文档库 最新最全的文档下载
当前位置:文档库 › 分支限界法解01背包问题

分支限界法解01背包问题

分支限界法解01背包问题
分支限界法解01背包问题

分支限界法解01背包问题

学院:网研院姓名:XXX 学号:2013XXXXXX 一、分支限界法原理

分支限界法类似于回溯法,也是在问题的解空间上搜索问题解的算法。一

般情况下,分支限界法与回溯法的求解目标不同。回溯法的求解目标是找出解空间中满足约束条件的所有解;而分支限界法的求解目标则是找出满足约束条件的一个解,或是在满足约束条件的解中找出使某一目标函数值达到极大或极小的解,即在某种意义下的最优解。

由于求解目标不同,导致分支限界法与回溯法对解空间的搜索方式也不相同。回溯法以深度优先的方式搜索解空间,而分支限界法则以广度优先或以最小耗费优先的方式搜索解空间。

分支限界法的搜索策略是,在扩展结点处,先生成其所有的儿子结点(分支),然后再从当前的活结点表中选择下一扩展结点。为了有效地选择下一扩展结点,加速搜索的进程,在每一个活结点处,计算一个函数值(限界),并根据函数值,从当前活结点表中选择一个最有利的结点作为扩展结点,使搜索朝着解空间上有最优解的分支推进,以便尽快地找出一个最优解。

常见的分支限界法有如下两种:

队列式(FIFO)分支限界法:按照先进先出原则选取下一个节点为扩展节点。活结点表是先进先出队列。FIFO分支限界法搜索策略:

◆一开始,根结点是唯一的活结点,根结点入队。

◆从活结点队中取出根结点后,作为当前扩展结点。

◆对当前扩展结点,先从左到右地产生它的所有儿子,用约束条件检查,

把所有满足约束函数的儿子加入活结点队列中。

◆再从活结点表中取出队首结点(队中最先进来的结点)为当前扩展结点,

重复上述过程,直到找到一个解或活结点队列为空为止。

LC(least cost)分支限界法(优先队列式分支限界法):按照优先队列中规定的优先级选取优先级最高的节点成为当前扩展节点。活结点表是优先权队列,LC分支限界法将选取具有最高优先级的活结点出队列,成为新的扩展节点。优

先队列式分支限界法搜索策略:

◆对每一活结点计算一个优先级(某些信息的函数值);

◆根据这些优先级从当前活结点表中优先选择一个优先级最高(最有利)

的结点作为扩展结点,使搜索朝着解空间树上有最优解的分支推进,以

便尽快地找出一个最优解。

◆再从活结点表中下一个优先级别最高的结点为当前扩展结点,重复上述

过程,直到找到一个解或活结点队列为空为止。

二、01背包问题简介

01背包问题假设有一个容量为c的背包,有n件物品,每件物品有重量w

和价值v,求解怎样往背包里装物品能够在不超出背包容量c的情况下获得最大价值(本实验中物品的w和v都是大于0的实数,可以是整数也可以是浮点数)。

三、FIFO分支限界法解01背包问题

1.算法

●输入背包容量capacity、物品数量count、物品的重量数组weights

和物品的价值数组values,根据物品单位价值(value/weight)从

大到小构造一个新数组,数组元素(OriginNode)有weight、value

和valuePerWeight属性,根据该排序数组构造问题的解空间树(完

全二叉树);

●定义一个FIFO队列(队列元素是节点,见下文),队列可以在队尾插

入节点和在队头删除节点;

●定义节点(ArrayNode),节点是问题的解空间树上的点,它的属性

有当前价值currentValue、当前重量currentWeight、上限价值

upboundValue、节点对应的选择情况nodeChoses(0表示不选,1

表示选,如“1 0 1”表示该节点选择了物品1和物品3,没有选择

物品2)和节点在问题解空间树上的层次nodeCount(0 ~ n);

●定义一个计算节点价值上限的函数upBound(),upBound函数的计算

规章是:

价值上限=节点现有价值+背包剩余容量*剩余物品的最大单位重量价值

●定义一个全局的currentMaxValue记录程序目前取得的最大价值;

●将一个空节点推入队列,空节点的当前价值、当前重量、节点层次

均为0,全局的currentMaxValue初始化为0,使用upBound函数计

算几点的价值上限并使用该属性初始化节点的upboundValue属性;

●当队列不为空时,一直重复下述操作:从队首取得头节点,如果头

节点的上限价值upboundValue比全局的currentMaxValue要大,则

表明头节点的子节点中可能有最优节点,取头节点在问题的解空间

树上的左子节点和右子节点,若左子节点和右子节点的重量没有超

出背包容量且它们的upboundValue大于全局的currentMaxValue,

将该子节点插入队尾,否则不插入,同时若子节点的当前价值

currentValue大于全局的currentMaxValue,更新currentMaxValue。

如果头结点的上限价值upboundValue比全局的currentMaxValue要

小,则表明头结点及其子节点不可能有最优节点,将其舍弃。若头

结点的当前价值currentValue正好等于全局的currentMaxValue且

头结点的层次nodeCount等于物品数量n,则表明头结点是问题的解

空间树上的叶子,该头结点可能就是最优节点,将其存储在全局的

currentMaxNode属性中(随着队列遍历的进行当前存起来的节点仍

可能被更优的节点覆盖)。

当队列为空时,表明所有的可能情况已被处理,此时全局的

currentMaxNode属性指向了最优的节点,该节点的currentValue

属性即为背包问题的最优解。

2.算法复杂度

在最坏的情况下所有的节点都入队,最后一个节点才是最优解,这种情况下时间复杂度是指数阶。最好的情况是只装单位价值最大的物品,其余分支都不符合条件被截去这种情况下时间复杂度是常数时间。但分支限界法本质上还是穷举法,平均时间复杂度仍是指数阶。

空间复杂度的分析类似时间复杂度,也是指数阶。

3.可能的改进

在本次实验中,即便取得了可能是最优解的问题空间树上的叶子节点的时候仍然会遍历其它节点以保证得到的是最优解,当对正确率的要求不是很高的时候,可以在取得第一个可能是最优解的节点时候便停止算法。

本次实验使用的是FIFO分支限界法,若使用优先队列式分支限界法(LC),在空间复杂度上的性能肯定会得到改善,若不要求结果十分准确,使用优先队列取得第一个可能节点时候便停止算法,则在时间复杂度上的性能应该也能优于FIFO分支限界(优先队列采取的是深度遍历,能更快到达叶子节点)。

四、算法实现框架

本次实验使用的语言是java,OriginNode类用来按价值重量比构造排序数组,sort方法用于数组排序(出于便于实现的考虑使用了冒泡排序,改成快速

排序可获得更好的性能)。

ArrayNode类用于构造问题的解空间树上的节点。

FIFOBBKnapsack类是程序的主类,定义了currentMaxValue等属性,起全局变量的作用供节点共同维护,upBound方法用于计算节点价值上限。

在FIFOBBKnapsack类的main方法里定义了分支限界法的逻辑,截取主要部分如下。

五、总结

在本科的时候曾经做过背包问题的项目,所以本次实验我选择了01背包问题该题目。但在做本次实验之前,我对分支限界法的原理并不是很理解,经过查看课件及网上查找资料,同时结合自己对回溯法等的理解,我对分支限界法有了一个较好的理解,知道了两种主要的分支限界法及分支限界法如何应用于解01背包问题。在查找资料的过程中,我查看了许多网上的别人的代码实现,但大多都存在着问题或者混淆使用了两种分支限界法,最后通过参考别人的部分代码以及结合自己对FIFO分支限界法的理解,使用了java语言完成了该实验。通过本次试验,我基本上掌握了分支限界法解0-1背包问题的原理,同时锻炼了自己动手编写及调试代码的能力,收获良多。

程序运行示例:

import java.util.LinkedList;

import java.util.Scanner;

public class FIFOBBKnapsack {

int capacity;

int count;

float[] weights;

float[] values;

OriginNode[] originNodes;

float currentMaxValue;

ArrayNode currentMaxNode;

private float upBound(ArrayNode node) {

float weightLeft = this.capacity - node.currentWeight;

float bound = node.currentValue;

int t = node.nodeCount;

while (t < this.count && originNodes[t].weight <= weightLeft) {

weightLeft -= originNodes[t].weight;

bound += originNodes[t].value;

t++;

}

if (t < this.count)

bound += (originNodes[t].value / originNodes[t].weight)

* weightLeft;

return bound;

}

public static void main(String[] args) {

while (true) {

Scanner in = new Scanner(System.in);

FIFOBBKnapsack knapsack = new FIFOBBKnapsack();

System.out.println("******FIFO分支限界法解01背包问题开始******");

// 输入背包容量

System.out.println("---请输入背包容量(正整数)并回车---");

knapsack.capacity = in.nextInt();

// 输入物品数量

System.out.println("---请输入物品数量(正整数)并回车---");

knapsack.count = in.nextInt();

knapsack.weights = new float[knapsack.count];

knapsack.values = new float[knapsack.count];

// 构造物品重量数组

System.out.println("---请输入物品重量数组(空格隔开)并回车---");

for (int i = 0; i < knapsack.count; i++) {

knapsack.weights[i] = in.nextFloat();

}

// 构造物品价值数组

System.out.println("---请输入物品价值数组(空格隔开)并回车---");

for (int i = 0; i < knapsack.count; i++) {

knapsack.values[i] = in.nextFloat();

}

// 排序

knapsack.originNodes = new OriginNode[knapsack.count];

for (int i = 0; i < knapsack.count; i++) {

knapsack.originNodes[i] = new OriginNode(knapsack.weights[i], knapsack.values[i]);

}

OriginNode.sort(knapsack.originNodes);

// FIFO队列

LinkedList arrayNodeList = new LinkedList(); ArrayNode headNode = new ArrayNode(0, 0, "", 0);

headNode.upboundValue = knapsack.upBound(headNode); knapsack.currentMaxValue = 0;

knapsack.currentMaxNode = null;

arrayNodeList.push(headNode);

while (!arrayNodeList.isEmpty()) {

ArrayNode firstNode = arrayNodeList.pop();

if (firstNode.nodeCount == knapsack.count

&& firstNode.currentValue == knapsack.currentMaxValue) { knapsack.currentMaxNode = firstNode;

continue;

}

if (firstNode.upboundValue >= knapsack.currentMaxValue

&& firstNode.nodeCount < knapsack.count) {

ArrayNode leftNode = new ArrayNode(

firstNode.currentWeight

+

knapsack.originNodes[firstNode.nodeCount].weight,

firstNode.currentValue

+

knapsack.originNodes[firstNode.nodeCount].value,

firstNode.nodeChoices + " 1",

firstNode.nodeCount + 1);

leftNode.upboundValue = knapsack.upBound(leftNode);

if (leftNode.currentWeight <= knapsack.capacity

&& leftNode.upboundValue > knapsack.currentMaxValue) {

arrayNodeList.add(leftNode);

if (leftNode.currentValue > knapsack.currentMaxValue) {

knapsack.currentMaxValue = leftNode.currentValue;

}

}

ArrayNode rightNode = new ArrayNode(

firstNode.currentWeight, firstNode.currentValue,

firstNode.nodeChoices + " 0",

firstNode.nodeCount + 1);

rightNode.upboundValue = knapsack.upBound(rightNode);

if (rightNode.upboundValue >= knapsack.currentMaxValue) {

arrayNodeList.add(rightNode);

}

}

}

System.out.println("背包能装下的最大价值是:"

+ knapsack.currentMaxNode.currentValue + " 此时背包装的重量是:"

+ knapsack.currentMaxNode.currentWeight);

System.out.println("物品的选择情况是:");

System.out.print("物品重量:");

for (int i = 0; i < knapsack.count; i++) {

System.out.print(knapsack.originNodes[i].weight + " ");

}

System.out.println("");

System.out.print("物品价值:");

for (int i = 0; i < knapsack.count; i++) {

System.out.print(knapsack.originNodes[i].value + " ");

}

System.out.println("");

System.out.print("选择情况(0表示不选1表示选):");

System.out.println(knapsack.currentMaxNode.nodeChoices);

}

}

}

// 物品的重量一定不为0,价值可以是0

class OriginNode {

float weight;

float value;

float valuePerWeight;

public OriginNode(float weight, float value) {

this.weight = weight;

this.value = value;

this.valuePerWeight = value / weight;

}

// 冒泡排序将节点按照单位价值从大到小排序

public static void sort(OriginNode[] nodes) {

OriginNode tmp = null;

for (int i = 0; i < nodes.length; i++) {

for (int j = i + 1; j < nodes.length; j++) {

if (nodes[j].valuePerWeight > nodes[i].valuePerWeight) {

tmp = nodes[i];

nodes[i] = nodes[j];

nodes[j] = tmp;

}

}

}

}

}

class ArrayNode {

float currentWeight;

float currentValue;

float upboundValue;

String nodeChoices;

int nodeCount;

public ArrayNode(float currentWeight, float currentValue, String nodeChoices, int nodeCount) {

this.currentWeight = currentWeight;

this.currentValue = currentValue;

this.nodeChoices = nodeChoices;

this.nodeCount = nodeCount;

}

}

动态规划与回溯法解决0-1背包问题

0-1背包动态规划解决问题 一、问题描述: 有n个物品,它们有各自的重量和价值,现有给定容量的背包,如何让背包里装入的物品具有最大的价值总和? 二、总体思路: 根据动态规划解题步骤(问题抽象化、建立模型、寻找约束条件、判断是否满足最优性原理、找大问题与小问题的递推关系式、填表、寻找解组成)找出01背包问题的最优解以及解组成,然后编写代码实现。 原理: 动态规划与分治法类似,都是把大问题拆分成小问题,通过寻找大问题与小问题的递推关系,解决一个个小问题,最终达到解决原问题的效果。但不同的是,分治法在子问题和子子问题等上被重复计算了很多次,而动态规划则具有记忆性,通过填写表把所有已经解决的子问题答案纪录下来,在新问题里需要用到的子问题可以直接提取,避免了重复计算,从而节约了时间,所以在问题满足最优性原理之后,用动态规划解决问题的核心就在于填表,表填写完毕,最优解也就找到。 过程: a) 把背包问题抽象化(X1,X2,…,Xn,其中 Xi 取0或1,表示第i个物品选或不选),V i表示第i个物品的价值,W i表示第i个物品的体积(重量); b) 建立模型,即求max(V1X1+V2X2+…+VnXn); c) 约束条件,W1X1+W2X2+…+WnXn (V2X2+V3X3+…+VnXn)+V1X1;

回溯算法解决0-1背包问题(DOC)

《算法分析与设计》实验报告 2015-2016年第2学期 实验班级: 学生姓名: 学号: 指导老师: 信息工程学院

实验项目名称:回溯算法解决0-1背包问题 实验日期:2016年5 月18 日 一、实验类型:□√验证性□设计性 二、实验目的 掌握0—1背包问题的回溯算法 三、实验内容及要求 给定n种物品和一背包。物品i的重量是wi,其价值为vi,背包的容量为C。问应如何选择装入背包的物品,使得装入背包中物品的总价值最大? 四、实验步骤 #include using namespace std; class Knap { friend int Knapsack(int p[],int w[],int c,int n ); public: void print() { for(int m=1;m<=n;m++) { cout<

int cw;//当前重量 int cp;//当前价值 int bestp;//当前最优值 int *bestx;//当前最优解 int *x;//当前解 }; int Knap::Bound(int i) { //计算上界 int cleft=c-cw;//剩余容量 int b=cp; //以物品单位重量价值递减序装入物品while(i<=n&&w[i]<=cleft) { cleft-=w[i]; b+=p[i]; i++; } //装满背包 if(i<=n) b+=p[i]/w[i]*cleft; return b; } void Knap::Backtrack(int i) { if(i>n) { if(bestp

算法分析与程序设计动态规划及回溯法解背包问题

动态规划法、回溯法解0-1背包问题 2012级计科庞佳奇 一、问题描述与分析 1.动态规划算法通常用于求解具有某种最优性质的问题。在这类问题中,可能会 有许多可行解。每一个解都对应于一个值,我们希望找到具有最优值的解。动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。与分治法不同的是,适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的。若用分治法来解这类问题,则分解得到的子问题数目太多,有些子问题被重复计算了很多次。如果我们能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,这样就可以避免大量的重复计算,节省时间。我们可以用一个表来记录所有已解的子问题的答案。 不管该子问题以后是否被用到,只要它被计算过,就将其结果填入表中。这就是动态规划法的基本思路。具体的动态规划算法多种多样,但它们具有相同的填表格式。 多阶段决策问题中,各个阶段采取的决策,一般来说是与时间有关的,决策依赖于当前状态,又随即引起状态的转移,一个决策序列就是在变化的状态中产生出来的,故有“动态”的含义,称这种解决多阶段决策最优化问题的方法为动态规划方法。任何思想方法都有一定的局限性,超出了特定条件,它就失去了作用。同样,动态规划也并不是万能的。适用动态规划的问题必须满足最优化原理和无后效性。1.最优化原理(最优子结构性质)最优化原理可这样阐述:一个最优化策略具有这样的性质,不论过去状态和决策如何,对前面的决策所形成的状态而言,余下的诸决策必须构成最优策略。简而言之,一个最优化策略的子策略总是最优的。一个问题满足最优化原理又称其具有最优子结构性质。2.无后效性将各阶段按照一定的次序排列好之后,对于某个给定的阶段状态,它以前各阶段的状态无法直接影响它未来的决策,而只能通过当前的这个状态。换句话说,每个状态都是过去历史的一个完整总结。这就是无后向性,又称为无后效性。3.子问题的重叠性动态规划将原来具有指数级时间复杂度的搜索算法改进成了具有多项式时间复杂度的算法。其中的关键在于解决冗余,这是动态规划算法的根本目的。动态规划实质上是一种以空间换时间的技术,它在实现的过程中,不得不存储产生过程中的各种状态,所以它的空间复杂度要大于其它的算法。 01背包是在M件物品取出若干件放在空间为W的背包里,每件物品的体积为W1,W2……Wn,与之相对应的价值为P1,P2……Pn。求出获得最大价值的方案。 2.回溯法(探索与回溯法)是一种选优搜索法,按选优条件向前搜索,以达到目 标。但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为“回溯点”。 在包含问题的所有解的解空间树中,按照深度优先搜索的策略,从根结点出发深度探索解空间树。当探索到某一结点时,要先判断该结点是否包含问题的解,如果包含,就从该结点出发继续探索下去,如果该结点不包含问题的解,则逐层向其祖先结点回溯。(其实回溯法就是对隐式图的深度优先搜索算法)。若用回溯法求问题的所有解时,要回溯到根,且根结点的所有可行的子树都要已被搜索遍才结束。

分支限界法求解背包问题

分支限界法求解背包问题 /*此程序实现,分支限界法求解背包问题,分支限界法是根据上界=当前背包的价值+背包 剩余载重* (剩余物品最大价值/质量)*/ 分支r 10 I 分S: 104 1.200060' 6 2.i/eeoe #i nclude #i nclude

#include #include #include #define MAXSIZE 20000 //#define BAGWEIGHT 200 int a[MAXSIZE] = {0}; int array[MAXSIZE] = {0}; int weightarray[MAXSIZE] = {0}; /* 存放各物品重量*/ int valuearray[MAXSIZE] = {0}; /* 存放各物品价值*/ int lastweight[MAXSIZE]={0}; int lastvalue[MAXSIZE]={0}; int qq=0; /* 上面的数组,变量都是蛮力法所用到,下面的都是分支限界法所用到*/ int BAGWEIGHT; /* 背包的载重*/ int n; /* 物品的数量*/int weightarrayb[MAXSIZE] = {0}; int valuearrayb[MAXSIZE] = {0}; float costarrayb[MAXSIZE] = {0}; int finalb[MAXSIZE] = {0}; int finalweightb[MAXSIZE] = {0}; /* 从文件读取数据*/ void readb() int nn = 1,ii = 1; int i = 1; FILE *fp; fp = fopen("in.dat","rb"); while(!feof(fp)) {

回溯法和分支限界法解决0-1背包题

0-1背包问题 计科1班朱润华 2012040732 方法1:回溯法 一、回溯法描述: 用回溯法解问题时,应明确定义问题的解空间。问题的解空间至少包含问题的一个(最优)解。对于0-1背包问题,解空间由长度为n的0-1向量组成。该解空间包含对变量的所有0-1赋值。例如n=3时,解空间为:{(0,0,0),(0,1,0),(0,0,1),(1,0,0),(0,1,1),(1,0,1),(1,1,0),(1,1,1)}然后可将解空间组织成树或图的形式,0-1背包则可用完全二叉树表示其解空间给定n种物品和一背包。物品i的重量是wi,其价值为vi,背包的容量为C。问:应如何选择装入背包的物品,使得装入背包中物品的总价值最大? 形式化描述:给定c >0, wi >0, vi >0 , 1≤i≤n.要求找一n元向量(x1,x2,…,xn,), xi∈{0,1}, ? ∑ wi xi≤c,且∑ vi xi达最大.即一个特殊的整数规划问题。 二、回溯法步骤思想描述: 0-1背包问题是子集选取问题。0-1 背包问题的解空间可以用子集树表示。在搜索解空间树时,只要其左儿子节点是一个可行节点,搜索就进入左子树。当右子树中有可能含有最优解时,才进入右子树搜索。否则,将右子树剪去。设r是当前剩余物品价值总和,cp是当前价值;bestp是当前最优价值。当cp+r<=bestp时,可剪去右子树。计算右子树上界的更好的方法是将剩余物品依次按其单位价值排序,然后依次装入物品,直至装不下时,再装入物品一部分而装满背包。 例如:对于0-1背包问题的一个实例,n=4,c=7,p=[9,10,7,4],w=[3,5,2,1]。这4个物品的单位重量价值分别为[3,2,3,5,4]。以物品单位重量价值的递减序装入物品。先装入物品4,然后装入物品3和1.装入这3个物品后,剩余的背包容量为1,只能装0.2的物品2。由此得一个解为[1,0.2,1,1],其相应价值为22。尽管这不是一个可行解,但可以证明其价值是最优值的上界。因此,对于这个实例,最优值不超过22。 在实现时,由Bound计算当前节点处的上界。类Knap的数据成员记录解空间树中的节点信息,以减少参数传递调用所需要的栈空间。在解空间树的当前扩展节点处,仅要进入右子树时才计算上界Bound,以判断是否可将右子树剪去。进入左子树时不需要计算上界,因为上界预期父节点的上界相同。 三、回溯法实现代码: #include "stdafx.h" #include using namespace std; template class Knap { template friend Typep Knapsack(Typep [],Typew [],Typew,int); private: Typep Bound(int i);

回溯法实验(0-1背包问题)

算法分析与设计实验报告第五次附加实验

附录: 完整代码(回溯法) //0-1背包问题回溯法求解 #include using namespace std; template class Knap //Knap类记录解空间树的结点信息 { template friend Typep Knapsack(Typep [],Typew [],Typew,int); private: Typep Bound(int i); //计算上界的函数 void Backtrack(int i); //回溯求最优解函数

Typew c; //背包容量 int n; //物品数 Typew *w; //物品重量数组| Typep *p; //物品价值数组 Typew cw; //当前重量 Typep cp; //当前价值 Typep bestp; //当前最后价值 }; template Typep Knapsack(Typep p[],Typew w[],Typew c,int n); //声明背包问题求解函数template inline void Swap(Type &a,Type &b); //声明交换函数 template void BubbleSort(Type a[],int n); //声明冒泡排序函数 int main() { int n ;//物品数 int c ;//背包容量 cout<<"物品个数为:"; cin>>n; cout<<"背包容量为:"; cin>>c; int *p = new int[n];//物品价值下标从1开始 int *w = new int[n];//物品重量下标从1开始 cout<<"物品重量分别为:"<>w[i]; } cout<<"物品价值分别为:"<>p[i]; } cout<<"物品重量和价值分别为:"<

蛮力法、动归、贪心、分支限界法解01背包问题剖析

算法综合实验报告 学号: 1004121206 姓名:林 一、实验内容: 分别用蛮力、动态规划、贪心及分支限界法实现对0-1背包问题的求解,并至少用两个测试用例对所完成的代码进行正确性及效率关系上的验证。 二、程序设计的基本思想、原理和算法描述: 1、蛮力法 1.1数据结构 注:结构体obj用来存放单个物品的价值和重量 typedef struct obj { int w;//物品的重量 int v;//物品的价值 }; 1.2 函数组成 void subset(int s[][10],int n):用来生成子集的函数 void judge(int s[][10], obj obj[],int mark[],int n,int c):判断子集的可行性 int getmax(int mark[],int n,int &flag):求解问题的最优解 void outputObj(int flag,int s[][10],int n):输出选择物品的情况 1.3 输入/输出设计 本程序通过键盘进行输入、屏幕进行输出。 1.4 符号名说明

符号说明 S[][]存放子集 mark[]记录子集的可行性 n物品的个数 c物品的容量 max记录背包所能产生的最大价值 flag记录能产生最大价值的子集的编号 1.5 算法描述 算法的伪代码描述如下: 输入:背包的容量c,物品的个数n,n个物品的重量 w[n],价值v[n] 输出:装入背包的物品编号以及产生的最大价值 1.初始化最大价值 max=0,结果子集 s=φ; 2.对集合{1,2,......n}的每一个子集T,执行下述操作: 2.1初始化背包的价值 v=0,背包的重量 w=0; 2.2对子集t的每一个元素j 2.2.1 如果w+wj

用回溯法解决0-1背包问题

#include int c; //背包容量 int n; //物品数 int weight[100]; //存放n个物品重量的数组 int price[100]; //存放n个物品价值的数组 int currentWeight=0; //当前重量 int currentPrice=0; //当前价值 int bestPrice=0; //当前最优值 int bestAnswer[100]; //当前最优解 int bp=0; int bA[100]; //当前最优解 int times=0; void Print(); void Backtracking(int i) { times+=1; if(i>n) { Print(); if(bestPrice>bp) { bp=bestPrice; for(int j=1;j<=n;j++) bA[j]=bestAnswer[j]; } return; } if(currentWeight+weight[i]<=c) { //将物品i放入背包,搜索左子树 bestAnswer[i] = 1; currentWeight += weight[i]; bestPrice += price[i]; Backtracking(i+1); //完成上面的递归,返回到上一结点,物品i不放入背包,准备递归右子树 currentWeight -= weight[i]; bestPrice -= price[i]; } bestAnswer[i] = 0; Backtracking(i+1); } void Print() {

回溯法和分支限界法解决0-1背包题

0-1背包问题 计科1班朱润华2012040732 方法1:回溯法 一、回溯法描述: 用回溯法解问题时, 应明确定义问题的解空间。 问题的解空间至少包含问题的一个 (最 优)解。对于0-1背包问题,解空间由长度为 n 的0-1向量组成。该解空间包含对变量的所 有 0-1 赋值。例如 n=3 时,解空间为: {(0, 0, 0), (0, 1, 0), (0, 0, 1) , (1, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0), (1 , 1, 1) 然后可将解空间组织成树或图的形式, 0-1背包则可用完全二叉树表示其解空间给定 n 种物品和一背包。物品i 的重量是wi ,其价 值为vi ,背包的容量为 C 。问:应如何选择装入背包的物品,使得装入背包中物品的总价值 最大? 形式化描述:给定 c >0, wi >0, vi >0 , 1 w i < n.要求找一 n 元向量(x1,x2,…,xn,), xi € {0,1}, ? 刀wi xi w c,且刀vi xi 达最大.即一个特殊的整数规划问题。 二、回溯法步骤思想描述: 0-1背包问题是子集选取问题。0-1背包问题的解空间可以用子集树表示。在搜索解空 间树时,只要其 左儿子节点是一个可行节点, 搜索就进入左子树。当右子树中有可能含有最 优解时,才进入右子树搜索。否则,将右子树剪去。设 r 是当前剩余物品价值总和, cp 是 当前价值;bestp 是当前最优价值。当 cp+r<=bestp 时,可剪去右子树。计算右子树上界的 更好的方法是将剩余物品依次按其单位价值排序, 然后依次装入物品, 直至装不下时,再装 入物品一部分而装满背包。 例如:对于 0-1 背包问题的一个实例,n=4,c=7,p=[9,10,7,4],w=[3,5,2,1] 品的单位重量价值分别为[3,2,3,5,4]。以物品单位重量价值的递减序装入物品。 品4,然后装入物品3和1.装入这3个物品后,剩余的背包容量为1,只能装 由此得一个解为[1,0.2,1,1],其相应价值为22。尽管这不是一个可行解,但可以证明其价 值是最优值的上界。因此,对于这个实例,最优值不超过 在实现时,由 Bound 计算当前节点处的上界。类 Knap 的数据成员记录解空间树中的节 点信息,以减少参数传递调用所需要的栈空间。 在解空间树的当前扩展节点处, 仅要进入右 子树时才计算上界 Bound,以判断是否可将右子树剪去。进入左子树时不需要计算上界,因 为上界预期父节点的上界相同。 三、回溯法实现代码: #i nclude "stdafx.h" #in clude using n ames pace std; temp late class Knap { temp latevciass Typ ew,class Typep> friend Typep Knap sack(T ypep [],T ypew [],T yp ew,i nt); private: Typep Boun d(i nt i); 。这4个物 先装入物 0.2的物品2。 22。

回溯算法之0-1背包问题

1、实验目的 (1)掌握回溯法设计策略。 (2)通过0-1背包问学习回溯法法设计技巧2.实验内容 源程序: #include using namespace std; double c;//背包容量 int n; //物品数 double w[100];//物品重量数组 double p[100];//物品价值数组 double cw=0;//当前重量 double cp=0;//当前价值 double bestp=0;//当前最优值 double bound(int i) { double cleft,b; //计算上界 cleft=c-cw;//剩余容量 b=cp; //以物品单位重量价值递减序装入物品 while(i<=n&&w[i]<=cleft) { cleft-=w[i]; b+=p[i]; i++; } //装满背包 if(i<=n) b+=p[i]*cleft/w[i]; return b; } void Backtrack(int i) { if(i>n) { if(cp>bestp) bestp=cp; return;

} if(cw+w[i]<=c) //搜索左子树 { cw+=w[i]; cp+=p[i]; Backtrack(i+1); cp-=p[i]; cw-=w[i]; } if(bound(i+1)>bestp)//搜索右子树 Backtrack(i+1); } double Knapsack (double pp[],double ww[],double d) { int i; double TP=0,TW=0; cw=0.0;cp=0.0;bestp=0.0;//计算所有物品的重量及价值 for(i=1;i<=n;i++) { TP=TP+pp[i]; TW=TW+ww[i]; } if(TW<=d)//所有物品装入背包 bestp=TP; else { Backtrack(1); } return bestp; }; int main() {

0-1背包问题(分支限界法)

分支限界法——01背包问题 12软工 028 胡梦颖 一、问题描述 0-1背包问题:给定n种物品和一个背包。物品i的重量是Wi,其价值为Vi,背包的容量为C。应如何选择装入背包的物品,使得装入背包中物品的总价值最大?在选择装入背包的物品时,对每种物品i只有2种选择,即装入背包或不装入背包。不能将物品i装入背包多次,也不能只装入部分的物品i。 二、问题分析 分支限界法类似于回溯法,也是在问题的解空间上搜索问题解的算法。一般情况下,分支限界法与回溯法的求解目标不同。回溯法的求解目标是找出解空间中满足约束条件的所有解,而分支限界法的求解目标则是找出满足约束条件的一个解,或是在满足约束条件的解中找出使某一目标函数值达到极大或极小的解,即在某种意义下的最优解。由于求解目标不同,导致分支限界法与回溯法对解空间的搜索方式也不相同。回溯法以深度优先的方式搜索解空间,而分支限界法则以广度优先或以最小耗费优先的方式搜索解空间。分支限界法的搜索策略是,在扩展结点处,先生成其所有的儿子结点(分支),然后再从当前的活结点表中选择下一扩展结点。为了有效地选择下一扩展结点,加速搜索的进程,在每一个活结点处,计算一个函数值(限界),并根据函数值,从当前活结点表中选择一个最有利的结点作为扩展结点,使搜索朝着解空间上有最优解的分支推进,以便尽快地找出一个最优解。这种方式称为分支限界法。人们已经用分支限界法解决了大量离散最优化的问题。 三.源代码 #include #include #define MaxSize 100 //结点数的最大值 typedef struct QNode

回溯法解0 1背包问题实验报告

实验4 回溯法解0-1背包问题 一、实验要求 1.要求用回溯法求解0-1背包问题; 要求交互输入背包容量,物品重量数组,物品价值数组;2.要求显示结果。3. 二、实验仪器和软件平台 仪器:带usb接口微机 软件平台:WIN-XP + VC++ 三、实验源码 #include \ #include #include #include<> #include using namespace std; template class Knap { public: friend void Init(); friend void Knapsack(); friend void Backtrack(int i); friend float Bound(int i); bool operator<(Knap a)const { if(fl< return true; else return false; } private: ty w; ; cout<>bag[i].v; for(i=0;i

{ bag[i].flag=0; bag[i].kk=i; bag[i].fl=*bag[i].v/bag[i].w; } }void Backtrack(int i){cw+=bag[i].w;if(i>=n) <=c) lag=1; cp+=bag[i].v; Backtrack(i+1); cw-=bag[i].w; cp-=bag[i].v; } if(Bound(i+1)>bestp)lag=0; Backtrack(i+1); }}<=cleft){; b+=bag[i].v; i++; } /bag[i].w * cleft; return b; } void Knapsack() k]=bag[k].flag; lag*bag[k].v; //价值累加 } cout<

实验4用分支限界法实现0-1背包问题

实验四用分支限界法实现0-1背包问题 一.实验目的 1.熟悉分支限界法的基本原理。 2.通过本次实验加深对分支限界法的理解。 二.实验内容及要求 内容:?给定n种物品和一个背包。物品i的重量是w,其价值为v,背包容量为c。问应该如何选择装入背包的物品,使得装入背包中物品的总价值最大? 要求:使用优先队列式分支限界法算法编程,求解0-1背包问题 三.程序列表 #inelude #include using namespacestd; #defi ne N 100 class HeapNode // 定义HeapNode结点类 { public : double upper, price, weight; //upper 为结点的价值上界,price 是结点所对应的价值,weight 为结点所相应的重量 int level, x[ N]; //活节点在子集树中所处的层序号 }; double MaxBound(int i); double Kn ap(); void AddLiveNode( double up, double cp, double cw, bool ch, int level); //up 是价值上界, cp是相应的价值,cw是该结点所相应的重量,ch是ture or false

stack High; // 最大队High double w[ N], p[ N;〃把物品重量和价值定义为双精度浮点数 double cw, cp, c; 〃cw为当前重量,cp为当前价值,定义背包容量为 c int n; //货物数量为 int main() { cout << "请输入背包容量:"<< endl; cin >> c; cout << "请输入物品的个数:"<< endl; | cin >> n; cout << "请按顺序分别输入物品的重量:"<< endl; int i; for (i = 1; i <= n; i++) cin >> w[i]; //输入物品的重量 cout << "请按顺序分别输入物品的价值:” << endl; for (i = 1; i <= n; i++) cin >> p[i]; //输入物品的价值 cout << "最优值为:";| cout << Knap() << endl; //调用knap函数输岀最大价值 return 0; } double MaxBound(int k) //MaxBound 函数求最大上界 { double cleft = c - cw; // 剩余容量

回溯法解决01背包问题

回溯法是一个既带有系统性又带有跳跃性的搜索算法。它在包含问题的所有解的解空间树中按照深度优先的策略,从根节点出发搜索解空间树。算法搜索至解空间树的任一节点时,总是先判断该节点是否肯定不包含问题的解。如果肯定不包含,则跳过对以该节点为根的子树的系统搜索,逐层向其原先节点回溯。否则,进入该子树,继续按深度优先的策略进行搜索。 运用回溯法解题通常包含以下三个步骤: ?针对所给问题,定义问题的解空间; ?确定易于搜索的解空间结构; ?以深度优先的方式搜索解空间,并且在搜索过程中用剪枝函数避免无效搜索; 在0/1背包问题中,容量为M的背包装载。从n个物品中选取装入背包的物品,物品i的重量为Wi,价值为Pi。最佳装载指装入的物品价值最高,即∑PiXi(i=1..n)取最大值。约束条件为∑WiXi ≤M且Xi∈[0,1](1≤i≤n)。 在这个表达式中,需求出Xi的值。Xi=1表示物品i装入背包,Xi=0表示物品i不装入背包。 ?即判断可行解的约束条件是:∑WiXi≤M(i=0..n),Wi>0,Xi∈[0,1](1≤i≤n) ?目标最大值:max∑PiXi(i=0..n-1),Pi>0,Xi=0或1(0≤iS则前置条件错误,即背包体积输入错误,否则顺序将物品放入背包。假设放入前i件物品,背包没有装满,继续选取第i+1件物品,若该物品“太大”不能装入,则弃之继而选取下一件直到背包装满为止;如果剩余物品中找不到合适物品以填满背包,则说明“刚刚”装入的第i件

(原创精品)n=3时的0-1背包问题(回溯法)

用回溯法解决3种可选择物品的0-1背包问题当n=3时,其解空间是 {(0,0,0)(0,1,0),(0,0,1),(1,0,0),(0,1,1),(1,0,1),(1,1,0),(1,1,1)}n=3时的0-1背包问题: w=[16,15,15]p=[45,25,25]c=30 开始时,Cr=C=30,V=0,A为唯一活结点,也是当前扩展结点 扩展A,先到达B结点 Cr=Cr-w1=14,V=V+v1=45 此时A、B为活结点,B成为当前扩展结点 扩展B,先到达D Cr

Cr=30,V=0,活结点为A、C,C为当前扩展结点 扩展C,先到达F Cr=Cr-w2=15,V=V+v2=25,此时活结点为A、C、F,F成为当前扩展结点扩展F,先到达L Cr=Cr-w3=0,V=V+v3=50 L是叶结点,且50>45,皆得到一个可行解x=(0,1,1),V=50 L不可扩展,成为死结点,返回到F 再扩展F到达M M是叶结点,且25<50,不是最优解 M不可扩展,成为死结点,返回到F F没有可扩展结点,成为死结点,返回到C 再扩展C到达G Cr=30,V=0,活结点为A、C、G,G为当前扩展结点 扩展G,先到达N,N是叶结点,且25<50,不是最优解,又N不可扩展,返回到G 再扩展G到达O,O是叶结点,且0<50,不是最优解,又O不可扩展,返回到G G没有可扩展结点,成为死结点,返回到C C没有可扩展结点,成为死结点,返回到A A没有可扩展结点,成为死结点,算法结束,最优解X=(0,1,1),最优值 V=50

回溯算法——0-1背包问题

实验目的是使学生消化理论知识,加深对讲授内容的理解,尤其是一些算法的实现及其应用,培养学生独立编程和调试程序的能力,使学生对算法的分析与设计有更深刻的认识。 上机实验一般应包括以下几个步骤: (1)、准备好上机所需的程序。手编程序应书写整齐,并经人工检查无误后才能上机。 (2)、上机输入和调试自己所编的程序。一人一组,独立上机调试,上机时出现的问题,最好独立解决。 (3)、上机结束后,整理出实验报告。实验报告应包括:题目、程序清单、运行结果、对运行情况所作的分析。 实验八 回溯算法——0-1背包问题 一、实验目的与要求 1. 熟悉0-1背包问题的回溯算法。 2. 掌握回溯算法。 二、实验内容 用回溯算法求解下列“0-1背包”问题: 给定n 种物品和一个背包。物品i 的重量是w i ,其价值为v i ,背包的容量为C 。问应如何选择装入背包的物品,使得装入背包中物品的总价值最大? 三、实验步骤 1. 理解算法思想和问题要求; 2. 编程实现题目要求; 3. 上机输入和调试自己所编的程序; 4. 验证分析实验结果; 5. 整理出实验报告。 实验提示: (1)回溯算法求解0-1背包问题分析 回溯法通过系统地搜索一个问题的解空间来得到问题的解。为了实现回溯,首先需要针对所给问题,定义其解空间。这个解空间必须至少包含问题的一个解(可能是最优的)。 然后组织解空间。确定易于搜索的解空间结构。典型的组织方法是图或树。一旦定义了解空间的组织方法,即可按照深度优先策略从开始结点出发搜索解空间。并在搜索过程中利用约束函数在扩展结点处剪去不满足约束的子树,用目标函数剪去得不到最优解的子树,避免无效搜索。用回溯法解题的步骤: 1)针对所给问题定义问题的解空间; 2)确定易于搜索的解空间结构; 3)以深度优先方式搜索解空间,并在搜索过程中用剪枝函数避免无效的搜索。 0-1背包问题的数学描述为:n 个物品,物品i 的重量是w i 、其价值为v i ,其中0≤i ≤n-1,背包的容量为C 。用x i 表示物品i 被装入背包的情况,如果物品Pi 被选中,则x i =1;否则x i =0。求满足目标函数∑-=?=10max n i i i v x F 和约束方程C w x n i i i ≤?∑-=1 0的物品组合(x 0,x 1,x 2,…,x n-1) 与相应的总价值V 。

第五组分支限界法(0-1背包问题)

实训一 0-1背包问题的分支限界法与实现 一、设计目的 1)掌握0-1背包问题的分支限界法; 2)进一步掌握分支限界法的基本思想和算法设计方法; 二、设计内容 1.任务描述 1)算法简介 分支限界法类似于回溯法,也是在问题的解空间上搜索问题解的算法。一般情况下,分支限界法与回溯法的求解目标不同。回溯法的求解目标是找出解空间中满足约束条件的所有解, 而分支限界法的求解目标则是找出满足约束条件的一个解,或是在满足约束条件的解中找出使 某一目标函数值达到极大或极小的解,即在某种意义下的最优解。 由于求解目标不同,导致分支限界法与回溯法对解空间的搜索方式也不相同。回溯法以深度优先的方式搜索解空间,而分支限界法则以广度优先或以最小耗费优先的方式搜索解空间。 分支限界法的搜索策略是,在扩展结点处,先生成其所有的儿子结点(分支),然后再从当前的 活结点表中选择下一扩展结点。为了有效地选择下一扩展结点,加速搜索的进程,在每一个活 结点处,计算一个函数值(限界),并根据函数值,从当前活结点表中选择一个最有利的结点作 为扩展结点,使搜索朝着解空间上有最优解的分支推进,以便尽快地找出一个最优解。这种方 式称为分支限界法。人们已经用分支限界法解决了大量离散最优化的问题。 2)0-1背包问题简介 给定n种物品和一背包。物品i的重量是wi,其价值为vi,背包容量为c。问应如何选择装入背包中的物品,使得装入背包中物品的总价值最大。在选择装入背包的物品时,对每种物品i只有两种选择,即装入背包或不装入背包。不能将物品i装入背包多次,也不能只装入部分的物品i。因此,该问题称为0-1背包问题。 3)设计任务简介 对于分支限界类似的问题。首先,要能理解该问题运用到的分支限界的概念;其次,根据分支限界相关的基本思想,找出相应的数学公式;最后,进行程序的设计和编写。 利用分支限界的基本思想和计算步骤,有助于我们解决生活中遇到的各种数学问题。 4)问题分析 在解0-1背包问题的优先队列式分支限界法中,活结点优先队列中结点元素N的优先级由该结点的上界函数Bound计算出的值uprofit给出。子集树中以结点N为根的子树中任一结点的价值不超过 N.profit。可用一个最大堆来实现活结点优先队列。堆中元素类型为HeapNode,其私有成员有 uprofit,profit,weight和level。对于任意活结点N,N.weight是结点N所相应的重量;N.profit 是N所相应的价值;N.uprofit是结点N的价值上界,最大堆以这个值作为优先级。子集空间树中结 点类型为bbnode。 0-1背包问题的表示方案

0. 1背包问题的多种解法

一、 问题描述 0/1背包问题: 现有n 种物品,对1<=i<=n ,已知第i 种物品的重量为正整数W i ,价值为正整数V i ,背包能承受的最大载重量为正整数W ,现要求找出这n 种物品的一个子集,使得子集中物品的总重量不超过W 且总价值尽量大。(注意:这里对每种物品或者全取或者一点都不取,不允许只取一部分) 二、 算法分析 根据问题描述,可以将其转化为如下的约束条件和目标函数: ) 2(max )1()1}(1,0{11 ∑∑==?????≤≤∈≤n i i i i n i i i x v n i x W x w 于是,问题就归结为寻找一个满足约束条件(1),并使目标函数式(2)达到最大的解向量 ),......,,,(321n x x x x X =。 首先说明一下0-1背包问题拥有最优解。 假设),......,,,(321n x x x x 是所给的问题的一个最优解,则),......,,(32n x x x 是下面问题的一个最优解: ∑∑==?????≤≤∈-≤n i i i i n i i i x v n i x x w W x w 22 1 1max ) 2}(1,0{。如果不是的话,设),......,,(32n y y y 是这个问题的一个最优解,则∑∑==>n i n i i i i i x v y v 2 2 ,且∑=≤+ n i i i W y w x w 2 11。因此,∑∑∑====+>+n i i i n i n i i i i i x v x v x v y v x v 1 2 2 1111,这说明 ),........, ,,(321n y y y x 是所给的0-1背包问题比),........,,,(321n x x x x 更优的解,从而与假设矛盾。 穷举法: 用穷举法解决0-1背包问题,需要考虑给定n 个物品集合的所有子集,找出所有可能的子集(总重量不超

实验五:01背包问题的回溯算法设计

实验五:0/1背包问题的回溯算法设计实验目的:0/1背包问题的回溯算法设计 实验原理:回溯算法设计。 实验要求:基本掌握回溯算法设计的原理方法。熟练掌握VC++中编程实现算法的常用技术和方法。 算法思想:0-1背包问题:给定n种物品和一背包.物品i的重量是wi,其价值为ui,背包的容量为C.问如何选择装入背包的物品,使得装入背包中物品的总价值最大? 分析: 0-1背包是子集合选取问题,一般情况下0-1背包是个NP问题.第一步确定解空间:装入哪几种物品 第二步确定易于搜索的解空间结构: 可以用数组p,w分别表示各个物品价值和重量。 用数组x记录,是否选种物品 第三步以深度优先的方式搜索解空间,并在搜索的过程中剪枝要求:(1)使用C++或TC2.0 (2)上机前要有源代码或流程图。#include using namespace std; class Knap { friend int Knapsack(int p[],int w[],int c,int n ); public: void print()

for(int m=1;m<=n;m++) { cout<

相关文档
相关文档 最新文档