文档库 最新最全的文档下载
当前位置:文档库 › 论高层建筑结构概念设计

论高层建筑结构概念设计

论高层建筑结构概念设计
论高层建筑结构概念设计

论高层建筑结构概念设计

摘要:概念设计是运用人的思维和判断力,从宏观上解决结构设计的基本问题。笔者根据多年的实践工作经验,对高层建筑结构的概念设计相关问题进行分析,以作交流。

关键词:高层建筑结构概念设计

0 前言

近些年来,建筑业有了突飞猛进的发展,城市建设的发展中,高层建筑越来越广泛地应用,在不断的结构设计研究与实践中,人们积累了大量的实践经验。计算机技术的迅猛发展,为结构设计提供了快速、准确的设计计算工具。然而有很多设计还存在诸多缺陷,主要原因就是在总体方案和构造措施上未采用正确的构思,即未进行概念设计所致。所谓概念设计就是运用人的思维和判断力,在设计前期从宏观上决定结构设计的基本问题。一般指不经数值计算,是从结构概念入手,依据整体结构体系与结构子体系之间的力学关系、相对刚度关系、结构破坏机理、震害、试验现象和工程经验所获得的基本设计原则和设计思想,从整体角度来确定建筑结构的总体布置和结构措施。

一概念设计的意义

由于结构方案设计阶段,是不需要借助于计算机来实现的,这就需要我们综合运用其掌握的结构概念,能做到结构功能与外部条件一致,充分展现先进的设计,发挥结构的功能并取得与经济性的协调。运用概念性近似估算方法,可以在建筑设计的方案阶段迅速、

高层建筑结构设计试题及复习资料

高层建筑结构设计 名词解释 1. 高层建筑:10层及10层以上或房屋高度大于28m 的建筑物。 2. 房屋高度:自室外地面至房屋主要屋面的高度。 3. 框架结构:由梁和柱为主要构件组成的承受竖向和水平作用的结构。 4. 剪力墙结构:由剪力墙组成的承受竖向和水平作用的结构。 5. 框架—剪力墙结构:由框架和剪力墙共同承受竖向和水平作用的结构。 6. 转换结构构件:完成上部楼层到下部楼层的结构型式转变或上部楼层到下部楼层结构布置改变而 设置的结构构件,包括转换梁、转换桁架、转换板等。 7. 结构转换层:不同功能的楼层需要不同的空间划分,因而上下层之间就需要结构形式和结构布置 轴线的改变,这就需要在上下层之间设置一种结构楼层,以完成结构布置密集、墙柱较多的上层向结构布置较稀疏、墙术较少的下层转换,这种结构层就称为结构转换层。(或说转换结构构件所在的楼层) 8. 剪重比:楼层地震剪力系数,即某层地震剪力与该层以上各层重力荷载代表值之和的比值。 9. 刚重比:结构的刚度和重力荷载之比。是影响重力?-P 效应的主要参数。 10. 抗推刚度(D ):是使柱子产生单位水平位移所施加的水平力。 11. 结构刚度中心:各抗侧力结构刚度的中心。 12. 主轴:抗侧力结构在平面内为斜向布置时,设层间剪力通过刚度中心作用于某个方向,若结构产 生的层间位移与层间剪力作用的方向一致,则这个方向称为主轴方向。 13. 剪切变形:下部层间变形(侧移)大,上部层间变形小,是由梁柱弯曲变形产生的。框架结构的 变形特征是呈剪切型的。 14. 剪力滞后:在水平力作用下,框筒结构中除腹板框架抵抗倾复力矩外,翼缘框架主要是通过承受 轴力抵抗倾复力矩,同时梁柱都有在翼缘框架平面内的弯矩和剪力。由于翼缘框架中横梁的弯曲和剪切变形,使翼缘框架中各柱轴力向中心逐渐递减,这种现象称为剪力滞后。 15. 延性结构:在中等地震作用下,允许结构某些部位进入屈服状态,形成塑性铰,这时结构进入弹 塑性状态。在这个阶段结构刚度降低,地震惯性力不会很大,但结构变形加大,结构是通过塑性变形来耗散地震能量的。具有上述性能的结构,称为延性结构。 16. 弯矩二次分配法:就是将各节点的不平衡弯矩,同时作分配和传递,第一次按梁柱线刚度分配固 端弯矩,将分配弯矩传递一次(传递系数C=1/2),再作一次分配即结束。 第一章 概论 (一)填空题 1、我国《高层建筑混凝土结构技术规程》(JGJ3—2002)规定:把10层及10层以上或房屋高度大于28m 的建筑物称为高层建筑,此处房屋高度是指室外地面到房屋主要屋面的高度。 2.高层建筑设计时应该遵循的原则是安全适用,技术先进,经济合理,方便施工。 3.复杂高层结构包括带转换层的高层结构,带加强层的高层结构,错层结构,多塔楼结构。

高层建筑结构概念设计

文章编号:1009-6825(2013)02-0048-02 高层建筑结构概念设计初探 收稿日期:2012-10-08作者简介:孙建文(1972-),男,工程师 孙建文 (晋城市晋方圆建筑检测有限公司,山西晋城048000) 摘 要:从设计的不同阶段如何对高层建筑结构概念设计的把握方面进行了论述,初步认识了高层建筑结构的概念设计,达到了 推广学习、进一步掌握高层建筑结构概念设计的效果。关键词:概念设计,规范,一体化计算机结构设计程序中图分类号:TU971 文献标识码:A 习惯的传统设计往往给结构工程师造成一种错觉:认为结构 设计就是 “规范+计算”,或是“规范+一体化计算机结构设计程序”。其导致的结果必然是:1)依赖和盲从于规范,认为规范就是 结构设计的全部法律依据,殊不知规范只是建筑物和构筑物所需要的最低标准要求,而且是滞后的。2)盲目依赖和依靠一体化计算机结构设计程序,而对结构设计程序的基本理论假定、应用范围、限制条件等缺乏了解,对计算结果不能进行正确的判断、取舍。 如何走出传统设计的误区。作为一名结构工程师,在高层建筑结构的设计中,应本着积极、主动的态度,自觉地完成高层建筑结构的概念设计,这是我们走出传统设计误区的关键。 那么,什么是高层建筑结构的概念设计。 高层建筑结构的概念设计就是在特定的空间形式、功能和地理环境的条件下,以结构工程师自身确定的理想承载力、刚度和延性为主导目标,用整体构思来设计各部分有机相连的结构总体 系, 并能有意识地利用和发挥结构总体系和主要分体系,以及分体系与构件之间的最佳受力特征与协调关系。 高层建筑结构的概念设计分为三个阶段:第一阶段,即建筑方案设计阶段。结构工程师以自身拥有的高层建筑结构体系功能及其受力、变形特征的整体设计概念与判断力去帮助建筑师开拓和实现业主梦寐以求的,或已初步构思的空间形式及其使用、构造与形象功能。并以此为统一目标,与建筑师一起构思总结构体系,并能明确结构总体系和主要分体系之间的最佳受力特征要求。第二阶段,即初步设计阶段。结构工程师通过概念性近似计算能迅速、有效地对结构体系进行构思、比较与选择,这种近似的 计算方法概念清楚, 定性准确,手算简单快捷,能较快地对结构体系进行探索、优化,乃至最后确定分体系及其构件的基本尺寸,并 确认设计方案的可行性。第三阶段,即施工图设计阶段。由初步设计阶段可以得到结构体系的计算模型和所需输入的原始数据,在施工图设计阶段,结构工程师结合自身拥有的结构概念、经验和判断力,对计算机内力分析输出数据的可靠性与否进行判断。 作为一名结构工程师,如何去把握,或者说有意识地去进行高层建筑结构的概念设计。一句话,对应于高层建筑结构概念设计的三个阶段,分别进行概念设计。首先,在建筑方案设计阶段,要正确把握高层建筑结构的概念设计,必须坚持结构设计没有惟一解的设计理念,充分发挥结构工程师的创造力和创新能力,协助建筑师以达到令业主满意的建筑。例如,美国芝加哥第一国家银行大楼建设之初,银行业主追求和向往能在他们银行大楼的整个底部有一个4层 5层楼高的无柱大空间,以充分满足他们银行业务在使用功能和形象功能上的需要。在芝加哥第一国家银行大楼方案设计中,结构工程师和建筑师合作开拓了一种新的结构形式,即将电梯井筒与设备井筒分别设置在建筑物的纵向两侧,作为巨型柱,并将第一道设备层设置在第6层,往上每隔18层再各自设置一道,作为承载力和刚度很大的巨型水平构件,并与周边的巨型柱有机地刚性连接在一起,从而构成了一种巨型框架体系的结构功能与受力特征,不但 能有效地抵抗重力荷载和水平荷载,还在整个大楼底部5110m 2櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅 的 1)在翼缘板上,对着纵长焊缝,由弯曲中心向两头作线状加热,即可矫正弯曲变形。如果效果不理想,可用辅助加载的方法。2)翼缘板上作线状加热,在腹板上作三角形加热。用这种办法矫正柱、梁的弯曲变形效果显著,横向线状加热宽度普通取20mm 90mm ,板厚小时,加热宽度要窄一些,加热过程应由宽度中心向两头扩大。加热三角形从顶部开始,从中心向两边扩大,一层层加热直到三角形的底为止。 6.2.3柱、梁腹板的波浪变形 矫正波浪变形是在波峰处用圆点加热法配合手锤矫正。加热圆点的直径一般为100mm 200mm 。烤嘴从波峰起作圆形挪动, 选用中温矫正。当温度到达600? 700?时,在波峰为止加垫板后再用大锤击打垫板,使加热区金属受压,冷却后变平。矫正时完成一个点后再进行加热矫正第二个波峰点。参考文献: [1]GB 50205-2001,钢结构工程施工质量验收规范[S ].[2]GB 50018-2002,冷弯薄壁型钢结构技术规范[ S ].Welding stress and deformation control of steel structure industrial plant LI Jian-bin (Hebei Yongcheng Project Management Limited Company ,Baoding 071000,China ) Abstract :According to the welding stress and deformation control problems of steel structure industrial plant members ,discussed from materials quality ,processing technology ,welding sequence ,welding processing and other links ,and put forward the eliminating method of welding stress and control measures and correction method of welding deformation ,in order to ensure the safety and reliability of structural members.Key words :industrial plant ,steel member ,welding stress ,deformation control · 84·第39卷第2期2013年1月 山西 建筑 SHANXI ARCHITECTURE Vol.39No.2Jan.2013

浅谈高层建筑结构设计的优化

浅谈高层建筑结构设计的优化 摘要:在社会经济快速发展的背景下,城市建筑用地资源日益紧张,高层乃至 超高层建筑项目不断兴起,在城市建筑领域中占据着相当重要的地位,并带动着 建筑行业的蓬勃发展。高层建筑项目建设中,结构设计的质量水平会对高层建筑 物的整体性能产生影响,如何对高层建筑结构进行优化设计是业内人士必须关注 的一项课题。本文即探讨在高层建筑结构优化设计中存在的不足之处,并提出了 高层建筑结构优化设计的解决措施与方法,望能够促进建筑结构设计方案的进一 步优化与发展。 关键词:高层建筑;结构;设计;优化 引言:高层建筑凭借着自身众多优势而成为当前城市建设中最重要的类型。 而结构设计的科学合理性对高层建筑的安全稳定性、适用性、耐久性及经济性等 有重大影响,因此优化高层建筑结构设计意义重大。高层建筑结构优化的主要目 的是在满足人们基本居住要求的前体下,实现对有限空间及资源的更合理分配, 以提升房屋的安全、舒适及美观性。建筑工程包含的内容众多,因此结构设计优 化的内容也是多方面的,在结构优化设计中,只有从多角度进行全面的优化设计,才能从整体上促进高层建筑结构优化设计水平的提高。 1、高层建筑历史与现状发展 在很早以前就有了结构化优化的思维,是在很多建筑设计者的实践中提炼出 来的,林同炎设计大师就是首次在国内提出结构化优化的方法。之后在我国高层 建筑迅速发展,目前发展已经十分惊人,各种优化方法也层出不穷。 在早前,手工画图时代,结构设计师都是依靠先把空间问题转换成平面问题。此时通过计算力学效应,逐步分析计算和考核,强度、整体受力情况都需要一一 验算核准,强调安全性,也要满足设计的基本要求。然后凭经验初取截面,再进 行强度验算校核、整体受力验算等步骤。由于受到当时条件制约,整体上要既要 实现经济,又要完全达到优化设计是很难达到的。随着计算机的普及,在建筑设 计上的应用,利用计算机来优化建筑设计结构,研究成果虽然取得了突破性的进展,但是应用上并不如人意。那是因为科研的结果与现实的运用在很大程度上有 一定的距离,现实中会考虑更多的约束条件,工程的复杂性在现实中得到体现。 不是科研中的简单函数关系就能处理完成,需要考虑实际情况。工程的复杂和不 可复制性,就决定了结构化优化的难度。 各种计算机语言和软件的出现,为建筑结构化设计提供了精准的计算,让设 计更有迅速。即便如此,科学研究的最优解和建筑实际的最优化还是有很大的区别,理论和实践区别在于实践的变化性。这就需要以实践为基础,更深入的去研究,从结构优化,到安全、美学、功能等方面进行优化。 2、设计高层建筑结构合理性所遵守的原则 2.1 高层建筑结构基础设计方案要合理 高层建筑场地的地址因素是决定高层建筑结构基础方案如何选择的参考依据。合理、有效的高层建筑结构基础方案的设计,必须结合相应的地址勘探条件,必 须切实、全面的考虑周边原有建筑群体、施工限制条件、地基荷载分布情况与高 层建筑结构类型等相互间的关联因素。 2.2 保证高层建筑结构设计方案的合理性

高层建筑结构设计资料

名词解释: 高层建筑:10层及10层以上或房屋高度大于28m的建筑物。 2. 房屋高度:自室外地面至房屋主要屋面的高度。 3. 框架结构:由梁和柱为主要构件组成的承受竖向和水平作用的结构。 4. 剪力墙结构:由剪力墙组成的承受竖向和水平作用的结构。 5. 框架—剪力墙结构:由框架和剪力墙共同承受竖向和水平作用的结构。 6. 转换结构构件:完成上部楼层到下部楼层的结构型式转变或上部楼层到下部楼层结构布置改变而设置的结构构件,包括转换梁、转换桁架、转换板等。 7. 结构转换层:不同功能的楼层需要不同的空间划分,因而上下层之间就需要结构形式和结构布置轴线的改变,这就需要在上下层之间设置一种结构楼层,以完成结构布置密集、墙柱较多的上层向结构布置较稀疏、墙术较少的下层转换,这种结构层就称为结构转换层。(或说转换结构构件所在的楼层) 8. 剪重比:楼层地震剪力系数,即某层地震剪力与该层以上各层重力荷载代表值之和的比值。 9. 刚重比:结构的刚度和重力荷载之比。是影响重力 P效应的主要参数。 10. 抗推刚度(D):是使柱子产生单位水平位移所施加的水平力。 11. 结构刚度中心:各抗侧力结构刚度的中心。 12. 主轴:抗侧力结构在平面内为斜向布置时,设层间剪力通过刚度中心作用于某个方向,若结构产生的层间位移与层间剪力作用的方向一致,则这个方向称为主轴方向。 13. 剪切变形:下部层间变形(侧移)大,上部层间变形小,是由梁柱弯曲变形产生的。框架结构的变形特征是呈剪切型的。 14. 剪力滞后:在水平力作用下,框筒结构中除腹板框架抵抗倾复力矩外,翼缘框架主要是通过承受轴力抵抗倾复力矩,同时梁柱都有在翼缘框架平面内的弯矩和剪力。由于翼缘框架中横梁的弯曲和剪切变形,使翼缘框架中各柱轴力向中心逐渐递减,这种现象称为剪力滞后。 15. 延性结构:在中等地震作用下,允许结构某些部位进入屈服状态,形成塑性铰,这时结构进入弹塑性状态。在这个阶段结构刚度降低,地震惯性力不会很大,但结构变形加大,结构是通过塑性变形来耗散地震能量的。具有上述性能的结构,称为延性结构。 16. 弯矩二次分配法:就是将各节点的不平衡弯矩,同时作分配和传递,第一次按梁柱线刚度分配固端弯矩,将分配弯矩传递一次(传递系数C=1/2),再作一次分配即结束。填空:1、我国《高层建筑混凝土结构技术规程》(JGJ3—2002) 规定:把10层及10层以上或房屋高度大于28m的建筑物 称为高层建筑,此处房屋高度是指室外地面到房屋主要屋 面的高度。2.高层建筑设计时应该遵循的原则是安全适用, 技术先进,经济合理,方便施工。 3.复杂高层结构包括带转换层的高层结构,带加强层的高 层结构,错层结构,多塔楼结构。 4.8度、9度抗震烈度 设计时,高层建筑中的大跨和长悬臂结构应考虑竖向地震 作用。 5.高层建筑结构的竖向承重体系有框架结构体系,剪力墙 结构体系,框架—剪力墙结构体系,筒体结构体系,板柱 —剪力墙结构体系;水平向承重体系有现浇楼盖体系,叠 合楼盖体系,预制板楼盖体系,组合楼盖体系。 6.高层结构平面布置时,应使其平面的质量中心和刚度中 心尽可能靠近,以减少扭转效应。 7.《高层建筑混凝土结 构技术规程》JGJ3-2002适用于10层及10层以上或房屋高 度超过28m的非抗震设计和抗震设防烈度为6至9度抗震 设计的高层民用建筑结构。 9 三种常用的钢筋混凝土高层结构体系是指框架结构、剪 力墙结构、框架—剪力墙结构。 1.地基是指支承基础的土体,天然地基是指基础直接建造 在未经处理的天然土层上的地基。 2.当埋置深度小于基础底面宽度或小于5m,且可用普通开 挖基坑排水方法建造的基础,一般称为浅基础。 3,为了增强基础的整体性,常在垂直于条形基础的另一个 方向每隔一定距离设置拉梁,将条形基础联系起来。 4.基础的埋置深度一般不宜小于0.5m,且基础顶面应低于 设计地面100mm以上,以免基础外露。 5.在抗震设防区,除岩石地基外,天然地基上的箱形和筏 形基础,其埋置深度不宜小于建筑物高度的1/15;桩箱或 桩筏基础的埋置深度(不计桩长)不宜小于建筑物高度的 1/18—1/20。 6.当高层建筑与相连的裙房之间设置沉降缝时,高层建筑 的基础埋深应大于裙房基础的埋深至少2m。 7.当高层建筑与相连的裙房之间不设置沉降缝时,宜在裙 房一侧设置后浇带,其位置宜设在距主楼边柱的第二跨内。 8.当高层建筑与相连的裙房之间不设置沉降缝和后浇带 时,应进行地基变形验算。 9.基床系数即地基在任一点发生单位沉降时,在该处单位 面积上所需施加压力值。 10.偏心受压基础的基底压应力应满足maxpaf2.1 、af 和2 min maxppp 的要求,同时还应防止基础转动过 大。 11.在比较均匀的地基上,上部结构刚度较好,荷载分布 较均匀,且条形基础梁的高度不小于1/6柱距时,地基反 力可按直线分布,条形基础梁的内力可按连续梁计算。当 不满足上述要求时,宜按弹性地基梁计算。 12.十字交叉条形基础在设计时,忽略地基梁扭转变形和 相邻节点集中荷载的影响,根据静力平衡条件和变形协调 条件,进行各类节点竖向荷载的分配计算。 13.在高层建筑中利用较深的基础做地下室,可充分利用 地下空间,也有基础补偿概念。如果每㎡基础面积上墙体 长度≮400mm,且墙体水平截面总面积不小于基础面积的 1/10,且基础高度不小于3m,就可形成箱形基础。 1.高层建筑结构主要承受竖向荷载,风荷载和地震作用等。 2.目前,我国钢筋混凝土高层建筑框架、框架—剪力墙结 构体系单位面积的重量(恒载与活荷载)大约为12~14kN /m2 ;剪力墙、筒体结构体系为14~16kN/m2 。 3.在框架设计中,一般将竖向活荷载按满载考虑,不再一 一考虑活荷载的不利布置。如果活荷载较大,可按满载布 置荷载所得的框架梁跨中弯矩乘以1.1~1.2的系数加以放 大,以考虑活荷载不利分布所产生的影响。 4.抗震设计时高层建筑按其使用功能的重要性可分为甲类 建筑、乙类建筑、丙类建筑等三类。 5.高层建筑应按不同情况分别采用相应的地震作用计算方 法:①高度不超过40m,以剪切变形为主,刚度与质量沿高 度分布比较均匀的建筑物,可采用底部剪力法;②高度超 过40m的高层建筑物一般采用振型分解反应谱方法;③刚 度与质量分布特别不均匀的建筑物、甲类建筑物等,宜采 用时程分析法进行补充计算。, 6.在计算地震作用时,建筑物重力荷载代表值为永久荷载 和有关可变荷载的组合值之和。 7.在地震区进行高层建筑结构设计时,要实现延性设计, 这一要求是通过抗震构造措施来实现的;对框架结构而言, 就是要实现强柱弱梁、强剪弱弯、强节点和强锚固。 8.A级高度钢筋混凝土高层建筑结构平面布置时,平面宜 简单、规则、对称、减少偏心。 9.高层建筑结构通常要考虑承载力、侧移变形、稳定、倾 复等方面的验算 问答: 1.我国对高层建筑结构是如何定义的? 答:我国《高层建筑混凝土结构技术规程》 (JGJ3—2002)规定:10层及10层以上或房屋高度大 于28m的建筑物称为高层建筑,此处房屋高度是指室 外地面到房屋主要屋面的高度。 2.高层建筑结构有何受力特点? 答:高层建筑受到较大的侧向力(水平风力或水平地 震力),在建筑结构底部竖向力也很大。在高层建筑 中,可以认为柱的轴向力与层数为线性关系,水平力 近似为倒三角形分布,在水平力作用卞,结构底部弯 矩与高度平方成正比,顶点侧移与高度四次方成正 比。上述弯矩和侧移值,往往成为控制因素。另外, 高层建筑各构件受力复杂,对截面承载力和配筋要求 较高。

华工高层建筑结构作业题(2017)

《高层建筑结构》作业题 一、选择题 1.高层建筑抗震设计时,应具有( A )抗震防线。 A.多道;B.两道;C.一道;D.不需要。 2.下列叙述满足高层建筑规则结构要求的是( D )。 A.结构有较多错层;B.质量分布不均匀; C.抗扭刚度低;D.刚度、承载力、质量分布均匀、无突变 3.高层建筑结构的受力特点是( C )。 A.竖向荷载为主要荷载,水平荷载为次要荷载;B.水平荷载为主要荷载,竖向荷载为次要荷载;C.竖向荷载和水平荷载均为主要荷载;D.不一定 4.钢筋混凝土高层结构房屋在确定抗震等级时,除考虑地震烈度、结构类型外,还应该考虑( C )。 A.房屋高度;B.高宽比;C.房屋层数;D.地基土类别 5.与基础类型的选择无关的因素是:( B ) A.工程地质及水文地质条B.相邻建筑物的基础类型 C.建筑物的荷载D.施工条件 6.基础的埋置深度一般是指:( B ) A.自标高±0.00处到基础底面的距离B.自标高±0.00处到基础顶面的距离 C.自室外地面到基础底面的距离D.自室外地面到基础顶面的距离 7.框筒结构中剪力滞后规律哪一个是不对的?( D ) A、柱距不变,加大梁截面可减小剪力滞后 B、结构上部,剪力滞后减小 C、结构正方形时,边长愈大,剪力滞后愈大 D、角柱愈大,剪力滞后愈小8.在下列地点建造相同的高层建筑,什么地点承受的风力最大?( A )A.建在海岸B.建在大城市郊区 C.建在小城镇D.建在有密集建筑群的大城市市区 9.有设计特别重要和有特殊要求的高层建筑时,标准风压值应取重现期为多少年? ( D )A.30年;B.50年;C.80年;D.100年 10.多遇地震作用下层间弹性变形验算的重要目的是下列所述的哪种? ( C )A.防止结构倒塌;B.防止结构发生破坏; C.防止非结构部分发生过重的破坏;D.防止使人们惊慌 11.在抗震设计时,下列说法正确的是( D )。 A.在剪力墙结构中,应设计成为强连梁、弱墙肢 B.在剪力墙结构中,应设计成为强墙肢、弱连梁; C.在框架结构中,应设计成强弯弱剪;D.在框架结构中,应设计成强梁弱柱

高层建筑结构设计特点.

浅论高层建筑结构特点及其体系 [摘要]文章分析高层建筑结构的六个特点,并介绍目前国内高层建筑的四大结构体系:框架结构、剪力墙结构、框架剪力墙结构和筒体结构。 [关键词]高层建筑;结构特点;结构体系 我国改革开放以来,建筑业有了突飞猛进的发展,近十几年我国已建成高层建筑万栋,建筑面积达到2亿平方米,其中具有代表性的建筑如深圳地王大厦81层,高325米;广州中天广场80层,高322米;上海金茂大厦88层,高420.5米。另外在南宁市也建起第一高楼:地王国际商会中心即地王大厦共54层,高206.3米。随着城市化进程加速发展,全国各地的高层建筑不断涌现,作为土建工作设计人员,必须充分了解高层建筑结构设计特点及其结构体系,只有这样才能使设计达到技术先进、经济合理、安全适用、确保质量的基本原则。 一、高层建筑结构设计的特点 高层建筑结构设计与低层、多层建筑结构相比较,结构专业在各专业中占有更重要的位置,不同结构体系的选择,直接关系到建筑平面的布置、立面体形、楼层高度、机电管道的设置、施工技术的要求、施工工期长短和投资造价的高低等。其主要特点有: (一水平力是设计主要因素 在低层和多层房屋结构中,往往是以重力为代表的竖向荷载控制着结构设计。而在高层建筑中,尽管竖向荷载仍对结构设计产生重要影响,但水平荷载却起着决定性作用。因为建筑自重和楼面使用荷载在竖向构件中所引起的轴力和弯矩的数值,仅与建筑高度的一次方成正比;而水平荷载对结构产生的倾覆力矩、以及由此在竖向构件中所引起的轴力,是与建筑高度的两次方成正比。另一方面,对一定高度建筑来说,竖向荷载大体上是定值,而作为水平荷载的风荷载和地震作用,其数值是随着结构动力性的不同而有较大的变化。

浅谈高层建筑结构设计_0

浅谈高层建筑结构设计 上世纪末以来,城市化进程加速,城市人口激增,社会经济蓬勃发展,高层建筑在城市中越来越多。如今,城市中的高层建筑已经成为当地经济繁荣的重要标志。 标签结构设计;高层建筑;控制参数;载荷;抗震 1 高层建筑的特点 《高层建筑混凝土结构技术规程》规定,10层及10层以上和高度超过28 m 的钢筋混凝土民用建筑属于高层建筑。相比多层建筑而言,高层是向空中发展,容积率一定的情况下,建造高层建筑可以节省规划用地面积,提高城市绿化率,还可以缓解城市用地紧张的局面。 高层建筑基础需要计算确定深度,独立的高层建筑单体而言,基础埋深比较容易确定,但现今住宅多为数十栋高层建筑群,地下车库相互连接,这时,既要充分考虑地下车库应的侧向刚度作为高层建筑的侧限。 高层建筑比多层建筑多出较多的设备用房,如电梯、管道井等,这样就会增加建筑物的造价,增加公共面积;从建筑防火的角度看,高层筑的防火要求要高于中低层建筑,也会增加高层建筑的工程造价和运行成本。 2 高层结构设计体系特点 地震作用和风荷载的影响下高度的增加,水平作用对高层建筑结构安全的控制作用更加显著。高层建筑的抗震性能、抗侧刚度、承载能力、造价高低,与所采用的结构系统密切相连。不同的层数、高度应采用不同的结构体系。 2.1 筒体结构 单个筒体可分为实腹筒、框筒和桁筒。平面剪力墙组成空间薄壁筒体,即为实腹筒;框架通过减小肢距,形成空间密柱框筒,即框筒;筒壁若用空间桁架组成,则形成桁筒。实际结构中除烟囱等构筑物外不可能存在单筒结构,而常常以框架—筒体结构、筒中筒结构、多筒体结构和成束筒结构形式出现。在层数很多或设防烈度要求很高时,可用筒体结构。 2.2 剪力墙结构体系 利用建筑物墙体作为承受竖向荷载、抵抗水平荷载的结构,称为剪力墙结构体系。剪力墙结构体系于钢筋混凝土结构中,由墙体承受全部水平作用和竖向荷载。现浇钢筋混凝土剪力墙结构的整体性好,刚度大,在水平荷载作用下侧向变形小,承载力要求也容易满足。但剪力墙结构体系平面布置不灵活,结构自重往

浅析高层建筑结构设计的中震设计概念

浅析高层建筑结构设计的中震设计概念 发表时间:2016-06-27T14:51:54.553Z 来源:《基层建设》2016年5期作者:隆凡梅 [导读] 本文主要阐述了中中震设计的原理、设计方法及软件操作,并提出一些个人见解以供参考。 摘要:对于普通建筑物的结构抗震设计,目前我国是以小震为设计基础,中震和大震则是通过地震力的调整系数和各种抗震构造措施来保证的。但是对于较重要的、超高的、超限的建筑物则需要进行中震和大震的抗震计算。本文主要阐述了中中震设计的原理、设计方法及软件操作,并提出一些个人见解以供参考。 关键词:中震设计概念;地震影响系数;荷载 《建筑抗震设计规范》(GB50011-2001 2008年版)(下简称《抗规》)中对中震设计仅在总则中提到“小震不坏、中震可修、大震不倒”的抗震设防目标,但没有给出中震设计的设计要求和判断标准。 首先我们了解一下现行《抗规》存在几个问题: 1规范未对结构存在的薄弱构件进行分析并作出专门的设计规定,仅对框架类剪切型结构适用的薄弱层作了一些规定; 2在中震作用下,规范仅提出“中震可修”的概念设计要求,没有具体的抗震设计方法; 3“中震可修”的技术经济问题:可修的标准决定工程????造价、破坏损失、震后修复费用。 随着时代的进步,现在的建筑物体型复杂,结构新颖,超高超限越来越多,因此要求对结构进行中震的设计也越来越多。 2 中震设计 2.1 为何要进行中震设计呢? 《抗规》条文说明1.0.1条指出,对大多数结构,可只进行第一阶段设计(即小震下的弹性计算),而通过概念设计和抗震构造措施来实现“中震可修和大震不倒”的设计要求,但前提是建筑物的体型常规、合理,经验上一般能满足大中震的抗震要求。反之对于一些体型很不好的甚至超限的建筑物,在大震下的结构反应和小震完全不同,不进行相应的中震和大震计算是没法保证结构安全的。 为达到各阶段抗震要求,须对于上述体型异常、刚度变化大、超高超限等类型建筑物进行中震抗震设计,其余类型建筑物建议可按中震抗震进行验算。 2.2 中震设计的基本概念 抗震设计要达到的目标是在不同频数和强度的地震时,要求建筑物具有不同的抵抗能力。中震设计就是为了使建筑物满足该地区的基本设防烈度,即能够抵抗50年限期内可能遭遇超越概率为10%的地震烈度。 中震设计和大震设计都可称为性能设计。基于性能的抗震设计是建筑结构抗震设计的一个新的重要发展,它的特点是使抗震设计从宏观性、规范指定的目标向具体量化的多重目标过渡,业主(设计者)可选择所需的性能目标,而不仅仅是按现行规范通过分项系数、内力调整系数、抗震构造措施等粗略、定性的手段来满足中震和大震的设防要求。针对本工程的结构特点,设定本结构的抗震性能目标。对超限结构而言,利用这些指标能更合理地判断整体结构在中震、大震作用下的性能表现,给超限设计提供可靠的判断依据。 2.3 中震设计的分类 中震设计就是结构在地震影响系数按小震的2.875倍(αmax=0.23)取值下进行验算。目前工程界对于结构的中震设计有两种方法,第一种按照中震弹性设计,第二种是按照中震不屈服设计。 首先明确一点,中震弹性和中震不屈服是两个完全不同的概念,两者所采用的设计方法与设防目的均不相同。中震弹性设计,设计中取消《抗规》要求的各项地震组合内力调整系数,保留材料、荷载等分项系数,对应地保留了结构的安全度和可靠度,结构仍属于弹性阶段,属正常设计。中震不屈服设计,设计中除了地震内力不作调整,同时也取消了材料、荷载等分项系数,对应地不考虑结构的安全度和可靠度,结构已经处于弹塑性阶段,属承载力极限状态设计,是一种基于性能的设计方法。由此可见,中震弹性设计接近于平常的小震弹性设计,而中震不屈服设计则与大震设计同属于基于性能的设计。 3 基本方法及应用 根据中震设计的分类,以下分别阐述中震弹性及中震不屈服的具体设计方法,介绍如何在satwe、etabs、midas等软件中实现中震设计。 3.1 中震不屈服设计 3.3.1 不同抗震烈度下的各级屈服控制 若场地安评报告提供实际的地震影响系数,则应取用所提供的多遇地震、设防烈度地震下相应的地震影响系数,屈服判别地震作用1、2 的地震影响系数可相应插值求得。 3.3.2 SAWTE计算:地震信息中抗震等级均为四级;αmax按表3取值;总信息中风荷载不参加计算;勾选地震信息中的按中震(或大震)不屈服做结构设计选项;其它设计参数的定义均同小震设计。 3.3.3 MIDAS/Gen计算:主菜单→设计→钢筋混凝土构件设计参数→定义抗震等级:四级;主菜单→荷载→反应谱分析数据→反应谱函数:定义中震反应谱,在相应的小震反应谱基础上输入放大系数β即可,β值按表3计算所得;总信息中风荷载不参加计算;主菜单→结果→荷载组合:将各项荷载组合中的地震作用分项系数取为1.0;主菜单→设计→钢筋混凝土构件设计参数→材料分项系数:将材料分项系数取为1.0;其它同小震。 3.3.4 ETABS计算:选项→首选项→混凝土框架设计→定义抗震设计等级:四级;定义→反应谱函数→Add Chinese 2002 Spectrum→定义中震反应谱,地震影响系数最大值αmax取值,其余参数按《抗规》;静荷载工况中不定义风荷载作用;定义→荷载组合→各项荷载比例系数均取为荷载分项系数1.0x荷载组合系数φ;定义→材料属性→填写各材料的强度标准值其它同小震。 4 工程算例 4.1 示范算例 4.1.1 基本参数:二十二层框支剪力墙结构,三层楼面转换,无地下室,首、二层4.5米,标准层3.5米,总高79m。结构平面布置如图一所示。结构高宽比3.76,长宽比1.22;抗震参数,7 度,第一组,0.10g;场地II类;风荷载100年一遇为0.9kN/㎡。

浅谈高层建筑结构概念设计

浅谈高层建筑结构概念设计 浅谈高层建筑结构概念设计 摘要: 随着建筑新材料的开发和利用、建筑的高度继续提升、组合结构建筑的增加、新型结构形式的应用、耗能减震技术的应用发展,高层结构布置常屈从于建筑平面布置和美感的要求,这引起了相关的结构问题。本文就高层建筑结构设计中结构体系的选择、结构抗震设计、侧向位移的控制、构造要求等方面加以阐述。 关键词:高层建筑结构设计;结构体系的选择;结构抗震设计;侧向位移的控制;构造要求 中图分类号:TU973 文献标识码:A 一、高层建筑结构设计注意项 高层建筑结构中,随着高度的增加,不但竖向荷载产生的效应很大,水平荷载产生的内力和侧向位移更是迅速增大。而且对一定高度建筑来说,竖向荷载大体上是定值,而作为水平荷载的风荷载和地震作用,其数值是随着结构动力性的不同而有较大的变化。因此水平荷载成了设计中的主要控制因素。(注:风荷载作用在建筑物表面,结构处于弹性阶段;地震作用是惯性力,结构考虑进入塑性阶段以耗散能量。) 高层建筑结构中,建筑应具有充分的刚度。必须限制水平位移,防止由于重力荷载大在产生二阶P-△效应时使建筑突然倒塌,防止非结构构件的破坏(出现裂缝)、防止电梯井变形过大影响使用、防止对使用者产生的不舒适感。(注:高层建筑结构在承载能力极限状态和正常使用极限状态方面同等重视。) 高层建筑结构中,由于徐变和收缩的竖向积累变形很大,足以引起非结构构件的破坏,同时在水平构件中引起明显的结构内力,尤其在结构的上部区域。 高层建筑结构中,结构的重力和水平荷载通过基础传递到地基,应注重结构特性和土—结构相互作用力对基础变形的影响。

因此在高层建筑结构的设计中,应在结构体系的选择、结构抗震设计、侧向位移的控制、构造要求等方面加以注意。 二、高层建筑结构设计步骤 1、选择合理的结构形式; 2、构件的截面尺寸; 3、结构上荷载的确定; 4、结构内力分析和水平位移计算; 5、截面设计和结构的延性; 6、构造要求; 7、绘施工图。 三、高层建筑结构体系的选择 高层建筑从本质上可看做是一个竖向悬臂构件,所以应注重水平荷载的作用。在总体结构中常包含一个以上独立作用的竖向悬臂构件,如剪力墙或芯筒,每个独立构件都相关于自己的轴线抗弯,它们之间仅通过楼板的平面内刚度相互协调。另一方面,悬臂结构也可以包括大量柱和墙的组合作用。从某种程度上说,各柱和墙是通过梁连接形成独立粗大的悬臂杆,如果主要的竖向构件具有不同的自由变形特征,在这种情况下它们将通过连接的板和梁相互影响,以致这些悬臂构件的侧向刚度和强度可以进一步提高。因此高层建筑结构体系设计中,还应考虑楼板对各竖向构件的抗侧力起到整体联系的作用。(注:楼板由于跨度过大易发生翘曲,故楼板构件设计时其跨度应受到限制。) 选择结构体系应对内力进行控制,发挥主要竖向构件在平面上位置的优势,使其在恒荷载作用下产生的压应力大于水平引起的拉应力,避免在竖向构件中出现纯拉力和拔起基础。在各种类型结构体系的平面布置时,各外构件必须受压。 四、高层建筑结构抗震设计 抗震设计除了集中在抵抗地震对结构在水平方向上产生的惯性力,还应当要求结构有很好的延性和塑性。设计结合软件输入参数时,宜做到能量的平衡,减小地震能量的输入,增大结构耗能的能量。 在平面上设计应注意:为了避免转动弯矩,刚度中心和质心应尽

浅谈高层建筑结构设计的重点和难点

林业科技情报2014Vol.46No.1 浅谈高层建筑结构设计的重点和难点 梅雅莉 (黑龙江省林业设计研究院) [摘要]由于我国人口数量的增多,为解决住房等问题需要发展建筑行业,尤其是要发展高层建筑行业。随着建筑高度的不断增加,建筑的形式和结构功能也变得复杂多样,因此,高层建筑的结构设计工作便成为建筑工程师在设计过程中的重点和难点。本文着重对高层建筑结构设计过程中应注意的问题进行分析。 [关键词]高层建筑;结构设计;重点问题 Discussion On The Emphasis And Difficulty Of The Structure Design For High-Rise Building Mei Yali (Forest Designing AndResearch Institute Of Heilongjiang Province) Abstract:With the increasing for the population in our country,it is necessary to develop architecture industry,es-pecially the high-rise buildings,to solve the housing problem.Associated with the increasing number for the high -rise building,the type of the architecture and the structure function has got much more complex.As a result,the design for high-rise building becomes the emphasis and difficulty for the architecture engineering worker.The par-ticle mainly analyzes the problem emerging from the high-rise building design process. Key words:high-rise building;structure design;emphasis problem 1高层建筑结构设计的概况及意义 随着我国城市化进程不断加快,城市人口显著增多,高层建筑在城市建设中发挥着越来越重要的作用。即使在建筑设计理念和方法日益先进的今天,仍会因为高层建筑复杂的结构,较广的学术知识涉及和较大的工程量而出现设计失误的现象。高层建筑结构设计的意义有:首先,如果建筑所使用的面积一定,设计和建造高层建筑可以获得相对多一些的使用面积,可以解决城市用地紧张、房价高涨等问题。另一方面,精美的高层建筑设计还可以改善城市的外观,或者说成为城市的一道风景。比如马来西亚的石油大厦和上海的金茂大厦等等。而如果设计的建筑高层密度、结构不合理,就会给城市带来热岛效应,影响城市居民的生活环境,甚至由于高层的玻璃因反光而发生光污染的现象。其次,如果是在建筑面积与建设场地面积的比值一定,那么建造高层建筑就会有效地节约城市土地面积,得到更多的空闲地面,用这些空闲出来的地面来进行城市绿化或者供人们休息娱乐。与此同时,建筑高层的土地结构设计会为城市带来更充足的日照、更良好的采光和通风效果。在新加坡新建的居住区中,由于建造了很多的高层建筑群,得到了许多空闲的地面,使人们的休闲活动空间也得到了拓展。最后,一般情况下,高层建筑也可以使人们的内心得到舒展,所以说高层建筑对于城市人们的生活非常重要。因此,高层建筑的结构设计也非常重要,良好的建筑结构可以使人们生活得更加安全,更加舒心。也会使城市更加美观,拥有良好的生态环境。高层建筑结构设计师们要发挥自己的所学所能,设计出美观、经济、实用的高层建筑。 2高层建筑结构设计中应注意的问题 在高层建筑结构的设计中,我们需要注意一些问题,主要有以下几方面。 2.1剪力墙的设计 在高层建筑中,剪力墙对建筑有着重要的影响,所以,在剪力墙的设计过程中,要充分考虑剪力墙的结构体系。也就是以建筑物墙体作为承受水平、竖向荷载的结构,要求混凝土剪力墙具有较好的结构,较强的刚度,以满足其承载力的要求。在对剪力墙进行计算配筋时,切记要为墙肢一端配筋。在短肢剪力墙相对较多的结构中,将较短的墙段划为约束边缘的构件是不妥的,这会使墙肢中和轴附近的钢筋无法发挥作用。另外,剪力墙间距也不能过大,因为这会使得平面的布置显得死板,无法满足公共建筑功能需求。此外,一旦剪力墙自身的结构过大,高度超过标准就会引起悬臂墙变形, · 03 ·

高层建筑结构设计特点及体系分析

高层建筑结构设计特点及体系分析 发表时间:2016-07-08T16:27:19.500Z 来源:《基层建设》2016年6期作者:李晓瑞 [导读] 近年来,我国高层建筑设计及施工又有很大的发展,各种结构型式得到充分应用。 广西南都建筑设计有限公司 530021 摘要:近年来,我国高层建筑设计及施工又有很大的发展,各种结构型式得到充分应用,高层建筑的体型和功能更加多样化,结构复杂程度增加。基于此本文着重对高层建筑结构设计特点及体系进行了分析,旨在为提高高层建设工程质量提供参考。 关键词:高层建筑;结构设计;体系 前言 高层建筑结构的最主要特点是水平荷载为设计的主要因素,侧移限值为确定各抗侧力构件数量和截面尺寸的控制指标。有些构件除必须考虑弯曲变形外,尚需考虑轴向变形和剪切变形的影响,地震区的高层建筑结构还需要控制结构和构件的延性指标。目前国内高层建筑类型不断增多,发展较快,由此需要结合钢结构和混凝土结构的优点,承载力高、延性好、变形能力强等理论基础,对建筑结构设计进行研究。 1高层建筑结构设计特点分析 1.1重视侧向荷载对结构的影响 随着建筑高度的增大,侧向荷载对结构影响的增长速率大于竖向荷载的增长速率,到某一高度时,侧向荷载对结构的影响将超过竖向荷载。从这开始,侧向荷载将成为确定高层建筑结构方案和影响土建造价的决定性因素。为此,对侧向荷载的作用,该倍加关注。 1.2结构设计除需满足承载力以外,还需满足侧移要求 (1)侧移的限值 结构受侧向荷载后,结构将发生水平变位——侧移。按侧移对结构的影响,可分为绝对侧移和层间侧移这两项。这里,绝对侧移是指建筑结构相对于地面原点的水平变位大小;而层间侧移则是指两相邻楼层绝对侧移值之差(见图1)。绝对侧移量过大,将会使结构产生P-效应,增大结构内力;有时甚至还会引起电梯运行困难,增加结构倾覆和失稳的危险性;同样,层间侧移过大,将会导致装修和非承重墙体的损伤[1]。 图1绝对侧移和层间侧移 (2)减少侧移的途径 一是减少风荷载或地震作用。对不考虑地震作用的高层建筑,风荷载是侧向荷载中的主要荷载。减少风荷载,就可减少侧移量。圆形平面时的风荷载最小,约只为矩形平面时的60%;即使将房屋的已定平面形状略加修饰,使之更近于流线形时,则同样也可起到减少风压的效果。 二是选用合适的结构方案。根据房屋的高度、高宽比、平面形状和它的体型,在选择结构方案时,将一并考虑控制侧移的这一因素。因一旦选定了结构方案,实际上,这时结构的侧移也就确定了。 三是设置刚性层。如我国某高层建筑 (地上37层、地下2层、高140m),钢筋混凝土框架一核芯筒结构,平面呈单轴对称的六边形,高宽比达5.2。但由于在第20层和第35层处各设了一道刚性层,使结构的顶点侧移量、由原先的284mm降至250mm,减少了10%。 1.3注意减轻楼面自重,减少楼面的结构高度 楼面(包括楼板及楼面梁)自重将占结构竖向荷载的大部分,由于高层建筑的层数多,虽每层的竖向荷载减少有限,但积累后的值对下层的柱、墙和基础都会产生不小的影响。 在确保楼层净高不变的条件下,减少楼面的结构高度,就可减少每层的层高。积累后,有时使房屋总高不变而增加楼层层数达1层或2层;或也可在楼层层数不变的条件下,减少房屋的总高。这些都将产生十分可观的经济效益。 2高层建筑结构设计体系分析 2.1框架结构体系 对于水平荷载作用,常用的方法有以下几种: 1)反弯点法。反弯点法的基本假设是把框架巾的横粱简化为刚性梁,因而框架节点不发生转角,只有侧移,同层各柱剪力与柱的移

高层建筑结构设计复习题

高层建筑结构复习题 一、填空题50道及答案 1板柱体系是指钢筋混凝土【无梁楼板】和【柱】组成的结构。 2.由框架和支撑框架共同承担竖向荷载和水平荷载的结构,称为【框架-支撑结构】。 3.单独采用框筒作为抗侧力体系的高层建筑结构较少,框筒主要与内筒组成【筒中筒】结构或多个框筒组成【束筒】结构。 4.框架-核心筒结构可以采用【钢筋混凝土结构】、【钢结构】、或混合结构。 5.巨型框架结构也称为主次框架结构,主框架为【巨型】框架,次框架为【普通】框架。 6.钢筋混凝土巨型框架结构有【两】种形式。 7. 高层建筑的外形可以分为【板式】和【塔式】两大类。 8.结构沿高度布置应【连续】、【均匀】,使结构的侧向刚度和承载力上下相同,或下大上小,自下而上连续,逐渐减小,避免有刚度或承载力突然变小的楼层。 9.平面不规则的类型包括【扭转】不规则、【楼板凹凸】不规则和【楼板局部】不连续。 10. 钢结构房屋建筑一般不设置【防震缝】。 11.高层建筑的外荷载有竖向荷载和水平荷载。竖向荷载包括自重等【恒载】及使用荷载等【活载】。水平荷载主要考虑【风荷载】和【地震作用】。 12. 结构的地震反应包括【加速度】、【速度】和【位移】反应。 所13.抗震设计的两阶段设计分别为:第一阶段为【结构设计】阶段,第二阶段为【验算】阶段。 14.计算地震作用的方法可分为【静力法】、【反应谱法】和【时程分析法】三大类。 15.影响α值大小的因素除自振署期和阻尼比外,还有【场地特征周期】。 16.场地土愈【软】,软土覆盖层的厚度愈【大】,场地类别就愈【高】,特征周期愈【大】,对长周期结构愈不利。 17.框架-核心筒结构设置水平楼伸臂的楼层,称为【加强层】。 18.巨型框架也称为主次框架结构,主框为【巨型框架】,次框架为【普通框架】。 19.水平何载作用下,出现侧移后,重力荷载会产生【附加弯矩】。附加弯矩又增大侧移,这是一种【二阶效应】,也称为“P-Δ“效应。 20.一般用延性比表示延性,即【塑性变形】能力的大小。 21.要设计延性结构,与下列因素有关:选择【延性材料】、进行结构【概念设计】、设计【延性结构】、钢筋混凝土结构的抗震构造措施及【抗震等级】。

相关文档
相关文档 最新文档