文档库

最新最全的文档下载
当前位置:文档库 > 2014年湖北省C++语言版要领

2014年湖北省C++语言版要领

1、对一般二叉树,仅根据一个先序、中序、后序遍历,不能确定另一个遍历序列。但对于满二叉树,任一结点的左右子树均含有数量相等的结点,根据此性质,可将任一遍历序列转为另一遍历序列(即任一遍历序列均可确定一棵二叉树)。

void PreToPost(ElemType pre[] ,post[],int l1,h1,l2,h2)

//将满二叉树的先序序列转为后序序列,l1,h1,l2,h2是序列初始和最后结点的下标。

{if(h1>=l1)

{post[h2]=pre[l1]; //根结点

half=(h1-l1)/2; //左或右子树的结点数

PreToPost(pre,post,l1+1,l1+half,l2,l2+half-1) //将左子树先序序列转为后序序列PreToPost(pre,post,l1+half+1,h1,l2+half,h2-1) //将右子树先序序列转为后序序列

} }//PreToPost

32. .叶子结点只有在遍历中才能知道,这里使用中序递归遍历。设置前驱结点指针pre,初始为空。第一个叶子结点由指针head指向,遍历到叶子结点时,就将它前驱的rchild指针指向它,最后叶子结点的rchild为空。

LinkedList head,pre=null; //全局变量

LinkedList InOrder(BiTree bt)

//中序遍历二叉树bt,将叶子结点从左到右链成一个单链表,表头指针为head

{if(bt){InOrder(bt->lchild); //中序遍历左子树

if(bt->lchild==null && bt->rchild==null) //叶子结点

if(pre==null) {head=bt; pre=bt;} //处理第一个叶子结点

else{pre->rchild=bt; pre=bt; } //将叶子结点链入链表

InOrder(bt->rchild); //中序遍历左子树

pre->rchild=null; //设置链表尾

}

return(head); } //InOrder

时间复杂度为O(n),辅助变量使用head和pre,栈空间复杂度O(n)

2、证明由二叉树的中序序列和后序序列,也可以唯一确定一棵二叉树。

29. ①试找出满足下列条件的二叉树

1)先序序列与后序序列相同 2)中序序列与后序序列相同

3)先序序列与中序序列相同 4)中序序列与层次遍历序列相同

3、假设K1,…,Kn是n个关键词,试解答:

试用二叉查找树的插入算法建立一棵二叉查找树,即当关键词的插入次序为K1,K2,…,Kn 时,用算法建立一棵以LLINK / RLINK 链接表示的二叉查找树。

4、连通图的生成树包括图中的全部n个顶点和足以使图连通的n-1条边,最小生成树是边上权值之和最小的生成树。故可按权值从大到小对边进行排序,然后从大到小将边删除。每删除一条当前权值最大的边后,就去测试图是否仍连通,若不再连通,则将该边恢复。若仍连通,继续向下删;直到剩n-1条边为止。

void SpnTree (AdjList g)

//用“破圈法”求解带权连通无向图的一棵最小代价生成树。

{typedef struct {int i,j,w}node; //设顶点信息就是顶点编号,权是整型数

node edge[];