文档库 最新最全的文档下载
当前位置:文档库 › 微电子工艺(电子科技大学微电子与固体电子学院本科微电子工艺课件)

微电子工艺(电子科技大学微电子与固体电子学院本科微电子工艺课件)

微电子工艺(电子科技大学微电子与固体电子学院本科微电子工艺课件)
微电子工艺(电子科技大学微电子与固体电子学院本科微电子工艺课件)

微电子工艺学试卷(A卷)及参考答案

华中科技大学2010—2011学年第二学期 电子科学与技术专业《微电子工艺学》试卷(A 卷) 一、判断下列说法的正误,正确的在后面括号中划“√”,错误的在后面括号中划“×”(本大题共12小题,每小题2分,共24分) 1、用来制造MOS 器件最常用的是(100)面的硅片,这是因为(100)面的表面状态更有利于控制MOS 器件开态和关态所要求的阈值电压。(√) 2、在热氧化过程的初始阶段,二氧化硅的生长速率由氧化剂通过二氧化硅层的扩散速率决定,处于线性氧化阶段。( × ) 3、在一个化学气相淀积工艺中,如果淀积速率是反应速率控制的,则为了显著增大淀积速率,应该增大反应气体流量。( × ) 4、LPCVD 紧随PECVD 的发展而发展。由660℃降为450℃,采用增强的等离子体,增加淀积能量,即低压和低温。(×) 5、蒸发最大的缺点是不能产生均匀的台阶覆盖,但是可以比较容易的调整淀积合金的组分。(×) 6、化学机械抛光(CMP)带来的一个显著的质量问题是表面微擦痕。小而难以发现的微擦痕导致淀积的金属中存在隐藏区,可能引起同一层金属之间的断路。(√) 7、曝光波长的缩短可以使光刻分辨率线性提高,但同时会使焦深线性减小。如果增大投影物镜的数值孔径,那么在提高光刻分辨率的同时,投影物镜的焦深也会急剧减小,因此在分辨率和焦深之间必须折衷。( √ ) 8、外延生长过程中杂质的对流扩散效应,特别是高浓度一侧向异侧端的扩散,不仅使界面附近浓 度分布偏离了理想情况下的突变分布而形成缓变,且只有在离界面稍远处才保持理想状态下的均匀分布,使外延层有效厚度变窄。( × ) 9、在各向同性刻蚀时,薄膜的厚度应该大致大于或等于所要求分辨率的三分之一。如果图形所要求的分辨率远小于薄膜厚度,则必须采用各向异性刻蚀。( × ) 10、热扩散中的横向扩散通常是纵向结深的75%~85%。先进的MOS 电路不希望发生横向扩散, 因为它会导致沟道长度的减小,影响器件的集成度和性能。(√) 11、离子注入能够重复控制杂质的浓度和深度,因而在几乎所有应用中都优于扩散。( ×) 12、侧墙用来环绕多晶硅栅,防止更大剂量的源漏注入过于接近沟道以致可能发生源漏穿通。(√) 二、选择填空。 (本大题共8小题,每小题2分,共16分。在每小题给出的四个选项 中,有的只有一个选项正确,有的有多个选项正确,全部选对得2分,选对但不全的得1分,有选错的得0分) 1、微电子器件对加工环境的空气洁净度有着严格的要求。我国洁净室及洁净区空气中悬浮粒子洁净度标准GB50073-2001中,100级的含义是:每立方米空气中大于等于0.1 m 的悬浮粒子的最大允许个数为( B ) A 、35; B 、100; C 、102; D 、237。 2、采用二氧化硅薄膜作为栅极氧化层,是利用其具有的( A 、D ) A 、高电阻率; B 、高化学稳定性; C 、低介电常数; D 、高介电强度。 3、如果淀积的膜在台阶上过度地变薄,就容易导致高的膜应力、电短路或者在器件中产生不希望的(A )。 A. 诱生电荷 B. 鸟嘴效应 C. 陷阱电荷 D. 可移动电荷 4、浸入式光刻技术可以使193 nm 光刻工艺的最小线宽减小到45 nm 以下。它通过采用折射率高的 一、密封线内不准答题。 二、姓名、学号不许涂改,否则试卷无效。 三、考生在答题前应先将姓名、学号、年级和班级填写在指定的方框内。 四、试卷印刷不清楚。可举手向监考教师询问。 注意

武汉大学微电子学与固体电子学研究生培养方案

微电子学与固体电子学专业攻读硕士学位 研究生培养方案 一、培养目标 本专业培养德、智、体全面发展的微电子学与固体电子学高层次专门人才。要求所培养的硕士研究生达到: 1、热爱祖国、热爱人民,认真学习并较好掌握马克思列宁主义理论。具有良好的道德修养和科学态度。愿意为祖国的现代化建设事业热忱服务。 2、具有严谨踏实的学风,较全面系统地掌握微电子学与固体电子学的基础理论和专业知识。注意跟踪了解微电子学与固体电子学发展的前沿动态。熟练掌握一门外国语。具有创新精神,能独立从事本专业的科研与技术开发工作。 3、身心健康。 二、研究方向 1、纳微电子学 纳米加工与纳米器件、宽带隙纳米材料与场效应晶体管、石墨烯材料与场效应晶体管、基于纳米结构的发光与显示器件等; 2、半导体传感电子学 压电、铁电、磁电材料与传感器件、电阻开关器件;氧化物光敏与气敏传感器件;GaN、ZnO、GaAs、硅等半导体光电材料与探测器等; 3、能源电子材料与器件 有机光伏电子学与器件、染料敏华太阳能电池、GaN/GaAs多结高效太阳能电池、新型高效硅太阳能电池等; 4、宽禁带半导体材料与器件 GaN、AlN、ZnO、MgO半导体材料与光电器件等; 5、微电子系统与集成电路设计 微纳电子器件模型设计、微电子系统与集成电路设计等; 6、磁电子学 磁电材料与传感器件、有机磁材料设计与计算、稀磁材料与器件等; 7、信息处理与微系统 基于大规模集成电路芯片的处理器系统;基于现代信号处理技术的图像增强、压缩、重建、识别算法与实现;高性能DSP与嵌入式CPU智能系统等; 8、生物医学电子学 生物医学微流纳流芯片、医学影像的特征信息提取算法研究、医学断层光电子技术等。

电子科技大学微固考研复试经验

今年考上了电子科大,微固专业,作为回报,我简单说一下吧。 我初试分数不高,外校考生,初试分数340+,而今年线是340,可以说希望不 大。但是既然过线,就要努力试试吧。 我比较走运,其实大多数考到340+的,很容易在复试时被淘汰。不过,既然 上了分数线,就别太灰心。电子科大是一个非常公平的学校,你是人才,他们一定会招你,你把总分搞上去,还有机会,他们的复试公平公正。如果你有一些竞赛获奖那就更好了,或者你的专业知识非常扎实。 个人建议在复试前联系一下导师,发个简历什么的,让老师对你有个大致的了 解,如果能征得老师同意,提前见一面,那就更好了。 复试流程第一项是导师考察,这个,同学一定要重视,尽管不计入分数,但是, 至关重要,如果老师很喜欢你,那么,你在复试时会有一定优势的,一定要重视。 然后就是笔试了,笔试电路分析,这两年题不难,按照指定书目看一下,做做 课后题,有时间可以到网上买复试题,淘宝上好像就有,一共四本。有本科试题,研究生复试试题,某学院电分初试题等等。 接下来就是面试了。面试会随机分成几组,你提前不会知道那几个老师面试你, 老师也不会提前知道他会面试到谁,所以,你面试不一定有你报的导师。学生被领到一个屋子里,里面有五个老师。进去后,先是英语面试。自己提前准备一下英文自我介绍。但不一定会问到。我比较幸运,被问到这个了。这个每个人情况不同,问题是老师随口问的,每个学生不同。简单的有自我介绍,你为什么选择电子科大,你的爱好,等等。还有人被问到你喜欢哪个季节,为什么等等。难的可能会问点专业性的,这个几率不大,如果被问到了,自认倒霉吧。英语面试也就五分钟左右。然后专业面试。面试的问题也很随机,可能难,也可能很基础。如果你初试考的数模电,那么复试也重视一下数模电。复习的科目主要就是数模

微电子学与固体电子学

080903 微电子学与固体电子学

北京大学--信息科学技术学院-- 微电子学与固体电子学 中国科学院--半导体研究所-- 微电子学与固体电子学 中国科学院--电子学研究所-- 微电子学与固体电子学 北京交通大学--电子信息工程学院-- 微电子学与固体电子学 北京理工大学--信息科学技术学院-- 微电子学与固体电子学 北京邮电大学--电子工程学院-- 微电子学与固体电子学 南开大学--信息技术科学学院-- 微电子学与固体电子学 天津大学--电子信息工程学院-- 微电子学与固体电子学 北京工业大学--电子信息与控制工程学院-- 微电子学与固体电子学 北京工业大学--嵌入式系统重点实验室-- 微电子学与固体电子学 天津工业大学--信息与通信工程学院-- 微电子学与固体电子学 天津理工大学--电子信息与通信工程学院-- 微电子学与固体电子学 河北大学--电信学院-- 微电子学与固体电子学 燕山大学--车辆与能源学院-- 微电子学与固体电子学 大连理工大学--物理与光电工程学院-- 微电子学与固体电子学 大连理工大学--电子与信息工程学院-- 微电子学与固体电子学 辽宁大学--物理系-- 微电子学与固体电子学 沈阳工业大学--信息科学与工程学院-- 微电子学与固体电子学 吉林大学--电子科学与工程学院-- 微电子学与固体电子学 长春理工大学--理学院-- 微电子学与固

体电子学 哈尔滨工业大学--航天学院-- 微电子学与固体电子学 中国科学技术大学--理学院-- 微电子学与固体电子学 武汉大学--物理科学与技术学院-- 微电子学与固体电子学 复旦大学--信息科学与工程学院-- 微电子学与固体电子学 中国科学技术大学--合肥智能机械研究所-- 微电子学与固体电子学 黑龙江大学--电子工程学院-- 微电子学与固体电子学 复旦大学--微电子研究院-- 微电子学与固体电子学 兰州大学--物理科学与技术学院-- 微电子学与固体电子学 山东大学--威海分校-- 微电子学与固体电子学 山东师范大学--物理与电子科学学院-- 微电子学与固体电子学 上海交通大学--微电子学院-- 微电子学与固体电子学 上海交通大学--微纳米科学技术研究院-- 微电子学与固体电子学 华东师范大学--电子科学技术系-- 微电子学与固体电子学 上海大学--材料科学与工程学院-- 微电子学与固体电子学 同济大学--电子与信息工程学院-- 微电子学与固体电子学 厦门大学--物理系-- 微电子学与固体电子学 厦门大学--电子工程系-- 微电子学与固体电子学 福州大学--物理与信息工程学院-- 微电子学与固体电子学 河北工业大学--信息工程学院-- 微电子学与固体电子学 景德镇陶瓷学院--专业列表-- 微电子学与固体电子学 上海交通大学--空天科学技术研究院-- 微电子学与固体电子学 中南大学--物理科学与技术学院(物理学

中科院微电子学与固体电子学考研必读的经验

距离考研真正结束已经有好几个月了,好久没来逛论坛了,记得那时迷茫的我在论坛中一个个找帖子看,只要看到“微固”就一定会点进来看,找资料,请教问题。现在,终于告别了我的考研岁月,有辛酸、有汗水、更有一份份的感动,这其中的滋味,只有走过这段路的人才能真正体会得到!我想说,走过这段路的战友,不管结果如何,你们是真正的英雄!当你选择这条路的时候,其实你应经成功的战胜了自己! 说实话,我是二战过来的,考的是中国科学院大学微电子学与固体电子学,可惜败在了专业课上(虽然说专业课并不是很公平,自己复习的不好也是一个重要原因),之后就是毕业找工作,刚毕业出来什么都不懂,关键是工作又不是自己喜欢的,所以工作了三个月后我决定继续二战中科院。八月份,又回到熟悉的学校,熟悉的图书馆,记得坐在图书馆的第一个晚上,环顾四周,曾经的战友都不在了,一幅幅陌生的面孔,晚上从图书馆出来我哭了,不知道是什么感觉,就是控制不住我的泪水。心里的委屈无法倾诉,熟悉的地方,物是人非,那种感觉真的很辛酸!可是我在心底暗暗发誓:今年,我一定要考上! 我知道微固专业是中科院的三大王牌专业之一,每年的录取线都是领跑全院(今年是358),为了梦想,我想豁出去得了,冲!然后就是漫长的复习,从头开始,记得招生简章没出来之前,专业课我选的是固体物理,因为第一年看了一年固体物理的知识,学起来会快很多,命运给了我很大的恩惠。总之,老天给了我一个很好的开始毕竟有失也有得之前的复习也不全一无是处,所以说我更要加倍努力啦!有时候,考研真的单纯只是为了追逐那份心中的梦想,不去想考上了会怎么样,工作怎么样,心里会发誓一定要实现自己的梦想!为了证明自己!我的同学,第一年浙大落榜,第二年继续,这是一种怎样的精神在支持着?考研人,真的勇士!八月份,学校里各种辅导班都在上课,我报的新祥旭的专业课,按照老师的指导一步步地去看书复习,只要好好总结,学习效果还是很明显的。一家之谈,可能每个人的感受不一样吧!当然了有些就是不报班的同学学得也很不错! 在这里,我想把我数学的学习心得和大家分享一下,今年数学考的不是很好,120,本应该考得很好的,今年数学也较容易,结果考砸了。数学我买了一本李永乐的复习全书,个人觉得比陈文灯的好!主要是陈的书很多内容讲的太繁琐,很多讲题方法是很不错,讲了很多技巧,但是考研很少考到,所以我觉得与大纲偏离的太多。而李的书看起来就很舒服,讲的都是常见题型,常见解题方法,很多题型出的也很好。复习全书一定要认真做!我总共做了三遍,而且做数学题时把它当字典查,所以到最后这本书翻得实在是很烂。如果你觉得里面的题目不够做,可以再买一本660题,里面的小题都是很经典的! 专业课我想是大家比较关心的,因为考研的总分很大一部分取决于它!今年专业课考了130+,个人觉得也还有很大的提升空间,专业课也很简单,考试才考了一半我就已经完卷了,到最后也没有检查,就等着交卷迎接考研结束,现在想想挺后悔的。我本科学的就是微电子,考试指定的那本教材也是学过的。但是本科时没有好好学,基本上都是考研时才学通了这本书。相信拿到这本书在手里,你也是很难过的,全部都是公式,推导过程!翻一遍过来,头都大了。我当时也是这种感觉,该怎么学啊?当时我问一些学长,他们告诉我,要想把这本书学好,里面的所有公式都要会推导出来!我当时都蒙了,公式记都记不住怎么推啊?好多公式都很冗长!不过困难总是要克服的呀,只能咬咬牙,从头开始看吧!下面我来说说怎么学好这本书。我们都知道微固专业的基础是物理学方面的知识,所以说这本书是基础。不过我的建议是,如果你物理学的知识之前没有接触过,刚开始肯定很多内容都看不懂,但是不要求你看懂,你只要先了解一下基本概念就可以了。在知道都是讲一些什么的时候再回过头来详细地看。但是物理的一些内容要牵扯到量子力学的内容,主要是前面晶格结构的内容,我觉得如果大家不太了解的话,最好把这些书中的相关章节拿出来翻翻,了解一下也好,这些都是一些基础的东西。我想说一遍两遍看不明白很正常!慢慢自己琢磨,不懂就去问老师问同学,总会弄懂的。你要知道既然你选择了微固专业,就要做好吃苦的准备,相信自己一定行!永远不要灰心,你可以沮丧!但不可以放弃! 其次我想说,光看书也是不够的,要找一些题目来做,很多东西要通过做题才能真正掌握。其实我也知道普通物理的题目真的是很少!书店一般都买不到,课本后的习题也没有答案。但是困难来了,你要自己想办法!我也经常在网上下一些视频拿出来看,巩固专业基础的一些东西。我有一个同学,当时也考微固,我把这个视频拷给他,结果他只听了一两遍就不听了,说听不懂,我那个郁闷的啊唉。其实我想说每听一遍感觉都不一样,都有很多收获!觉得普通物理学得差不多了,就做点题目检验一下,要是有模糊的地方可以把教材拿出来再翻一翻,这样结合着看效果也不错。书上的很多公式自己慢慢去推导,多推导几遍就熟悉了,其实有些内容考试不考。书看过三遍左右的时候就要做真题了,历年真题,每一题都要做精做透!结合一些资料题目来做,课本上课后习题有很多也很好。平时可以把书合

微电子学与固体电子学学科硕士研究生专业

微电子学与固体电子学学科硕士研究生专业 微电子学与固体电子学是电子科学与技术与信息科学技术的先导和基础,是我国二十一世纪重点发展的学科之一。主要研究半导体物理与器件,电子材料与固体电子元器件,超大规模集成电路的设计与制造技术,系统芯片技术,电路组件与系统,微机电系统等。它涉及到微电子学与固体电子学的理论,信息的获取、存储、处理与控制,并且和电路与系统、通信与信息系统、信号与信息处理、电子工程学、物理电子学、电磁场与微波技术、电子材料科学与工程、自动控制学以及计算机科学与技术等多个学科有着密切的联系。这一学科的发展非常迅速,目前已进入了以超大规模集成电路为主要标志的发展阶段。其主要发展方向是超深亚微米物理与技术,集成电路与系统技术,新型固体电子器件,纳米电子器件以及微机电系统。 我校本学科是国家重点学科,有一支以科学院院士、长江学者特聘教授、博士研究生导师、教授、副教授以及一批青年博士、硕士组成的学术队伍,在新型半导体功率器件与新型智能集成电路等方面研究独具特色,一些工作在国内外享有盛誉。并与国内外相关的学校和研究所有着广泛的联系。 一、培养目标: 本学科硕士学位获得者应具有微电子学与固体电子学方面坚实的基础理论和系统的专业知识,能熟练运用计算机和仪器设备进行实验研究,具有较强的分析问题和解决问题的能力。不仅对本学科的某一方面有深入的了解,而且在该方面有一定的研究成果。应掌握一门外国语。有严谨求实的科学态度和工作作风、能胜任科研、教学或产业的技术管理工作。 硕士学位获得者应政治合格,热爱祖国,热爱人民,献身于伟大祖国的社会主义建设事业。 二、研究方向: 1.新型功率半导体器件与集成电路和系统 2.大规模集成电路与系统 3.专用集成电路与系统 4.SOC/SIP系统芯片技术 5.集成电路测试、封装、可靠性技术 6.射频微波、超高速器件与电路 7.新型固体电子器件与应用 8.固体信息、传感和存储技术及微组装技术 9.微细加工与MEMS技术 三、课程设置: 学位课:自然辩证法、科学社会主义理论与实践、硕士学位英语、数值分析、应用数学理论与方法、软件开发技术、模拟集成电路分析与设计、集成电子学、VLSI电路和系统设计、半导体器件物理 非学位课:半导体功率器件与智能功率IC、数字信号处理、纳米电子学与自旋电子学、VHDL语言与数字集成电路设计、微细加工与MEMS技术、集成电路的封装测试与可靠性、射频集成电路

电子科大微电子学与固体电子学考研感受

距离考研真正结束已经有快三个月了,好久没来逛论坛了,记得那时迷茫的我在论坛中一个个找帖子看,只要看到“微固”就一定会点进来看,找资料,请教学长……现在,终于告别了我的考研岁月~~~有辛酸,有汗水,更有一份份感动,这其中的滋味,只有走过这段路的人才能真正体会得到!我想说,走过这段路的战友,不管结果如何,你们是真正的英雄!当你选择这条路的时候,其实你应经成功的战胜了自己! 说实话,我是二战过来的,第一年考的是苏州大学微电子,可惜败在了专业课上(虽然说专业课并不是很公平,自己复习的不好也是一个重要原因),之后就是毕业找工作,刚毕业出来什么都不懂,关键是工作又不是自己喜欢的,所以工作了三个月后我决定再考!八月份,又回到熟悉的学校,熟悉的图书馆,记得坐在图书馆的第一个晚上,环顾四周,曾经的战友都不在了,一幅幅陌生的面孔,晚上从图书馆出来我哭了,不知道是什么感觉,就是控制不住我的泪水,心里的委屈无法倾诉,熟悉的地方,物是人非,那种感觉真的很辛酸!可是我在心底暗暗发誓:今年,我一定要考上! 接着,目标就定了电子科大,我知道微固是科大的三大王牌专业之一,每年的录取线都是领跑全校(今年是358),为了梦想,我想豁出去得了,冲! 然后就是漫长的复习,从头开始,记得招生简章没出来之前,专业课我选的是微电子器件,因为第一年看了一年半导体物理,学起器件来应该会好很多,命运给了我很大的恩惠,招生简章出来后有很大的改动,专业课从以前的二选一变成了只考器件!当时我想,至少现在很多人看到这个招生简章都在骂吧!其实了解电子科大的人都知道,科大本校的学生考微固一般都会选择半导体器件,而外校的学生一般都会选择数模电。这是因为本校的学生器件一般都学得很好,而外校的学生相对基础差一些,那些跨专业考微固的更是不会选择器件了!总之,老天给了我一个很好的运气,所以说我更要努力了! 有时候,考研真的单纯只是为了追逐那份心中的梦想,不去想考上了会怎么样,工作怎么样,心里会发誓一定要实现自己的梦想!为了证明自己!我的同学,第一年浙大落榜,第二年继续,这是一种怎样的精神在支持着?考研人,真的勇士! 八月份,学校里各种辅导班都在上课,我没有去报班,而是按照自己的计划去看书复习。其实在这里我想说,报辅导班其实根本没有必要,对于数学基础稍微差一点的同学,可以考虑去报一个强化班,否则没有必要,上辅导班要花费大量的时间(当然金钱也是一部分),很容易打乱自己的复习计划!冲刺班就更不要去了,毕竟临近考研时间非常宝贵,听课反而得不偿失,倒不如自己买几份权威的模考试卷做做,好好总结,效果是很明显的。一家之谈,可能每个人的感受不一样吧!有些报班的同学学得也很不错! 在这里,我想把我数学的学习心得和大家分享一下,今年数学考的不是很好,120,本应该考得很好的,今年数学也较容易,结果考砸了。数学我买了一本李永乐的复习全书,个人觉得比陈文灯的好!主要是陈的书很多内容讲的太繁琐,很多讲题方法是很不错,讲了很多技巧,但是考研很少考到,所以我觉得与大纲偏离的太多。而李的书看起来就很舒服,讲的都是常见题型,常见解题方法,很多题型出的也很好。复习全书一定要认真做!我总共做了三遍,而且做数学题时把它当字典查,所以到最后这本书翻得实在是很烂。如果你觉得里面的题目不够做,可以再买一本660题,里面的小题都是很经典的!到最后12月份,有很多模拟试题卖,向大家推荐一份模考试卷——超越考研的数学最后五套卷。题目出的很好,每年都有很多相似题型当年考到的!试卷质量真的很高,建议至少做两遍。 专业课我想是大家比较关心的,因为考研的总分很大一部分取决于它!今年专业课考了130,个人觉得也还有很大的提升空间,专业课也很简单,考试才考了一半我就已经完卷了,到最后也没有检查,就等着交卷迎接考研结束,现在想想挺后悔的。我本科学的就是微电子,考试指定的那本陈星弼《晶体管原理》也是学过的。但是本科时没有好好学,基本上都是考研时才学通了这本书。相信拿到这本书在手里,你也是很难过的,全部都是公式,推导过程!翻一遍过来,

3060微电子与固体电子学专业综合

(3060)《微电子与固体电子学》专业综合 考试内容:(以下3门任选1门) 一、智能传感器系统 1.传感器的基本概念、静态和动态性能指标; 2.传感器原理、结构与应用:包括硅压阻式压力与加速度传感器;硅电容式压力与加速度传感器、霍尔磁传感器、磁阻式传感器和磁通门传感器;CCD图像传感器、CMOS图像传感器。 3.传感器信号处理集成电路:包括2中涉及的传感器所需的处理电路。 4.传感器的智能化补偿技术:包括传感器的零位、灵敏度和线性度的智能化补偿;智能化温度补偿;自动校准。 二、模拟集成电路设计 1.OS模拟集成电路设计:包括COMS集成电路工艺,MOS器件结构和I/V特性,基本放大器及其频率特性;CMOS集成电路的噪声;运算放大器及其稳定性;带隙基准电压;CMOS 振荡器;开关电容电路;锁相环电路。 2.流模式电子电路设计:包括双极型晶体管、场效应管模型,电流镜,跨导线性原理及应用,电流传输器,跨阻放大器,跨导放大器、滤波器,开关电流电路和电流模式A/D转换器。 三、芯片系统与超大规模集成电路设计 1.系统集成芯片(SOC)设计及设计方法学:基于IP复用的数字IC设计技术;集成电路设计;集成电路设计的EDA系统;系统芯片(SOC)设计;现代VLSI设计。 2.微电子学基础:半导体物理和器件物理基础;大规模集成电路基础;集成电路制造工艺。 参考书目: 1.余瑞芬. 《传感器原理》.:航空工业出版社,1995 2.刘君华《智能传感器系统》,西安电子科技大学出版社2004 3 .Razavi B著,陈贵灿等译,《模拟CMOS集成电路设计》,西安:西安交通大学出版社, 2003 4.赵玉山等,《电流模式电子电路》,天津大学出版社,2000 5.张兴等,《微电子学概论》,北京大学出奔社,2005 6.韦恩.沃尔夫,《现代VLSI设计-系统芯片设计》,科学出版社,2004

微电子加工工艺总结

1、分立器件和集成电路的区别 分立元件:每个芯片只含有一个器件;集成电路:每个芯片含有多个元件。 2、平面工艺的特点 平面工艺是由Hoerni于1960年提出的。在这项技术中,整个半导体表面先形成一层氧化层,再借助平板印刷技术,通过刻蚀去除部分氧化层,从而形成一个窗口。 P-N结形成的方法: ①合金结方法 A、接触加热:将一个p型小球放在一个n型半导体上,加热到小球熔融。 B、冷却:p型小球以合金的形式掺入半导体底片,冷却后,小球下面形成一个再分布结晶区,这样就得到了一个 pn结。 合金结的缺点:不能准确控制pn结的位置。 ②生长结方法 半导体单晶是由掺有某种杂质(例如P型)的半导体熔液中生长出来的。 生长结的缺点:不适宜大批量生产。 扩散结的形成方式 与合金结相似点: 表面表露在高浓度相反类型的杂质源之中 与合金结区别点: 不发生相变,杂质靠固态扩散进入半导体晶体内部 扩散结的优点 扩散结结深能够精确控制。 平面工艺制作二极管的基本流程: 衬底制备——氧化——一次光刻(刻扩散窗口)——硼预沉积——硼再沉积——二次光刻(刻引线孔)——蒸铝——三次光刻(反刻铝电极)——P-N结特性测试 3、微电子工艺的特点

高技术含量设备先进、技术先进。 高精度光刻图形的最小线条尺寸在亚微米量级,制备的介质薄膜厚度也在纳米量级,而精度更在上述尺度之上。超纯指工艺材料方面,如衬底材料Si、Ge单晶纯度达11个9。 超净环境、操作者、工艺三个方面的超净,如 VLSI在100级超净室10级超净台中制作。 大批量、低成本图形转移技术使之得以实现。 高温多数关键工艺是在高温下实现,如:热氧化、扩散、退火。 4、芯片制造的四个阶段 固态器件的制造分为4个大的阶段(粗线条): ①材料制备 ②晶体生长/晶圆准备 ③晶圆制造、芯片生成 ④封装 晶圆制备: (1)获取多晶 (2)晶体生长----制备出单晶,包含可以掺杂(元素掺杂和母金掺杂) (3)硅片制备----制备出空白硅片 硅片制备工艺流程(从晶棒到空白硅片): 晶体准备(直径滚磨、晶体定向、导电类型检查和电阻率检查)→ 切片→研磨→化学机械抛光(CMP)→背处理→双面抛光→边缘倒角→抛光→检验→氧化或外延工艺→打包封装 芯片制造的基础工艺 增层——光刻——掺杂——热处理 5、high-k技术

微电子学与固体电子学.doc

微电子学与固体电子学 080903 (一级学科:电子科学与技术) 本学科是电子科学与技术一级学科下属的二级学科, 是2003年由国务院学位办批准的博士学位授予点。 本学科在信息科学的大领域内, 紧跟微电子学学科发展方向, 研究微电子与固体电子器件物理、超大规模集成电路、微波集成技术以及新型的半导体材料与器件。主要包括亚微米、深亚微米集成电路的设计、SOC、微处理器系统结构、模拟电路系统和数字处理系统的设计。新型半导体材料以及新型微电子器件研究等。主要的研究方向有: 1. 深亚微米集成电路设计:设计0.25微米及其以下特征尺寸的数字集成系统, 如0.18um、0.15um 的数字系统设计, 以及超深亚微米如90um的高速超大型系统的设计。 2. SOC设计及微处理器系统结构研究:单片系统如单片通信机中的视频系统及其快速变频系统的设计技术。多处理器协同处理(超大容量、高速信号/数据处理)系统设计研究。 3. 混合信号集成电路设计:模拟和数字处理系统(如手机及GPS接收机电路等系统设计)混合集成电路设计。 4. 微波集成技术:微波电路、微波网络、微波集成电路以及微波与光波相互作用机理的研究。 5. 半导体材料与器件:纳米、能源、热/电/光材料的研究和开发,新型MEMS微型电源、制冷器件的研究。 一、培养目标 要求本学科博士学位获得者德、智、体全面发展。热爱祖国, 拥护中国共产党的领导, 认真学习马列主义、毛泽东思想和邓小平理论, 遵纪守法, 为人正直, 品行端正, 有较强的事业心, 积极为建设祖国服务。在微电子学与固体电子学学科领域内具有坚实宽广的基础理论和系统深入的专业知识, 对本学科研究前沿和发展趋势具有系统、深入的了解和把握;掌握相应实验技术和计算机技能, 至少熟练掌握一门外语;有严谨、求实的科学态度和工作作风, 能独立从事并领导、组织相关学科的科学研究, 对本学科的某一方面有较深入的研究并有创新性的研究成果, 具备成为学术带头人或项目负责人的基本素质, 能胜任科研机构、高等院校及产业部门的科研、教学、工程设计、开发或管理工作。 二、课程设置 1.硕士起点博士课程 ·97·

电子科大微电子器件--后摩尔时代的新型微电子器件

后摩尔时代的新型微电子器件

摘要 随着半导体产业的不断发展,摩尔定律已经无法正确的对其进行预测,它的局限性在如今的后摩尔时代逐渐体现出来,微电子技术中的任何物理过程都必须遵守物理规律的限制,这些物理规律的存在使得摩尔定律陷入了瓶颈期。 摩尔定律的逐渐失效预示着后摩尔时代的到来,所谓的后摩尔时代,就是业者不再以追求更大效能的芯片为尚,而是强调多元化与实用性的原则。也就是说,产品能发挥实际效用就是最好的质量,也是最具经济价值的东西。本文针对后摩尔时代的微电子器件研制过程中的材料、设计、技术、封装展开讨论,给出后摩尔时代的相关微电子器件前沿知识。 关键词:后摩尔时代;微电子;材料;技术; 1摩尔定律及后摩尔定律 摩尔定律由仙童公司的创始人之一的摩尔提出,他指出:集成电路的集成度,每18个月增加一倍,即集成度每三年翻两番,特征尺寸缩小,而且集成电路芯片的需求量也以相同的速度增加,在集成电路性能提高的同时价格下降。

然而,微电子技术中的任何物理过程必然遵循物理规律的限制,这些限制包括在电磁学、量子力学测不准关系、热力学等方面的限制,它们对信号的传输速度、器件开关转换的器件功率、器件开关引起的能量变化、集成系统能量耗散和热量产生等形成限制。这些基本的物理限制是不可逾越的,可以说是集成电路技术的物理极限。其次,微电子学的大部分理论建立在经典物理理论基础之上,随着器件特征尺寸缩小,量子效应变得显著,这些传统的微电子学理论需要利用量子力学理论对其进行改造。 同样,在材料,资金,技术等发面,摩尔定律的局限性依然存在。 因此,国际半导体技术路线图组织(ITRS)在2005年的技术路线图中,即提出了“后摩尔定律”(More-than-Moore)的概念,提出未来微电子产业发展方向之一是按“后摩尔定律”的多重技术创新应用向前发展,即在产品多功能化(功耗、带宽等)需求下,将硅基CMOS和非硅基等技术相结合,以提供完整的解决方案来应对和满足层出不穷的新市场发展。 2后摩尔时代的微电子研究方向 首先,在CMOS工艺上,原始的按比例缩小将不再适用,新的材料系统和器件架构需要突破比例缩小的壁垒,我们需要在引入高介电常数介质材料的同时,抑制带隙变窄带来的隧穿电流,还要控制短沟效应来权衡迁移率和漏电功耗。 其次,在装配与封装中,SIP封装技术成为热门,其中,硅通孔(TSV)是解决3D系统集成的一种有效方案。TSV工艺的制造流程可粗略分为通孔先行和通孔后行两火类。对这两种工艺而言,其关键工序均集中在:TSV刻蚀、介质沉积、阻挡层/种子层沉积、铜填充以及表面平坦化。通常芯片被固定在载体(玻璃或陪衬硅片)上并将厚度减薄至30~125 ,这势必引入包含热预算控制在内的诸多挑战。 在整个TSV生产流程中最具挑战且代价最高的工艺是阻挡层的沉积以及随后的通孔金属填充。一个良好的铜扩散阻挡层(如钽或钛)是必不可少的,同时连续的种子层对铜的填充效果至关重要。填充工艺必须具有高速率的特点(为了降低成本),且在整个芯片内均匀性良好,这样才能保证平坦化后表面特性仍能满足要求。 再者,在材料方面,因为硅材料的加工极限一般认为是10nm线宽,受物理原理的制约,小于10nm后不太可能生产出性能稳定、集成度更高的产品。可能的替代方案是使用电子迁移率更高、尺寸更小的碳纳米管及石墨烯,二者具有相似的性质,都可以用于制作性能优良

微电子工艺技术

课程简介 课程号:11194050 课程名称:微电子工艺技术英文名称:Microelectronics Technology 周学时:3.0-0.0学分:3 预修要求:微电子学、固体物理与半导体物理、集成电路 内容简介: 了解集成电路制造工艺技术是从事集成电路设计、制造和研究人员所必须的。为此所开设的微电子工艺技术课程,是微电子技术专业的一门必修课。通过本课程的学习,使学生对半导体器件和半导体集成电路的制造工艺及原理、工艺设备及工艺流程有一个较为完整和系统的概念,並具有一定的工艺分析和设计以及解决工艺问题和提高产品质量的能力。是一门与实际联系紧密的课程。 主要内容包括:微电子加工工艺环境及衬底制备技术;扩散和离子注入两种搀杂技术的原理、杂质分布的数学描述和具体工艺条件的选取和计算;外延和氧化、PVD等薄膜生长技术的原理、工艺过程和影响质量的诸因素;光刻和刻蚀微细图形转移技术;集成电路工艺整合等问题。 选用教材或参考书: 教材:《ULSI Technology》,C.Y.Chang,Publisher: McGraw-Hill Science/Engineering/Math;ASIN: 0070630623 ;January 12, 1996,Editions: 2nd 主要参考书: 1. 《Introduction to Microelectronic Fabrication》(2nd Edition) ,Richard C. Jaeger,Prentice Hall,October 17, 2001,ISBN: 020******* 2. 《Silicon VLSI Technology:Fundemantals, Practice, and Modeling》Peter B.Griffin Publisher: Prentice Hall; ISBN: 0130850373 ; 1 edition (July 14, 2000)

微电子学与固体电子学博士生培养方案

微电子学与固体电子学——电子科技大 学博士生培养方案 2006-1-15 15:31:50 电子科技大学考研共济网 ·[考研一站式]电子科技大学硕士招生相关文章索引·[考研一站式]电子科技大学硕士专业课试题、[订购]考研参考 书、专业目录 微电子学与固体电子学是电子科学与技术与信息科学技术的先导和基础,是我国二十一世纪重点发展的学科之一。主要研究半导体物理与固体物理,电子材料与固体电子元器件,超大规模集成电路的设计与制造技术,系统芯片技术,电路组件与系统,微机电系统等。它涉及到微电子学与固体电子学的理论,信息的获取、存储、处理与控制,并且和电路与系统、通信与信息系统、信号与信息处理、电子工程学、物理电子学、电磁场与微波技术、材料科学与工程、自动控制以及计算机科学与技术等多个学科有着密切的联系。这一学科的发展非常迅速,目前已进入了以超大规模集成电路为主要标志的发展阶段。其主要发展方向是超深亚微米技术,系统芯片集成技术,量子电子器件与纳米器件电子学以及微机电系统。

我校本学科是国家重点学科,有一支以科学院院士陈星弼教授为学科带头人,以长江学者特聘教授、博士生导师、教授、副教授以及一批青年博士、硕士组成的学术队伍,在新型半导体功率器件与新型智能集成电路方面研究独具特色,一些工作在国内外享有盛誉。并与国内外相关的学校和研究所有着广泛的联系。 一、培养目标 本学科博士学位获得者应具有微电子与固体电子学方面坚实宽广的基础理论和系统深入的专业知识(数学,固体物理,包括半导体、电介质与磁性材料等,超大规模集成电路,电子材料与固体电子元器件,电路与系统,微电子系统集成,集成固体电路组件与系统,计算机技术等)和较强的运用计算机和仪器设备的能力。对本学科的某一方面有深入的研究,并有创新性的研究成果。至少熟练掌握一门外语。有严谨求实的科学态度和工作作风。应能独立从事并能领导、组织科学研究或国民经济建设有意义的研究或开发课题,能胜任科研机构,产业部门和高等院校的研究开发,工程技术,教学或管理工作。 博士学位获得者应政治合格,热爱祖国,热爱人民,献身于伟大祖国的社会主义建设事业。 二、研究方向 1.新型功率半导体器件与集成电路和系统; 2.大规模集成电路与系统; 3.专用集成电路与系统; 4.系统芯片集成技术;

微电子工艺习题参考解答

CRYSTAL GROWTH AND EXPITAXY 1.画出一50cm 长的单晶硅锭距离籽晶10cm 、20cm 、30cm 、40cm 、45cm 时砷的掺杂分布。(单晶硅锭从融体中拉出时,初始的掺杂浓度为1017cm -3) 2.硅的晶格常数为5.43?.假设为一硬球模型: (a)计算硅原子的半径。 (b)确定硅原子的浓度为多少(单位为cm -3)? (c)利用阿伏伽德罗(Avogadro)常数求出硅的密度。 3.假设有一l0kg 的纯硅融体,当硼掺杂的单晶硅锭生长到一半时,希望得到0.01 Ω·cm 的电阻率,则需要加总量是多少的硼去掺杂? 4.一直径200mm 、厚1mm 的硅晶片,含有5.41mg 的硼均匀分布在替代位置上,求: (a)硼的浓度为多少? (b)硼原子间的平均距离。 5.用于柴可拉斯基法的籽晶,通常先拉成一小直径(5.5mm)的狭窄颈以作为无位错生长的开始。如果硅的临界屈服强度为2×106g/cm2,试计算此籽晶可以支撑的200mm 直径单晶硅锭的最大长度。 6.在利用柴可拉斯基法所生长的晶体中掺入硼原子,为何在尾端的硼原子浓度会比籽晶端的浓度高? 7.为何晶片中心的杂质浓度会比晶片周围的大? 8.对柴可拉斯基技术,在k 0=0.05时,画出C s /C 0值的曲线。 9.利用悬浮区熔工艺来提纯一含有镓且浓度为5×1016cm -3的单晶硅锭。一次悬浮区熔通过,熔融带长度为2cm ,则在离多远处镓的浓度会低于5×1015cm -3? 10.从式L kx s e k C C /0)1(1/---=,假设k e =0.3,求在x/L=1和2时,C s /C 0的值。 11.如果用如右图所示的硅材料制造p +-n 突变结二极管,试求用传统的方法掺杂和用中子辐照硅的击穿电压改变的百分比。 12.由图10.10,若C m =20%,在T b 时,还剩下多少比例的液体? 13.用图10.11解释为何砷化镓液体总会变成含镓比较多? 14.空隙n s 的平衡浓度为 Nexp[-E s /(kT)],N 为半导体原子的浓度,而E s 为形成能量。计算硅在27℃、900℃和1 200℃的n s (假设E s =2.3eV). 15.假设弗兰克尔缺陷的形成能量(E f ) 为1.1eV ,计算在27℃、900℃时的缺陷密度.弗兰克尔缺陷的平衡密度是错误!未找到

微电子制造工艺课程教学大纲

《微电子制造工艺》课程教学大纲 一、课程说明 (一)课程名称、所属专业、课程性质、学分; 课程名称:微电子制造工艺 所属专业:微电子科学与工程 课程性质:专业必修课 学分: 4 (二)课程简介、目标与任务; 本课程作为微电子科学与工程专业的专业必修课,是半导体制造工艺的基础。主要介绍半导体制造相关的全部基础技术信息,以及制造厂中的每一道制造工艺,包括硅片氧化,淀积,金属化,光刻,刻蚀,离子注入和化学机械平坦化等内容。 该课程的目的使学生了解产业变化历史中的所有工艺和设备,以及每道具体工艺的技术发展的现状及发展趋势。 (三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接; 上本课程之前或者同时应了解半导体物理的相关知识,以便为本课程打下基础;同时本课程又是集成电路分析与设计,以及微电子制造工艺专业实验及实习的基础。 (四)教材与主要参考书。 本课程所使用的教材是《半导体制造技术》,Michael Quirk, Julian Serda著,韩郑生等译,电子工业出版社。 主要参考书: 《半导体器件物理与工艺》施敏苏州大学出版社 《硅集成电路工艺基础》陈力俊复旦大学出版社 《芯片制造-半导体工艺制程实用教程》电子工业出版社 《集成电路制造技术-原理与实践》电子工业出版社 《超大规模集成电路技术基础》电子工业出版社 《半导体器件基础》电子工业出版社 《硅集成电路工艺基础》北京大学出版社 二、课程内容与安排 第一章半导体产业介绍(3学时) 第二章半导体材料特性(3学时)

第三章器件技术(3学时) 第四章硅和硅片制备(5学时) 第五章半导体制造中的化学品(3学时) 第六章硅片制造中的玷污控制(3学时) 第七章测量学和缺陷检查(3学时) 第八章工艺腔内的气体控制(3学时) 第九章集成电路制造工艺概况(5学时) 第十章氧化(6学时) 第十一章淀积(5学时) 第十二章金属化(5学时) 第十三章光刻:气相成底膜到软烘(4学时) 第十四章光刻:对准和曝光(4学时) 第十五章光刻:光刻胶显影和先进的光科技术(4学时) 第十六章刻蚀(5学时) 第十七章离子注入(4学时) 第十八章化学机械平坦化(4学时) (一)教学方法与学时分配 采用多媒体课件与板书相结合的课堂教学方法,基于学生便于理解接受的原 则,对不同讲授内容给予不同方式的侧重。学时分配详见课程内容与安排。 (二)内容及基本要求 主要内容:本章属于引言章节,主要介绍半导体产业的历史,现状及发展趋势。要求掌握和了解集成电路制造以及半导体发展的趋势。 【重点掌握】:硅和硅片制备,氧化,淀积,光刻技术 【掌握】:芯片制备过程中的清洗,金属化,刻蚀,离子注入,化学机械平坦化 【了解】:器件技术,半导体制造中的化学品及玷污 【一般了解】:测量学和缺陷检查,工艺腔内的气体控制 【难点】:光刻过程及离子注入 (重点掌握、掌握、了解、一般了解四个层次可根据教学内容和对学生的具体要求适当减少,但不得少于两个层次) 制定人:陶春兰 审定人: 批准人: 日期:

微电子学与固体电子学

微电子学与固体电子学 (专业代码:080903 授予工学硕士学位) 一、培养目标 本专业培养的研究生应具有良好的品德和积极进取、团结协作的精神;热爱祖国,愿意为祖国的强盛和人民的幸福发挥自己的聪明才智;遵纪守法,具有较强的事业心和责任感;身心健康。 1.掌握集成电路设计理论与技术学科所规定的基础理论,具有扎实的集成电路设计与分析、现代电子技术建模和信息系统基本理论基础,具有扎实的集成电路及其应用技术基本功。 2.了解本学科的学科体系和前沿发展动态,并具有本学科基础理论在工程实际中综合应用的研究能力。 3.对所从事的研究方向有深刻认识,对研究生论文所涉及的理论和技术体系应有相当深度的认识。 4.本学科所培养的硕士研究生应能从事集成电路研究与设计工作,并能满足电子与信息领域工程与技术研发要求。 5.学位获得者应具有严谨求实的工作态度和科学作风。 6.本专业的学位获得者应具有第一外语的听、说、读、写的一般能力。 二、学科、专业及研究方向简介 微电子与固体电子学专业是电子科学与技术的重要学科方向。本专业以培养集成电路设计理论与技术研究和应用的高级人才为目标,以工业应用为背景。因此,通信、电子、控制、计算机、电气工程等专业的本科毕业生均可报考。本专业配备有集成电路设计实验室、集成电路测试实验室、工作站实验室、研究生专业实验室等,提供了各种与本专业培养方向有关的实验技术和手段。本专业的硕士研究生在学习期间,需要学习现代电路理论、现代电子技术、半导体器件物理基础及工艺、集成电路设计基本理论、集成电路验证的理论与方法、SoC设计方法学等专业课程。同时,还必须选修有关通信、控制、电气工程、生物医学工程或计算机工程等专业的相关课程。 本学科有工学硕士学位授予权,包括3个主要学科分支: 1.模拟/射频集成电路与系统设计。 本研究方向以CMOS模拟/射频集成电路与系统设计、测试与分析技术为研究目标,以全定制CMOS模拟/射频、混合信号集成电路为主要研究内容,重点研究A/D和D/A及射频CMOS无线通信收发机系统芯片集成电路设计。 2.数字集成电路设计与分析。 本研究方向以现代超大规模数字集成电路设计为主要研究目标,以面向现代通信系统、网络安全及相关信息领域的应用为背景,重点研究数字集成电路、SoC设计理论与方法及其测试与分析技术。 3.微电子器件及工艺。 本研究方向以现代微纳器件及系统为主要研究目标,以面向信息、国防、能源、生物医疗等领域的应用为背景,重点研究新型微纳传感器、微光机电系统、生物微机电系统、射频微机电系统的设计理论与方法。 三、培养方式及学习年限 1、培养方式: 硕士生的培养方式为导师负责制,采用理论学习、实验研究和工程应用相结合的培养方式。学生在学期间,除学习基本学位课程外,还必须具有不少于40学时的设计性实验课程。实验课程中的硬件设计和调试实验技术不少于30学时。本学科的硕士研究生在校期间

相关文档
相关文档 最新文档