文档库 最新最全的文档下载
当前位置:文档库 › 高二期末复习椭圆

高二期末复习椭圆

高二期末复习椭圆
高二期末复习椭圆

高二期末复习——椭圆

1. 平面内有两定点A 、B 及动点P ,设命题甲是:“|PA|+|PB|是定值”,命题乙是:“点P

的轨迹是以A .B 为焦点的椭圆”,那么甲是乙成立的 (填“充分不必要条件,必要不充分条件,充要条件,非充分非必要条件”之一)。

2.已知椭圆过点(3,0),

36

=

e ,则椭圆的标准方程为

3. 已知21F F 、为椭圆

19

252

2=+y x 的两个焦点,过1F 的直线交椭圆于A 、B 两点,若1222=+B F A F ,则AB =

4. 椭圆的中心在原点,有一个焦点F (,)01-,它的离心率是方程25202

x x -+=的一个根,椭圆的方程是

5.椭圆的长轴长为4,椭圆中心到其准线的距离为3

3

4,则椭圆的标准方程为

6.已知椭圆112

162

2=+y x 的左焦点是1F ,右焦点是2F ,点P 在椭圆上,如果线段1PF 的中点在y 轴上,那么

=21:PF PF

7.如果方程x 2+ky 2=2表示焦点在y 轴的椭圆,那么实数k 的取值范围是

8.P 是椭圆14

52

2=+y x 上的一点,1F 和2F 是焦点,若∠F 1PF 2=30°,则△F 1PF 2的面积 等于____ ________。

9.已知P 是椭圆

136

1002

2=+y x 上的一点,若P 到椭圆右准线的距离是217,则点P 到左焦点的距离是_

10. 已知圆()122

2

=+-y x 经过椭圆 22

221x y a b

+= ()0a b >>的一个顶点和一个焦点,

则此椭圆的离心率e = .

11.椭圆22

162

x y +=和双曲线2

213x y -=的公共点为P F F ,,21是两曲线的一个交点, 那么21cos PF F ∠的值是

12 已知椭圆13

42

2=+y x 内有一点)1,1(-P ,F 是椭圆的右焦点,在椭圆上求一点M ,使

||2||MF MP +之值为最小的M 的坐标是

13. 椭圆)0(122

22>>=+b a b

y a x 的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PF 2|,

则椭圆离心率的取值范围为 14.如图,在平面直角坐标系

xoy 中,1212,,,A A B B 为椭圆

22

2

21(0)x y a b a b

+=>>的四个顶点,F 为其右焦点,直线12A B 与直线1B F 相交于点T ,线段OT 与椭圆的交点M 恰为线段OT 的中点,则该椭圆的离心率为 .

15.已知三点P (5,2)、1F (-6,0)、2F (6,0).

(Ⅰ)求以1F 、2F 为焦点且过点P 的椭圆的标准方程;

(Ⅱ)设点P 、1F 、2F 关于直线y =x 的对称点分别为P '、'1F 、'2F ,求以'1F 、'2F 为焦点且过点P '的双曲线的标准方程。

16.在平面直角坐标系xoy 中,已知圆心在直线4y x =+

上,半径为C 经过坐标

原点O ,椭圆()22

2109

x y a a +

=>与圆C 的一个交点到椭圆两焦点的距离之和为10。 (1)求圆C 的方程;

(2)若F 为椭圆的右焦点,点P 在圆C 上,且满足4PF =,求点P 的坐标。

17. 若椭圆)0(12222>>=+b a b

y a x 过点(-3,2),离心率为33

,⊙的圆心为原点,直

径为椭圆的短轴,⊙M 的方程为4)6()8(22=-+-y x ,过⊙M 上任一点P 作⊙O 的切线PA 、PB ,切点为A 、B.

(1)求椭圆的方程;

(2)若直线PA 与⊙M 的另一交点为Q ,当弦PQ 最大时,求直线PA 的直线方程;

18.已知x y 、之间满足

()22

2104x y b b

+=> (1)方程

()222104x y b b +=>表示的曲线经过一点12???,,求b 的值; (2)动点(x ,y )在曲线

1422

2=+b

y x (b >0)上变化,求x 2+2y 的最大值;

19.设椭圆C :)0(122

22>>=+b a b

y a x 的左焦点为F ,上顶点为A ,过点A 与AF 垂直的直

线分别交椭圆C 与x 轴正半轴于点P 、Q ,且8AP=PQ 5

.

⑴求椭圆C 的离心率;

⑵若过A 、Q 、F 三点的圆恰好与直线l

:30x +=相切,求椭圆C 的方程.

20.已知椭圆2

2

21(01)y x b b

+=<<的左焦点为F ,左、右顶点分别为A 、C ,上顶点为B .过F 、

B 、

C 作⊙P ,其中圆心P 的坐标为(m ,n ).

(1)当m +n >0时,求椭圆离心率的范围;

(2)直线AB 与⊙P 能否相切?证明你的结论.

高二期末复习——椭圆(教师版)

1.平面内有两定点A 、B 及动点P ,设命题甲是:“|PA|+|PB|是定值”,命题乙是:“点P 的轨迹是以A .B 为焦点的椭圆”,那么甲是乙成立的必要不充分条件(填“充分不必要条件,必要不充分条件,充要条件,非充分非必要条件”之一)。

2.已知椭圆过点(3,0),36

=

e ,则椭圆的标准方程为13922=+y x 或 192722=+x y 。 3. 已知21F F 、为椭圆

19

252

2=+y x 的两个焦点,过1F 的直线交椭圆于A 、B 两点,若1222=+B F A F ,则AB = .8

4. 椭圆的中心在原点,有一个焦点F (,)01-,它的离心率是方程25202

x x -+=的一个

根,椭圆的方程是

13

42

2=+x y 5.椭圆的长轴长为4,椭圆中心到其准线的距离为33

4,则椭圆的标准方程为1422=+y x 或14

22

=+x y 。 6.已知椭圆112

162

2=+y x 的左焦点是1F ,右焦点是2F ,点P 在椭圆上,如果线段1PF 的中点在y 轴上,那么

=21:PF PF 5:3 .

7.如果方程x 2+ky 2=2表示焦点在y 轴的椭圆,那么实数k 的取值范围是0<k <1。

8.P 是椭圆14

52

2=+y x 上的一点,1F 和2F 是焦点,若∠F 1PF 2=30°,则△F 1PF 2的面积 等于____)32(4-__________。

9.已知P 是椭圆

136

1002

2=+y x 上的一点,若P 到椭圆右准线的距离是217,则点P 到左焦点的距离是__

5

66

____________。 10. 已知圆()122

2

=+-y x 经过椭圆 22

221x y a b

+= ()0a b >>的一个顶点和一个焦点,

则此椭圆的离心率e = .

13

11.椭圆22

162x y +=和双曲线2

213x y -=的公共点为P F F ,,21是两曲线的一个交点, 那么21cos PF F ∠的值是__3

1

____

12 已知椭圆1342

2=+y x 内有一点)1,1(-P ,F 是椭圆的右焦点,在椭圆上求一点M ,使||2||MF MP +之值为最小的M 的坐标是___

),(1-63

2

13. 椭圆)0(122

22>>=+b a b

y a x 的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PF 2|,

则椭圆离心率的取值范围为 ★ . )1,3

1

[ 14.如图,在平面直角坐标系

xoy 中,1212,,,A A B B 为椭圆

22

2

21(0)x y a b a b

+=>>的四个顶点,F 为其右焦点,直线12A B 与直线1B F 相交于点T ,线段OT 与椭圆的交点M 恰为线段OT 的中点,则该椭圆的离心率为 ★

.5e =-

15.已知三点P (5,2)、1F (-6,0)、2F (6,0).

(Ⅰ)求以1F 、2F 为焦点且过点P 的椭圆的标准方程;

(Ⅱ)设点P 、1F 、2F 关于直线y =x 的对称点分别为P '、'1F 、'2F ,求以'1F 、'2F 为焦点且过点P '的双曲线的标准方程。

解:(Ⅰ)由题意,可设所求椭圆的标准方程为)0( 12222>>=+b a b

y a x

其半焦距离 c=6。

5621211||||22

22221=+++=+=PF PF a 。[来源:]

∴.93645,53222=-=-==c a b a

所以所求椭圆的标准方程为

. 19

452

2=+y x (Ⅱ)点P (5,2)、F 1(-6,0)、F 2(6,0)关于直线y=x 的对称点分别为)5,2(P '、

)6,0(1-'F 、2F '(0,6)。 设所求双曲线的标准方程为)0,0( 1112

1

22

1

2>>=-

b a b x a y

由题意知,半焦距c 1=6,

54|21211|||||22

2

2

2

211=+-+=''-''=F P F P a ∴.162036,522

12

12

11=-=-==a c b a 所以所求双曲线的标准方程为

.116

202

2=-x y 16.在平面直角坐标系xoy 中,已知圆心在直线4y x =+

上,半径为C 经过坐标

原点O ,椭圆()22

2109

x y a a +

=>与圆C 的一个交点到椭圆两焦点的距离之和为10。 (1)求圆C 的方程;

(2)若F 为椭圆的右焦点,点P 在圆C 上,且满足4PF =,求点P 的坐标。

解:(1)由已知可设圆心坐标为(),4t t +,()2

2

48t t ++=得2t =-,所以圆心坐标为

()2,2-,所以圆的方程为()()22

228x x ++-=

(2)设(),P m n ,由已知得()4,0F ,则()()2

2

4016m n -+-=,

()

()2

2

228m n ++-=

解之得:405

0125m m n n ?=

?=????=??=

??

或 17. 若椭圆)0(12222>>=+b a b

y a x 过点(-3,2),离心率为33

,⊙的圆心为原点,直

径为椭圆的短轴,⊙M 的方程为4)6()8(2

2

=-+-y x ,过⊙M 上任一点P 作⊙O 的切线PA 、PB ,切点为A 、B.

(1)求椭圆的方程;

(2)若直线PA 与⊙M 的另一交点为Q ,当弦PQ 最大时,求直线PA 的直线方程;

解:(1)由题意得:?????==∴????

?????+===+1015

331492

2

22222b a c b a a c b a 所以椭圆的方程为

110

152

2=+y x (2)由题可知当直线PA 过圆M 的圆心(8,6)时,弦PQ 最大

因为直线PA 的斜率一定存在, 设直线PA 的方程为:y-6=k(x-8)

又因为PA 与圆O 相切,所以圆心(0,0)到直线PA 的距离为10 即

101|68|2

=+-k k 可得9

13

31==k k 或

所以直线PA 的方程为:0509130103=--=+-y x y x 或

18.已知x y 、之间满足

()22

2104x y b b

+=> (1)方程

()222104x y b b +=>表示的曲线经过一点12???,,求b 的值; (2)动点(x ,y )在曲线

1422

2=+b

y x (b >0)上变化,求x 2+2y 的最大值; 解:(1

()21

1014b b b

=>∴=

(2)根据()222104x y b b +=>得22

241y x b ??=- ???

()2

222

2

2242412444y b b x y y y b y b b b ????∴+=-+=--++-≤≤ ? ???

??

()2

2max 4224

b b b x y b

≥≥+=当时,即时

()222

max 42444b b b b x y ≤≤≤+=+当时,即0时 ()()()

22max 2424044

b b x y b b ?≥?∴+=?+≤

?,, 19.设椭圆C :)0(122

22>>=+b a b

y a x 的左焦点为F ,上顶点为A ,过点A 与AF 垂直的直

线分别交椭圆C 与x 轴正半轴于点P 、Q ,且8AP=PQ 5

.

⑴求椭圆C 的离心率;

⑵若过A 、Q 、F 三点的圆恰好与直线l

:30x +=相切,求椭圆C 的方程.

解:⑴设Q (x 0,0),由F (-c ,0)

A (0,b )知),(),,(0b x b c -==

c

b x b cx AQ FA 202

0,0,==-∴⊥ 设PQ AP y x P 58

),,(11=由,

得21185

,1313

b x y b

c == 因为点P 在椭圆上,所以

1)135

()138(2

2222=+b b a c b 整理得2b 2=3a c ,即2(a 2-c 2)=3a c ,22320e e +-=,故椭圆的离心率e =

2

1

⑵由⑴知22

323,2

b b a

c a c ==得, 11,22c c a a ==由得于是F (-21a ,0) Q )0,23(a ,

△AQF 的外接圆圆心为(21a ,0),半径r=2

1

|FQ|=a

所以a a =+2

|

321

|,解得a =2,∴c=1,b=3,所求椭圆方程为13422=+y x 20.已知椭圆2

2

21(01)y x b b

+=<<的左焦点为F ,左、右顶点分别为A 、C ,上顶点为B .过F 、

B 、

C 作⊙P ,其中圆心P 的坐标为(m ,n ).

(1)当m +n >0时,求椭圆离心率的范围;

(2)直线AB 与⊙P 能否相切?证明你的结论. 解:(1)设F 、B 、C 的坐标分别为(-c ,0),(0,b ),(1,0),则FC 、BC 的中垂线分

别为12c x -=,11()22b y x b -=-.联立方程组,解出2

1,2

.2c x b c y b -?

=???-?=??

21022c b c m n b --+=+>,即20b bc b c -+->,即(1+b )(b -c )>0,∴ b >c .

从而22b c >即有222a c >,∴21

2

e <

.又0e >,∴0e <

<.

(2)直线AB 与⊙P 不能相切.

由AB k b =,

22102

PB b c

b b k

c --

=--=2(1)b c b c +-.如果直线AB 与⊙P 相切,则b ·2(1)b c b c +-=-1.解

出c =0或2,与0<c <1矛盾,所以直线AB 与⊙P 不能相切.

(完整版)椭圆知识点复习总结

椭圆知识点总结复习 1. 椭圆的定义: (1)椭圆:焦点在x 轴上时122 22=+b y a x (222a b c =+)?{ cos sin x a y b ??==(参 数方程,其中?为参数),焦点在y 轴上时22 22b x a y +=1(0a b >>)。方程 22Ax By C +=表示椭圆的充要条件是什么?(ABC ≠0,且A ,B ,C 同号,A ≠B )。 例一:已知线段AB 的两个端点A ,B 分别在x 轴,y 轴上,AB=5,M 是AB 上的一个点,且AM=2,点M 随AB 的运动而运动,求点M 的运动轨迹方程 2. 椭圆的几何性质: (1)椭圆(以122 22=+b y a x (0a b >>)为例):①范围:,a x a b y b -≤≤-≤≤; ②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),四个顶点(,0),(0,)a b ±±,其中长轴长为2a ,短轴长为2b ;④准线: 两条准线2a x c =±; ⑤离心率:c e a =,椭圆?01e <<,e 越小,椭圆越圆;e 越大,椭圆越扁。⑥通径2 2b a 例二:设椭圆22 221(0)x y a b a b +=>>上一点P 作x 轴的垂线,恰好过椭圆的一个焦 点1F ,此时椭圆与x 轴交于点A ,与y 轴交于点B ,且A,B 两点所确定的直线AB 与OP 平行,求离心率e

2.点与椭圆的位置关系:(1)点00(,)P x y 在椭圆外?2200 221x y a b +>; (2)点00(,)P x y 在椭圆上?220 220b y a x +=1; (3)点00(,)P x y 在椭圆内?2200 221x y a b +< 3.直线与圆锥曲线的位置关系:(往往设而不求) (1)相交:0?>?直线与椭圆相交;(2)相切:0?=?直线与椭圆相切; (3)相离:0?>与过点(2,0),(0,1)A B 的直线有且只有一个公共 点T ,且椭圆的离心率2 e = (1)求椭圆的方程 (2)设12,F F 分别为椭圆的左,右焦点,M 为线段2AF 的中点,求证:1ATM AFT ∠=∠ (3)求证:2 121 2 AT AF F =. ?4、焦半径(圆锥曲线上的点P 到焦点F 的距离)的计算方法:利用圆锥曲线的第二定义,转化到相应准线的距离,即焦半径0r ed a ex ==±,其中d 表示P 到与F 所对应的准线的距离。 例五:已知椭圆22 221x y a b +=上一点P 到椭圆左焦点的距离为3,则点P 到右 准线的距离为____(答:10/3); 例六:椭圆1342 2=+y x 内有一点)1,1(-P ,F 为右焦点,在椭圆上有一点M , 使MF MP 2+ 之值最小,则点M 的坐标为_______(答:)1,3 6 2( -) ; 5、焦点三角形(椭圆或双曲线上的一点与两焦点所构成的三角形) 问题:0||S c y =,当0||y b =即P 为短轴端点时,m ax S 的最大值为bc ;

高二数学测试题含答案

高二数学测试题 2014-3-9 一、选择题:(本大题共12小题,每小题5分,共60分,只有一项是符合题目要求的.) 1.命题 “若△ABC 不是等腰三角形,则它的任何两个内角不相等”的逆否命题是( ) A.若△ABC 是等腰三角形,则它的任何两个内角相等 B.若△ABC 任何两个内角不相等,则它不是等腰三角形 C.若△ABC 有两个内角相等,则它是等腰三角形 D.若△ABC 任何两个角相等,则它是等腰三角形 2.“三角函数是周期函数,tan y x =,ππ22 x ??∈- ??? ,是三角函数,所以tan y x =, ππ22x ?? ∈- ??? ,是周期函数”.在以上演绎推理中,下列说法正确的是( ) (A)推理完全正确 (B)大前提不正确 (C)小前提不正确 (D)推理 形式不正确 3.以下有四种说法,其中正确说法的个数为:( ) (1)“m 是实数”是“m 是有理数”的充分不必要条件; (2) “a b >”是“22a b >”的充要条件; (3) “3x =”是“2230x x --=”的必要不充分条件; (4)“A B B =I ”是“A φ=”的必要不充分条件. A. 0个 B. 1个 C. 2个 D. 3个 4 .已知动点P (x ,y )满足2)2()2(2222=+--++y x y x ,则动点 P 的轨迹是 A.双曲线 B.双曲线左支 C. 双曲线右支 D. 一条射线

5.用S 表示图中阴影部分的面积,则S 的值是( ) A .dx x f c a ?)( B .|)(|dx x f c a ? C .dx x f dx x f c b b a ??+)()( D .dx x f dx x f b a c b ??-)()( 6 . 已知椭圆 22 1102 x y m m +=--,若其长轴在y 轴上.焦距为4,则m 等于 A.4. B.5. C. 7. D .8. 7.已知斜率为1的直线与曲线1 x y x =+相切于点p ,则点p 的坐标是( ) ( A ) ()2,2- (B) ()0,0 (C) ()0,0或()2,2- (D) 11,2? ? ??? 8.以坐标轴为对称轴,以原点为顶点且过圆096222=++-+y x y x 的圆心的抛物线的方程是 ( ) A .23x y =或23x y -= B .23x y = C .x y 92-=或23x y = D .23x y -=或x y 92= 9.设'()f x 是函数()f x 的导函数,将()y f x =和'()y f x =的图象画在同一个直角坐标系中,不可能正确的是 ( ) A B C D . 10.试在抛物线x y 42-=上求一点P ,使其到焦点F 的距离与到()1,2-A 的距离之 和最小,则该点坐标为 ( ) (A )?? ? ??-1,41 (B )?? ? ??1,41 (C )() 22,2-- (D ) ()22,2- 11.已知点F 1、F 2分别是椭圆22 221x y a b +=的左、右焦点,过F 1且垂直于x 轴的直线 与椭圆交于A 、B 两点,若△ABF 2为正三角形,则该椭圆的离心率e 为

高考数学圆锥曲线及解题技巧

椭圆与双曲线的性质 椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长 轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线 方程是00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆 的焦点角形的面积为122 tan 2 F PF S b γ ?=. 8. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应 于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则2 2OM AB b k k a ?=-, 即020 2y a x b K AB -=。 12. 若000(,)P x y 在椭圆22 221x y a b +=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b +=+. 13. 若000(,)P x y 在椭圆22221x y a b +=内,则过Po 的弦中点的轨迹方程是22002222x x y y x y a b a b +=+. 双曲线 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角. 2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除 去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相交. 4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支)

高中数学:椭圆知识点归纳总结及经典例题

椭 圆 1.椭圆的定义:把平面内与两个定点21,F F 的距离之和等于常数(大于21F F )的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做焦距(设为2c). 2.椭圆的标准方程: 12222=+b y a x (a >b >0) 122 22=+b x a y (a >b >0) 焦点在坐标轴上的椭圆标准方程有两种情形,为了计算简便,可设方程为mx 2 +ny 2 =1(m>0,n>0)不必考虑焦点位置,求出方程 3.求轨迹方程的方法: 定义法、待定系数法、相关点法、直接法 . ,.2,,1的轨迹中点求线段段轴作垂线向从这个圆上任意一点半径为标原点已知一个圆的圆心为坐如图例M P P P P x P ''解:(相关点法)设点M(x, y),点P(x 0 , y 0 ), 则x =x 0, y = 2 0y 得x 0=x , y 0=2y. ∵x 02 +y 02 =4, 得x 2 +(2y)2 =4, 即.14 2 =+y x 所以点M 的轨迹是一个椭圆. 4.范围. x 2≤a 2,y 2≤b 2 ,∴|x|≤a ,|y|≤b . 椭圆位于直线x =±a 和y =±b 围成的矩形里. 5.椭圆的对称性 椭圆是关于y 轴、x 轴、原点都是对称的.坐标轴是椭圆的对称轴. 原点是椭圆的对称中心.椭圆的对称中心叫做椭圆的中心. 6.顶点 只须令x =0,得y =±b ,点B 1(0,-b)、B 2(0, b)是椭圆和y 轴的两个交点;令y =0,得x =±a ,点A 1(-a,0)、A 2(a,0)是椭圆和x 轴的两个交点.椭圆有四个顶点:A 1(-a, 0)、A 2(a, 0)、B 1(0, -b)、B 2(0, b).椭圆和它的对称轴的四个交点叫椭圆的顶点. 线段A 1A 2、B 1B 2分别叫做椭圆的长轴和短轴. 长轴的长等于2a. 短轴的长等于2b.a 叫做椭圆的 长半轴长.b 叫做椭圆的短半轴长. |B 1F 1|=|B 1F 2|=|B 2F 1|=|B 2F 2|=a . 在Rt △OB 2F 2中,|OF 2|2=|B 2F 2|2-|OB 2|2, 即c 2=a 2-b 2 . a A 1y O F 1F 2 x B 2 B 1 A 2c b y O F 1F 2x M c c x F 2 F 1 O y M c c y x P O P ' M

高二数学椭圆测试题一答案

1.若直线y kx 1和椭圆x 2 4y 2 1相切,则k 2的值是 A.1 / 2 B.2 / 3 C.3 / 4 D.4 / 5 2.椭圆mx 2 上2,则二的值是 2 ny 2 1与直线x + y — 1 = 0交于M N 两点,过原点与线段MN 中点的直线斜率为 n — 3.椭圆 m 2 B . 2 c . 2 x 2 y 2 、 、 2 2 1上对两焦点张角 为 a b 90°的点可能有 A.4个 B.2个或4个 C.0个或2个,4个 D.还有其它情况 4. B I ,B 2是椭圆短轴的两端点,过左焦点F i 作长轴的垂线,交椭圆于P,若|FE|是|OFJ 和 IB 1B 2I 的比例中项,则|PF|:|OB 2|的值是 B 还。遁 5 2 A. .. 2 2 2 5.椭圆X 匚 1的一个焦点为 R ,点P 在椭圆上,如果线段 PR 的中点M 在y 轴上,那 12 3 么点M 的纵坐标是 A . 3 B. - C. - D . 3 4 2 4 4 _ 2 2 6 .设A ( — 2, 、、3) , F 为椭圆 —+ y = 1的右焦点,点M 在椭圆上移动,当|AM| + 2|MF| 16 12 取最小值时,点M 勺坐标为 A . (0, 2、3) B . (0, - 2 3) C . (2 3 , ■ 3 ) D . (-2 . 3 , 、、3 ) 二.填空题(每题5分,满分20分,把答案填在题中横线上) X 2 7.椭圆—— 25 —=1上有一点P 到左准线的距离为 2.5 ,则P 到右焦点的距离为 9 &若椭圆 5 2 的一个焦点到相应准线的距离为一,离心率为一, 厂 4 3 5.(用分数表示) 的半短轴长为 涟西南中学高二数学椭圆测试题(一) 一.选择题(每小题 5分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要 求的)

高二数学椭圆试题有答案

高二数学椭圆试题一:选择题 1.已知方程表示焦点在x轴上的椭圆,则m的取值范围是() 2.已知椭圆,长轴在y轴上、若焦距为4,则m等于() 4.已知点F1、F2分别是椭圆+=1(k>﹣1)的左、右焦点,弦AB过点F1,若△ABF2的周长为8,则椭圆的离心率为() (x≠0)(x≠0) (x≠0)(x≠0) 6.方程=10,化简的结果是() 7.设θ是三角形的一个内角,且,则方程x2sinθ﹣y2cosθ=1表示的曲线是() 8.设椭圆的两个焦点分别为F1、、F2,过F2作椭圆长轴的垂线交椭圆于点P,若△F1PF2为等腰直角三角形,则椭圆的离心率是() 9.从椭圆上一点P向x轴作垂线,垂足恰为左焦点F1,A是椭圆与x轴正半轴的交 点,B是椭圆与y轴正半轴的交点,且AB∥OP(O是坐标原点),则该椭圆的离心率是() 10.若点O和点F分别为椭圆的中心和左焦点,点P为椭圆上的任意一点,则的最大值为

11.如图,点F为椭圆=1(a>b>0)的一个焦点,若椭圆上存在一点P,满足以椭圆短轴为直径的圆与线段PF相切于线段PF的中点,则该椭圆的离心率为() 12.椭圆顶点A(a,0),B(0,b),若右焦点F到直线AB的距离等于,则椭圆的离心率e=() 13.已知椭圆+=1(a>b>0)的左、右焦点为F1,F2,P为椭圆上的一点,且|PF1||PF2|的最大值的取值 范围是[2c2,3c2],其中c=.则椭圆的离心率的取值范围为() ,,[,] 14.在椭圆中,F1,F2分别是其左右焦点,若|PF1|=2|PF2|,则该椭圆离心率的取值范围是() 15.已知F1、F2是椭圆C:(a>b>0)的两个焦点,P为椭圆C上一点,且.若△PF1F2 16.若方程表示焦点在y轴上的椭圆,则k的取值范围是. 17.已知椭圆的焦距为2,则实数t=. 18.在平面直角坐标系xOy中,已知△ABC顶点A(﹣4,0)和C(4,0),顶点B在椭圆上,则 =.

圆锥曲线解题技巧和方法综合

(本文有两套教案,第一套比较笼统,第二套比较好) 圆锥曲线的解题技巧 一、常规七大题型: (1)中点弦问题 具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(,)x y 11, (,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式(当然在这里也要注意 斜率不存在的请款讨论),消去四个参数。 如:(1))0(12222>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有 020 20=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有 020 20=-k b y a x (3)y 2 =2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 典型例题 给定双曲线x y 2 2 2 1-=。过A (2,1)的直线与双曲线交于两点P 1 及P 2,求线段P 1P 2的中点P 的轨迹方程。 (2)焦点三角形问题 椭圆或双曲线上一点P ,与两个焦点F 1、F 2构成的三角形问题,常用正、余弦定理搭桥。 典型例题 设P(x,y)为椭圆x a y b 222 21+=上任一点,F c 10(,)-,F c 20(,)为焦点, ∠=PF F 12α,∠=PF F 21β。

(1)求证离心率β αβαsin sin ) sin(++= e ; (2)求|||PF PF 13 23 +的最值。 (3)直线与圆锥曲线位置关系问题 直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。 典型例题 抛物线方程,直线与轴的交点在抛物线准线的右边。y p x p x y t x 210=+>+=()() (1)求证:直线与抛物线总有两个不同交点 (2)设直线与抛物线的交点为A 、B ,且OA ⊥OB ,求p 关于t 的函数f(t)的表达式。 (4)圆锥曲线的相关最值(范围)问题 圆锥曲线中的有关最值(范围)问题,常用代数法和几何法解决。 <1>若命题的条件和结论具有明显的几何意义,一般可用图形性质来解决。 <2>若命题的条件和结论体现明确的函数关系式,则可建立目标函数(通常利用二次函数,三角函数,均值不等式)求最值。 (1),可以设法得到关于a 的不等式,通过解不等式求出a 的范围,即:“求范围,找不等式”。或者将a 表示为另一个变量的函数,利用求函数的值域求出a 的范围;对于(2)首先要把△NAB 的面积表示为一个变量的函数,然后再求它的最大值,即:“最值问题,函数思想”。 最值问题的处理思路: 1、建立目标函数。用坐标表示距离,用方程消参转化为一元二次函数的最值问题,关键是由方程求x 、y 的范围; 2、数形结合,用化曲为直的转化思想; 3、利用判别式,对于二次函数求最值,往往由条件建立二次方程,用判别式求最值; 4、借助均值不等式求最值。 典型例题 已知抛物线y 2 =2px(p>0),过M (a,0)且斜率为1的直线L 与抛物线交于不同的两点A 、B , |AB|≤2p (1)求a 的取值范围;(2)若线段AB 的垂直平分线交x 轴于点N ,求△NAB 面积的最大值。

高二数学椭圆的知识点整理

第1讲 课题:椭圆 课 型:复习巩固 上课时间:2013年10月3日 教学目标: (1)了解圆锥曲线的来历; (2)理解椭圆的定义; (3)理解椭圆的两种标准方程; (4)掌握椭圆离心率的计算方法; (5)掌握有关椭圆的参数取值范围的问题; 教学重点:椭圆方程、离心率; 教学难点:与椭圆有关的参数取值问题; 知识清单 一、椭圆的定义: (1) 椭圆的第一定义:平面内与两定点21F F 、的距离和等于常数 ()a 2(大于21F F )的点的轨迹叫做椭圆. 说明:两个定点叫做椭圆的焦点; 两焦点间的距离叫做椭圆的焦距()c 2. (2) 椭圆的第二定义:平面上到定点的距离与到定直线的距离之 比为常数e ,当10<>=+F F a a PF PF ; (){} .02,22121>>=+=F F a a PF PF P M 三、椭圆的标准方程: 焦点在x 轴: ()0122 22>>=+b a b y a x ; 焦点在y 轴: ()0122 22>>=+b a b x a y . 说明:a 是长半轴长,b 是短半轴长,焦点始终在长轴所在的数轴上,且满足 .222c b a += 四、二元二次方程表示椭圆的充要条件 方程()B A C B A C By Ax ≠=+均不为零,且、、22表示椭圆的条件:

上式化为12 2=+C By C Ax ,122=+B C y A C x .所以,只有C B A 、、同号,且B A ≠时,方程表示椭圆;当 B C A C >时,椭圆的焦点在x 轴上;当B C A C <时,椭圆的焦点在y 轴上. 五、椭圆的几何性质(以()0122 22>>=+b a b y a x 为例) 1. 范围: 由标准方程可知,椭圆上点的坐标()y x ,都适合不等式 1,122 22≤≤b y a x ,即b y a x ≤≤,说明椭圆位于直线a x ±=和b y ±=所围成的矩形里(封闭曲线).该性质主要用于求最值、轨迹检验等问题. 2.对称性:关于原点、x 轴、y 轴对称,坐标轴是椭圆的对称轴,原点是椭圆的对称中心。 3.顶点(椭圆和它的对称轴的交点) 有四个: ()()()().,0B ,0B 0,0,2121b b a A a A 、、、-- 4. 长轴、短轴:21A A 叫椭圆的长轴,a a A A ,221=是长半轴长;21B B 叫椭圆的短轴,b b B B ,221=是短半轴长. 5.离心率 (1)椭圆焦距与长轴的比a c e = ,()10,0<<∴>>e c a (2)22F OB Rt ?,2 22 22 22OF OB F B +=, 即222c b a +=.这是椭圆的特征三角形,并且22cos B OF ∠的值是椭圆的离心率.(3)椭圆的圆扁程度由离心率的大小确定,与焦点所在的坐标轴无关.当e 接近于1时,c 越接近于a ,从而22c a b -=越小,椭圆越扁;当e 接近于0时,c 越接近于0,从而22c a b -=越大,椭圆越接近圆;当0=e 时,b a c ==,0,两焦点重合,图形是圆. 6.通径(过椭圆的焦点且垂直于长轴的弦),通径长为a b 2 2.

高二数学选修2-1测试题及答案

姓名:___________ 班级:___________ 一、选择题 1.“1x ≠”是“2320x x -+≠”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 2.若p q Λ是假命题,则( ) A.p 是真命题,q 是假命题 B.p 、q 均为假命题 C.p 、q 至少有一个是假命题 D.p 、q 至少有一个是真命题 3.1F ,2F 是距离为6的两定点,动点M 满足∣1MF ∣+∣2MF ∣=6,则M 点的轨迹是 ( ) A.椭圆 B.直线 C.线段 D.圆 4. 双曲线 22 1169 x y -=的渐近线方程为( ) A. x y 916± = B. x y 169±= C. x y 43±= D. x y 3 4±= 5.中心在原点的双曲线,一个焦点为, ,则双曲线的方程是( ) A . B . C . D . 6.已知正方形ABCD 的顶点 ,A B 为椭圆的焦点,顶点,C D 在椭圆上,则此椭圆的离心率为( ) A 1 B 1 D .27.椭圆 14222=+a y x 与双曲线12 2 2=-y a x 有相同的焦点,则a 的值为( ) A .1 B .2 C .2 D .3 8.与双曲线14 22 =-x y 有共同的渐近线,且过点(2,2)的双曲线标准方程为( ) (A ) 11232 2=-x y (B ) 112322=-y x (C )18222=-x y (D )18 22 2=-y x 9.已知A (-1,-2,6),B (1,2,-6)O 为坐标原点,则向量,OA OB 与的夹角是 ( ) A .0 B . 2 π C .π D .32π (0F 122 12x y -=22 12y x -=221x =221y =

高二数学圆锥曲线测试题以及详细答案

圆梦教育 高二圆锥曲线单元测试 姓名: 得分: 一、选择题: 1.已知动点M 的坐标满足方程|12512|1322-+=+y x y x ,则动点M 的轨迹是( ) A. 抛物线 B.双曲线 C. 椭圆 D.以上都不对 2.设P 是双曲线192 22=-y a x 上一点,双曲线的一条渐近线方程为1,023F y x =-、F 2分别是双曲线的左、右焦点,若5||1=PF ,则=||2PF ( ) A. 1或5 B. 1或9 C. 1 D. 9 3、设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形, 则椭圆的离心率是( ). A. B. C. 2 D. 1- 4.过点(2,-1)引直线与抛物线2 x y =只有一个公共点,这样的直线共有( )条 A. 1 B.2 C. 3 D.4 5.已知点)0,2(-A 、)0,3(B ,动点2),(y y x P =?满足,则点P 的轨迹是 ( ) A .圆 B .椭圆 C .双曲线 D .抛物线 6.如果椭圆 19 362 2=+y x 的弦被点(4,2)平分,则这条弦所在的直线方程是( ) 02=-y x B 042=-+y x C 01232=-+y x D 082=-+y x 7、无论θ为何值,方程1sin 22 2=?+y x θ所表示的曲线必不是( ) A. 双曲线 B.抛物线 C. 椭圆 D.以上都不对 8.方程02 =+ny mx 与)02+mx 的曲线在同一坐标系中的示意图应是( ) C

二、填空题: 9.对于椭圆191622=+y x 和双曲线19 72 2=-y x 有下列命题: ①椭圆的焦点恰好是双曲线的顶点; ②双曲线的焦点恰好是椭圆的顶点; ③ 双曲线与椭圆共焦点; ④椭圆与双曲线有两个顶点相同.其中正确命题的序号是 ; 10.若直线01)1(=+++y x a 与圆022 2 =-+x y x 相切,则a 的值为 ; 11、抛物线2 x y -=上的点到直线0834=-+y x 的距离的最小值是 ; 12、抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 的距离和最小,则点Q 的坐标 ; 13、椭圆13 122 2=+y x 的焦点为F 1和F 2,点P 在椭圆上,如果线段PF 1中点在y 轴上, 那么|PF 1|是|PF 2|的 ; 14.若曲线 15 42 2=++-a y a x 的焦点为定点,则焦点坐标是 。 三、解答题: 15.已知双曲线与椭圆 125922=+y x 共焦点,它们的离心率之和为5 14,求双曲线方程.(12分) 16.P 为椭圆19 252 2=+y x 上一点,1F 、2F 为左右焦点,若?=∠6021PF F (1)求△21PF F 的面积; (2)求P 点的坐标.(14分) 17、求两条渐近线为02=±y x 且截直线03=--y x 所得弦长为 3 3 8的双曲线方程.(14分) 18、知抛物线x y 42 =,焦点为F ,顶点为O ,点P 在抛物线上移动,Q 是OP 的中点,M 是FQ 的中点,求点M 的轨迹方程.(12分) 19、某工程要将直线公路l 一侧的土石,通过公路上的两个道口 A 和B ,沿着道路AP 、BP 运往公路另一侧的P 处,PA=100m ,PB=150m ,∠APB=60°,试说明怎样运土石最省工? 20、点A 、B 分别是椭圆 120 362 2=+y x 长轴的左、右端点,点F 是椭圆的右焦点,点P 在椭圆上,且位于x 轴上方,PF PA ⊥。 (1)求点P 的坐标;

圆锥曲线解题技巧和方法综合经典

圆锥曲线解题方法技巧归纳 第一、知识储备: 1、 直线方程的形式 (1)直线方程的形式有五件:点斜式、两点式、斜截式、截距式、一般式。 (2)与直线相关的重要内容 ①倾斜角与斜率tan ,[0,)k ααπ=∈ ②点到直线的距离d = ③夹角公 式:2121 tan 1k k k k α-= + (3)弦长公式 直线 y kx b =+上两点1122(,),(,)A x y B x y 间的距离:12AB x =- = 或12AB y =- (4)两条直线的位置关系 ①1212l l k k ⊥?=-1 ② 212121//b b k k l l ≠=?且 2、圆锥曲线方程及性质 (1)、椭圆的方程的形式有几种?(三种形式) 标准方程:22 1(0,0)x y m n m n m n +=>>≠且 距离式方程2a = 参数方程:cos ,sin x a y b θθ== (2)、双曲线的方程的形式有两种

标准方程:22 1(0)x y m n m n +=?< 距离式方程 :2a = (3)、三种圆锥曲线的通径您记得不? 22 222b b p a a 椭圆:;双曲线:;抛物线: (4)、圆锥曲线的定义您记清楚了不? 如:已知21F F 、就是椭圆13 42 2=+y x 的两个焦点,平面内一个动点M 满足 221=-MF MF 则动点M 的轨迹就是( ) A 、双曲线; B 、双曲线的一支; C 、两条射线; D 、一条射线 (5)、焦点三角形面积公式:1 2 2tan 2 F PF P b θ ?=在椭圆上时,S 1 2 2cot 2 F PF P b θ ?=在双曲线上时,S (其中2221212121212||||4,cos ,||||cos |||| PF PF c F PF PF PF PF PF PF PF θθθ+-∠==?=?u u u r u u u u r u u u r u u u u r ) (6)、记住焦半径公式:(1)00;x a ex a ey ±±椭圆焦点在轴上时为焦点在y 轴上时为, 可简记为“左加右减,上加下减”。 (2)0||x e x a ±双曲线焦点在轴上时为 (3)11||,||22 p p x x y ++抛物线焦点在轴上时为焦点在y 轴上时为 (6)、椭圆与双曲线的基本量三角形您清楚不? 第二、方法储备 1、点差法(中点弦问题) 设() 11,y x A 、()22,y x B ,()b a M ,为椭圆13 42 2=+y x 的弦AB 中点则有

椭圆知识点复习资料总结

【椭圆】 一、椭圆的定义 1、椭圆的第一定义:平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121 F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆。这两 个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距。 注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ; 若)(2121F F PF PF <+,则动点P 的轨迹无图形。 二、椭圆的方程 1、椭圆的标准方程(端点为a 、b ,焦点为c ) (1)当焦点在x 轴上时,椭圆的标准方程:122 22=+b y a x )0(>>b a ,其 中222b a c -=; (2)当焦点在y 轴上时,椭圆的标准方程:122 22=+b x a y )0(>>b a ,其 中222b a c -=; 2、两种标准方程可用一般形式表示:22 1x y m n += 或者 mx 2+ny 2=1 三、椭圆的性质(以122 22=+b y a x )0(>>b a 为例) 1、对称性: 对于椭圆标准方程122 22=+b y a x )0(>>b a :是以x 轴、y 轴为对称轴的轴

对称图形;并且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。 2、范围: 椭圆上所有的点都位于直线a x ±=和b y ±=所围成的矩形内,所以椭圆上点的坐标满足a x ≤,b y ≤。 3、顶点: ①椭圆的对称轴与椭圆的交点称为椭圆的顶点。 ②椭圆122 22=+b y a x )0(>>b a 与坐标轴的四个交点即为椭圆的四个顶 点,坐标分别为)0,(1a A -,)0,(2a A ,),0(1b B -,),0(2b B 。 ③线段21A A ,21B B 分别叫做椭圆的长轴和短轴,a A A 221=, b B B 221=。a 和b 分别叫做椭圆的长半轴长和短半轴长。 4、离心率: ① 椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e 表示,记作 a c a c e == 22。 ② 因为)0(>>c a ,所以e 的取值范围是)10(<

椭圆的性质练习题

1.已知两椭圆2 28ax y +=和22925100x y +=的焦距相等,则a 的值为( ) A. 9917或 B. 3342或 C. 39217或 D. 394 或 2. 下列关于椭圆 22 1259 x y +=的说法正确的是( ) A.该椭圆的短轴长大于焦距. B.该椭圆只有两个顶点()()5,0,5,0- C.该椭圆上的点在直线5,3x y =±=±所围成的矩形框里. D.若点 (),x y 在这个椭圆上,则点(),y x 也在椭圆上. 3. 已知点() ,m n 在椭圆 228324 x y +=上,则 24 m +的取值范围是( ) A.4?-+? B.4?? C.4?-+? D. 4?-+? 4.已知点(),P x y 在椭圆2221x y += ) A. B. 1 C. 2 D. 12 5.从椭圆短轴的一个端点看长轴两端点的视角为0 120,则此椭圆的离心率是( ) A. B. C. 12 D. 6.若焦点在x 轴上的椭圆 22 12x y m +=的离心率为12,则m 等于( ) A. B. 3 2 C. 83 D. 23 7.椭圆22221x y a b +=与椭圆22 22(01)x y k k k a b +=>≠且具有相同的( ) A.长轴长 B.离心率 C.顶点 D.焦点 8.若椭圆 22 149 x y k +=+的离心率为12e =,则k 的值是( ) A. 1 2 B. 8 C. 1142或 D. 1184 或 9. 椭圆22143x y +=的右焦点到直线y x =的距离是________

10.已知1F ,2F 是椭圆的两个焦点,过1F 且与椭圆长轴垂直的直线交于椭圆于A ,B 两点,若Δ2ABF 是 等腰直角三角形,则这个椭圆的离心率是( ) A. B. 2 C. 1- D. 11.若点P 和点F 分别为椭圆22 143 x y +=的中心和左焦点,点P 为椭圆上的任意一点,则OP FP 的最大值为( ) A. 2 B. 3 C. 6 D. 8 12..如图,1F ,2F 分别为椭圆 22 221x y a b +=的左、右焦点,点P 在椭圆上,Δ2POF ___________ 13..已知椭圆22 195 x y +=内有一点()1,1A ,1F ,2F 分别椭圆的左、右焦点,点P 是椭圆上的一点,求 1PA PF +的最大值和最小值是_______________和_______________ 14.在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点1F ,2F 在x 轴上,离心率为2 .经过点1 F 的直线l 交C 于A ,B 两点,且Δ 2ABF 的周长为16,那么C 的方程式为___________ 15..已知点P 在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为3 和3 ,过点P 作长轴的的垂线,恰好过椭圆的一个焦点,求椭圆的方程。 16. 椭圆()222210x y a b a b +=>> 的离心率e = ,焦点到椭圆上的点的最短距离为2-圆的标准方程。 17. 求经过点()1,2M ,且与椭圆 22 1126 x y +=有相同的离心率的椭圆的标准方程。

数学椭圆的解题技巧

数学椭圆的解题技巧 数学椭圆的解题技巧 数学的复习策略及其椭圆技巧对考生来说极其重要。下面要为大家分享的就是数学椭圆的解题技巧,希望你会喜欢! 一、设点或直线 做题一般都需要设点的坐标或直线方程,其中点或直线的设法有很多种。其中点可以设为等,如果是在椭圆上的点,还可以设为。一般来说,如果题目中只涉及到唯一一个椭圆上的的动点,这个点可以设为。还要注意的是,很多点的坐标都是设而不求的。对于一条直线,如果过定点并且不与y轴平行,可以设点斜式,如果不与x轴平行,可以设,如果只是过定点,可以设参数方程,其中α是直线的倾斜角。一般题目中涉及到唯一动直线时可以设直线的参数方程。 二、转化条件 有的时候题目给的条件是不能直接用或直接用起来不方便的,这时候就需要将这些条件转化一下。对于一道题来说这是至关重要的一步,如果转化得巧,可以极大地降低运算量。比如点在圆上可以转化为向量点乘得零,三点共线可以转化成两个向量平行,某个角的角平分线是一条水平或竖直直线则这个角的两条边斜率和是零。 有的题目可能不需要转化直接带入条件解题即可,有的题目给的条件可能有多种转化方式,这时候最好先别急着做题,多想几种转化方法,估计一下哪种方法更简单。 三、代数运算 转化完条件就剩算数了。很多题目都要将直线与椭圆联立以便使用一元二次方程的韦达定理,但要注意并不是所有题目都是这样。有的题目可能需要算弦长,可以用弦长公式,设参数方程时,弦长

公式可以简化为解析几何中有时要求面积,如果O是坐标原点,椭 圆上两点A、B坐标分别为和,AB与x轴交于D,则 (d是点O到AB的距离;第三个公式是我自己推的,教材上没有,解答题慎用)。 解析几何中很多题都有动点或动直线。如果题目只涉及到一个动点时,可以考虑用参数设点。若是只涉及一个过定点的动直线,题 目中又涉及到求长度面积之类的东西,这时设直线的参数方程会简 单一些。 在解析几何中还有一种方法叫点差法,设椭圆上两个点的坐标,将两点在椭圆上的方程相减,整理即可得到这两点的中点的横纵坐 标与这两点连线的斜率的关系式。 四、能力要求 做解析几何题,首先对人的耐心与信心是一种考验。在做题过程中可能遇到会一大长串的式子要化简,这时候,只要你方向没错, 坚持算下去肯定能看到最终的结果。另外运算速度和准确率也是很 重要的,在真正考试的时候肯定不像平时做题的时候能容你慢慢做题,因此需要有一定的做题速度,在做题的时候运算准确也是必须 要保证的,因为一旦算错数,就很可能功亏一篑。 五、理论拓展 1、将直线的两点式整理后,可以得到这个方程:。据此可以直 接写出过和两点的直线,至于这两点连线是否与x轴垂直,是否与 y轴垂直都没有关系。对于一些坐标很复杂的点,可以直接代入这 个方程便捷的得到过两点的直线。 2、直线一般式Ax+By+C=0表示的这条直线和向量(A,B)垂直;过定点的直线的一般式可以写为。根据这两条推论可以快速地写出 两点的垂直平分线的方程。 关于椭圆: 3、椭圆的焦点弦弦长为

高中数学椭圆知识点总结

椭圆知识点 知识点一:椭圆的定义 平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 注意:若2121F F PF PF =+,则动点P 的轨迹为线段21F F ; 若2121F F PF PF <+,则动点P 的轨迹无图形. 知识点二:椭圆的简单几何性质 椭圆:12222=+b y a x )0(>>b a 与 122 22=+b x a y )0(>>b a 的简单几何性质 标准方程 122 22=+b y a x )0(>>b a 12 2 22=+b x a y )0(>>b a 图形 性质 焦点 )0,(1c F -,)0,(2c F ),0(1c F -,),0(2c F 焦距 c F F 221= c F F 221= 范围 a x ≤,b y ≤ b x ≤,a y ≤ 对称性 关于x 轴、y 轴和原点对称 顶点 )0,(a ±,),0(b ± ),0(a ±,)0,(b ± 轴长 长轴长=a 2,短轴长=b 2 长半轴长=a ,短半轴长=b (注意看清题目) 离心率 )10(<<= e a c e c a F A F A -==2211;c a F A F A +==1221;c a PF c a +≤≤-1; (p 是椭圆上一点)(不等式告诉我们椭圆上一点到焦点距离的范围)

注意:①与坐标系无关的椭圆本身固有的性质,如:长轴长、短轴长、焦距、离心率等; ②与坐标系有关的性质,如:顶点坐标、焦点坐标等 知识点三:椭圆相关计算 1.椭圆标准方程中的三个量c b a, ,的几何意义2 2 2c b a+ = 2.通径:过焦点且垂直于长轴的弦,其长 a b2 2 焦点弦:椭圆过焦点的弦。 3.最大角:p是椭圆上一点,当p是椭圆的短轴端点时,2 1 PF F ∠为最大角。 4.椭圆上一点和两个焦点构成的三角形称为焦点三角形。 焦点三角形的面积2 tan 2 2 1 θ b S F PF = ? ,其中2 1 PF F ∠ = θ(注意公式的推导) 5.求椭圆标准方程的步骤(待定系数法). (1)作判断:依据条件判断椭圆的焦点在x轴上还是在y轴上. (2)设方程:

高二数学椭圆试题(有答案)

高二数学椭圆试题 一:选择题 1.已知方程表示焦点在x轴上的椭圆,则m的取值范围是( ) A.m>2或m<﹣1 B.m>﹣2 C. ﹣1<m<2 D.m>2或﹣2

8.设椭圆的两个焦点分别为F1、、F2,过F2作椭圆长轴的垂线交椭圆于点P,若△F1PF2为等腰直角三角形,则椭圆的离心率是( ) A. B. C. D. 9.从椭圆上一点P向x轴作垂线,垂足恰为左焦点F1,A是椭圆与x 轴正半轴的交点,B是椭圆与y轴正半轴的交点,且AB∥OP(O是坐标原点),则该椭圆的离心率是() A. B.C. D. 10.若点O和点F分别为椭圆的中心和左焦点,点P为椭圆上的任意一点,则 的最大值为() A. 2B. 3 C. 6D. 8 11.如图,点F为椭圆=1(a>b>0)的一个焦点,若椭圆上存在一点P,满足以椭圆短轴为直径的圆与线段PF相切于线段PF的中点,则该椭圆的离心率为() A.B.C.D. 12.椭圆顶点A(a,0),B(0,b),若右焦点F到直线AB的距离等于,则椭圆的离心率e=( ) A. B. C. D.

相关文档
相关文档 最新文档