文档库 最新最全的文档下载
当前位置:文档库 › STM32+RA8875原理图

STM32+RA8875原理图

HXD1C型电力机车牵引变流器电气原理分析与检修

2010届毕业设计说明书 HXD1C型电力机车牵引变流器电气 原理分析与检修 专业系 班级 学生姓名 指导老师 完成日期

2013届毕业设计任务书 一、课题名称 HXD1C型电力机车牵引变流器电气原理分析与使用维护 二、指导老师: 第1周至第10周进行 三﹑设计内容与要求 1.课题概述 完成本课题的设计要求学生具有电路﹑电力电子变流技术﹑模拟电子与数字电子技术及工厂电气控制设备等方面的基础知识。 本课题与电力电子变流技术有着密切的关系,随着电力变流技术的飞速发展,越来越多的机车采用交流电机作为牵引源,交流机车牵引电机采用牵引变流器提供变压变频电源实现变频调速及牵引功率的调节。变频调速易于实现电机车的平稳启动和调速运行,并具有能耗低、调速范围广、静态稳定性好等诸多优点。通过本课题的设计,学生能够熟练掌握电力电子开关器件IGBT的特性及应用,深入理解电力电子变流技术在交传机车牵引电机调速领域的应用。同时,通过对交传电力机车牵引变流器主电路与控制电路的分析,培养学生进行运用所学知识分析与解决实际问题的能力以及创新设计能力。 2.设计内容与要求 1) 大功率交传机车主传动系统分析 (1)主传动系统的结构及技术特点; (2)交传机车牵引电机的结构与工作原理,大功率交传机车牵引电机常用的调速方式与功率调节方式; (3)对交流机车牵引传动采用变频调速、调功与其它方式进行对比分析; 2)TGA9型牵引变流器主电路分析 (1)多重四象限整流电路工作原理分析:查阅相关技术资料,对牵引变流器常用的整流电路类型进行分析,重点对TGA9型多重四象限整流电路进行技术分析; (2)中间直流环节滤波电路的结构与电路分析,滤波电容预充电的方式; (3)PWM逆变器结构与工作原理分析;常用逆变开关器件的结构与工作原理,重点对IGBT的结构及集成驱动电路进行分析; 3) TGA9型牵引变流器控制电路的设计与分析 (1)掌握常用PWM芯片的结构与工作原理,根据电气原理图对PWM逆变控制电路进行分析; (2)牵引变流器过流、过压与温度保护电路的分析。 4)TGA9型牵引变流器的使用维护 四、设计参考书 [1]周志敏等, IGBT和IPM及其应用电路,人民邮电出版社出版 [2]变频调速三相异步牵引电动机的设计 [3]徐立娟、张莹,电力电子技术,高等教育出版社

SS改型电力机车控制电路

第四章控制电路 第一节概述 控制电路的组成及作用 1、控制电源电路:直流110V稳压电源及其配电电路; 2、整备控制电路:完成机车动车前的所有操作过程,升弓、合闸、起劈相机、通风机等; 3、调速控制电路:完成机车的动车控制,即起动、加速、减速; 4、保护控制电路:是指保护与主电路、辅助电路有关的执行控制; 5、信号控制电路:完成机车整车或某些部件工作状态的显示; 6、照明控制电路:完成机车的内外照明及标志显示。 第二节控制电源 一、概述 机车上的110控制电源由110V电源柜及蓄电池组构成。正常运行时,两者并联为机车提供稳定110V控制电源,降弓情况下,蓄电池供机车作低压实验和照明用,若运行中电源柜故障,由蓄电池作维持机车故障运行的控制电源。 110V电源柜具有恒压、限流特点。主要技术参数如下: 输入电源…………………………………25% 396V+-单相交流50HZ 30% 输出额定电压……………………………直流110V±5%(与蓄电池组并联)输出额定电流……………………………直流50A 限流保护整定值…………………………55A±5% 静态电压脉动有效值……………………<5V(与蓄电池组并联) 基本原理框图:

取自变压器辅助绕组的电源经变压器降压后,经半控桥式整流电流整流,再滤波环节滤波后与蓄电池并联(同时也兼起滤波作用)。给机车提供稳定的110V 直流控制电源。 二、主要部件的作用 电气原理图见附图(九) 600QA—控制电路的交流开关和总过流保护开关 670TC—控制电源变压器,变比为396V/220V,将取自201和202线上的单相交流电降压后送至半控桥 669VC—控制电源的整流硅机组,由V1~V4组成半控桥,将输入的220V交流电整流成直流电输出,通过674AC控制相控角度改变输出电压。 674AC—电控插件箱(包括“稳压触发”插件和“电源”插件),其中“稳压触发”插件自动控制晶闸管V1、V2的导通,并根据反馈信号适时调节相控角度,使控制电源输出电压保持在110V±5%(与蓄电池并联);“电源”插件将110V变48V、24V、15V . 1MB、2MB—给674AC同步信号,并给GK1、GK2提供触发电压 GK1、GK2—给V1、V2提供门极触发电压 671L、673C—滤波电抗与滤波电容,对669VC输出的脉流电进行滤波 666QS—整流输出闸刀(机车上叫蓄电池闸刀),将整流滤波后的输出电源与蓄电池并联。 GB—蓄电池组,正常运行时与110V控制电源并联,兼起滤波电容作用,降弓后,

电力机车工作原理

电力机车工作原理 电气化铁路的回路就是火车脚下的铁路。机车先通过电弓从接触网(就是天上的电线) 上受电,在经过机车上的牵引变压器,整流柜,逆变,然后传入牵引电机带动机车,最后通过车轮传入钢轨。形成一个巧妙的电路。 和电传动内燃机车相比就是动力源不同,能量来自接触网,其他如走行部,车体等并没有本 质区别。通过受电弓将25KV的电压引至车内变压器,之后,若是交直流传动的,便进行整流,驱动直流电动机,电机通过齿轮驱动轮对。一般调节晶闸管的导通角度来调节功率,从而进行调速。交直交流传动的要在整流后加逆变环节,之后驱动异步电动机,驱动轮对。这种的调速较为复杂,要合理调节逆变的频率和整流的电压才能保证功率因数。大体过程就是这样。 电力机车是通过车顶上的集电弓(也称受电弓)从接触网获取电能,把电能输送到牵引电动 机使电动机驱动车轮运行的机车。 电力机车的分类: 1按机车轴数分: 四轴车:轴式为BO-BO ; 六轴车:轴式为CO-CO、BO-BO-BO ; 八轴车:轴式为2(B0-B0); 十二轴车:轴式为2(C0-C0)、2(B0-B0-B0)。 轴式“ B ”表示一个转向架有2根轴;轴式“ C”表示一个转向架有3根轴;脚号“ 0”表示每个轴有一台牵引电机;"-"表示转向架之间是通过车体传递牵引力。 2、按用途分: (1)客运电力机车。用来牵引各种速度等级的客运列车,其特点是速度较高,所需牵引力较小。 ⑵货运电力机车。用来牵引货物列车,其特点是载荷大,牵引力大,但速度较低。 (3)客货通用电力机车。尤其是近年来新型电力机车中,其恒功运行速度范围大,可适用牵引客运列车,也可适用牵引货运列车。 3、按轮对驱动型式分: (1) 个别驱动电力机车指每一轮对是由单独的一台牵引电动机驱动的电力机车。 (2) 组合驱动电力机车指几个轮对用机械方式互相连接成组,共同由一台牵引电动机驱动 的电力机车。 现代电力机车大都采用个别驱动方式,而很少再采用组合驱动。 车和多流制电力机车。 直流制电力机车:即直流电力机车,它是由直流电网供电,采用直流牵引电机驱动的电力机车。 交流制电力机车:可分为单相低频(25Hz或16 2/3Hz)电力机车和单相工频(50Hz)电力机 车。 交直传动电力机车:是由接触网引人单相工频交流电经机车内的变流装置供给直(脉)流牵引电动机来驱动的机车。 交流传动电力机车:是由接触网引人单相工频交流电经机车内的变流装置供给交流(同步或异步)牵引电动机来驱动的机车。

SS4改型电力机车电气线路组成

第二章机车电气线路 的构成及机车导线号和设备代号的编制 一、机车电气线路的构成 SS4改型电力机车上各种电机、电器设备按其功能、作用、电路电压等级的不同分为:主电路、辅助电路、控制电路(含电子电路),三大电路在电方面基本相互隔离,通过电---磁、电---空、电---机械传动方式相互联系,以达到自动或间接控制协调的目的,保证司机能安全正常的操纵机车运行。 1、主电路的组成及作用,如何分类?由受电弓、主断路器、高压电压互感器、高压电流互感器、高压连接器、主变压器、硅整流装置、牵引电机、平波电抗器、高压电器柜、制动电阻柜、功率因数装置、电路保护装置等组成。 产生牵引力和制动力的动力电路。按电压等级可分为:网侧高压电路、调压整流电路、牵引制动电路。 2 、辅助电路的组成及作用,如何分类? 由劈相机和各辅助机组----- 空气压缩机电动机、牵引通风机电动机、制动通 风机电动机、主变压器油泵电动机及散热器风机电动机、司机室热风机、电热玻璃、空调机、三相交流接触器、自动开关、保护电路等组成。 保证主电路发挥功率和实现性能必不可少的电路。 按电压等级可分380V、220V 电路。 3 、控制电路的组成及作用,如何分类? 由110V 稳压电源、蓄电池组、以及控制机车牵引、制动、向前、向后、调速、停车,控制各辅助机械开停和各照明灯具工作等有关的主令电器,各种功能的低压电器及开关等组成。 主令电路,即司机通过主令电路来发出指令来间接控制机车主、辅电路,以 完成各种工况的操作

按其功能分为:控制电源电路、整备控制电路、调速控制电路、信号控制电 路、照明控制电路、电子电路。 二、机车导线号的编制。 1、主电路线号:除电子柜接口导线全部采用4 位数字(个位数字为“ 1”)外,其余导线为1?199。 2、辅助电路线号:为“ 2”字头的3 位数流水号(“200”为地线,接机车车体)。 3、控制电路线号: ①整备调速控制电路:400?629,500 除外。 ②照明控制电路:630?689,780?789 。 ③信号显示控制电路:701?779 。 ④电空制动控制:801 ?899 。 ⑤通讯信号控制:901 ?999 。 ⑥电子控制电路:1001?1399,1600?1799 。 ⑦内重联线号前带“ N字母,外重联线号前带“ W字母。 ⑧线号500是逆变电压+24V和士15V的地线;400和600是控制电源+110V 地线。 三、设备代号的编制。 采用数字流水号与英文字母相结合的方式。 主电路设备代号中的流水数字的编制原则是以十位数字来划分,划分原则如下: 1. 十位数字为“ 0”,代表机车原边电路上的设备; 2. 十位数字为“ 1”,代表机车第一位电机支路上的设备;

HXD1C型电力机车牵引变流器电气原理分析与检修_毕业设计论文

摘要 HXD1C型电力机车,运行稳定、可靠,能满足该型电力机车的运用要求,实现模块化,通用化,降低了机车运营和维护成本。HXD1C型电力机车作为我国国产率最高的新型大功率机车,在现代化铁路运输起着无可替代的重要作用。 本毕业设计针对HXD1C型机车牵引变流器及控制系统的技术特点和主要参数,描述了其结构阐述了牵引变流器功能模块和功能原理。对HXD1C型机车在运用中主变流器、制动系统、辅助系统等常见故障进行原因分析,并介绍相应的措施。关键词: 电力机车牵引变流器冷却系统控制系统电力机车常见故障应对 措施。

Abstract HXD1C type electric locomotive, the operation is stable and reliable, and can satisfy the use of this type of electric locomotive requirements, realize modular, universal, reduce the locomotive operation and maintenance costs. HXD1C type electric locomotives in China GuoChanLv highest new type high power locomotive. In modern railway transportation plays an irreplaceable important role. The design specification for HXD1C locomotive traction converters and control systems technical characteristics and main parameters, describes its structure elaborated traction converter function module and function principle. HXD1C locomotive main converter, braking system, auxiliary systems and common faults in the use of reason analysis. And introduce appropriate measures。 Keywords: Electric locomotive Traction converter Cooling system Control system of electric locomotive Common faults; Measures

HXD1型交传电力机车电气原理分析与故障处理

2014届毕业设计 课题名称:HXD1型交传电力机车电气 原理分析与故障处理 二级学院铁道牵引与动力学院 班级司乘111班 学生姓名郑子淇 指导老师莫坚 完成日期 2013年12月

2014届毕业设计任务书 一、课题名称:HXD1型交传电力机车电气原理分析与故障处理 二、指导教师:莫坚 三、设计内容与要求 1、课题概述 随着轨道交通装备飞速发展,交传电力机车已普遍应用于我国铁路运输,其中HXD1型电力机车使用广泛,电力机车乘务员和检修人员必须熟练掌握其电气原理和故障分析判断方法,本课题主要针对铁道司乘、检修方向学生,要求学生能整体全面了解HXD1型电力机车总体结构、控制原理、界面显示,能整体分析HXD1型电力机车主电路,辅助电路、控制电路原理,并能根据HXD1型电力机车实际运用中故障进行分析,根据实际情况进行故障处理方案设计。使学生更好理解交传电力机车工作原理,培养学生运用所学知识来分析解决本专业范围内问题,使学生建立正确设计思想,掌握工程设计一般程序和方法。 2、设计子课题 1)HXD1型电力机车主电路原理分析与故障处理 2)HXD1型电力机车辅助电路原理分析与故障处理 3)HXD1型电力机车控制电路受电弓控制环节原理分析与故障处理 4)HXD1型电力机车控制电路主断路器控制环节原理分析与故障处理 3、设计内容与要求 1)HXD1型电力机车总体结构与设备布置 2)HXD1型电力机车布线与电气接口布置 3)HXD1型电力机车相关电气线路电气原理分析 4)对HXD1型电力机车常见故障进行分析与判断,设计故障处理方案,编写HXD1型电力机车常见故障判断处理流程, 5)绘制相关电气原理图。 四、设计参考书 《HXD1型电力机车》中国铁道出版社 《电力机车控制》中国铁道出版社

HXD1电力机车主电路

HXD1电力机车主电路 图1 hxd1电力机车主电路原理图 每台hxd1电力机车由两节机车构成,每节机车有一套完整的电传动系统。该系统由一台拥有1个原边绕组、4个牵引绕组和两个2次谐振电抗器的主变压器通过2个pwm四象限变流器(4qc)向两个独立的中间电压直流环节供电。每台转向架上的2个三相感应电动机作为一组负载,由连接在两个中间直流环节中的一个脉宽调制逆变器供电,主电路原理图如图1所示。 电力机车中牵引传动系统的等效电路如图2所示。 图2 牵引传动系统等效电路图 图2中,v s是牵引变电所大系统折算到机车变压器副边的电压值,是理想电压源,

z 是牵引变电所大系统到机车接入端口折算到变压器副边的阻抗,与系统短路容s 量等有关;v in是变压器原边折算到副边的电压值,z in是变压器(含pwm交流电抗器)折算到变压副边的阻抗;v ac是pwm四象限变流器输入端的电压,i dc是牵引电机逆变器直流侧的等效电流值 2 网侧电路 网侧电路原理如图2 所示, 其主要功能是由网侧获取电能, 属于25 kV 电路。每节机车网侧电路由一台受电弓、一台带高压接地装置的主断路器、一台避雷器、一台高压电压传感器、一台高压电流传感器、一台高压隔离开关、主变压器原边、回流侧互感器和接地碳刷等组成。两节机车间网侧电路通过高压连接器相连。 2.1 原边接地保护 检测原边电流和回流电流的差值, 当大于整定值时,判定为原边接地, 主断路器进行分断保护。 2.2 主变压器次边和主变流器短路保护 如果变压器二次线圈或主变流器发生短路, 则在检测到短路的瞬间断开主断。由于变压器的高短路阻抗, 从而限制了短路电流。 2.3 硬短路保护电路 中间直流电路中装有短路保护装置。在出现贯穿短路时, 主断路器将分断网侧电流; TCU 将封锁四象限和PWM逆变器的触发脉冲, 并触发硬短路保护装置, 用来吸收短路回路释放的能量。 2.31 接地保护电路 接地保护电路由跨接在中间电路的两个串联电阻和一个接地信号检测器组成。如果检测到接地故障, 主断路器( HVB) 将断开, 然后故障中间直流环节电路也将断开,但机车仍可以在降功率的条件下继续运行。 2.32 过压保护 在直流回路电压大于整定值时, 触发软短路器, 断开主断路器HVB。 2.33 过流保护 每个4QC 和PWM的支路有两个并联的IGBT 模块。在短路和其它故障情况下, 在达到最大支路电流前自动封锁相关的模块触发脉冲。 2.34 牵引电机的短路保护 当牵引电机端子或绕组内发生短路时, PWM的触发脉冲将被封锁。 2.4 四象限变流电路构成 如图1 所示, 四象限变流器通过主变压器的牵引绕组得电, 每组四象限变流电路由1 个充电电阻、3 个交流接触器及2 个四象限变流器构成, 两个变流器将交

HXD3型电力机车电路分析

HXD3型电力机车电路分析 摘要 随着交流技术,微机控制技术的发展,交流传动系统的研究和开发已引起世界各国的高度重视。交流传动系统无论是在性能指标,装置体积,设备维护还是节能乃至环保等均体现出巨大优势。HXD3型电力机车主传动系统和副主传动系统均采用了交流传动技术和微机网络控制技术,整个电气系统的设计起点高,技术领先的原则,并充分考虑大型货运电力机车的实际需要,采用先进,成熟,可靠的技术,按照标准化,系列化,模块化,信息化的总体要求,进行全方位设计的。 本文对HXD3型电力机车电气系统的组成做了简要的阐述,对机车整体的电路部分按照主电路,辅助电路,控制电路分类做了系统的分析,并对其中关键电气部件做了说明。 关键词:HXD3; 电路分析;电力机车;交流传动技术

HXD3型电力机车电路图 目录 摘要 ....................................................................................................................................... - 0 -第一章绪论 ........................................................................................................................... - 3 -1.1电力机车的概念 ......................................................................................................... - 3 -1.2历史沿革..................................................................................................................... - 4 -1.3电力机车的类型 ......................................................................................................... - 4 -1.4选题意义..................................................................................................................... - 5 -第二章HXD3电力机车电气系统的组成 ............................................................................ - 6 -2.1电气系统的设计概念 ................................................................................................. - 6 -2.2电气系统的组成 ......................................................................................................... - 6 -2.3HXD3电力机车的电气线路 ........................................................................................ - 7 -2.3.1主电路及其部件 ...................................................................................................... - 8 - (1)网侧电路................................................................................................................... - 9 - (2)主变压器................................................................................................................. - 10 - (3)牵引变流器和牵引电动机电路............................................................................. - 10 - (4)保护电路................................................................................................................. - 11 -2.3.2辅助电路................................................................................................................ - 11 - (1)三相辅助电路......................................................................................................... - 11 - (2)辅助变流器............................................................................................................. - 12 - (3)辅助变流器供电电路............................................................................................. - 13 - (4)辅助电动机电路..................................................................................................... - 13 - (5)辅助电动机电路的保护系统................................................................................. - 13 -2.3.3控制电路................................................................................................................ - 15 - (1)控制电源电路(DC110V电源装置)................................................................... - 15 - (2)DC110V电源装置电气系统构成........................................................................... - 16 - (3)电源输入电路......................................................................................................... - 17 - (4)DC110V输出回路................................................................................................... - 18 - (5)控制电路................................................................................................................. - 19 - (6)DC110V电源装置控制系统................................................................................... - 20 -

电力机车3种工作原理

第1节直直型电力机车工作原理 一、基本工作原理 直直型电力机车通常称为直流电力机车,是现代电力机车最为简单的一种。它使用的是直流电源和直流串励牵引电动机。目前有些工矿电力机车、地铁电动车组和城市无轨电车仍采用这种型式。 图1-1所示为一般工矿用四轴直流电力机车的工作原理示意图。工作过程为:机车由受电弓AP从接触网取得直流电,经断路器QF、起动电阻R向四台直流牵引电动机M1~M4供电,牵引电流经钢轨流回变电所。当四台牵引电动机接通电源后即行旋转,把电能转变为机械能,再分别通过各自的齿轮传动装置,驱动机车动轮牵引列车运行。 图1-1 直流电力机车工作原理图 二、直流电力机车的特点 通过分析直流电力机车的工作原理,可以得出直流电力机车具有以下特点: (1)机车结构简单,造价低,经济性好。 (2)采用适合于牵引的直流串励电动机,牵引性能好,调速方便。 (3)控制简单,运行可靠。 (4)供电效率低。由于受牵引电动机端电压的限制,接触网电压一般为1500~3000V。传输一定功率时电流较大,接触网导线耗电量较大,因此供电效率低。 (5)基建投资大。为了减少接触网上的压降,电气化区段的牵引变电所数量较多,造成基建投资大。

(6)有级调速。由于早期机车使用调压电阻起动、调速,因此调节过程中有能量损耗使效率很低,同时也难以实现连续、平滑地调节。随着电力电子技术的发展,应用直流斩波技术进行调速,可以对牵引电动机端电压进行连续、平滑地调节,从而实现无级调速。 综上所述,直流电力机车由于受牵引电动机端电压的限制,网压不可能太高,从而限制了机车功率的进一步提高。随着现代铁路运输事业的发展,直流电力机车显然已不适应干线大功率的要求。一般应用于工矿及城市交通运输。 三、直流电力机车的基本特性 直流电力机车的基本特性包括机车的速度特性、牵引力特性、牵引特性。 在以前的课程中,我们已经了解了直流串励电动机的转速特性、转矩特性和效率特性。在研究电力机车的运行行为时,需将电机的转速n换算为机车动轮轮周的线速度V、电机的转矩M换算为机车动轮轮周的牵引力F,从而得到机车的速度特性、牵引力特性和牵引特性。 1.速度特性 机车运行速度与牵引电动机电枢电流的关系,称为机车速度特性。即V=f(I a)。机车速度特性计算公式的推导过程如下: 机车动轮轮周线速度V与电机转速n有下面关系: (1-1) 电机转速公式: (1-2) 由式(1-1)、式(1-2)得出机车速度特性计算式: (1-3) 式中 CV——机车常数,其值为CV=60 Ceμc /πD; D——机车动轮直径(m);

相关文档
相关文档 最新文档