文档库 最新最全的文档下载
当前位置:文档库 › 基于Ansys的使用分离式配筋方法进行分析的钢筋混凝土梁

基于Ansys的使用分离式配筋方法进行分析的钢筋混凝土梁

基于Ansys的使用分离式配筋方法进行分析的钢筋混凝土梁
基于Ansys的使用分离式配筋方法进行分析的钢筋混凝土梁

超全面圈梁梁板钢筋计算公式

超全面的圈梁、梁、板钢筋计算公式 圈梁钢筋很简单的,分主筋和箍筋两部分 主筋计算:(梁长弯钩长搭接长(单根钢筋长每大于6米时))*设计根数*钢筋的比重 箍筋计算:梁长/设计箍筋间距*每个箍筋的长度*钢筋的比重 设计有外转角的附加钢筋时,按实际总根数*长度*比重就行啦 钢筋计算公式 一、梁 (1) 框架梁 一、首跨钢筋的计算 1、上部贯通筋 上部贯通筋(上通长筋1)长度=通跨净跨长首尾端支座锚固值 2、端支座负筋 端支座负筋长度:第一排为Ln/3 端支座锚固值; 第二排为Ln/4 端支座锚固值 3、下部钢筋 下部钢筋长度=净跨长左右支座锚固值 以上三类钢筋中均涉及到支座锚固问题,那么总结一下以上三类钢筋的支座锚固判断问题: 支座宽≥Lae且≥0.5Hc 5d,为直锚,取Max{Lae,0.5Hc 5d }。 钢筋的端支座锚固值=支座宽≤Lae或≤0.5Hc 5d,为弯锚,取Max{Lae,支座宽度-保护层15d }。 钢筋的中间支座锚固值=Max{Lae,0.5Hc 5d } 4、腰筋

构造钢筋:构造钢筋长度=净跨长2×15d 抗扭钢筋:算法同贯通钢筋 5、拉筋 拉筋长度=(梁宽-2×保护层) 2×11.9d(抗震弯钩值) 2d 拉筋根数:如果我们没有在平法输入中给定拉筋的布筋间距,那么拉筋的根数=(箍筋根数/ 2)×(构造筋根数/2);如果给定了拉筋的布筋间距,那么拉筋的根数=布筋长度/布筋间距。 6、箍筋 箍筋长度=(梁宽-2×保护层梁高-2×保护层)*2 2×11.9d 8d 箍筋根数=(加密区长度/加密区间距1)×2 (非加密区长度/非加密区间距-1) 1 注意:因为构件扣减保护层时,都是扣至纵筋的外皮,那么,我们可以发现,拉筋和箍筋在每个保护层处均被多扣掉了直径值;并且我们在预算中计算钢筋长度时,都是按照外皮计算的,所以软件自动会将多扣掉的长度在补充回来,由此,拉筋计算时增加了2d,箍筋计算时增加了8 d。 7、吊筋 吊筋长度=2*锚固(20d) 2*斜段长度次梁宽度2*50,其中框梁高度>800mm 夹角=6 0° ≤800mm 夹角=45° 二、中间跨钢筋的计算 1、中间支座负筋 中间支座负筋:第一排为:Ln/3 中间支座值Ln/3; 第二排为:Ln/4 中间支座值Ln/4 注意:当中间跨两端的支座负筋延伸长度之和≥该跨的净跨长时,其钢筋长度: 第一排为:该跨净跨长(Ln/3 前中间支座值) (Ln/3 后中间支座值); 第二排为:该跨净跨长(Ln/4 前中间支座值) (Ln/4 后中间支座值)。

ANSYS有限元分析实例

有限元分析 一个厚度为20mm的带孔矩形板受平面内张力,如下图所示。左边固定,右边受载荷p=20N/mm作用,求其变形情况 200 100P 20 一个典型的ANSYS分析过程可分为以下6个步骤: ①定义参数 ②创建几何模型 ③划分网格 ④加载数据 ⑤求解 ⑥结果分析 1定义参数 1.1指定工程名和分析标题 (1)启动ANSYS软件,选择File→Change Jobname命令,弹出如图所示的[Change Jobname]对话框。

(2)在[Enter new jobname]文本框中输入“plane”,同时把[New log and error files]中的复选框选为Yes,单击确定 (3)选择File→Change Title菜单命令,弹出如图所示的[Change Title]对话框。 (4)在[Enter new title]文本框中输入“2D Plane Stress Bracket”,单击确定。 1.2定义单位 在ANSYS软件操作主界面的输入窗口中输入“/UNIT,SI” 1.3定义单元类型 (1)选择Main Menu→Preprocessor→Element Type→Add/Edit/Delete命令,弹出如图所示[Element Types]对话框。 (2)单击[Element Types]对话框中的[Add]按钮,在弹出的如下所示[Library of Element Types]对话框。

(3)选择左边文本框中的[Solid]选项,右边文本框中的[8node 82]选项,单击确定,。 (4)返回[Element Types]对话框,如下所示 (5)单击[Options]按钮,弹出如下所示[PLANE82 element type options]对话框。 (6)在[Element behavior]下拉列表中选择[Plane strs w/thk]选项,单击确定。 (7)再次回到[Element Types]对话框,单击[close]按钮结束,单元定义完毕。 1.4定义单元常数 (1)在ANSYS程序主界面中选择Main Menu→Preprocessor→Real Constants→Add/Edit/Delete命令,弹出如下所示[Real Constants]对话框。 (2)单击[Add]按钮,进行下一个[Choose Element Type]对话框,选择[Plane82]单

怎么计算梁的配筋图的钢筋用量

怎么计算梁的配筋图的钢筋用量 梁 梁的平面表示方法: 集中标注- 1、梁编号 2、截面尺寸 3、箍筋 4、上部贯通筋或架立钢筋 5、侧面纵向构造钢筋或受扭钢筋 6、梁顶面标高高差 原位标注 7、梁支座上部筋 8、梁下部钢筋 9、吊筋、附加钢筋及构造钢筋 钢筋公式 上部通长筋:长度=净跨长+左支座锚固+右支座锚固 当hc-保护层(直锚长度)>=LaE时,取Max(LaE ,0.5hc+5d) 当hc-保护层(直锚长度) 350时,拉筋直径为8mm。拉筋间距为非加密区箍筋间距的两倍。当设有多排拉筋时,上下两排拉筋竖向错开设置。 下部钢筋 下部通长钢筋长度=净跨长+左支座锚固+右支座锚固 下部不伸入支座钢筋长度=净跨长-0.1*2*净跨长 下部非通长钢筋长度=净跨长+左支座锚固+右支座锚固

ansys分析实例

阶梯轴分析步骤及结果 第一步:打开ansys点击File>Clear Database and Start new,选着Read file 点击OK弹出Verify对话框,点击Yes.开始新的分析,

点击File>Change Jobname修改工作文件名,输入zhou, 点击File>Change Title修改文件标题shang ji lian xi。 第二步:ANSYS Main Menu,点击Preferences弹出References for GUI Filtering对话框,选择Structural点击OK. 第三步:ANSYS Main Menu,点击Preprocessor>Element Type>Add/Edit/Delete弹出Element Types对话框,点击add按钮,弹出Library of Element Types对话框,选着Solid>Tet

10node 92 点击OK.关闭Element Types对话框 第四步:ANSYS Main Menu,点击Preprocessor>Material Props>Material Models弹出Define Material Nodel Behavior对话框,在Material Models Available栏选择Structural>Linear>Elastic>Isotropic弹出Linear Isotropic Properties for Mater…..对话框,在EX 框输入2E+007点击OK

第五步:ANSYS Main Menu,点击Preprocessor>Modeling>Create>Volumes>Cylinder>Solid Cylinder弹出Solid Cylinder对话框,在Radius输入0.7978,Depth输入10,点击OK生成圆 柱体。 第六步:在菜单栏点击WorkPlane>Offset WP by increments…..弹出Offset WP对话框,平

ansys梁分析实例

习题二 题一: 已知:如下图1.1所示,梁一端固定,自由端受弯矩M=105,截面参数见图1.2,材料弹性模量E=3X107,泊松比μ=0.3。 求:截面上的最大应力和最小应力δmax,δmin? 解:ansys分析得: 图1.1 图1.2

ELEM STREST2 STREST5 STRESB3 STRESB6 1 -700.00 -700.00 300.00 300.00 MINIMUM VALUES ELEM 1 1 1 1 VALUE -700.00 -700.00 300.00 300.00 MAXIMUM VALUES ELEM 1 1 1 1 VALUE -700.00 -700.00 300.00 300.00 由ansys的分析可得,应力最值分别发生在梁截面的上下部分,且各截面的同一水平高度应力相等。Δmax300,即为拉应力,发生于梁下表面;δmin=-700,为压应力,发生于梁上表面。

题二: 已知:如图2.1所示,梁两端受均布力q=104/12作用,梁的长度及截面尺寸见图2.1和图2.2,截面Iz=7892,A=50.65,材料弹性模量E=3X107,泊松比μ=0.3。 求:(1)梁中点的挠度 (2)截面上的最大应力 图2.1 图2.2 解:ansys分析

(1)NODE UY 1 -0.45616 2 -0.45616 3 0.0000 4 0.18246 5 0.0000 中点即第四节点,故中点的挠度为0.18246(2)梁的弯矩图如下,

可知最大应力发生在梁的中间段。 下面数据为各节点的应力大小, ELEM STRTOP2 STRTOP5 STRBOT3 STRBOT6 1 -0.68592E-11 11404. 0.68592E-11 -11404. 2 11404. 11404. -11404. -11404. 3 11404. 11404. -11404. -11404. 4 11404. -0.68592E-11 -11404. 0.68592E-11 由上面数据可得,最大应力为11404,发生于梁中间段的上表面。如有侵权请联系告知删除,感谢你们的配合!

ansys各种结构单元介绍

一、单元分类 MP - ANSYS/Multiphysics DY - ANSYS/LS-Dyna3D FL - ANSYS/Flotran ME - ANSYS/Mechanical PR - ANSYS/Professional PP - ANSYS/PrepPost ST - ANSYS/Structural EM - ANSYS/Emag 3D ED - ANSYS/ED

LINK1 —二维杆单元 单元描述: LINK1单元有着广泛的工程应用,比如:桁架、连杆、弹簧等等。这种二维杆单元是杆轴方向的拉压单元,每个节点有2个自由度:沿节点坐标系x、y方向的平动。就象在铰接结构中的表现一样,本单元不承受弯矩。单元的详细特性请参考理论手册。三维杆单元的描述参见LINK8。 下图是本单元的示意图。 PLANE2 —二维6节点三角形结构实体单元 单元描述: PLANE2是与8节点PLANE82单元对应的6节点三角形单元。单元的位移特性是二次曲线,适合于模拟不规则的网格(比如由不同的CAD/CAM系统得到的网格)。 本单元由六个节点定义,每个节点有2个自由度:沿节点坐标系x、y 方向的平动。本单元可作为平面单元(平面应力或平面应变)或者作为轴对称单元使用。本单元还具有塑性、蠕变、膨胀、应力刚化、大变形、大应变等功能。详细特性请参考理论手册。 下图是本单元的示意图。

BEAM3二维弹性梁单元 BEAM3是一个轴向拉压和弯曲单元,每个节点有3个自由度:沿节点坐标系x、y方向的平动和绕z轴的转动。单元的详细特性请参考理论手册。其它的二维梁单元是塑性梁单元(BEAM23)和变截面非对称梁单元(BEAM54)。 下图是本单元的示意图。 BEAM4三维弹性梁单元 单元描述: BEAM4是一个轴向拉压、扭转和弯曲单元,每个节点有6个自由度:沿节点坐标系的x、y、z方向的平动和绕x、y、z轴的转动。本单元具有应力刚化和大变形功能。在大变形(有限转动)分析中允许使用一致切线刚度矩阵选项。本单元的详细特性请参考理论手册。变截面非对称弹性梁单元的描述参见BEAM44,三维塑性梁单元的描述参见BEAM24。

ansys实例分析

实验三:大件运输车 车轴结构有限元分析 一、实验内容:车轴的主要设计条件为两端轴承约束,内套承受45t 的载荷, 其它条件见设计图纸和技术资料。要求给出车轴第四强度当量应力计算结果。 二、实验步骤: 1、新建一个Static Structural项目,右击geometry导入模型 新建材料库进入EngineerData输入各个材料属性 在网上查找材料性能参数,并输入(未找到XL330的参数,下面的数值为估计值)

(Tensil Ulitimate Strength) 输入上表中的数据 7、双击Geometry进入DM,点击Generate生成几何体,8、点击新建平面命令,新建Plane 4,在Details窗口中Type下拉菜单中选择From Cicle/Ellipse 9、选择如图所示的边作为Base Edge,点击Generate,生成Plane 410、再点击新建平面命令,新建Plane 5,在Details窗口中Type下拉菜单中选择From Plane 11、以Plane4作为Base Plane,在Transform 1下拉菜单中选择Rotate about X,输入90°,点击Generate生成Plane 512、点击Slice命令,选择Base Plane 为Plane 5,选择Targets 为两个内环13、将两个内环分为四段 14、将下面的两个环合为一个Part,按住Ctrl键,选中下面的两个环,右击选择Form New Part

关闭DM,双击Model进入Mechanical为模型添加材料 根据要求,轴头为40Cr,内套为20钢,内环为XL330,箱体板为Q345

第七章 梁分析和横截面形状【ANSYS帮助中文版】

第七章梁分析和横截面形状 梁的概况 梁单元用于生成三维结构的一维理想化数学模型。与实体单元和壳单元相比,梁单元可以效率更高的求解。 两种新的有限元应变单元,BEAM188和BEAM189,提供了更强大的非线性分析能力,更出色的截面数据定义功能和可视化特性。参阅ANSYS Elements Reference中关于BEAM188和BEAM189的描述。 何为横截面? 横截面定义为垂直于梁的轴向的截面形状。ANSYS提供了有11种常用截面形状的梁横截面库,并支持用户自定义截面形状。当定义了一个横截面时,ANSYS 建立一个9结点的数值模型来确定梁的截面特性(lyy,lzz等),并求解泊松方程得到弯曲特征。 下图是一个标准的Z横截面,示出了截面的质心和剪切中心以及计算的横 截面特性: 1

图8-1 Z向横截面图 横截面和用户自定义截面网格划分将存储在横截面库文件中。可以用LATT 命令将梁横截面属性赋给线实体。这样,横截面的特性将在用BEAM188或BEAM189对该线划分网格时包含进去。 如何生成横截面 用下列步骤生成横截面: 1.定义截面并与代表相应截面形状的截面号关联。 2.定义截面的几何特性数值。 ANSYS中提供了下表列出的命令完成生成、查看、列表横截面和操作横截面库的功能:参阅ANSYS Commands Reference可以得到横截面命令的完整集合。 定义截面并与截面号关联 使用SECTYPE命令定义截面。下面的命令将截面号2与定义号的横截面形状(圆柱体)关联: 命令:SECTYPE,2,BEAM,CSOLID SECDATA,5,8 SECNUM,2 GUI: Main Menu>Preprocessor>Settings>-Beam-Common Sects Main Menu>Preprocessor>-Attributes-Define>Default Attribs 要定义自己的横截面,使用子形状(ANSYS提供的形状集合)MESH。要定义带特殊特性如lyy和lzz的横截面,使用子形状ASEC。 定义横截面的几何特性数值 使用SECDATA命令定义横截面的几何数值。下面的命令将用SECTYPE命令定义的尺寸赋值给横截面。CSOLID形状有两个尺寸:半径和周长上的格栅数目。 命令:SECDATA,4,6 2

梁板的配筋计算方法

梁板配筋的计算 以问答的形式来表达 问: 作用在板上的荷载总值为4.84KN/m平方 现浇板计算:内力弯矩=6.59KNM 板配钢筋:As=M*1000000/(210*80*0.9)=436mm平方,M=6.59KNM 括号里的数值代表什么我不明白。 选实配钢筋为:一级钢筋10@150,面积为523mm平方。这是怎么计算出来的?梁配筋计算: 板传来:16KN/m 梁自重:0.25*0.5*25*1.2=3.75KN/m 0.25、0.5、25、1.2各代表什么? 梁内力M=0.125*20*6的平方=90KNM 梁配钢筋:As=90000000/(310*0.9*460)=701mm平方,括号里的数值代表什么?实配钢筋为:4二级钢筋18,钢筋面积为1017mm平方。这是怎么计算出来的。 答: 这是使用89年版《混凝土结构设计规范》计算的一道实例题,计算方法是用该规范附录三中的“矩形截面受弯承载力计算系数表”进行计算的。该附录给出的计算公式是:As=M÷(γ×f1×h)。 式中:As—受拉钢筋面积;M—作用的弯矩;f1—钢筋的设计强度;h-构件截面的有效高度;γ—系数。系数γ是根据系数a从附录三中表格查得的。系数a= M÷(f2×b×h^2)。式中:f2—混凝土的设计强度;b—构件截面的宽度;h^2—构件截面的有效高度h的平方(原公式中符号有脚标,这里无法输入故省略)。现在逐条回答你的问题: 1.板配钢筋:As=M*1000000/(210*80*0.9)=436mm平方, 括号里的数值代表什么? 括号里的210—Ⅰ级钢筋的设计强度(即公式中的f1);80—构件截面的有效高度(即公式中的h)(这里是等于板厚减去保护层厚度);0.9—计算系数(即公式中的γ,可以作为经验系数)。 2. 选实配钢筋为:一级钢筋10@150,面积为523mm平方。这是怎么计算出来的? Φ10@150表示板内配筋为Φ10间距150mm,面积为523平方毫米是指一米宽的配筋总面积(计算时板宽度是按一米计算的),计算方法是:Φ10钢筋的单根截面积为78.5平方毫米,则总面积为1000÷150×78.5=523。(因未完全理解你问题的要点,这段也许是多余的。) 实配钢筋面积与计算所需钢筋面积的关系,一般相差在正负5%以内都是允许的,但要满足规范中最小配筋率的规定,如不满足则要加大实配钢筋的面积。(可能这个是你问题的要点。)

梁结构应力分布ANSYS分析

J I A N G S U U N I V E R S I T Y 先进制造及模具设计制造实验 梁结构应力分布ANSYS分析 学院名称:机械工程学院 专业班级:研1402 学生姓名:XX 学生学号:S1403062

2015年5 月

梁结构应力分布ANSYS分析 (XX,S1403062,江苏大学) 摘要:本文比较典型地介绍了如何用有限元分析工具分析梁结构受到静力时的应力的分布状态。我们遵循对梁结构进行有限元分析的方法,建立了一个完整的有限元分析过程。首先是建立梁结构模型,然后进行网格划分,接着进行约束和加载,最后计算得出结论,输出各种图像供设计时参考。通过本论文,我们对有限元法在现代工程结构设计中的作用、使用方法有个初步的认识。 关键词:梁结构;应力状态;有限元分析;梁结构模型。 Beam structure stress distribution of ANSYS analysis (Dingrui, S1403062, Jiangsu university) Abstract: This article is typically introduced how to use the finite element analysis tool to analyze the stress of beam structure under static state distribution. We follow the beam structure finite element analysis method, established the finite element analysis of a complete process. Is good beam structure model is established first, and then to carry on the grid, then for constraint and load, calculated the final conclusion, the output of images for design reference. In this article, we have the role of the finite element method in modern engineering structural design, use method has a preliminary understanding. Key words: beam structure; Stress state; The finite element analysis; Beam structure model. 1引言 在现代机械工程设计中,梁是运用得比较多的一种结构。梁结构简单,当是受到复杂外力、力矩作用时,可以手动计算应力情况。手动计算虽然方法简单,但计算量大,不容易保证准确性。相比而言,有限元分析方法借助计算机,计算精度高,且能保证准确性。另外,有限元法分析梁结构时,建模简单,施加应力和约束也相

格构梁的ANSYS有限元模拟分析实例运用

龙源期刊网 https://www.wendangku.net/doc/b517181457.html, 格构梁的ANSYS有限元模拟分析实例运用作者:张少剑刘真 来源:《城市建设理论研究》2013年第10期 摘要:本文通过一工程实例运用ansys模拟计算。针对格构梁的研究,合理地简化模型,取出1.5米宽的土体、梁和面层单元,两边加对称约束,从而达到模拟空间结构梁的目的。本文还模拟了基坑的开挖过程的时空效应,共分七步,土体在自重应力作用下的沉降为第一步,梁与面层的激活、力的施加和土层杀死共分六步。梁的最大受力状态并不发生在最后一步完成后,而是在第六工况。 关键词:格构梁有限元分析模拟分析 中图分类号:K826.16 文献标识码:A 文章编号: 1 土体、梁、锚索和混凝土面层共同作用 基坑支护的受力机理是土体的土压力作用在格构梁和混凝土面层上,混凝土面层的力传递到格构梁上,格构梁再把它受到的力传递到和它相连的锚索上,锚索则和被支护土体嵌固为一体,格构梁和混凝土面层除起到承受土压力外,格构梁还起到平均弯矩和变形的作用,喷射混凝土面层则有保护土体表面,防止土体表面非格构梁作用部位坍塌的作用。 2模型简化及技术处理 根据基坑开挖深度,根据实际的土体性质建立土体模型。格构梁的作用是承受弯矩的,可以选用Beam4梁单元,考虑到钢筋混凝土格构梁中有钢筋的作用,其弹性模量、泊松比等设置有所调整。在建模时,如果混凝土面层的长宽与厚度的比都大于5,所以在有限元分析中采用板壳单元可以全面地反映其变形特征和应力分布规律。混凝土面层用Shell63单元模拟,其参数的取值和梁单元相同。 由于格构梁的受力性状,锚索的模拟对格构梁的受力影响较小,本模型忽略考虑锚索的模拟。预应力锚索的作用简化为作用在纵横梁交点处的集中力。 对于格构梁和土体、混凝面层之间的接触,模型采用节点耦合,以实现共同变形和受力。 3.1ANSYS有限元模拟计算 3.1.1模型的参数 1.土体的参数见下表:

配筋的计算方法

配筋的计算原理 柱 基础层:筏板基础〈=2000mm时,基础插筋长度=基础层层高-保护层+基础弯折a+基础纵筋外露长度HN/3+与上层纵筋搭接长度LLE(如焊接时,搭接长度为0) 筏板基础〉2000mm时,基础插筋长度=基础层层高/2-保护层+基础弯折a+基础纵筋外露长度HN/3+与上层纵筋搭接的长度LLE(如焊接时,搭接长度为0) 地下室:柱纵筋长度=地下室层高-本层净高HN/3+首层楼层净高HN/3+与首层纵筋搭接LLE (如焊接时,搭接长度为0) 首层:柱纵筋长度=首层层高-首层净高HN/3+max(二层净高HN/6,500,柱截面边长尺寸(圆柱直径))+与二层纵筋搭接的长度LLE(如焊接时,搭接长度为0) 中间层:柱纵筋长度=二层层高-max(二层层高HN/6,500,柱截面尺寸(圆柱直径))+max (三层层高HN/6,500,柱截面尺寸(圆柱直径))+与三层搭接LLE(如焊接时,搭接长度为0) 顶层: 角柱:外侧钢筋长度=顶层层高-max(本层楼层净高HN/6,500,柱截面长边尺寸(圆柱直径))-梁高+1.5LAE 内侧钢筋长度=顶层层高-max(本层楼层净高HN/6,500,柱截面长边尺寸(圆柱直径))-梁高+LAE 其中锚固长度取值: 当柱纵筋伸入梁内的直径长〈LAE时,则使用弯锚,柱纵筋伸至柱顶后弯折12d,锚固长度=梁高-保护层+12d;当柱纵筋伸入梁内的直径长〉=LAE时,则使用直锚:柱纵筋伸至柱顶后截断,锚固长度=梁高-保护层, 当框架柱为矩形截面时,外侧钢筋根数为:3根角筋,b边钢筋总数的1/2,h边总数的1/2。内侧钢筋根数为:1根角筋,b边钢筋总数的1/2,h边总数的1/2。 边柱:外侧钢筋长度=顶层层高-max(本层楼层净高HN/6,500,柱截面长边尺寸(圆柱直径))-梁高+1.5LAE 内侧钢筋长度=顶层层高-max(本层楼层净高HN/6,500,柱截面长边尺寸(圆柱直径))-梁高+LAE 当框架柱为矩形截面时,外侧钢筋根数为:2根角筋,b边一侧钢筋总数 内侧钢筋根数为:2根角筋,b边一侧钢筋总数,h边两侧钢筋总数。 中柱:纵筋长度=顶层层高-max(本层楼层净高Hn/6,500,柱截面长边尺寸(圆柱直径))-梁高+锚固 其中锚固长度取值: 当柱纵筋伸入梁内的直径长〈LAE时,则使用弯锚,柱纵筋伸至柱顶后弯折12d,锚固长度=梁高-保护层+12d;当柱纵筋伸入梁内的直径长〉=LAE时,则使用直锚:柱纵筋伸至柱顶后截断,锚固长度=梁高-保护层, 梁 梁的平面表示方法: 集中标注- 1、梁编号

ANSYS分析实例

一、问题描述 简支外伸梁(图1),截面尺寸如图所示,E=210GPa , =0.33,求A 点位移。 1000N 63 0.3 0.4 A 图1 杆系结构图 二、分析与建模 1、定义单元类型 菜单路径 Main Menu>Preprocessor>Element Type>Add/Edit/Delete ,弹出图2 所示的“Element Types ”对话框。 图2 “Element Types ”对话框 单击【Add 】,在弹出的“ Library of Element Types ”对话框中选择,Beam 大类的3D 2 node 188类型的单元,即Beam188。 图3 “Library of Element Types ”对话框

2、定义实常数 菜单路径Main Menu>Preprocessor>Real Constants>Add/Edit/Delete,弹出图4所示的“Real Constants”对话框。单击【Add】按钮,在“Element Type for Real Constants”对话框中选择单元类型中的Beam188单元,单击【OK】。 说明Beam188为已经定义实常数的单元,这里不用设臵。 图4 “Real Constants”对话框图5 “Element Type for Real Constants”对话框3、定义材料属性 菜单路径Main Menu>Preprocessor>Material Props> Material Models,弹出图6所示的“Define Material Model Behavior”对话框。 按照Structural>Linear>Elastic>Isotropic的顺序在上述对话框的右侧进行选择,在弹出的“Linear Isotropic Properties for Material Number 1”对话框中设臵,令EX=210e9,PRXY=0.33。 图6 “Define Material Model Behavior”对话框

Ansys梁分析实例

工程介绍: 某露天大型玻璃平面舞台的钢结构如图1所示,每个分格(图2中每个最小的矩形即为一个分格)x方向尺寸为1m,y方向尺寸为1m;分格的列数(x向分格)=8,分格的行数(y向分格)=5。 钢结构的主梁(图1中黄色标记单元)为高140宽120厚14的方钢管,其空间摆放形式如图3所示;次梁(图1中紫色标记单元)为直径60厚10的圆钢管(单位为毫米),材料均为碳素结构钢Q235;该结构固定支撑点位于左右两端主梁和最中间(如不是正处于X方向正中间,偏X坐标小处布置)的次梁的两端,如图2中标记为 U R处。主梁和次梁之间是固接的。 xyz xyz 玻璃采用四点支撑与钢结构连接(采用四点支撑表明垂直作用于玻璃平面的面载荷将传递作用于玻璃所在钢结构分格四周的节点处,表现为点载荷;试对在垂直于玻璃平面方向的42 KN m的面载荷(包括玻璃自重、钢结构自重、活载 / 荷(人员与演出器械载荷)、风载荷等)作用下的舞台进行有限元分析。(每分格面载荷对于每一支撑点的载荷可等效于1KN的点载荷)。 作业提交的内容至少应包括下面几项: (1)屏幕截图显示该结构的平面布置结构,图形中应反映所使用软件的部分界面,如图2; (2)该结构每个支座的支座反力; (3)该结构节点的最大位移及其所在位置; (4)对该结构中最危险单元(杆件)进行强度校核。 图1

图2 图3 本操作中选用的单位为:(N,mm,MPa)。具体操作及分析求解: 1.更该工作文件和标题。如图1.1-1.5所示

图1.1 图1.2

图1.3 图1.4 图1.5

图1.6 2.选择单元类型。 根据题目要求,选择单元类型为beam-3D-2node-188单元。 执行Main Menu→Preprocessor →Element Type→Add/Edit/Delete →Add ,选择beam-3D-2node-188。如图2.1所示。 图2.1 3.定义材料属性 该钢结构材料为碳素结构钢Q235,则将弹性模量设置为200GPa,泊松比设置为0.3。执行Main Menu→Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic,在EX框中输入2.05e,在PRXY框中输入0.3。操作步骤为如图3.1;3.2所示。

钢筋混凝土第十章梁板结构试题

第十章梁板结构(408) 一、填空题(每空1分,共40分) 1.《混凝土结构设计规范》规定:按弹性理论,板的长边与短边之比时,称为单向板。 2.按弹性理论的计算是指在进行梁(板)结构的内力分析时,假定梁(板)为,可按方法进行计算。 3.单向板肋梁楼盖的板、次梁、主梁均分别为支承在、、柱和墙上的构件。计算时对于板和次梁不论其支座是墙还是梁,均看成支座。由此假定带的误差将通过的方式来调整。 4.塑性铰的转动能力,主要取决于、、。 5.在现浇单向板肋梁楼盖中,单向板的长跨方向应放置分布钢筋,分布钢筋的主要作用是、、 、。 6.钢筋混凝土塑性较与一般铰相比,其主要的不同点是、 、。 7.现浇肋梁楼盖的主次梁抗弯计算时,支座按截面、跨中按截面计算。抗剪计算时均按截面计算。 8.楼盖的内力分析中,如果按弹性理论,计算跨度取之间的距离,如果按塑性理论,则取之间的距离。 9.楼盖设计中,恒荷载的分项系数取为:当其效应对结构不利时,对有活荷载控制的组合,取,当其效应对结构有利时,对结构计算,取,对倾覆和滑移验算取;活荷载的分项系数一般情况下取,对楼面活荷载标准值大于4kN/m2的工业厂房楼面结构的活荷载,取。 10.连续梁、板按调幅法的内力计算中,截面的相对压区高度应满足,调幅系数 一般不宜超过,调幅后,支座和跨中截面的弯矩值均应不小于 M的,其中 M为按简支梁计算的跨中弯矩设计值。 11.现浇板在砌体墙上的支承长度不宜小于。 12.无梁楼盖内力分析常用的方法有、。 13.雨蓬除应对雨蓬梁、板的承载力进行计算外,还必须进行的验算。

14. 现浇肋梁楼盖的板按连续梁计算,将_ _作为板的不动铰支座, 对板的转动 约束用__荷载加以考虑。楼面荷载的传递路线为__—→ _→ —→柱。 二、选择题(每题2分,共72分) 1. 现浇单向板肋梁楼盖中, 次梁按连续梁计算,不按交叉梁计算,仅在下列情况下才成立 (A)主梁线刚度比次梁大得多 (B)主梁线刚度比次梁小得多 (C)两者的线刚度大致接近 (D)与主梁的刚度无关 2. 计算现浇单向板肋梁楼盖时, 对板和次梁可采用折算荷载来计算, 这是考虑到 (A)在板的长跨方向也能传递一部分荷载 (B)塑性内力重分布的有利影响 (C)支座的弹性约束 (D)出现活载最不利布置的可能性较小 3. 整浇楼盖的次梁搁于钢梁上时 (A)板和次梁均可用折算荷载 (B)仅板可用折算荷载 (C)板和次梁均不可用折算荷载 (D)仅次梁可用折算荷载 4. 整浇肋梁楼盖中的单向板, 中间区格内的弯矩可折减20%, 主要是因考虑 (A)板的拱作用 (B)板上荷载实际上也向长跨方向传递一部分 (C)板上活载满布的可能性较小 (D)板的安全度较高可进行挖潜 5. 五等跨连续梁第三跨跨中出现最大弯矩的活载布置为 (A)1, 2, 5 (B)1, 2, 4 (C)1,3, 5 (D)2, 4 6. 五等跨连续梁边支座出现最大剪力时的活载布置为 (A)1, 3, 5 (B)1, 3, 4 (C)2, 3, 5 (D)1, 2, 4 7. RC超静定结构中存在内力重分布是因为 (A)混凝土的拉压性能不同 (B)结构由钢筋、混凝土两种材料组成 (C)各截面刚度不断变化, 塑性铰的形成 (D)受拉混凝土不断退出工作 8. 下列情况将出现不完全的塑性内力重分布 (A)出现较多的铰, 形成机构 (B)截面ξ=0.35 (C)截面b ξξ= (D)斜截面有足够的受剪承载力 9. 弯矩调幅值必须加以限制, 主要是考虑到 (A)力的平衡 (B)施工方便 (C)使用要求 (D)经济 10. 连续梁采用弯矩调幅法时, 要求ξ≤0.35, 以保证

ANSYS_Beam188单元应用

Beam188/189单元基于Timoshenko梁理论(一阶剪切变形理论:横向剪切应变在横截面上是常数,也就是说,变形后的横截面保持平面不发生扭曲)而开发的,并考虑了剪切变形的影响,适合于分析从细长到中等粗细的梁结构。该单元提供了无约束和有约束的横截面的翘曲选项。 Beam188是一种3D线性、二次或三次的2节点梁单元。Beam189是一种3D二次3节点梁单元。每个节点有六个或者七个自由度,包括x、y、z 方向的平动自由度和绕x、y、z 轴的转动自由度,还有一个可选择的翘曲自由度。该单元非常适合线性、大角度转动或大应变非线性问题。 beam188的应力刚化选项在任何大挠度分析中都是缺省打开的,从而可以分析弯曲、横向及扭转稳定问题(进行特征值屈曲分析或(采用弧长法或非线性稳定法)破坏研究)。 Beam188/beam189单元支持弹性、塑性,蠕变及其他非线性材料模型。这种单元还可以采用多种材料组成的截面。该单元还支持横向剪力和横向剪应变的弹性关系,但不能使用高阶理论证明剪应力的分布变化。下图是单元几何示意图:该单元的几何形状、节点位置、坐标体系和压力方向如图所示,beam188 由整体坐标系的节点i 和j 定义。 对于Beam188梁单元,当采用默认的KEYOPT(3)=0,则采用线性的形函数,沿着长度用了一个积分点,因此,单元求解量沿长度保持不变;当KEYOPT(3)=2,该单元就生成一个内插节点,并采用二次形函数,沿长度用了两个积分点,单元求解量沿长度线性变化;当KEYOPT(3)=3,该单元就生成两个内节点,并采用三次形函数,沿长度用了三个积分点,单元求解量沿长度二次变化; 当在下面情况下需要考虑高阶单元内插时,推荐二次和三次选项: 1)变截面的单元; 2)单元内存在非均布荷载(包含梯形荷载)时,三次形函数选项比二次选项提供更好的结果。(对于局部的分布荷载和非节点集中荷载情况,只有三次选项有效); 3)单元可能承受高度不均匀变形时。(比如土木工程结构中的个别框架构件用单个单元模拟时) Beam188单元的二次和三次选项有两个限制: 1)虽然单元采用高阶内插,但是beam188的初始几何按直线处理; 2)因为内节点是不可影响的,所以在这些节点上不允许有边界(或荷载或初始)条件。

ANSYS瞬态分析实例

例题:一根钢梁支撑着集中质量并承受一个动态载荷(如图1所示)。钢梁长为L,支撑着一个集中质量M。这根梁承受着一个上升时间为t1的值为F1 的动态载荷F(t)。梁的质量可以忽略,确定产生最大位移响应时的时间t max 和响应y max。 图1 钢梁支撑集中质量的几何模型 材料特性:弹性模量为2e5MPa,质量为M=0.0215t,质量阻尼为8; 几何尺寸为:L=450mm,I=800.6mm4,h=18mm; 载荷为:F1=20N,t1=0.075s GUI操作方式: 1.定义单元类型:Main Menu>Preprocessor>Element Type>Add/Edit/Delete,出现一个对话框,单击“Add”,又出现一个对话框,在对话框左面的列表栏中选择“Structural Beam”,在右面的列表栏中选择“2D elastic 3”,单击“Apply”,在对话框左面的列表栏中选择“Structural Mass”,在右边选择“3D mass 21”,单击“OK”,在单击“Options”,弹出对话框,设置K3为“2-D W/O rot iner”,单击“OK”,再单击“Close”。 2.设置实常数:Main Menu>Preprocessor>Real Constants> Add/Edit/Delete,出现对话框,单击“Add”,又弹出对话框,选择“Type1 BEAM3”,单击“OK”,

又弹出对话框,输入AREA为1,IZZ=800.6,HEIGHT=18,单击“OK”,在单击“Add”,选择Type 2 MASS21,单击“OK”,设置MASS为0.0215,单击“OK”,再单击“Close”。 3.定义材料属性:Main Menu>Preprocessor>Material Props>Material Modls,出现对话框,在“Material Models Available”下面的对话框中,双击打开“Structural>Linear>Elastic>Isotropic”,又出现一个对话框,输入弹性模量EX=2e5,泊松比PRXY=0,单击“OK”,单击“Materal>Exit”。 4.建立模型: 1)创建节点:依次单击Main Menu>Preprocessor>Modeling>Create>Nodes>In Active CS,在弹出对话框中,依次输入节点的编号1,节点坐标x=0,y =0,然后单击“Apply”,输入节点编号2,节点坐标x=450/2,y=0,然后单击“Apply”,输入节点编号3,节点坐标x=450,y=0。单击“OK”。2)创建单元:依次单击Main Menu>Preprocessor>Modeling>Create>Elements >Auto Numbered>Thru Nodes,弹出拾取框,拾取节点1和2,2和3,单击“OK”。 3)指定单元实常数:Main Menu>Preprocessor>Modeling>Create>Elements> Elem Attributes,弹出对话框,设置TYPE为2,REAL为2,单击“OK”。4)创建单元:依次单击Main Menu>Preprocessor>Modeling>Create>Elements >Auto Numbered>Thru Nodes,弹出拾取框,拾取节点2,单击“OK”。5.定义分析类型:Main Menu>Solution>Analysis Type>New Analysis,弹出对话框,选择Trasiernt,单击“OK”,又弹出对话框,选择Reduced,单击“OK”。6.设置分析选项:Main Menu>Solution>Analysis Type>Analysis Options,弹出对话框,单击“OK”。

梁板柱钢筋计算公式

钢筋计算原理及计算方法 钢筋重量=钢筋长度*根数*理论重量 钢筋长度=净长+节点锚固+搭接+弯钩(一级抗震) 柱 基础层:筏板基础〈=2000mm时,基础插筋长度=基础层层高-保护层+基础弯折a+基础纵筋外露长度HN/3+与上层纵筋搭接长度LLE (如焊接时,搭接长度为0) 筏板基础〉2000mm时,基础插筋长度=基础层层高/2-保护层+基础弯折a+基础纵筋外露长度HN/3+与上层纵筋搭接的长度LLE(如焊接时,搭接长度为0) 地下室:柱纵筋长度=地下室层高-本层净高HN/3+首层楼层净高HN/3+与首层纵筋搭接LLE(如焊接时,搭接长度为0) 首层:柱纵筋长度=首层层高-首层净高HN/3+max(二层净高HN/6,500,柱截面边长尺寸(圆柱直径))+与二层纵筋搭接的长度LLE(如焊接时,搭接长度为0) 中间层:柱纵筋长度=二层层高-max(二层层高HN/6,500,柱截面尺寸(圆柱直径))+max(三层层高HN/6,500,柱截面尺寸(圆柱直径))+与三层搭接LLE(如焊接时,搭接长度为0) 顶层: 角柱:外侧钢筋长度=顶层层高-max(本层楼层净高HN/6,500,柱截面长边尺寸(圆柱直径))-梁高+1.5LAE 内侧钢筋长度=顶层层高-max(本层楼层净高HN/6,500,柱截面长边尺寸(圆柱直径))-梁高+LAE 其中锚固长度取值: 当柱纵筋伸入梁内的直径长〈LAE时,则使用弯锚,柱纵筋伸至柱顶后弯折12d,锚固长度=梁高-保护层+12d;当柱纵筋伸入梁内的直径长〉=LAE时,则使用直锚:柱纵筋伸至柱顶后截断,锚固长度=梁高-保护层, 当框架柱为矩形截面时,外侧钢筋根数为:3根角筋,b边钢筋总数的1/2,h边总数的1/2。 内侧钢筋根数为:1根角筋,b边钢筋总数的1/2,h边总数的1/2。 边柱:外侧钢筋长度=顶层层高-max(本层楼层净高HN/6,500,柱截面长边尺寸(圆柱直径))-梁高+1.5LAE 内侧钢筋长度=顶层层高-max(本层楼层净高HN/6,500,柱截面长边尺寸(圆柱直径))-梁高+LAE 当框架柱为矩形截面时,外侧钢筋根数为:2根角筋,b边一侧钢筋总数 内侧钢筋根数为:2根角筋,b边一侧钢筋总数,h边两侧钢筋总数。 中柱:纵筋长度=顶层层高-max(本层楼层净高Hn/6,500,柱截面长边尺寸(圆柱直径))-梁高+锚固 其中锚固长度取值: 当柱纵筋伸入梁内的直径长〈LAE时,则使用弯锚,柱纵筋伸至柱顶后弯折12d,锚固长度=梁高-保护层+12d;当柱纵筋伸入梁内的直径长〉=LAE时,则使用直锚:柱纵筋伸至柱顶后截断,锚固长度=梁高-保护层, 梁 梁的平面表示方法: 集中标注- 1、梁编号 2、截面尺寸 3、箍筋 4、上部贯通筋或架立钢筋 5、侧面纵向构造钢筋或受扭钢筋 6、梁顶面标高高差 原位标注 7、梁支座上部筋 8、梁下部钢筋

相关文档
相关文档 最新文档