 制工段工艺设计 学院: 专业:姓名:指导老师:化学工程与工艺学号: 职称:

二○一四年五月

诚信承诺书 本人郑重承诺:本人承诺呈交的毕业设计《年产10万吨甲醇低压羰基化合成醋酸精制工段工艺设计》是在指导教师的指导下,独立开展研究取得的成果,文中引用他人的观点和材料,均在文后按顺序列出其参考文献,设计使用的数据真实可靠。 本人签名: 日期:年月日

年产10万吨甲醇低压羰基化合成醋酸精制工段工艺设计 摘要 醋酸是一种重要的基本有机化工原料产品,在各行各业中有广泛的应用。本设计介绍了醋酸的一些物理性质、化学性质,用途,现状和发展状况并且对比了各种合成方法,还对工艺流程进行了简述。 本设计采用甲醇为原料,铑为催化剂,低压羰基化流程工艺。本工艺简单,原料来源广泛,污染少,安全可靠,转化率和选择率高,产品质量高。本工艺的设计重点是合成工序和精馏工序的物料衡算、热量衡算、主要设备计算和选型。同时绘制了工艺流程图和主要设备装置图。并且对于工艺进行车间布置和三废处理。 关键词: 甲醇低压羰基化物料衡算热量衡算

With an annual output of 100000 tons of low-pressure methanol carbonylation acetic acid refining process design Abstract Acetic acid is an important basic organic chemical raw material products, have been widely applied in all walks of life. This design introduces some physical properties, chemical properties, application status and development of acetic acid, and comparison of various synthetic methods, but also on the process are described. This design uses methanol as raw materials, rhodium catalyst, low-pressure carbonylation process. This simple process, wide material source, less pollution, safe and reliable, high conversion and selectivity, high product quality. The design key of this process is a material balance synthesis process and distillation process calculation, heat balance calculation, calculation and selection of main equipment. At the same time, rendering the process flow diagram and main equipment installation diagram. And workshop layout and waste treatment for process. Keywords: Methanol;Low-pressure carbonylation;material balance;heat balance

相关文档
相关文档 最新文档