文档库 最新最全的文档下载
当前位置:文档库 › L6562的应用与电感计算

L6562的应用与电感计算

L6562的应用与电感计算
L6562的应用与电感计算

L6561的计算

式中的Virms可以为Virms(min)或Virms(max),不论何者都给电感较小的值。最小的切换频率建议为15KHz,以不干扰内部启动器。电感值已定义完成,则实际的设计可以开始:

铁心尺寸的大小,采用以下的经验公式:

其中体积单位为;电感单位为mH。线圈数与绕线面积须被量化;储存于电感的最大实时能量为可储存于磁场内(可由最大能量密度与铁心有效体积【Ve】的乘积表示之),即

Ae为铁心有效截面积,Ie为有效磁通路径的长度(两者皆可由铁心的数据中找到),ΔH为磁场强度的变化量,ΔB 为磁通密度的变化量。假定所有的磁场皆集中于气隙是可能的,且有良好的近似值();例如1﹪的Igap/Ie

(为最小的建议值)约与假设值有4﹪的误差;假若Igap/Ie值越大,则误差将会减少,忽略气隙区域边缘的漏磁,能量平衡重新写成

通过铁心及气隙的ΔB为磁通密度是一样的,且与气隙中的磁场强度

有以下的关系:于气隙区域使用安培定律,可得

从能量平衡关系式可以得出

气隙长度Igap,

式中的N是绕组的圈数。N若决定了,建议确认铁心是否饱和;若是结果太接近临界值,则需增加气隙的距离,并从新计算一遍。绕线之选择则需考虑铜损大小能在可接受的范围:

Po=80Pi=84.21

η=0.95Ip= 1.32

fsw=(KHZ)40L= 1.75

F>15khz Lg=0.85

Vo=400Np=102.38

Virms180N实际=87.15

Po=40数比m278.80

Bmax(T)0.2I=0.47

J=4S=0.12

选PQ2625 Ae= 1.13需要导线0.93

D=(cm) 1.2Ae= 1.13

导线D=0.4导线S=0.13

;;========================================================

电感 1.75mh

N1匝数87.15

线径0.4mm

气隙0.85mm

电感 1.75 mh

N1匝数87.15

线径0.4 mm

气隙0.85 mm

Lg = (0.4 * 3.14 * Ip * Ip * Lp * 10) / (Ae * Bmax * Bmax * 1000)

Lp; mH,磁芯截面cm2 磁芯留气隙"; Lg; "mm" 开关频率KHZ 磁芯Bmax,单位T Np1 = Lp * Ip * 10 / (Ae * Bmax)

Po=80 fsw=

Po=

40

电感计算方法

电感计算方法,磁场基本性质 默认分类2010-05-22 08:36:06 阅读442 评论0 字号:大中小订阅 电感 电感器(电感线圈)和变压器均是用绝缘导线(例如漆包线、纱包线等)绕制而成的电磁感应元件,也是电子电路中常用的元器件之一。 一、自感与互感 (一)自感 当线圈中有电流通过时,线圈的周围就会产生磁场。当线圈中电流发生变化时,其周围的磁场也产生相应的变化,此变化的磁场可使线圈自身产生感应电动势(电动势用以表示有源元件理想电源的端电压),这就是自感。 (二)互感 两个电感线圈相互靠近时,一个电感线圈的磁场变化将影响另一个电感线圈,这种影响就是互感。互感的大小取决于电感线圈的自感与两个电感线圈耦合 的程度。 电感的计算公式: 加载其电感量按下式计算:线圈公式 阻抗(ohm) = 2 * 3.14159 * F(工作频率) * 电感量(mH),设定需用360ohm 阻抗,因此: 电感量(mH) = 阻抗(ohm) ÷ (2*3.14159) ÷ F (工作频率) = 360 ÷ (2*3.14159) ÷ 7.06 = 8.116mH 据此可以算出绕线圈数: 圈数= [电感量* { ( 18*圈直径(吋)) + ( 40 * 圈长(吋))}] ÷圈直径(吋) 圈数= [8.116 * {(18*2.047) + (40*3.74)}] ÷ 2.047 = 19 圈 空心电感计算公式 空心电感计算公式:L(mH)=(0.08D.D.N.N)/(3D+9W+10H) D------线圈直径 N------线圈匝数 d-----线径 H----线圈高度 W----线圈宽度 单位分别为毫米和mH。。 空心线圈电感量计算公式:

电阻、电容、电感规格、封装、尺寸、功率识别

公制长(L) 宽(W) 高(t) a

0402 1/16W 0603 1/10W 0805 1/8W 1206 1/4W 电容电阻外形尺寸与封装的对应关系是: 0402=1.0x0.5 0603=1.6x0.8 0805=2.0x1.2 1206=3.2x1.6 1210=3.2x2.5 1812=4.5x3.2 2225=5.6x6.5 常规贴片电阻(部分) 常规的贴片电阻的标准封装及额定功率如下表:英制(mil) 公制(mm) 额定功率(W)@ 70°C 0201 0603 1/20 0402 1005 1/16 0603 1608 1/10 0805 2012 1/8 1206 3216 1/4 1210 3225 1/3 1812 4832 1/2 2010 5025 3/4 2512 6432 1 国内贴片电阻的命名方法:

2、1%精度的命名:RS-05K1002FT R -表示电阻 S -表示功率0402是1/16W、0603是1/10W、0805是1/8W、1206是1/4W、1210是1/3W、1812是1/2W、2010是3/4W、2512是1W。 05 -表示尺寸(英寸):02表示0402、03表示0603、05表示0805、06表示1206、1210表示1210、1812表示1812、10表示1210、12表示2512。 K -表示温度系数为100PPM, 102-5%精度阻值表示法:前两位表示有效数字,第三位表示有多少个零,基本单位是Ω,102=10000Ω=1KΩ。1002是1%阻值表示法:前三位表示有效数字,第四位表示有多少个零,基本单位是Ω,1002=100000Ω=10KΩ。 J -表示精度为5%、F-表示精度为1%。 T -表示编带包装 1:0402(1/16W) 2:0603(1/10W) 3:0805(1/8W) 4:1206(1/4W) 5:1210(1/3W) 6:2010(1/2W) 7:2512(1W) 1206 20欧1/4 *4 5欧1w 120 贴片电阻各参数说明 国内贴片电阻的命名方法: 1、5%精度的命名:RS-05K102JT

电感器的基本定义

电感器的基本定义 电感是导线内通过交流电流时,在导线的内部及其周围产生交变磁通,导线的磁通量与生产此磁通的电流之比。 当电感中通过直流电流时,其周围只呈现固定的磁力线,不随时间而变化;可是当在线圈中通过交流电流时,其周围将呈现出随时间而变化的磁力线。根据法拉弟电磁感应定律---磁生电来分析,变化的磁力线在线圈两端会产生感应电势,此感应电势相当于一个“新电源”。当形成闭合回路时,此感应电势就要产生感应电流。由楞次定律知道感应电流所产生的磁力线总量要力图阻止原来磁力线的变化的。由于原来磁力线变化来源于外加交变电源的变化,故从客观效果看,电感线圈有阻止交流电路中电流变化的特性。电感线圈有与力学中的惯性相类似的特性,在电学上取名为“自感应”,通常在拉开闸刀开关或接通闸刀开关的瞬间,会发生火花,这就是自感现象产生很高的感应电势所造成的。 总之,当电感线圈接到交流电源上时,线圈内部的磁力线将随电流的交变而时刻在变化着,致使线圈不断产生电磁感应。这种因线圈本身电流的变化而产生的电动势,称为“自感电动势”。 由此可见,电感量只是一个与线圈的圈数、大小形状和介质有关的一个参量,它是电感线圈惯性的量度而与外加电流无关。 1.2 电感线圈与变压器 电感线圈:导线中有电流时,其周围即建立磁场。通常我们把导线绕成线圈,以增强线圈内部的磁场。电感线圈就是据此把导线(漆包线、纱包或裸导线)一圈靠一圈(导线间彼此互相绝缘)地绕在绝缘管(绝缘体、铁芯或磁芯)上制成的。一般情况,电感线圈只有一个绕组。 变压器:电感线圈中流过变化的电流时,不但在自身两端产生感应电压,而且能使附近的线圈中产生感应电压,这一现象叫互感。两个彼此不连接但又靠近,相互间存在电磁感应的线圈一般叫变压器。 1.3 电感的符号与单位 电感符号:L 电感单位:亨 (H)、毫亨(mH)、微亨 (uH),1H=10*10*10mH=10*10*10*10*10*10uH。 1.4 电感的分类: 按电感形式分类:固定电感、可变电感。 按导磁体性质分类:空芯线圈、铁氧体线圈、铁芯线圈、铜芯线圈。

线圈电感量的计算详解

线圈电感量的计算详解 在开关电源电路设计或电路试验过程中,经常要对线圈或导线的电感以及线圈的匝数进行计算,以便对电路参数进行调整和改进。下面仅列出多种线圈电感量的计算方法以供参考,其推导过程这里不准备详细介绍。 在进行电路计算的时候,一般都采用SI国际单位制,即导磁率采用相对导磁率与真空导磁率的乘积,即:μ=μrμ0 ,其中相对导磁率μr是一个没有单位的系数,μ0真空导磁率的单位为H/m。 几种典型电感 1、圆截面直导线的电感 其中: L:圆截面直导线的电感 [H] l:导线长度 [m] r:导线半径 [m] μ0 :真空导磁率,μ0=4π10-7 [H/m] 【说明】这是在 l>> r的条件下的计算公式。当圆截面直导线的外部有磁珠时,简称磁珠,磁珠的电感是圆截面直导线的电感的μr倍,μr是磁芯的相对导磁率,μr=μ/μ0 ,μ为磁芯的导磁率,也称绝对导磁率,μr是一个无单位的常数,它很容易通过实际测量来求得。 2、同轴电缆线的电感 同轴电缆线如图2-33所示,其电感为:

其中: L:同轴电缆的电感 [H] l:同轴电缆线的长度 [m] r1 :同轴电缆内导体外径 [m] r2:同轴电缆外导体内径 [m] μ0:真空导磁率,μ0=4π10-7 [H/m] 【说明】该公式忽略同轴电缆外导体的厚度。 3、双线制传输线的电感 其中: L:输电线的电感 [H]

l:输电线的长度 [m] D:输电线间的距离 [m] r:输电线的半径 [m] μ0:真空导磁率,μ0=4π10-7 [H/m] 【说明】该公式的应用条件是: l>> D ,D >> r 。 4、两平行直导线之间的互感 两平行直导线如图2-34所示,其互感为: 其中: M:输电线的互感 [H] l :输电线的长度 [m] D:输电线间的距离 [m] r:输电线的半径 [m] μ0:真空导磁率,μ0=4π10-7 [H/m] 【说明】该公式的应用条件是: >> D ,D >> r 。 5、圆环的电感 其中: L:圆环的电感 [H] R:圆环的半径 [m] r:圆环截面的半径 [m]

专家教你如何透彻理解电感

一、电感器的定义。 1.1 电感的定义: 电感是导线内通过交流电流时,在导线的内部及其周围产生交变磁通,导线的磁通量与生产此磁通的电流之比。当电感中通过直流电流时,其周围只呈现固定的磁力线,不随时间而变化;可是当在线圈中通过交流电流时,其周围将呈现出随时间而变化的磁力线。根据法拉弟电磁感应定律-磁生电来分析,变化的磁力线在线圈两端会产生感应电势,此感应电势相当于一个“新电源”。 当形成闭合回路时,此感应电势就要产生感应电流。由楞次定律知道感应电流所产生的磁力线总量要力图阻止原来磁力线的变化的。由于原来磁力线变化来源于外加交变电源的变化,故从客观效果看,电感线圈有阻止交流电路中电流变化的特性。电感线圈有与力学中的惯性相类似的特性,在电学上取名为“自感应”,通常在拉开闸刀开关或接通闸刀开关的瞬间,会发生火花,这就是自感现象产生很高的感应电势所造成的。总之,当电感线圈接到交流电源上时,线圈内部的磁力线将随电流的交变而时刻在变化着,致使线圈不断产生电磁感应。这种因线圈本身电流的变化而产生的电动势,称为“自感电动势”。由此可见,电感量只是一个与线圈的圈数、大小形状和介质有关的一个参量,它是电感线圈惯性的量度而与外加电流无关。 1.2 电感线圈与变压器 电感线圈:导线中有电流时,其周围即建立磁场。通常我们把导线绕成线圈,以增强线圈内部的磁场。电感线圈就是据此把导线(漆包线、纱包或裸导线)一圈靠一圈(导线间彼此互相绝缘)地绕在绝缘管(绝缘体、铁芯或磁芯)上制成的。一般情况,电感线圈只有一个绕组。变压器:电感线圈中流过变化的电流时,不但在自身两端产生感应电压,而且能使附近的线圈中产生感应电压,这一现象叫互感。两个彼此不连接但又靠近,相互间存在电磁感应的线圈一般叫变压器。 1.3电感的符号与单位

环型变压器的计算公式

这个是我在其他坛子上和一些发烧友们探讨的帖子,很多评论直接合并一起了. 下面是我看到的一篇关于环型变压器比较权威的计算方法和公式,看完以后有些糊涂,按照 下面的计算方法,铁心截面积20平方CM的牛20/0.75=26.6 26.6X26.6=707.56VA, 按照磁通密度1.4T来计算,220VA,初级绕组V每匝= B——磁通密度(T),B=1.4T。代入得N10==2.9匝/V,取N10=3匝/V,则 N1=N10U1=3×220=660匝 我的计算方法,50/11平方厘米=4.54匝/V 4.54X220=998.8匝!相差340匝! 难道我的计算方法太保守? RE:他里面有个0.6-0.8的系数,好象是说EI牛的效率=环牛的0.6-0.8,所以,计算环牛功率按照E牛的公式要除以这个系数,下来正好202W,我也做过一些实验,我自己饶的铁心截面积18平方MM的环牛,接在专用仪器上,负载达到600W牛也不叫,不振动,不发热,2小时以后才微微有一些温度,这个文章的观点好象牛的功率和多少高斯铁心还有是否整带的关系很大. 我从声达弄回来的样品700W牛,要是按照我自己的计算方法,最多也就是300-400W的样子,但是负载600多W好象也没有什么问题. 现在厂家的计算方法大约是:优质牛是0.7,每1MM 平方4A电流,理论是2.5A. 通过设计一台50Hz石英灯用的电源变压器,其初级电压U1=220V,次级电压U2=11.8V,次级电流I2=16.7A,电压调整率ΔU≤7%,来说明计算的方法和步骤。 1)计算变压器次级功率P2 P2=I2U2=16.7×11.8=197VA(5) 2)计算变压器输入功率P1(设变压器效率η=0.95)与输入电流 I1P1===207VA(6)I1===0.94A 3)计算铁心截面积SS=K(cm2)(7) 式中:K——系数与变压器功率有关,K=0.6~0.8,取K=0.75; PO——变压器平均功率,Po===202VA。则S=0.75=10.66cm2,取S=11cm2。 根据现有铁心规格选用铁芯尺寸为:高H=40mm,内径Dno=55mm,外径Dwo=110mm。核算所选用的铁心的截面积S=H=×40×10-2=11cm2 4)计算初级绕组每伏匝数N10与匝数N1N10=(匝/V)(8) 式中:f——电源频率(Hz),f=50Hz; B——磁通密度(T),B=1.4T。代入得N10==2.9匝/V,取N10=3匝/V,则 N1=N10U1=3×220=660匝。 5)计算次级绕组每伏匝数N20与匝数N2N20=(匝/V)(9)代入得N20==3.23匝/V,则N2=N20·U2=3.23×11.8=38.1匝,取N2=38匝。 6)选择导线线径 图7环形变压器截面图 绕组导线线径d按式(10)计算d=1.13(mm)(10) 式中:I——通过导线的电流(A); j——电流密度,j=2.5~3A/mm2。 当取j=2.5A/mm2时代入式(10)得d=0.72(mm)则初级绕组线径d1=0.72=0.69mm,选漆包线外径为0.72mm。次级绕组线线径d2=0.72=2.94mm,选用两条d=2.12mm(考虑绝缘漆

电感的定义

电感的定义 在电路中,当电流流过导体时,会产生电磁场,电磁场的大小除以电流的大小就是电感 电感的定义是L=phi/i, 单位是韦伯 电感是衡量线圈产生电磁感应能力的物理量。给一个线圈通入电流,线圈周围就会产生磁场,线圈就有磁通量通过。通入线圈的电源越大,磁场就越强,通过线圈的磁通量就越大。实验证明,通过线圈的磁通量和通入的电流是成正比的,它们的比值叫做自感系数,也叫做电感。如果通过线圈的磁通量用φ表示,电流用I表示,电感用L表示,那么 L=φ/I 电感的单位是亨(H),也常用毫亨(mH)或微亨(uH)做单位。1H=1000mH,1H=1000000uH 电感只能对非稳恒电流起作用,它的特点两端电压正比于通过他的电流的瞬时变化率(导数),比例系数就是它的“自感” 电感起作用的原因是它在通过非稳恒电流时产生变化的磁场,而这个磁场又会反过来影响电流,所以,这么说来,任何一个导体,只要它通过非稳恒电流,就会产生变化的磁场,就会反过来影响电流,所以任何导体都会有自感现象产生 在主板上可以看到很多铜线缠绕的线圈,这个线圈就叫电感,电感主要分为磁心电感和空心电感两种,磁心电感电感量大常用在滤波电路,空心电感电感量较小,常用于高频电路 电感的特性与电容的特性正好相反,它具有阻止交流电通过而让直流电顺利通过的特性。电感的特性是通直流、阻交流,频率越高,线圈阻抗越大。电感器在电路中经常和电容一起工作,构成LC滤波器、LC振荡器等。另外,人们还利用电感的特性,制造了阻流圈、变压器、继电器等。 【电感器的种类】 按照外形,电感器可分为空心电感器(空心线圈)与实心电感器(实心线圈)。按照工作性质,电感器可分为高频电感器(各种天线线圈、振荡线圈)和低频电感器(各种扼流圈、滤波线圈等)。按照封装形式,电感器可分为普通电感器、色环电感器、环氧树脂电感器、贴片电感器等。按照电感量,电感器可分为固定电感器和可调电感器 电感的作用:通直流,阻交流 通直流:所谓通直流就是指在直流电路中,电感的作用就相当于一根导线,不起任 何作用. 阻交流:在交流电路中,电感会有阻抗,即XL,整个电路的电流会变小,对交流有一 定的阻碍作用 电感的原理-电感的工作原理 电感是导线内通过交流电流时,在导线的内部周围产生交变磁通,导线的磁通量与生产此磁通的电流之比

各种电感计算公式

导线线径与电流规格表 绝缘导线(铝芯/铜芯)载流量的估算方法 以下是绝缘导 线(铝芯/铜芯)载流量的估算 方法,这是电工基础,今天把这些知识教给大家,以便计算车上的导线允许通过的电流.(偶原在省供电局从事电能计量工作) 铝芯绝缘导线载流量与截面的倍数关系 导线截面(平方毫米) 1 1.5 2.5 4 6 10 16 25 35 50 70 95 120 载流量(A 安培) 9 14 23 32 48 60 90 100 123 150 210 238 300 载流是截面倍数 9 8 7 6 5 4 3.5 3 2.5 估算口诀:二点五下乘以九,往上减一顺号走。三十五乘三点五,双双成组减点五。(看不懂没关系,多数情况只要查上表就行了)。条件有变加折算,高温九折铜升级。穿管根数二三四,八七六折满载流。 说明:(1)本节口诀对各种绝缘线(橡皮和塑料绝缘线)的载流量(安全电流)不是直接指出,而是“截面乘上一定的倍数”来表示,通过心算而得。由表5 3可以看出:倍数随截面的增大而减小。“二点五下乘以九,往上减一顺号走”说的是2.5mm’及以下的各种截面铝芯绝缘线,其载流量约为截面数的9倍。如2.5mm’导线,载流量为2.5×9=22.5(A)。从4mm’及以上导线的载流量和截面数的倍数关系是顺着线号往上排,倍数逐次减l ,即4×8、6×7、10×6、16×5、25×4。“三十五乘三点五,双双成组减点五”,说的是35mm”的导线载流量为截面数的3.5倍,即35×3.5=122.5(A)。从50mm’及以上的导线,其载流量与截面数之间的倍数关系变为两个两个线号成一组,倍数依次减0.5。 表格为导线在不同温度下的线径与电流规格表。 (请注意:线材规格请依下列表格,方能正常使用)

电感概念 试题

品管部人员培训试题 姓名:得分: 1:电感器的概念是什么,具体有什么作用?(8分) 答: 2:判断题,正确打√,错误打×(16分) 1)、相同圈数及磁芯:线径小的电感值要低一些() 2)、其他条件相同情况下:磁芯材质ui值较高的做出来的电感值要高一些,也就是说ui值跟电感值是成正比的() 3)、磁芯的外径、中柱、槽宽的大小:中柱大的电感值要高一些() 4)、相同圈数及中柱下:线径越小DCR越大() 5).如果要求双线并绕,作业时却绕单线,DCR会高出近一倍。绕线不平整时也会把线绕长,因此也会导致DCR变高() 6)、CP针(带磁性:钢针)要比TC针(不带磁性:铜针)的DCR小() 7)、相同的产品在相同的条件下测试,电感值低的耐电流会比较好一点。由于RI组装偏歪会导致电感值偏高,所以也可以解理为RI组装偏歪会导致耐电流变差() 8)、在产品上点磁胶也会导致耐电流变差,由于点磁胶会将电感值升高,但材料及产品结构并没有变化,仅仅是电感值升高了也同等于上述“第2点”的情况() 3.电感值,直流电阻值的单位换算是怎样换算的?(22分) 答:①1H= _________uH, ②1mH=_________ H, ③20uH=_________nH, ④1 uH= _________ H, 又= _________mH,又= _________ uH,又= _________nH ⑤1mΩ= _________mΩ, 又= _________Ω, 又=_________KΩ, 又= _________ MΩ 4.作为一款电感,它主要有哪些参数?(14分) 答: 6:通常电感值的数值是有三位數的代码来表示,代码前两位数也就是該感值的前两位数字,后一位则代表感值两位数后零的个数,请写出以下代码的实质感值。(20分) 0R6: 1R8: 101: 153: 100: 7:通常我们看到感值代码后面带着一个字母,象SMRH类的很多都是”M”,DR类的是”K”或”L”.其实这些字母代表的是该感值的公差范围,请对应写出以下字母的公差范围值?(20分) P= ±____%, N= ±____%, , K= ±____%, L= ±____%, M=±____%,

各种电抗器的计算公式

各种电抗器的计算公式 The manuscript was revised on the evening of 2021

各种电抗器的计算公式 加载其电感量按下式计算:线圈公式 阻抗(ohm) = 2 * * F(工作频率) * 电感量(mH),设定需用 360ohm 阻抗,因此:电感量(mH) = 阻抗 (ohm) ÷ (2* ÷ F (工作频率) = 360 ÷ (2* ÷ = 据此可以算出绕线圈数: 圈数 = [电感量* { ( 18*圈直径(寸)) + ( 40 * 圈长(寸))}] ÷圈直径 (寸) 圈数 = [ * {(18* + (40*}] ÷ = 19 圈 空心电感计算公式 作者:佚名转贴自:本站原创点击数:6684 文章录入: zhaizl 空心电感计算公式:L(mH)= D------线圈直径 N------线圈匝数 d-----线径 H----线圈高度 W----线圈宽度 单位分别为毫米和mH。。 空心线圈电感量计算公式: l=*D*N*N)/(L/D+ 线圈电感量 l单位: 微亨 线圈直径 D单位: cm 线圈匝数 N单位: 匝 线圈长度 L单位: cm 频率电感电容计算公式: l=[(f0*f0)*c] 工作频率: f0 单位:MHZ 本题f0=125KHZ= 谐振电容: c 单位 F 本题建义c=500...1000pf 可自行先决定,或由Q值决定 谐振电感: l 单位: 微亨 线圈电感的计算公式 1。针对环行CORE,有以下公式可利用: (IRON) L=N2.AL L= 电感值(H) H-DC=πNI / l N= 线圈匝数(圈) AL= 感应系数 H-DC=直流磁化力 I= 通过电流(A) l= 磁路长度(cm) l及AL值大小,可参照Micrometal对照表。例如: 以T50-52材,线圈5圈半,其L值为T50-52(表示OD为英寸),经查表其AL值约为33nH L=33.2=≒1μH 当流过10A电流时,其L值变化可由l=(查表) H-DC=πNI / l = ×××10 / = (查表后) 即可了解L值下降程度(μi%) 2。介绍一个经验公式 L=(k*μ0*μs*N2*S)/l 其中

详解PFC电感的计算

详解PFC电感的计算 时间:2011-10-11 来源:作者: 关键字:PFC详解电感计算 中心议题: Boost功率电路的PFC连续工作模式的基本关系 临界连续Boost电感设计 通常Boost功率电路的PFC有三种工作模式:连续、临界连续和断续模式。控制方式是输入电流跟踪输入电压。连续模式有峰值电流控制,平均电流控制和滞环控制等。本文介绍Boost功率电路的PFC连续工作模式的基本关系及临界连续Boost电感设计。 连续模式的基本关系 1. 确定输出电压Uo 输入电网电压一般都有一定的变化范围(Uin±Δ%),为了输入电流很好地跟踪输入电压,Boost级的输出电压应当高于输入最高电压的峰值,但因为功率耐压由输出电压决定,输出电压一般是输入最高峰值电压的1.05~1.1倍。例如,输入电压220V,50Hz交流电,变化范围是额定值的20%(Δ=20),最高峰值电压是220×1.2× 1.414=373.45V。输出电压可以选择390~410V。 2. 决定最大输入电流 电感应当在最大电流时避免饱和。最大交流输入电流发生在输入电压最低,同时输出功率最大时

其中:Uimin -最低输入电压;η-Boost级效率,通常在95%以上。 3. 决定工作频率 由功率器件,效率和功率等级等因素决定。例如输出功率1.5kW,功率管为MOSFET,开关频率70~100kHz。 4. 决定最低输入电压峰值时最大占空度 因为连续模式Boost变换器输出Uo与输入Uin关系为,所以 从上式可见,如果Uo选取较低,在最高输入电压峰值时对应的占空度非常小,由于功率开关的开关时间限制(否则降低开关频率),可能输入电流不能跟踪输入电压,造成输入电流的THD加大。 5. 求需要的电感量 为保证电流连续,Boost电感应当大于 其中:,k=0.15~0.2。 6. 利用AP法选择磁芯尺寸 根据电磁感应定律,磁芯有效截面积

Q值的定义(精)

Q值的定义: Q值;是衡量电感器件的主要参数.是指电感器在某一频率的交流电压下工作时,所呈现的感抗与其等效损耗电阻之比.电感器的Q值越高,其损耗越小,效率越高. 电感器品质因数的高低与线圈导线的直流电阻、线圈骨架的介质损耗及铁心、屏蔽罩等引起的损耗等有关. 也有人把电感的Q值特意降低的,目的是避免高频谐振/增益过大.降低Q值的办法可以是增加绕组的电阻或使用功耗比较大的磁芯. Q值过大,引起电感烧毁,电容击穿,电路振荡. Q很大时,将有VL=VC>>V的现象出现.这种现象在电力系统中,往往导致电感器的绝缘和电容器中的电介质被击穿,造成损失.所以在电力系统中应该避免出现谐振现象.而在一些无线电设备中,却常利用谐振的特性,提高微弱信号的幅值. 品质因数又可写成Q=2pi*电路中存储的能量/电路一个周期内消耗的能量 通频带BW与谐振频率w0和品质因数Q的关系为:BW=wo/Q,表明,Q大则通频带窄,Q小则通频带宽. Q=wL/R=1/wRC 其中: Q是品质因素 w是电路谐振时的角频率(2πf) L是电感 R是串的电阻 C是电容 结合自己的实践,对上面进行一下补充 由于在天线端都是采用的是RLC并联谐振电路,是在正弦电流激励下工作的 所以在计算电感的品质因数Q值时,R值为整个谐振电路的等效阻值,在计算时候要注意 下面的是一个案例,很有指导意义!!!! For optimum performance the antenna Q should not exceed 20 and to achieve reliable tuning at 125kHz the antenna inductance should be around 700uH. Higher Q and inductance values will still function but with a reduced range and performance. The formula for calculating Q = 2*pi*fL / Rant = 549 / Rant where f = Resonant frequency, 125 kHz, L = Antenna inductance, 700uH Rant = Overall antenna resistance = Rdriver + Ra + (Rcu + Rrf) pi = 3.14159 etc Rdriver = 3.5 R (from IC spec) and Ra = 22 R (series resistor in antenna loop) Rcu = Resistance of Copper (coil and cable) and Rrf = RF resistive component (eddy current losses etc) By measurement at 125kHz, (Rcu + Rrf) = approx 6R Therefore Rant = 3.5 + 22 + 6 = 31.5 Ohms, Q = 549 / 31.5 = 17 Max peak antenna current (with 22R series resistor), Iant max = 4Vdd / pi*Rant = 20 / pi*31.5 = 200ma Max peak antenna voltage, Uant max = Iant max . (2*pi*fL) = 110v

各种电感计算公式

导线线径与电流规格表 绝缘导线(铝芯/铜芯)载流量的估算方法 以下是绝缘导 线(铝芯/铜芯)载流量的估算 方法,这是电工基础,今天把这些知识教给大家,以便计算车上的导线允许通过的电流.(偶原在福建省南平供电局从事电能计量工作) 铝芯绝缘导线载流量与截面的倍数关系 导线截面(平方 毫米) 1 1.5 2.5 4 6 10 16 25 35 50 70 95 120 载流量(A 安培) 9 14 23 32 48 60 90 100 123 150 210 238 300 载流是截面倍数 9 8 7 6 5 4 3.5 3 2.5 表格为导线在不同温度下的线径与电流规格表。 (请注意:线材规格请依下列表格,方能正常使用)

估算口诀:二点五下乘以九,往上减一顺号走。三十五乘三点五,双双成组减点五。(看不懂没关系,多数情况只要查上表就行了)。条件有变加折算,高温九折铜升级。穿管根数二三四,八七六折满载流。说明:(1)本节口诀对各种绝缘线(橡皮和塑料绝缘线)的载流量(安全电流)不是直接指出,而是“截面乘上一定的倍数”来表示,通过心算而得。由表5 3可以看出:倍数随截面的增大而减小。“二点五下乘以九,往上减一顺号走”说的是2.5mm’及以下的各种截面铝芯绝缘线,其载流量约为截面数的9倍。如2.5mm’导线,载流量为2.5×9=22.5(A)。从4mm’及以上导线的载流量和截面数的倍数关系是顺着线号往上排,倍数逐次减l,即4×8、6×7、10×6、16×5、25×4。“三十五乘三点五,双双成组减点五”,说的是35mm”的导线载流量为截面数的3.5倍,即35×3.5=122.5(A)。从50mm’及以上的导线,其载流量与截面数之间的倍数关系变为两个两个线号成一组,倍数依次减0.5。即50、70mm’导线的载流量为截面数的3倍;95、120mm”导线载流量是其截面积数的2.5倍,依次类推。“条件有变加折算,高温九折铜升级”。上述口诀是铝芯绝缘线、明敷在环境温度25℃的条件下而定的。若铝芯绝缘线明敷在环境温度长期高于25℃的地区,导线载流量可按上述口诀计算方法算出,然后再打九折即可; 铜芯绝缘线,它的载流量要比同规格铝线略大一些,可按上述口诀方法算出比铝线加大一个线号的载流量。如16mm’铜线的载流量,可按25mm2铝线计算。

15uH贴片电感规格_风华高科CMI100505J150M

L(长)尺寸 1.0±0.125mm W(宽)尺寸0.5±0.125mm D(高)尺寸0.3±0.125mm 公制封装代号100505 英制封装代号0402 声明: 1、本规格书是由风华高科授权代理商-南京南山半导体有限公司自风华高科官方网站下载整理,若有变更,恕不另行通知; 2、本规格书仅列明了产品基本规格、参数,更详细的电性能参数、使用说明等,请在订购产品之前与南京南山半导体有限公司确认。

|100505(0402)贴片电感特性数据图表 |焊接曲线 ■ 电感量-直流偏置特性 ■ 阻抗-频率特性 ■ 电感量-温度特性 ■ Q 值-频率特性

贴片电感样品申请单 南山联系资料 总机:技术支持:客服:传真:电邮: 客户基本资料 公司名称网址: 联系方式电话:传真:□生产型企业□贸易商 收货地址 生产产品 姓名:职务:□技术□采购□其他 联络人 电话:手机:电邮: 样品明细资料 元器件名称型号及封装单机用量申请数量备注 预计生产情况 预计小批量生产日期:规模生产日期:样品申请日期: 样品申请流程 1、请详细、全面、真实填写上列各项。表格不够填写,可自行复制。 Service@https://www.wendangku.net/doc/b017286508.html, 2、请以附件的形式将该文档通过E-mail发送,并请将此单打印盖章后,电邮至: :。 3、公司将根据客户所填信息并综合相关情况,由样品小组负责确定该样品申请单是否执行及如何执行。 4、收到样品申请单并经审核通过后,南京库有现货2个工作日内发出;如需订货,交期3-4周,非常规品顺延1-2周。 5、样品免费,运费到付(一般选择顺丰快递);样品数量:单个型号5~20pcs,或根据BOM表清单按2~5套提供。 6、说明:接单后,样品小组将努力跟进,但由于原厂生产等环节存有不确定因素,我们无法保证样品数量、型号完 全符合要求,也不承诺一定按期交出。 跟进记录 □已中止进行□中止原因描述: □已联系客户 □已建议生产□已发送样品/日期□客户已签收/日期

电容和电感要点

电感 电感是闭合回路的一种属性,是一个物理量。当线圈通过电流后,在线圈中形成磁场感应,感应磁场又会产生感应电流来抵制通过线圈中的电流。这种电流与线圈的相互作用关系称为电的感抗,也就是电感,单位是“亨利(H)”,以美国科学家约瑟夫·亨利命名。它是描述由于线圈电流变化,在本线圈中或在另一线圈中引起感应电动势效应的电路参数。 电感是自感和互感的总称。提供电感的器件称为电感器。[1]中文名 电感 外文名 inductance 实质 闭合回路的一种属性,一种物理量 单位 亨利(H) 目录 1. 1定义 2. ?自感 3. ?互感 1. 2单位及换算 2. 3计算公式

3. ?自感 1. ?互感 2. ?三相制均衡输电线的电感 定义编辑 导体的一种性质,用导体中感生的电动势或电压与产生此电压的电流变化率之比来量度。稳恒电流产生稳定的磁场,不断变化的电流(交流)或涨落的直流产生变化的磁场,变化的磁场反过来使处于此磁场的导体感生电动势。感生电动势的大小与电流的变化率成正比。比例因数称为电感,以符号L表示,单位为亨利(H)。[2] 电感是闭合回路的一种属性,即当通过闭合回路的电流改变时,会出现电动势来抵抗电流的改变。这种电感称为自感(self-inductance),是闭合回路自己本身的属性。假设一个闭合回路的电流改变,由于感应作用而产生电动势于另外一个闭合回路,这种电感称为互感(mutual inductance)。自感 当线圈中有电流通过时,线圈的周围就会产生磁场。当线圈中电流发生变化时,其周围的磁场也产生相应的变化,此变化的磁场可使线圈自身产生感应电动势(感生电动势)(电动势用以表示有源元件理想电源的端电压),这就是自感。

电感基础知识详细图示讲解

一、 电感概述 1.1 电感的定义: 电感是导线内通过交流电流时,在导线的内部及其周围产生交变磁通,导线的磁通量与生产此磁通的电流之比。 当电感中通过直流电流时,其周围只呈现固定的磁力线,不随时间而变化;可是当在线圈中通过交流电流时,其周围将呈现出随时间而变化的磁力线。根据法拉弟 电磁感应定律---磁生电来分析,变化的磁力线在线圈两端会产生感应电势,此感应电势相当于一个“新电源”。当形成闭合回路时,此感应电势就要产生感应电 流。由楞次定律知道感应电流所产生的磁力线总量要力图阻止原来磁力线的变化的。由于原来磁力线变化来源于外加交变电源的变化,故从客观效果看,电感线圈有 阻止交流电路中电流变化的特性。电感线圈有与力学中的惯性相类似的特性,在电学上取名为“自感应”,通常在拉开闸刀开关或接通闸刀开关的瞬间,会发生火 花,这就是自感现象产生很高的感应电势所造成的。 总之,当电感线圈接到交流电源上时,线圈内部的磁力线将随电流的交变而时刻在变化着,致使线圈不断产生电磁感应。这种因线圈本身电流的变化而产生的电动势 ,称为“自感电动势”。 由此可见,电感量只是一个与线圈的圈数、大小形状和介质有关的一个参量,它是电感线圈惯性的量度而与外加电流无关。 1.2 电感线圈与变压器 电感线圈:导线中有电流时,其周围即建立磁场。通常我们把导线绕成线圈,以增强线圈内部的磁场。 电感线圈就是据此把导线(漆包线、纱包或裸导线)一圈靠一圈(导线间彼此互相绝缘)地绕在绝缘管(绝缘体、铁芯或磁芯)上制成的。一般情况,电感线圈只有一个绕组。 变压器:电感线圈中流过变化的电流时,不但在自身两端产生感应电压,而且能使附近的线圈中产生感应电压,这一现象叫互感。两个彼此不连接但又靠近,相互间存在电磁感应的线圈一般叫变压器。 1.3 电感的符号与单位 电感符号:L 电感单位:亨 (H)、毫亨(mH)、微亨 (uH),1H=103mH=106uH。 1.4 电感的分类: 按 电感形式 分类:固定电感、可变电感。 按导磁体性质分类:空芯线圈、铁氧体线圈、铁芯线圈、铜芯线圈。 按 工作性质 分类:天线线圈、振荡线圈、扼流线圈、陷波线圈、偏转线圈。 按 绕线结构 分类:单层线圈、多层线圈、蜂房式线圈。 按 工作频率 分类:高频线圈、低频线圈。 按 结构特点 分类:磁芯线圈、可变电感线圈、色码电感线圈、无磁芯线圈等。 二、 电感的主要特性参数 2.1 电感量L 电感量L表示线圈本身固有特性,与电流大小无关。除专门的电感线圈(色码电感)外,电感量一般不专门标注在线圈上,而以特定的名称标注。 2.2 感抗XL 电感线圈对交流电流阻碍作用的大小称感抗XL,单位是欧姆。它与电感量L和交流电频率f的关系为 XL=2πfL 2.3 品质因素Q 品质因素Q是表示线圈质量的一个物理量,Q为感抗XL与其等效的电阻的比值,即:Q=XL/R。 线圈的Q 值愈高,回路的损耗愈小。线圈的Q值与导线的直流电阻,骨架的介质损耗,屏蔽罩或铁芯引起的损耗,高频趋肤效应的影响等因素有关。线圈的Q值通常 为几十到几百。采用磁芯线圈,多股粗线圈均可提高线圈的Q值。 2.4 分布电容 线圈的匝与匝间、线圈与屏蔽罩间、线圈与底版间存在的电容被称为分布电容。分布电容的存在使线圈的Q值减小,稳定性变差,因而线圈的分布电容越小越好。采用分段绕法可减少分布电容。

各种电感计算公式

导线线径与电流规格表 表格为导线在不同温度下的线径与电流规格表 注意:线材规格请依下列表格,方能正常使用) 载流量 (A 安培 ) 9 14 23 32 48 60 90 100 123 150 210 238 300 估算口诀:二点五下乘以九,往上减一顺号走。三十五乘三点五,双双成组减点五。 (看 不懂没关系 ,多数情况只要查上表就行了 )。条件有变加折算,高温九折铜升级。穿管根数二 三四,八七六折满载流。 说明: (1) 本节口诀对各种绝缘线 (橡皮和塑料绝缘线 )的载流量 (安 全电流 )不是直接指出,而是 “截面乘上一定的倍数”来表示,通过心算而得。由表 5 3 可以 看出:倍数随截面的增大而减小。“二点五下乘以九,往上减一顺号走”说的是 2. 5mm ' 及以下的各种截面铝芯绝缘线 ,其载流量约为截面数的 9倍。如 2.5mm '导线,载流量为 2. 5×9=22.5(A ) 。从 4mm '及以上导线的载流量和截面数的倍数关系是顺着线号往上排,倍 数逐次减 l ,即 4×8、6×7、 10×6、16×5、25×4。“三十五乘三点五,双双成组减点五”,说 的是 35mm ” 的导线载流量为截面数的 3.5 倍,即 35×3.5=122.5(A ) 。从 50mm '及以上 的导线,其载流量与截面数之间的倍数关系变为两个两个线号成一组,倍数依次减 0. 5。 即 50、70mm '导线的载流量为截面数的 3 倍;95、120mm ” 导线载流量是其截面积数的 2.5 倍, 2.5 4 6 10 16 25 35 50 70 95 120 的估算方法 以 下是绝缘导 线 (铝芯/铜芯) 载流量的估算 方法 ,这是电工 基础 ,今天把这 些知识教给大 家,以便计算车 上的导线允许 通过的电 流.(偶原在省 供电局从事电 能 计量工作 ) 铝 芯绝缘导线 载 流量与截面 的倍数关系 导线截面 (平方 毫米) 1 1.5 请 绝缘导线 ( 铝芯 /铜芯 )载流量 载流是截面倍数 9 8 7 6 5 4 3.5 3 2.5

电感工作原理

在电路中,当电流流过导体时,会产生电磁场,电磁场的大小除以电流的大小就是电感,电感的定义是L=phi/i, 单位是韦伯。电感是衡量线圈产生电磁感应能力的物理量。给一个线圈通入电流,线圈周围就会产生磁场,线圈就有磁通量通过。通入线圈的电源越大,磁场就越强,通过线圈的磁通量就越大。实验证明,通过线圈的磁通量和通入的电流是成正比的,它们的比值叫做自感系数,也叫做电感。如果通过线圈的磁通量用φ表示,电流用I表示,电感用L表示,那么 L=φ/I 。电感的单位是亨(H),也常用毫亨(mH)或微亨(uH)做单位。1H=1000mH,1H=1000000uH。电感只能对非稳恒电流起作用,它的特点两端电压正比于通过他的电流的瞬时变化率(导数),比例系数就是它的“自感” 。电感起作用的原因是它在通过非稳恒电流时产生变化的磁场,而这个磁场又会反过来影响电流,所以,这么说来,任何一个导体,只要它通过非稳恒电流,就会产生变化的磁场,就会反过来影响电流,所以任何导体都会有自感现象产生。板上可以看到很多铜线缠绕的线圈,这个线圈就叫电感,电感主要分为磁心电感和空心电感两种,磁心电感电感量大常用在滤波电路,空心电感电感量较小,常用于高频电路。电感的特性与电容的特性正好相反,它具有阻止交流电通过而让直流电顺利通过的特性。电感的特性是通直流、阻交流,频率越高,线圈阻抗越大。电感器在电路中经常和电容一起工作,构成LC滤波器、LC振荡器等。另外,人们还利用电感的特性,制造了阻流圈、变压器、继电器等。 电感通直流,阻交流。通直流:所谓通直流就是指在直流电路中,电感的作用就相当于一根导线,不起任何作用. 阻交流:在交流电路中,电感会有阻抗,即XL,整个电路的电流会变小,对交流有一定的阻碍作用。 电感的基本作用:滤波、振荡、延迟、陷波等 通直在电子线路中,电感线圈对交流有限流作用,它与电阻器或电容器能组成高通或低通滤波器、移相电路及谐振电路等;变压器可以进行交流耦合、变压、变流和阻抗变换等。 由感抗XL=2πfL 知,电感L 越大,频率f 越高,感抗就越大。该电感器两端电压的大小与电感L 成正比,还与电流变化速度△i/△t 成正比, 电感线圈也是一个储能元件,它以磁的形式储存电能,储存的电能大小可用下式表示: WL=1/2 Li2 。 可见,线圈电感量越大,流过越大,储存的电能也就越多。 电感在电路最常见的作用就是与电容一起,组成LC 滤波电路。我们已经知道,电容具有 “阻直流,通交流”的本领,而电感则有“通直流,阻交流”的功能。如果把伴有许多干扰 信号的直流电通过LC 滤波电路,那么,交流干扰信号将被电容变成热能消耗掉;变得比较纯净的直流电流通过电感时,其中的交流干扰信号也被变成磁感和热能,频率较高 的最容易被电感阻抗,这就可以抑制较高频率的干扰信号。 LC 滤波电路 在线路板电源部分的电感一般是由线径非常粗的漆包线环绕在涂有各种颜色的 圆形磁芯

电感Q值定义

电感Q值定义 电感Q值:也叫电感的品质因素,是衡量电感器件的主要参数。是指电感器在某一频率的交流电压下工作时,所呈现的感抗与其等效损耗电阻之比。电感器的Q值越高,其损耗越小,效率越高。 电感Q值的高低的功用 Q值过大,引起电感烧毁,电容击穿,电路振荡。Q很大时,将有VL=VC>>V的现象出现。这种现象在电力系统中,往往导致电感器的绝缘和电容器中的电介质被击穿,造成损失。所以在电力系统中应该避免出现谐振现象。而在一些无线电设备中,却常利用谐振的特性,提高微弱信号的幅值。 电感Q值的换算 品质因数又可写成Q=2pi*电路中存储的能量/电路一个周期内消耗的能量通频带BW与谐振频率w0和品质因数Q的关系为:BW=wo/Q,表明,Q大则通频带窄,Q小则通频带宽。Q=wL/R=1/wRC 其中: Q 是品质因素w是电路谐振时的电源频率L是电感R是串的电阻C是电容Q值是品质因素,它是有用功与总功只比 影响电感Q值的因素 电感器品质因数的高低与线圈导线的直流电阻、线圈骨架的介质损耗及铁心、屏蔽罩等引起的损耗等有关。也有人把电感的Q值特意降低的,目的是避免高频谐振/增益过大。降低Q值的办法可以是增加绕组的电阻或使用功耗比较大的磁芯. Q值一般统称品质因数,它是衡量一个元件或谐振回路性能的一个无量纲单位。简单地说是理想元件与元件中存在的损耗的比值。这个元件可以是电感、电容、介质谐振器、声表面波谐振器、晶体谐振器或LC谐振器。Q值的大小取决于实际应用,并不是越大越好。例如,如果设计一个宽带滤波器,过高的Q值如果不采取其他措施,将使带内平坦度变坏。在电源退耦电路中采用LC退耦应用时高Q值的电感和电容极容易产生自谐振状态,这样反倒不利于消除电源中的干扰噪声。反过来,对于振荡器我们希望有较高的Q值,Q值越高对振荡器的频率稳定度和相位噪声越有利。对不同的应用对Q值有不同的要求。元件的品质因数,即Q值的大小取决于元件的制作工艺、制作材料以及应用环境。例如,同样一个电感,如果其他参数不变,仅改变绕制电感导线的粗细,则导线粗的电感Q值要比导线细的电感Q值高。如果再在导线上镀银,则镀银导线所绕制的电感要比不镀银导线绕制的电感Q值高。至于介质谐振器其Q值更是取决于构成介质谐振器材料和制作工艺。Q值的大小还与工作频率有关。一般的电感随着频率的变高其Q值也会增高。但它有一个极限,当超过这个极限频率点后电感的Q值要陡然下降,这个电感就失去了电感的作用。在这点上介质谐振器、声表面波谐振器和晶体谐振器更为明显。当工作频率偏离他们的谐振频率后,其Q值将急剧下降,同时他们也将不能工作。品质因数描述了回路的储能与它一周耗能之比。因为同频带与品质因数之积为回路的谐振频率。所以,在保证谐振点的情况下品质因数与通频带的宽窄是一对矛盾。所以不能说品质因数越高越好,还要看对频带的要求的Q值越大,谐振的通频带就越宽,也就是包含的频率范围更宽,如果需要宽一点的通频带,Q值越大越好。在选频电路(选用某一频率)、阻波电路(阻止某一频率)、吸收电路(衰减某一频率)、陷波电路(去掉某一频率)中都是利用或者去掉某一个频率f,此时Q值越小越好,这是利用谐振电路在谐振时的频率f,当LC并联谐振电路发生谐振时,电路阻抗最大,相当于断路,使频率为f的频率信号不能通过,达到阻止此信号的目的。当LC串联谐振电路发生谐振时,阻抗最小,相当与短路,此时频率为f的频率很容易通过,而其它的信号频率被阻止,就能达到选频的目的。

相关文档