文档视界 最新最全的文档下载
当前位置:文档视界 > 高三文科数学概率练习题

高三文科数学概率练习题

邹城一中高三文科数学每周易错题巩固训练20

1.甲:A 1,A 2是互斥事件;乙:A 1,A 2是对立事件,那么( )

A .甲是乙的充分但不必要条件

B .甲是乙的必要但不充分条件

C .甲是乙的充要条件

D .甲既不是乙的充分条件,也不是乙的必要条件 2.在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若事件“2张全是移动卡”的概率是310,那么概率是7

10

的事件是( )

A .至多有一张移动卡

B .恰有一张移动卡

C .都不是移动卡

D .至少有一张移动卡

3.从3个红球、2个白球中随机取出2个球,则取出的2个球不全是红球的概率是( )

A.110

B.310

C.7

10

D.3

5

4.甲、乙两人喊拳,每人可以用手出0,5,10三个数字,每人则可喊0,5,10,15,20五个数字,当两人所出数字之和等于某人所喊数字时喊该数字者获胜,若甲喊10,乙喊15时,则( )

A .甲胜的概率大

B .乙胜的概率大

C .甲、乙胜的概率一样大

D .不能确定谁获胜的概率大

5.在平面直角坐标系xOy 中,不等式组?

????

-1≤x ≤2,0≤y ≤2表示的平面区域为W ,从W 中随机

取点M (x ,y ).若x ∈Z ,y ∈Z ,则点M 位于第二象限的概率为( )

A.16

B.1

3 C .1-12

π D .1-π

6

6.将一颗骰子投掷两次,第一次出现的点数记为a ,第二次出现的点数记为b ,设两条直线l 1:ax +by =2与l 2:x +2y =2平行的概率为P 1,相交的概率为P 2,则点P (36P 1,36P 2)与圆C :x 2+y 2=1 098的位置关系是( )

A .点P 在圆C 上

B .点P 在圆

C 外 C .点P 在圆C 内

D .不能确定

7.一个袋子中有5个大小相同的球,其中有3个黑球与2个红球,如果从中任取两个球,则恰好取到两个同色球的概率是( )

A.15

B.310

C.2

5

D.1

2

8.已知集合M ={1,2,3,4},N ={(a ,b )|a ∈M ,b ∈M },A 是集合N 中任意一点,O 为坐标原点,则直线OA 与y =x 2+1有交点的概率是( )

A.12

B.13

C.14

D.1

8

9.文科班某同学参加省学业水平测试,物理、化学、生物获得等级A 和获得等级不是A 的机会相等,物理、化学、生物获得等级A 的事件分别记为W 1,W 2,W 3,物理、化学、生物

获得等级不是A 的事件分别记为W 1,W 2,W 3.则该同学参加这次学业水平测试获得两个A 的概率为( )

A.38

B.18

C.35

D.4

5

10.在圆的一条直径上,任取一点作与该直径垂直的弦,则其弦长超过该圆的内接等边三角形的边长的概率为( )

A.14

B.13

C.12

D.

3

2

11.一只小蜜蜂在一个棱长为4的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于1,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为( )

A.18

B.116

C.127

D.27

64

12.节日前夕,小李在家门前的树上挂了两串彩灯.这两串彩灯的第一次闪亮相互独立,若都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮.那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是( )

A.14

B.12

C.3

4

D.7

8

13.已知△ABC 中,∠ABC =60°,AB =2,BC =6,在BC 上任取一点D ,则使△ABD 为钝角三角形的概率为( )

A.16

B.13

C.1

2

D.2

3

14.连续2次抛掷一枚骰子(六个面上分别标有数字1,2,3,4,5,6),记“两次向上的数字之和等于m ”为事件A ,则P (A )最大时,m =________.

15.一个袋子中装有六个大小形状完全相同的小球,其中一个编号为1,两个编号为2,三个编号为3.现从中任取一球,记下编号后放回,再任取一球,则两次取出的球的编号之和等于4的概率是________.

16.从装有编号分别为a ,b 的2个黄球和编号分别为c ,d 的2个红球的袋中无放回地摸球,每次任摸一球,求:

(1)第一次摸到黄球的概率; (2)第二次摸到黄球的概率.

17.一个袋中有4个大小相同的小球,其中红球1个,白球2个,黑球1个,现从袋中有放回地取球,每次随机取一个.

(1)求连续取两次都是白球的概率;

(2)假设取一个红球记2分,取一个白球记1分,取一个黑球记0分,若连续取三次,则分数之和为4分的概率是多少?

18. a ∈{2,4},b ∈{1,3},函数f (x )=1

2

ax 2+bx +1.

(1)求f (x )在区间(-∞,-1]上是减函数的概率;

(2)从f (x )中随机抽取两个,求它们在(1,f (1))处的切线互相平行的概率.

19.小波以游戏方式决定是去打球、唱歌还是去下棋.游戏规则为:以O 为起点,再从A 1,A 2,A 3,A 4,A 5,A 6(如图)这6个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为X ,若X >0就去打球,若X =0就去唱歌,若X <0就去下棋.

(1)写出数量积X 的所有可能取值;

高三文科数学概率练习题

(2)分别求小波去下棋的概率和不去唱歌的概率.

20.将一个质地均匀的正方体(六个面上分别标有数字0,1,2,3,4,5)和一个正四面体(四个面分别标有数字1,2,3,4)同时抛掷1次,规定“正方体向上的面上的数字为a,正四面体的三个侧面上的数字之和为b”.设复数为z=a+b i.

(1)若集合A={z|z为纯虚数},用列举法表示集合A;

(2)求事件“复数在复平面内对应的点(a,b)满足a2+(b-6)2≤9”的概率.

21.已知集合P={x|x(x2+10x+24)=0},Q={y|y=2n-1,1≤n≤2,n∈N*},M=P∪Q.在平面直角坐标系中,点A的坐标为(x′,y′),且x′∈M,y′∈M,试计算:

(1)点A正好在第三象限的概率;

(2)点A不在y轴上的概率;

(3)点A正好落在区域x2+y2≤10上的概率.

22.已知向量a=(2,1),b=(x,y).

(1)若x∈{-1,0,1,2},y∈{-1,0,1},求向量a∥b的概率;

(2)若x∈[-1,2],y∈[-1,1],求向量a,b的夹角是钝角的概率.

邹城一中高三文科数学每周易错题巩固训练20答案

1. B 2. A 3. C 4. A 5. A 6. C 7. C 8. C

9. A 该同学这次学业水平测试中物理、化学、生物成绩所有可能的结果有8种,分别为(W 1,W 2,W 3),(W 1,W 2,W 3),(W 1,W 2,W 3),(W 1,W 2,W 3),(W 1,W 2,W 3),(W 1,W 2,W 3),(W 1,W 2,W 3),(W 1,W 2,W 3).有两个A 的情况为(W 1,W 2,W 3),(W 1,W 2,W 3),(W 1,W 2,W 3),共3种,从而其概率为P =3

8.

10.解析:选C 如图,设圆的半径为r ,圆心为O ,AB 为圆的一

高三文科数学概率练习题

条直径,CD 为垂直AB 的一条弦,垂足为M ,若CD 为圆内接正三角形的一条边,则O 到CD 的距离为r

2,设EF 为与CD 平行且到圆

心O 距离为r

2

的弦,交直径AB 于点N ,所以当过AB 上的点且垂直

AB 的弦的长度超过CD 时,该点在线段MN 上变化,所以所求概率P =r 2r =1

2.

11.[解析] 根据几何概型知识,概率为体积之比,即P =(4-2)343=1

8

.[答案] A

12.解析:选C 设第一串彩灯亮的时刻为x ,第二串彩灯亮的时刻为y ,则?

????

0≤x ≤4,

0≤y ≤4,要

使两串彩灯亮的时刻相差不超过2秒,则????

?

0≤x ≤4,0≤y ≤4,

高三文科数学概率练习题

-2≤x -y ≤2.

如图,

不等式组?

???

?

0≤x ≤4,0≤y ≤4,所表示的图形面积为16,不等式组

????

?

0≤x ≤4,0≤y ≤4,-2≤x -y ≤2所表示的六边形OABCDE 的面积为16-4=12,由几何概型的公式可得P

=1216=34

.

高三文科数学概率练习题

13.解析:选C 如图,当BE =1时,∠AEB 为直角,则点D 在线段

BE (不包含B ,E 点)上时,△ABD 为钝角三角形;当BF =4时,∠BAF 为直角,则点D 在线段CF (不包含C ,F 点)上时,△ABD 为钝角三角形.所以△ABD 为钝角三角形的概率为

1+2

6=12

. 14.解析:m 可能取到的值有2,3,4,5,6,7,8,9,10,11,12,对应的基本事件个数依次为

1,2,3,4,5,6,5,4,3,2,1,∴两次向上的数字之和等于7对应的事件发生的概率最大.答案:7 15.解析:列举可知,共有36种情况,和为4的情况有10种,所以所求概率P =1036=5

18

.

高三文科数学概率练习题

16.解:(1)第一次摸球有a ,b ,故第一次摸到黄球的概率是2

4

=0.5.

(2)先后两次摸球有12种可能的结果:(a ,b )、(a ,c )、(a ,d )、(b ,a )、(b ,c )、(b ,d )、(c ,a )、(c ,b )、(c ,d )、(d ,a )、(d ,b )、(d ,c ),

其中第二次摸到黄球的结果有6种:(a ,b )、(b ,a )、(c ,a )、(c ,b )、(d ,a )、(d ,b ). 故第二次摸到黄球的概率为

6

12

=0.5. 17.解:(1)连续取两次的基本事件有:(红,红),(红,白1),(红,白2),(红,黑);(白1,红),(白1,白1),(白1,白2),(白1,黑);(白2,红),(白2,白1),(白2,白2),(白2,黑);(黑,红),(黑,白1),(黑,白2),(黑,黑),共16个.

连续取两次都是白球的基本事件有:(白1,白1),(白1,白2),(白2,白1),(白2,白2),共4个,故所求概率为416=1

4

.

(2)连续取三次的基本事件有:(红,红,红),(红,红,白1),(红,红,白2),(红,红,黑);(红,白1,红),(红,白1,白1),(红,白1,白2),(红,白1,黑),…,共64个.

因为取一个红球记2分,取一个白球记1分,取一个黑球记0分,若连续取三次,则分数之和为4分的基本事件如下:

(红,白1,白1),(红,白1,白2),(红,白2,白1),(红,白2,白2),(白1,红,白1),(白1,红,白2),(白2,红,白1),(白2,红,白2),(白1,白1,红),(白1,白2,红),(白2,白1,红),(白2,白2,红),(红,红,黑),(红,黑,红),(黑,红,红),共15个.故所求概率为1564

.

18.解:(1)f ′(x )=ax +b ,由题意f ′(-1)≤0,即b ≤a ,而(a ,b )共有(2,1),(2,3)(4,1),(4,3)四种,满足b ≤a 的有3种,故概率为3

4

.

(2)由(1)可知,函数f (x )共有4种可能,从中随机抽取两个,有6种抽法.

∵函数f (x )在(1,f (1))处的切线的斜率为f ′(1)=a +b ,

∴这两个函数中的a 与b 之和应该相等,而只有(2,3),(4,1)这1组满足, ∴概率为1

6

.

19.解:(1)X 的所有可能取值为-2,-1,0,1.

(2)数量积为-2的有OA 2·OA 5,共1种;

数量积为-1的有OA 1·OA 5,OA 1·OA 6,OA 2·OA 4,OA 2·OA 6,OA 3·OA 4,

OA 3·OA 5,共6种;

数量积为0的有OA 1·OA 3,OA 1·OA 4,OA 3·OA 6,OA 4·OA 6,共4种; 数量积为1的有OA 1·OA 2,OA 2·OA 3,OA 4·OA 5,OA 5·OA 6,共4种. 故所有可能的情况共有15种.所以小波去下棋的概率为P 1=715

因为去唱歌的概率为P 2=415,所以小波不去唱歌的概率P =1-P 2=1-415=11

15.

20.解:(1)A ={6i,7i,8i,9i}.

(2)满足条件的基本事件的个数为24.

设满足“复数在复平面内对应的点(a ,b )满足a 2+(b -6)2≤9”的事件为B .

当a =0时,b =6,7,8,9满足a 2+(b -6)2≤9;当a =1时,b =6,7,8满足a 2+(b -6)2≤9; 当a =2时,b =6,7,8满足a 2+(b -6)2≤9;当a =3时,b =6满足a 2+(b -6)2≤9. 即B 为(0,6),(0,7),(0,8),(0,9),(1,6),(1,7),(1,8),(2,6),(2,7),(2,8),(3,6)共计11个. 所以所求概率P =11

24

.

21.解:由集合P ={x |x (x 2+10x +24)=0}可得P ={-6,-4,0},由Q ={y |y =2n -1,1≤n ≤2,n ∈N *}可得Q ={1,3},则M =P ∪Q ={-6,-4,0,1,3},因为点A 的坐标为(x ′,y ′),且x ′∈M ,y ′∈M ,所以满足条件的点A 的所有情况为(-6,-6),(-6,-4),(-6,0),(-6,1),(-6,3),…,(3,3),共25种.

(1)点A 正好在第三象限的可能情况为(-6,-6),(-4,-6),(-6,-4),(-4,-4),共4种,故点A 正好在第三象限的概率P 1=425

.

(2)点A 在y 轴上的可能情况为(0,-6),(0,-4),(0,0),(0,1),(0,3),共5种,故点A 不在y 轴上的概率P 2=1-525=4

5

.

(3)点A 正好落在区域x 2+y 2≤10上的可能情况为(0,0),(1,0),(0,1),(3,1),(1,3),(3,0),(0,3),(1,1).共8种,故点A 落在区域x 2+y 2≤10上的概率P 3=825

.

22.解:(1)设“a ∥b ”为事件A ,由a ∥b ,得x =2y .

基本事件空间为Ω={(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1),(2,-1),(2,0),(2,1)},共包含12个基本事件;

其中A ={(0,0),(2,1)},包含2个基本事件.则P (A )=

212=16,即向量a ∥b 的概率为16

高三文科数学概率练习题

. (2)设“a ,b 的夹角是钝角”为事件B ,由a ,b 的夹角是钝角,可得a·b <0,即2x +y <0,且x ≠2y . 基本事件空间为

Ω=?

?? (x ,y )??? ???

??

?????-1≤x ≤2,-1≤y ≤1.B =???

(x ,y )???? ??

????????-1≤x ≤2,

-1≤y ≤1,2x +y <0,

x ≠2y .

则由图可知,P (B )=μB μΩ=12×(12+3

2)×23×2

=13.即向量a ,b 的夹角是钝角的概率是1

3.

相关文档
  • 高考文科数学概率题

  • 高考文科数学概率

  • 高考文科数学概率统计

相关推荐: