文档库 最新最全的文档下载
当前位置:文档库 › 概率论与数理统计复旦大学出版社第三章课后答案

概率论与数理统计复旦大学出版社第三章课后答案

概率论与数理统计复旦大学出版社第三章课后答案
概率论与数理统计复旦大学出版社第三章课后答案

概率论与数理统计 习题三 答案

1.将一硬币抛掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与

出现反面次数之差的绝对值.试写出X 和Y 的联合分布律. 【解】X 的可能取值为:0,1,2,3;Y 的可能取值为:0,1.

2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X 表示取到黑球的只数,以Y 表示取到红球的只数.求X 和Y 的联合分布律.

【解】X 的可能取值为:0,1,2,3;Y 的可能取值为:0,1,2.

3.设二维随机变量(,)X Y 的联合分布函数为

ππsin sin ,0,0(,)220,x y x y F x y ?

≤≤≤≤?

=??? 其它

求二维随机变量(,)X Y 在长方形域?

??

?

??≤<≤<36

,40ππ

πy x 内的概率. 【解】如图πππ

{0,}(3.2)463

P X Y <≤

<≤公式 ππππππ(,)(,)(0,)(0,)434636

F F F F --+

ππππππsin sin sin sin sin 0sin sin 0sin

434636

1).=--+=

题3图

说明:也可先求出密度函数,再求概率。 4.设随机变量(,)X Y 的分布密度

(34)e ,0,0

(,)0,x y A x y f x y -+?>>=?

? 其他

求:(1) 常数A ;

(2) 随机变量(,)X Y 的分布函数;

(3) P {0≤X <1,0≤Y <2}. 【解】(1) 由

-(34)0

(,)d d e d d 112

x y A

f x y x y A x y +∞

+∞

+∞

+∞

+-∞

-∞

==

=??

?

?

得 A =12 (2) 由定义,有 (,)(,)d d y x

F x y f u v u v -∞-∞

=

??

(34)340012e

d d (1

e )(1e )0,0,

0,0,

y y

u v x y u v y x -+--??-->>?==??

?????其他

(3) {01,02}P X Y ≤<≤<

1

2

(34)

38

00

{01,02}

12e

d d (1

e )(1e )0.9499.

x y P X Y x y -+--=<≤<≤==--≈?

?

5.设随机变量(,)X Y 的概率密度为

(6),02,24

(,)0,k x y x y f x y --<<<

? 其它

(1) 确定常数k ;

(2) 求P {X <1,Y <3}; (3) 求P {X <1.5}; (4) 求P {X +Y ≤4}. 【解】(1) 由性质有

2

4

2

(,)d d (6)d d 81,f x y x y k x y y x k +∞+∞

-∞

-∞

=--==??

?

?

故 18

k =

(2) 13

{1,3}(,)d d P X Y f x y y x -∞-∞

<<=??

1

3

0213

(6)d d 88

k x y y x =

--=?? (3) 1

1.5

{ 1.5}(,)d d a (,)d d x D P X f x y x y f x y x y <<=

????如图

1.5

4

2127d (6)d .832

x x y y =

--=?

?

(4) 2

4

{4}(,)d d (,)d d X Y D P X Y f x y x y f x y x y +≤+≤=??

??如图b

2

40

2

12d (6)d .83

x x x y y -=

--=?

?

题5图

6.设X 和Y 是两个相互独立的随机变量,X 在(0,0.2)上服从均匀分布,Y 的密度函数为

55e ,0,

()0,.y Y y f y -?>=??

其它

求:(1) X 与Y 的联合分布密度;(2) {}P Y X ≤.

题6图

【解】(1) 因X 在(0,0.2)上服从均匀分布,所以X 的概率密度函数为

1

,00.2,

()0.2

0,

.X x f x ?<

55e ,0,

()0,

.y Y y f y -?>=??其它

所以

(,),()*()

X Y f x y X Y f x f y 独立 551

5e 25e ,00.2,00.20,y y x y --??=<<>?

=??? 其它

(2) 5()(,)d d 25e d d y y x

D

P Y X f x y x y x y -≤≤=

??

??如图

0.20.2

-550

-1d 25e d (5e 5)d =e 0.3679.

x

y

x x y x

-==-+≈???

7.设二维随机变量(,)X Y 的联合分布函数为

42(1e )(1e ),0,0,

(,)0,

.x y x y F x y --?-->>=?

?其他 求(X ,Y )的联合分布密度.

【解】(42)28e ,0,0,

(,)(,)0,

x y x y F x y f x y x y -+?>>?==????其他.

8.设二维随机变量(,)X Y 的概率密度为

4.8(2),01,0,

(,)0,.y x x y x f x y -≤≤≤≤?=?

?

其他 求边缘概率密度.

【解】X 的边缘概率密度为

()(,)d X f x f x y y +∞

-∞

=?

x

204.8(2)d 2.4(2),01y x y x x x ?-=-≤≤?=?

??

?

0, 其它 Y 的边缘概率密度为

()(,)d Y f y f x y x +∞

-∞

=

?

12y 4.8(2)d 2.4(34),01y x x y y y y ?-=-+≤≤?

=???

? 0, 其它

题8图 题9图

9.设二维随机变量(,)X Y 的概率密度为

e ,0(,)0y x y

f x y -?<<=?

?, 其它

求边缘概率密度.

【解】X 的边缘概率密度为

()(,)d X f x f x y y +∞

-∞

=?

e d e ,0

0,y x x y x +∞

--?=>?=???? 其它

Y 的边缘概率密度为

()(,)d Y f y f x y x +∞

-∞

=?

0e d e ,0

0,y

y x x y y --?=>?=???? 其它

题10图

10.设二维随机变量(,)X Y 的概率密度为

22,1

(,)0cx y x y f x y ?≤≤=?

?, 其它

(1) 试确定常数c ; (2) 求边缘概率密度. 【解】(1)

(,)d d (,)d d D

f x y x y f x y x y +∞+∞

-∞

-∞

??

??如图

21

1

2-1

4

=

d d 1.21

x

x cx y y c =

=?

? 得 214

c =

. (2) ()(,)d X f x f x y y +∞

-∞

=

?

2

12

242121=(1),1148

0,x x ydy x x x ?--≤≤?=???? 其它

()(,)d Y f y f x y x +∞

-∞

=?

5

22217d ,01

42

0,x y x y y ?=≤≤?=???

其它 11.设随机变量(,)X Y 的概率密度为

1,,01(,)0,y x x f x y ?<<

??

其它

求条件概率密度()Y X f y x ,()X Y f x y .

题11图

【解】()(,)d X f x f x y y +∞

-∞

=

?

1d 2,01,

0,

.x

x y x x -?=<

11

1d 1,10,()(,)d 1d 1,01,0,

.y Y y x y y f y f x y x x y y -+∞

-∞

?=+-<

???

??

?其他

所以

|1

,||1,

(,)(|)2()0,

.Y X X y x f x y f y x x

f x ?<

?其他

|1

, 1,1(,)1

(|),1,()10,.X Y Y y x y f x y f x y y x f y y

?<

?==-<

其他

12.袋中有五个号码1,2,3,4,5,从中任取三个,记这三个号码中最小的号码为X ,最

大的号码为Y .

(1) 求X 与Y 的联合概率分布;(2) X 与Y 是否相互独立? 【解】(1) X 的可能取值为:1,2,3;Y 的可能取值为3,4,5. X 与Y 的联合分布律及边缘分布律如下表:

(2) 因{1}{3}{1,3},101010010

P X P Y P X Y ===

?=≠=== 故X 与Y 不独立

13.设二维随机变量的联合分布律为

【解】(1)X 和Y 的边缘分布如下表

故X 与Y 不独立.

14.设X 与Y 是两个相互独立的随机变量,X 在(0,1)上服从均匀分布,Y 的概率密度为

/21e ,

0,()2

0,

.

y Y y f y -?>?=???其他

(1)求X 和Y 的联合概率密度;

(2) 设含有a 的二次方程为a 2+2Xa +Y =0,试求a 有实根的概率.

【解】(1) 因1,01,()0,X x f x <

1e ,1,

()20,y

Y y f y -?>?==???

其他.

故/2

1e

01,0,(,),()()2

0,

.

y X Y x y f x y X Y f x f y -?<<>?=??? 独立其他

题14图

(2) 方程220a Xa Y ++=有实根的条件是

2(2)40X Y ?=-≥

即 2

X Y ≥, 从而方程有实根的概率为:

22{}(,)d d x y

P X Y f x y x y ≥≥=

??

2

2

211/2

20

01

2

1d e d 1e d 2

1d 1(1)(0)]0.1445.

x

x y x x y x

x ---

==-==Φ-Φ=??

?

15.设X 和Y 分别表示两个不同电子器件的寿命(以小时计),并设X 和Y 相互独立,且服

从同一分布,其概率密度为

f (x )=?????>.,

0,

1000,10002其他x x

求/Z X Y =的概率密度.

【解】因为X 和Y 相互独立,所以X 与Y 的联合概率密度为

6

2210,1000,1000

(,)0,x y f x y x y ?>>?=???

其它

如图,Z 的分布函数(){}{

}Z X

F z P Z z P z Y

=≤=≤ (1) 当z ≤0时,()0Z F z =

(2) 当0

1000

z

)(如图a) 336

6

102222101010()(,)d d d d d d yz Z z

x x y y z

z

F z f x y x y x y y x x y x y +∞≥≥

=

=

=??

??

?? 33610231010=d 2z z

y y

zy +∞

??-= ????

题15图

(3) 当z ≥1时,(这时当y =103时,x =103z )(如图b )

336

6

22

2210101010()(,)d d d d d d zy Z x

x y y z

z

F z f x y x y x y y x x y x y +∞≥≥

=

=

=??

??

??

336231010101

=d 12y y

zy z +∞

??-=- ????

即 11,1,2(),

01,2

0,

.Z z z z

F z z ?

-≥???=<

其他

故 21

,1,21

(),

01,2

0,

.Z z z f z z ?≥???=<

其他 16.设某种型号的电子管的寿命(以小时计)近似地服从N (160,202)分布.随机地选取4 只,

求其中没有一只寿命小于180的概率. 【解】设取到的四只电子元件寿命为i X (i =1,2,3,4),则2~(160,20)i X N ,

从而

123412{min(,,,)180}{180}{180}i P X X X X X P X P X ≥≥≥ 之间独立

34{180}{180}P X P X ≥≥ 1234

[1{180}][1{180}][1{180}][1{180}]

P X P X P X P X =-<-<

-<-< 4

4

144180160[1{180}]120[1(1)](0.158)0.00063.

P X ?-?

??=-<=-Φ ???????=-Φ== 17.设X ,Y 是相互独立的随机变量,其分布律分别为

()(),0,1,2,3,P X k p k k === ()(),0,1,2,3,P Y r q r r ===

证明随机变量Z =X +Y 的分布律为

()()()i

k P Z i p k q i k ===-∑,i =0,1,2,….

【证明】因X 和Y 所有可能值都是非负整数,所以 {}{}Z i X Y i ==+=

{0,}{1,1}{,0}X Y i X Y i X i Y =====-==

于是

{}{,}

i

k P Z i P X k Y i k ===

==-∑

,{}{}i

k X Y P X k P Y i k ===-∑ 相互独立0

()()i

k p k q i k ==-∑

18.设X ,Y 是相互独立的随机变量,它们都服从参数为n ,p 的二项分布.证明Z =X +Y 服从参

数为2n ,p 的二项分布.

【证明】方法一:X +Y 可能取值为0,1,2,…,2n .

{}{,}k

i P X Y k P X i Y k i =+====-∑

002200(){}

2)

k

i k

i n i k i n k i

i k

k n k k n k

i k

i P X i P Y k i n n p q p q

i k i n n n p q p q i k i k n m m n i k i k =---+=--=====-????= ? ?-??????????== ??? ?-??????

+??????= ??? ?-??????∑∑∑∑ (提示:组合计数公式

方法二:参见第四章。

(1) 求P {X =2|Y =2},P {Y =3|X =0}; (2) 求V =max (X ,Y )的分布律; (3) 求U =min (X ,Y )的分布律; (4) 求W =X +Y 的分布律. 【解】(1){2,2}

{2|2}{2}

P X Y P X Y P Y =====

=

5

{2,2}

0.051

,0.255

{,2}

i P X Y P X i Y ====

=

===∑ {3,0}

{3|0}{0}

P Y X P Y X P X =====

=

3

{0,3}

0.011

;0.033

{0,}

j P X Y P X Y j ====

=

===∑ (2){}{max(,)}{,}{,}P V i P X Y i P X i Y i P X i Y i =====<+≤= 1

{,}{,},i i

k k P X i Y k P X k Y i -===

==+==∑∑ 0,1,2,3,4,

i = 所以V 的分布律为

(3) {}{min(,)}P U i P X Y i ===

3

5

1

{,}{,}

{,}{,}

k i

k i P X i Y i P X i Y i P X i Y k P X k Y i ==+==≥+>====+

=

=∑∑ 0,1,2,3

i =

20.雷达的圆形屏幕半径为R ,设目标出现点(X ,Y )在屏幕上服从均匀分布. (1) 求P {Y >0|Y >X };

(2) 设M =max{X ,Y },求P {M >0}.

题20图

【解】因(X ,Y )的联合概率密度为

22221,,

(,)π0,

.x y R f x y R

?+≤?=???其他 (1){0,}

{0|}{}

P Y Y X P Y Y X P Y X >>>>=

>

0(,)d (,)d y y x

y x

f x y f x y σσ

>>>=

????

π

2π/405π42π/401

d d

π1

d d πR

R r r

R r r R θθ=??

??

3/83

;1/24

=

= (2) {0}{max(,)0}1{max(,)0}P M P X Y P X Y >=>=-≤

00

131{0,0}1(,)d 1.44

x y P X Y f x y σ≤≤=-≤≤=-

=-

=??

21.设平面区域D 由曲线y =1/x 及直线y =0,x =1,x=e 2所围成,二维随机变量(X ,Y )在区域D 上服从均匀分布,求(X ,Y )关于X 的边缘概率密度在x =2处的值为多少?

题21图

【解】区域D 的面积为 2

2e e 01

1

1

d ln 2.S x x x

=

==?

(X ,Y )的联合密度函数为

2

11,1e ,0,(,)20,.

x y f x y x ?≤≤<≤?

=???其他

(X ,Y )关于X 的边缘密度函数为

1/20

1

1d ,1e ,()220,

.x X y x f x x

?=≤≤?=????其他 所以1

(2).4

X f =

22.设随机变量X 和Y 相互独立,下表列出了二维随机变量(X ,Y )联合分布律及关于X 和

【解】因2

1

{}{,}j j i

j

i P Y y P P X x Y y ====

==∑ ,

故11121{}{,}{,},P Y y P X x Y y P X x Y y ====+== 从而11111{,}.6824

P X x Y y ===

-= 而X 与Y 独立,故{}{}{,}i j i i P X x P Y y P X x Y y ===== , 从而11111

{}{,}.624

P X x P X x Y y =?

====

即:1111{}/.2464

P X x ==

= 又1111213{}{,}{,}{,},P X x P X x Y y P X x Y y P X x Y y ====+==+==

即1,3111{},4248

P X x Y y =++== 从而131

{,}.12P X x Y y ===

同理21{},2P Y y == 223

{,}8

P X x Y y ===

3

1

{}1j

j P Y y ===∑,故3111{}1623P Y y ==--=. 同理23

{}.4

P X x == 从而

23313111{,}{}{,}.3124

P X x Y y P Y y P X x Y y ====-===

-= 故

23.设某班车起点站上客人数X 服从参数为λ(λ>0)的泊松分布,每位乘客在中途下车的概率

为p (0

{|}C (1)

,0,0,1,2,m m n m

n P Y m X n p p m n n -===-≤≤= (2) {,}{}{|}P X n Y m P X n P Y m X n ====== e C (1)

,0,0,1,2,.!

m

m

n m

n

n

p p m n n n λλ--=-≤≤=

24.设随机变量X 和Y 独立,其中X 的概率分布为X ~?

??

?

??7.03.021

,而Y 的概率密度为f (y ),求随机变量U =X +Y 的概率密度g (u ).

【解】设F (y )是Y 的分布函数,则由全概率公式,知U =X +Y 的分布函数为

(){}0.3{|1}0.7{|2}G u P X Y u P X Y u X P X Y u X =+≤=+≤=++≤=

0.3{1|1}0.7{2|2}P Y u X P Y u X =≤-=+≤-=

由于X 和Y 独立,可见

()0.3{1}0.7{2}G u P Y u P Y u =≤-+≤-

0.3(1)0.7(2).F u F u =-+-

由此,得U 的概率密度为

()()0.3(1)0.7(2)g u G u F u F u '''==-+-

0.3(1)0.7(2).f u f u =-+-

25. 设随机变量X 与Y 相互独立,且均服从区间[0,3]上的均匀分布,求P {max{X ,Y }≤1}.

解:因为随即变量服从[0,3]上的均匀分布,于是有

1, 03,()3

0, 0,3;x f x x x ?≤≤?=??<>? 1, 03,

()30, 0, 3.

y f y y y ?≤≤?=??<>? 因为X ,Y 相互独立,所以

1

, 03,03,

(,)9

0, 0,0,3, 3.

x y f x y x y x y ?≤≤≤≤?=??<<>>? 于是

2

1011

{max{,}1}{1,Y 1}{1}{Y 1}39

P X Y P X P X P dx ??≤=≤≤=≤≤== ????.

26. 设二维随机变量(X , Y )的概率密度为

2,01,01,

(,)0,x y x y f x y --<<<

?其它.

(I) 求{}Y X P 2> ; (II) 求Z =X+Y的概率密度)(z f Z .

【详解】 (I) {}Y X P 2>??>=

y

x dxdy y x f 2),(??--=1

2210

)2(y

dx y x dy 24

7=

. ( II) 解法一:先求Z 的分布函数: ()()(,)Z x y z

F z P X Y z f x y dxdy

+≤=+≤=

??

当0z <时, 0)(=z F Z ; 当10<≤z 时, ??

=

1

),()(D Z dxdy y x f z F ?

?---=y

z z dx y x dy 0

)2(

3

23

1z z -

=; 当21<≤z 时, ??-=2

),(1)(D Z dxdy y x f z F ?

?

-----

=111

)2(1y

z z dx y x dy

3)2(3

1

1z --=; 当2≥z 时, 1)(=z F Z .

故Z =X+Y的概率密度为

)(z f Z =)(z F Z '222,01,(2),12,

0,.z z z z z ?-<

=-≤

解法二:()(,)Z f z f x z x dx +∞

-∞

=

-?

2(),01,01

(,)0,

2,01,1,=0,

x z x x z x f x z x z x x z x ---<<<-

?-<<<<+??

?其它其它

当0z ≤或2z ≥时,()0Z f z =; 当01z <<时,0()(2)(2)z

Z f z z dx z z =-=-? ; 当12z ≤<时,1

21

()(2)(2)Z z f z z dx z -=

-=-?

故Z =X+Y的概率密度为

)(z f Z 222,01,(2),12,

0,.z z z z z ?-<

=-≤

其它

27.设随机变量X 与Y 相互独立,X 的概率分布为1

()(1,0,1)3

P X i i ===-,Y 的概率密度为

1,

01,()0,

Y y f y ≤

?其它

记Z X Y =+.(1)求102P Z X ??

=????

;(2)求Z 的概率密度()Z f z . 解 (1)注意到X 与Y 相互独立,于是

1110002221122P Z X P X Y X P Y X P Y ??????

≤==+≤==≤=??????

??????

?

?=≤=

????

(2)先求Z 的分布函数。由于{}1X =-,{}0X =,{}1X =构成样本空间的一个划分,且

{}1

(1)(0)(1)3

P X P X P X =-=====

,因此根据全概率公式得Z 的分布函数

()()

(1)(1)(0)(0)(1)(1)

1

[(1)(0)(1)]31

[(11)(0)(11)]31

[(1)()(1)]31

[(1)()(3

Z Y Y Y F z P X Y z P X Y z X P X P X Y z X P X P X Y z X P X P X Y z X P X Y z X P X Y z X P Y z X P Y z X P Y z X P Y z P Y z P Y z F z F z F =+≤=+≤=-=-++≤==++≤===+≤=-++≤=++≤==≤+=-+≤=+≤-==≤++≤+≤-=+++1)]z - 分布函数求导数,可得Z 的概率密度

1

()[(1)()(1)]

3

1

,1230,Z Y Y Y Y f z f z f z f z z f =+++-?-≤

28.袋中有1个红球、2个黑球、3个白球,现有放回地取球两次,每次取一个球,以,,X Y Z 分别表示两次取球得到的红球、黑球与白球的个数。(1)求(10)P X Z ==;(2)求二维随机变量(,)X Y 的概率分布。 解 (1)由条件概率得

(1,0)(1,1)

(10)(0)(0)122146633966

P X Z P X Y P X Z P Z P Z =======

=

==?+??==

??

也可以有 1

211(1,0)463(10)11(0)922

C P X Z P X Z P Z ??

======

==? 或用缩减样本空间法:0Z =,表示两次取球都没有取到白球,即只在红球、黑球中做选择,

因此,样本空间中样本点总数为3*3=9,

12214

(10)339

P X Z ?+?====

=?

(2)X 与Y 的可能取值均为:0,1,2. 且331

(0,0)664

P X Y ?===

=?,同理可以求得联

合分布律中的其它概率值。(,)X Y 的联合分布律如下表:

29.设二维随机变量(,)X Y 的概率密度为

22

22(,),,x xy y f x y Ae x y -+-=-∞<<+∞

求常数A 及条件概率密度()Y X f y x 。 解 由概率密度函数的规范性有

2

2

2

2

22()1(,)()x

xy y x y x f x y dxdy A e dxdy

A e

dx e

d y x A π

+∞+∞

+∞

+∞

-+--∞

-∞-∞

-∞

+∞

+∞

----∞

-∞

===-==?

???

?

?

得常数 1

A π

=

,即 2

2

221

(,),,x

xy y f x y e x y π

-+-=

-∞<<+∞

X 的边缘概率密度为

2

2

2

2

2

22()1

()(,)1

x xy y X x y x x f x f x y dy e dy

e

e

dy π

π

+∞

+∞

-+--∞

-∞

+∞

-----∞

===

=

??

?

所求条件概率密度为

22

2(,)(),,()x xy y Y X X f x y f y x x y f x -+-=

=-∞<<+∞-∞<<+∞

(提示:本题充分利用概率积分

2

x e dx +∞

--∞

=?

30.设随机变量X 与Y 的概率分布分别如下表所示。

且{}

22

1P X Y ==.

(1)求二维随机变量(,)X Y 的概率分布;(2)求Z XY =的概率分布。

解 由 {}

22

1P X Y == 得 {}

220P X Y ≠=,

即 {}{}{}0,10,11,00P X Y P X Y P X Y ==-+==+=== 进而 {}{}{}0,10,11,00P X Y P X Y P X Y ==-=======

再根据联合概率分布与边缘概率分布的关系,可得(,)X Y 的概率分布如下表:

(2)Z XY =的可能取值为:-1,0,1。由(,)X Y 得概率分布可得Z XY =的概率分布

31.设随机变量X 的概率密度为

21,03()9

0,

x x f x ?<

1,,

12,1,2

X Y X X X ≤??

=<

(1)求Y 的分布函数;(2)求概率{}P X Y ≤. 解 (1)Y 的分布函数 {}()Y F y P Y y =≤

当 1y <时,()0Y F y =;当 2y ≥时,()1Y F y =; 当 12y ≤<时,

概率论与数理统计期末复习资料(学生)

概率论与数理统计期末复习资料 一 填空 1.设A ,B 为两个随机事件,若A 发生必然导致B 发生,且P (A )=0.6,则P (AB ) =______. 2.设随机事件A 与B 相互独立,且P (A )=0.7,P (A -B )=0.3,则P (B ) = ______. 3.己知10件产品中有2件次品,从该产品中任意取3件,则恰好取到一件次品的概率等于______. 4.已知某地区的人群吸烟的概率是0.2,不吸烟的概率是0.8,若吸烟使人患某种疾病的概率为0.008,不吸烟使人患该种疾病的概率是0.001,则该人群患这种疾病的概率等于______. 5.设连续型随机变量X 的概率密度为? ??≤≤=,,0; 10,1)(其他x x f 则当10≤≤x 时,X 的分布函数F (x )= ______. 6.设随机变量X ~N (1,32 ),则P{-2≤ X ≤4}=______.(附:)1(Φ=0.8413) 7.设二维随机变量(X ,Y )的分布律为 则P {X <1,Y 2≤}=______. 8.设随机变量X 的期望E (X )=2,方差D (X )=4,随机变量Y 的期望E (Y )=4,方差D (Y )=9,又E (XY )=10,则X ,Y 的相关系数ρ= ______. 9.设随机变量X 服从二项分布)3 1,3(B ,则E (X 2 )= ______. 10.中心极限定理证明了在很一般条件下,无论随机变量Xi 服从什么分布,当n →∞时,∑=n i i X 1 的极限分布是 _________________ 11.设总体X ~N (1,4),x 1,x 2,…,x 10为来自该总体的样本,∑== 10 110 1 i i x x ,则)(x D = ______.· 12.设总体X ~N (0,1),x 1,x 2,…,x 5为来自该总体的样本,则 ∑=5 1 2i i x 服从自由度为______ 的2χ分布. 15.对假设检验问题H 0:μ=μ0,H 1:μ≠μ0,若给定显著水平0.05,则该检验犯第一类错误的概率为______. 16.设A ,B 为两个随机事件,且A 与B 相互独立,P (A )=0.3,P (B )=0.4,则P (A B )=__________. 17.盒中有4个棋子,其中2个白子,2个黑子,今有1人随机地从盒中取出2个棋子,则这2个棋子颜色相同的 概率为_________. 18.设随机变量X 的概率密度?? ???≤≤=,,0; 10 ,A )(2其他x x x f 则常数A=_________.

全国历自学考试概率论与数理统计(二)试题与答案

全国2011年4月自学考试概率论与数理统计(二) 课程代码:02197 选择题和填空题详解 试题来自百度文库 答案由王馨磊导师提供 一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.设A , B , C , 为随机事件, 则事件“A , B , C 都不发生”可表示为( A ) A .C B A B .C B A C .C B A D .C B A 2.设随机事件A 与B 相互独立, 且P (A )=5 1, P (B )=5 3, 则P (A ∪B )= ( B ) A .253 B .2517 C .5 4 D .2523 3.设随机变量X ~B (3, 0.4), 则P {X ≥1}= ( C ) A .0.352 B .0.432 C .0.784 D .0.936 解:P{X ≥1}=1- P{X=0}=1-(1-0.4)3=0.784,故选C. 4.已知随机变量X 的分布律为 , 则P {-2<X ≤4}= ( C ) A .0.2 B .0.35 C .0.55 D .0.8 解:P {-2<X ≤4}= P {X =-1}+ P {X =2}=0.2+0.35=0.55,故选C. 5.设随机变量X 的概率密度为4 )3(2 e 2 π21)(+-= x x f , 则E (X ), D (X )分别为 ( ) A .2,3- B .-3, 2 C .2,3 D .3, 2 与已知比较可知:E(X)=-3,D(X)=2,故选B. 6.设二维随机变量 (X , Y )的概率密度为? ??≤≤≤≤=,,0, 20,20,),(其他y x c y x f 则常数 c = ( A ) A .4 1 B .2 1 C .2 D .4 解:设D 为平面上的有界区域,其面积为S 且S>0,如果二维随机变量 (X ,Y )的概率密度为 则称 (X ,Y )服从区域D 上的均匀分布,

(完整版)概率论与数理统计课后习题答案

·1· 习 题 一 1.写出下列随机试验的样本空间及下列事件中的样本点: (1)掷一颗骰子,记录出现的点数. A =‘出现奇数点’; (2)将一颗骰子掷两次,记录出现点数. A =‘两次点数之和为10’,B =‘第一次的点数,比第二次的点数大2’; (3)一个口袋中有5只外形完全相同的球,编号分别为1,2,3,4,5;从中同时取出3只球,观察其结果,A =‘球的最小号码为1’; (4)将,a b 两个球,随机地放入到甲、乙、丙三个盒子中去,观察放球情况,A =‘甲盒中至少有一球’; (5)记录在一段时间内,通过某桥的汽车流量,A =‘通过汽车不足5台’,B =‘通过的汽车不少于3台’。 解 (1)123456{,,,,,}S e e e e e e =其中i e =‘出现i 点’ 1,2,,6i =L , 135{,,}A e e e =。 (2){(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)S = (2,1),(2,2),(2,3),(2,4),(2,5),(2,6) (3,1),(3,2),(3,3),(3,4),(3,5),(3,6) (4,1),(4,2),(4,3),(4,4),(4,5),(4,6) (5,1),(5,2),(5,3),(5,4),(5,5),(5,6) (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}; {(4,6),(5,5),(6,4)}A =; {(3,1),(4,2),(5,3),(6,4)}B =。 ( 3 ) {(1,2,3),(2,3,4),(3,4,5),(1,3,4),(1,4,5),(1,2,4),(1,2,5) S = (2,3,5),(2,4,5),(1,3,5)} {(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)}A = ( 4 ) {(,,),(,,),(,,),(,,),(,,),(,,), S ab ab ab a b a b b a =--------- (,,),(,,,),(,,)}b a a b b a ---,其中‘-’表示空盒; {(,,),(,,),(,,),(,,),(,,)}A ab a b a b b a b a =------。 (5){0,1,2,},{0,1,2,3,4},{3,4,}S A B ===L L 。 2.设,,A B C 是随机试验E 的三个事件,试用,,A B C 表示下列事件:

概率论和数理统计 复旦大学 课后题答案4

4习题四 1.设随机变量X 的分布律为 求E (X ),E (X ),E (2X +3). 【解】(1) 11111 ()(1)012;82842 E X =-? +?+?+?= (2) 22 22211115()(1)012;82844 E X =-?+?+?+?= (3) 1 (23)2()32342 E X E X +=+=?+= 2.已知100个产品中有10个次品,求任意取出的5个产品中的次品数的数学期望、方差. 故 ()0.58300.34010.07020.0073E X =? +?+?+?+?+? 0.501,= 5 2 ()[( )]i i i D X x E X P == -∑ 222(00.501)0.583(10.501)0.340(50.501)00.432. =-?+-?++-?= 3.设随机变量且已知E (X )=0.1,E (X )=0.9,求P 1,P 2,P 3. 【解】因1231P P P ++=……①, 又12331()(1)010.1E X P P P P P =-++=-= ……②, 2222 12313()(1)010.9E X P P P P P =-++=+= ……③ 由①②③联立解得1230.4,0.1,0.5.P P P === 4.袋中有N 只球,其中的白球数X 为一随机变量,已知E (X )=n ,问从袋中任取1球为白球的概率是多少? 【解】记A ={从袋中任取1球为白球},则

(){|}{}N k P A P A X k P X k ===∑ 全概率公式 1{}{} 1().N N k k k P X k kP X k N N n E X N N ===== ===∑∑ 5.设随机变量X 的概率密度为 f (x )=?? ? ??≤≤-<≤.,0,21,2, 10,其他x x x x 求E (X ),D (X ). 【解】1 2 2 1 ()()d d (2)d E X xf x x x x x x x +∞ -∞ = =+-? ?? 2 1 3 32011 1.33x x x ?? ??=+-=??????? ? 1 2 2 2 3 20 1 7 ()()d d (2)d 6 E X x f x x x x x x x +∞ -∞ ==+-= ? ?? 故 2 2 1()()[()].6 D X E X E X =-= 6.设随机变量X ,Y ,Z 相互独立,且E (X )=5,E (Y )=11,E (Z )=8,求下列随机变量的数学期望. (1) U =2X +3Y +1; (2) V =YZ -4X . 【解】(1) [](231)2()3()1E U E X Y E X E Y =++=++ 25311144.=?+?+= (2) [][4][]4()E V E YZ X E YZ E X =-=- ,()()4()Y Z E Y E Z E X - 因独立 1184568.=?-?= 7.设随机变量X ,Y 相互独立,且E (X )=E (Y )=3,D (X )=12,D (Y )=16,求E (3X -2Y ), D (2X -3Y ). 【解】(1) (32)3()2()3323 3. E X Y E X E Y -=-=?-?= (2) 2 2 (23)2()(3)412916192.D X Y D X DY -=+-=?+?= 8.设随机变量(X ,Y )的概率密度为

高等数学 复旦大学出版社 课后习题答案

1. 解: (1)相等. 因为两函数的定义域相同,都是实数集R ; x =知两函数的对应法则也相同;所以两函数相等. (2)相等. 因为两函数的定义域相同,都是实数集R ,由已知函数关系式显然可得两函数的对应法则也相同,所以两函数相等. (3)不相等. 因为函数()f x 的定义域是{,1}x x x ∈≠R ,而函数()g x 的定义域是实数集R ,两函数的定义域不同,所以两函数不相等. 2. 解: (1)要使函数有意义,必须 400x x -≥?? ≠? 即 40x x ≤?? ≠? 所以函数的定义域是(,0)(0,4]-∞U . (2)要使函数有意义,必须 30lg(1)010x x x +≥?? -≠??->? 即 301x x x ≥-?? ≠??

《概率论与数理统计》期末考试试题及解答

一、填空题(每小题3分,共15分) 1. 设事件B A ,仅发生一个的概率为0.3,且5.0)()(=+B P A P ,则B A ,至少有一个不发 生的概率为__________. 答案:0.3 解: 3.0)(=+B A B A P 即 )(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+= 所以 1.0)(=AB P 9.0)(1)()(=-==AB P AB P B A P . 2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______. 答案: 161-e 解答: λλ λ λλ---= =+==+==≤e X P e e X P X P X P 2 )2(, )1()0()1(2 由 )2(4)1(==≤X P X P 知 λλλ λλ---=+e e e 22 即 0122 =--λλ 解得 1=λ,故 16 1)3(-= =e X P 3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2 X Y =在区间)4,0(内的概率 密度为=)(y f Y _________. 答案: 04,()()0,. Y Y X y f y F y f <<'===? 其它 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 2 ()()())))Y X X F y P Y y P X y y y y y =≤=≤ =≤- - 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F = 故

《概率论与数理统计》讲义#(精选.)

第一章 随机事件和概率 第一节 基本概念 1、排列组合初步 (1)排列组合公式 )! (! n m m P n m -= 从m 个人中挑出n 个人进行排列的可能数。 )! (!! n m n m C n m -= 从m 个人中挑出n 个人进行组合的可能数。 例1.1:方程 x x x C C C 765107 11=-的解是 A . 4 B . 3 C . 2 D . 1 例1.2:有5个队伍参加了甲A 联赛,两两之间进行循环赛两场,试问总共的场次是多少? (2)加法原理(两种方法均能完成此事):m+n 某件事由两种方法来完成,第一种方法可由m 种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。 (3)乘法原理(两个步骤分别不能完成这件事):m ×n 某件事由两个步骤来完成,第一个步骤可由m 种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m ×n 种方法来完成。 例1.3:从5位男同学和4位女同学中选出4位参加一个座谈会,要求与会成员中既有男同学又有女同学,有几种不同的选法? 例1.4:6张同排连号的电影票,分给3名男生和3名女生,如欲男女相间而坐,则不同的分法数为多少? 例1.5:用五种不同的颜色涂在右图中四个区域里,每一区域涂上一种颜

色,且相邻区域的颜色必须不同,则共有不同的涂法 A.120种B.140种 C.160种D.180种 (4)一些常见排列 ①特殊排列 ②相邻 ③彼此隔开 ④顺序一定和不可分辨 例1.6:晚会上有5个不同的唱歌节目和3个不同的舞蹈节目,问:分别按以下要求各可排出几种不同的节目单? ①3个舞蹈节目排在一起; ②3个舞蹈节目彼此隔开; ③3个舞蹈节目先后顺序一定。 例1.7:4幅大小不同的画,要求两幅最大的排在一起,问有多少种排法? 例1.8:5辆车排成1排,1辆黄色,1辆蓝色,3辆红色,且3辆红车不可分辨,问有多少种排法? ①重复排列和非重复排列(有序) 例1.9:5封不同的信,有6个信箱可供投递,共有多少种投信的方法? ②对立事件 例1.10:七人并坐,甲不坐首位,乙不坐末位,有几种不同的坐法? 例1.11:15人中取5人,有3个不能都取,有多少种取法? 例1.12:有4对人,组成一个3人小组,不能从任意一对中取2个,问有多少种可能性?

概率论与数理统计期末总结

第1章 概率论的基本概念 1.1 随机试验 称满足以下三个条件的试验为随机试验: (1)在相同条件下可以重复进行; (2)每次试验的结果不止一个,并且能事先明确所有的可能结果; (3)进行试验之前,不能确定哪个结果出现。 1.2 样本点 样本空间 随机事件 随机试验的每一个可能结果称为一个样本点,也称为基本事件。 样本点的全体所构成的集合称为样本空间,也称为必然事件。必然事件在每次试验中必然发生。 随机试验的样本空间不一定唯一。在同一试验中,试验的目的不同时,样本 空间往往是不同的。所以应从试验的目的出发确定样本空间。 样本空间的子集称为随机事件,简称事件。 在每次试验中必不发生的事件为不可能事件。 1.3 事件的关系及运算 (1)包含关系 B A ?,即事件A 发生,导致事件B 发生; (2)相等关系 B A =,即B A ?且A B ?; (3)和事件(也叫并事件) B A C ?=,即事件A 与事件B 至少有一个发生; (4)积事件(也叫交事件) B A AB C ?==,即事件A 与事件B 同时发生; (5)差事件 AB A B A C -=-=,即事件A 发生,同时,事件B 不发生; (6)互斥事件(也叫互不相容事件) A 、 B 满足φ=AB ,即事件A 与事件B 不同时发生; (7)对立事件(也叫逆事件) A A -Ω=,即φ=Ω=?A A A A ,。

1.4 事件的运算律 (1)交换律 BA AB A B B A =?=?,; (2)结合律 ()()()()C AB BC A C B A C B A =??=??,; (3)分配律 ()()()()()()C A B A BC A AC AB C B A ??=??=?,; (4)幂等律 A AA A A A ==?, ; (5)差化积 B A AB A B A =-=-; (6)反演律(也叫德·摩根律)B A AB B A B A B A B A ?==?=?=?,。 1.5 概率的公理化定义 设E 是随机试验,Ω为样本空间,对于Ω中的每一个事件A ,赋予一个实数P (A ),称之为A 的概率,P (A )满足: (1)1)(0≤≤A P ; (2)1)(=ΩP ; (3)若事件 ,,, ,n A A A 21两两互不相容,则有 () ++++=????)()()(2121n n A P A P A P A A A P 。 1.6 概率的性质 (1)0)(=φP ; (2)若事件n A A A ,, , 21两两不互相容,则())()()(2121n n A P A P A P A A A P +++=??? ; (3))(1)(A P A P -=; (4))()()(AB P B P A B P -=-。 特别地,若B A ?,则)()(),()()(B P A P A P B P A B P ≤-=-; (5))()()()(AB P B P A P B A P -+=?。

概率论与数理统计课后习题答案

习题1.1解答 1. 将一枚均匀的硬币抛两次,事件C B A ,,分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”。试写出样本空间及事件C B A ,,中的样本点。 解:{=Ω(正,正),(正,反),(反,正),(反,反)} {=A (正,正),(正,反)};{=B (正,正),(反,反)} {=C (正,正),(正,反),(反,正)} 2. 在掷两颗骰子的试验中,事件D C B A ,,,分别表示“点数之和为偶数”,“点数之和小于5”,“点数相等”,“至少有一颗骰子的点数为3”。试写出样本空间及事件D C B A BC C A B A AB ---+,,,,中的样本点。 解:{})6,6(,),2,6(),1,6(,),6,2(,),2,2(),1,2(),6,1(,),2,1(),1,1( =Ω; {})1,3(),2,2(),3,1(),1,1(=AB ; {})1,2(),2,1(),6,6(),4,6(),2,6(,),5,1(),3,1(),1,1( =+B A ; Φ=C A ;{})2,2(),1,1(=BC ; {})4,6(),2,6(),1,5(),6,4(),2,4(),6,2(),4,2(),5,1(=---D C B A 3. 以C B A ,,分别表示某城市居民订阅日报、晚报和体育报。试用C B A ,,表示以下事件: (1)只订阅日报; (2)只订日报和晚报; (3)只订一种报; (4)正好订两种报; (5)至少订阅一种报; (6)不订阅任何报; (7)至多订阅一种报; (8)三种报纸都订阅; (9)三种报纸不全订阅。 解:(1)C B A ; (2)C AB ; (3)C B A C B A C B A ++; (4)BC A C B A C AB ++; (5)C B A ++; (6)C B A ; (7)C B A C B A C B A C B A +++或C B C A B A ++ (8)ABC ; (9)C B A ++ 4. 甲、乙、丙三人各射击一次,事件321,,A A A 分别表示甲、乙、丙射中。试说明下列事件所表示的结果:2A , 32A A +, 21A A , 21A A +, 321A A A , 313221A A A A A A ++. 解:甲未击中;乙和丙至少一人击中;甲和乙至多有一人击中或甲和乙至少有一人未击中;甲和乙都未击中;甲和乙击中而丙未击中;甲、乙、丙三人至少有两人击中。 5. 设事件C B A ,,满足Φ≠ABC ,试把下列事件表示为一些互不相容的事件的和:C B A ++,C AB +,AC B -. 解:如图:

概率论与数理统计复旦大学出版社第二章课后答案(供参考)

概率论与数理统计习题二答案 1.一袋中有5只乒乓球,编号为1,2,3,4,5,在其中同时取3只,以X 表示取出的3只 球中的最大号码,写出随机变量X 的分布律. 【解】X 的可能取值为3,4,5,其取不同值的概率为 以X 表示取出的次品个数,求: (1) X 的分布律;(2) X 的分布函数并作图; (3)1 33{},{1},{1},{12}222 P X P X P X P X ≤<≤≤≤<<. 【解】X 的可能取值为0,1,2,其取不同值的概率为 (2) 当0x <时,{}()0F x P X x =≤= 当01x ≤<时,{}{}22()035 F x P X x P X =≤=== 当12x ≤<时,{}{}{}34()0135 F x P X x P X P X =≤==+== 当2x ≥时,{}{}{}{}()0121F x P X x P X P X P X =≤==+=+== 故X 的分布函数 (3) 3.射手向目标独立地进行了3次射击,每次击中率为0.8,求3次射击中击中目标的次数的分布律及分布函数,并求3次射击中至少击中2次的概率. 【解】设X 表示3次射击中击中目标的次数.则X 的可能取值为0,1,2,3,显然~(3,0.8)X b 其取不同值的概率为 分布函数 3次射击中至少击中2次的概率为 4.(1) 设随机变量X 的分布律为 {}! k P x k a k λ==, 其中k =0,1,2,…,λ>0为常数,试确定常数a .

(2) 设随机变量X 的分布律为 {}a P x k N == , k =1,2,…,N , 试确定常数a . 【解】(1) 由分布律的性质知 故 e a λ -= (2) 由分布律的性质知 即 1a =. 5.甲、乙两人投篮,投中的概率分别为0.6,0.7,今各投3次,求: (1) 两人投中次数相等的概率;(2) 甲比乙投中次数多的概率. 【解】设X 、Y 分别表示甲、乙投中次数,则~(3,0.6)X b ,~(3,0.7)Y b (1) {}{}{}{}{}0,01,12,23,3P X Y P X Y P X Y P X Y P X Y ====+==+==+== 33121233(0.4)(0.3)C 0.6(0.4)C 0.7(0.3)=++222233 33C (0.6)0.4C (0.7)0.3(0.6)(0.7)+ (2) {}{}{}{}1,02,03,0P X Y P X Y P X Y P X Y >===+==+== 312322 33(0.6)C 0.7(0.3)(0.6)C (0.7)0.3++=0.243 6.设某机场每天有200架飞机在此降落,任一飞机在某一时刻降落的概率设为0.02,且设各飞机降落是相互独立的.试问该机场需配备多少条跑道,才能保证某一时刻飞机需立即降落而没有空闲跑道的概率小于0.01(每条跑道只能允许一架飞机降落)? 【解】设X 为某一时刻需立即降落的飞机数,则~(200,0.02)X b ,设机场需配备N 条跑 道,根据题意有 即 200 2002001 C (0.02)(0.98) 0.01k k k k N -=+<∑ 利用泊松定理近似计算 查表得N ≥9.故机场至少应配备9条跑道. 7.有一繁忙的汽车站,每天有大量汽车通过,设每辆车在一天的某时段出事故的概率为0.0001,在某天的该时段内有1000辆汽车通过,问出事故的次数不小于2的概率是多少(利用泊松定理)? 【解】设X 表示出事故的次数,则X ~b (1000,0.0001) 8.已知在五重贝努里试验中成功的次数X 满足P {X =1}=P {X =2},求概率P {X =4}. 【解】设在每次试验中成功的概率为p ,则 故 13 p = 所以 4 451210 (4)C () 33243 P X ===. 9.设事件A 在每一次试验中发生的概率为0.3,当A 发生不少于3次时,指示灯发出信号, (1) 进行了5次独立试验,试求指示灯发出信号的概率;

(完整word版)概率论与数理统计期末试卷及答案

一、选 择 题 (本大题分5小题, 每小题4分, 共20分) (1)设A 、B 互不相容,且P(A)>0,P(B)>0,则必有( ) (A)0)(>A B P (B))()(A P B A P = (C)0)(=B A P (D))()()(B P A P AB P = (2)将3粒黄豆随机地放入4个杯子,则杯子中盛黄豆最多为一粒的概率为( ) 3311() () () ()32 8 168 A B C D (3)),4,(~2 μN X ),5,(~2 μN Y }5{},4{21+≥=-≤=μμY P p X P p ,则( ) (A)对任意实数21,p p =μ (B )对任意实数21,p p <μ (C)只对μ的个别值,才有21p p = (D )对任意实数μ,都有21p p > (4)设随机变量X 的密度函数为)(x f ,且),()(x f x f =-)(x F 是X 的分布函数,则对任意 实数a 成立的是( ) (A )? - =-a dx x f a F 0 )(1)( (B )?-= -a dx x f a F 0 )(21)( (C ))()(a F a F =- (D )1)(2)(-=-a F a F (5)已知1250,,,X X X L 为来自总体()2,4X N :的样本,记50 11,50i i X X ==∑ 则 50 21 1()4i i X X =-∑服从分布为( ) (A )4(2, )50N (B) 2 (,4)50 N (C )()250χ (D) ()249χ 二、填 空 题 (本大题5小题, 每小题4分, 共20分) (1) 4.0)(=A P ,3.0)(=B P ,4.0)(=?B A P ,则___________)(=B A P (2) 设随机变量X 有密度? ??<<=其它01 0,4)(3x x x f , 则使)()(a X P a X P <=> 的常数a = (3) 设随机变量),2(~2 σN X ,若3.0}40{=<

概率论与数理统计考研复习资料

概率论与数理统计复习 第一章 概率论的基本概念 一.基本概念 随机试验E:(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现. 样本空间S: E 的所有可能结果组成的集合. 样本点(基本事件):E 的每个结果. 随机事件(事件):样本空间S 的子集. 必然事件(S):每次试验中一定发生的事件. 不可能事件(Φ):每次试验中一定不会发生的事件. 二. 事件间的关系和运算 1.A ?B(事件B 包含事件A )事件A 发生必然导致事件B 发生. 2.A ∪B(和事件)事件A 与B 至少有一个发生. 3. A ∩B=AB(积事件)事件A 与B 同时发生. 4. A -B(差事件)事件A 发生而B 不发生. 5. AB=Φ (A 与B 互不相容或互斥)事件A 与B 不能同时发生. 6. AB=Φ且A ∪B=S (A 与B 互为逆事件或对立事件)表示一次试验中A 与B 必有一个且仅有一个发生. B=A, A=B . 运算规则 交换律 结合律 分配律 德?摩根律 B A B A = B A B A = 三. 概率的定义与性质 1.定义 对于E 的每一事件A 赋予一个实数,记为P(A),称为事件A 的概率. (1)非负性 P(A)≥0 ; (2)归一性或规范性 P(S)=1 ; (3)可列可加性 对于两两互不相容的事件A 1,A 2,…(A i A j =φ, i ≠j, i,j=1,2,…), P(A 1∪A 2∪…)=P( A 1)+P(A 2)+… 2.性质 (1) P(Φ) = 0 , 注意: A 为不可能事件 P(A)=0 . (2)有限可加性 对于n 个两两互不相容的事件A 1,A 2,…,A n , P(A 1∪A 2∪…∪A n )=P(A 1)+P(A 2)+…+P(A n ) (有限可加性与可列可加性合称加法定理) (3)若A ?B, 则P(A)≤P(B), P(B -A)=P(B)-P(A) . (4)对于任一事件A, P(A)≤1, P(A)=1-P(A) . (5)广义加法定理 对于任意二事件A,B ,P(A ∪B)=P(A)+P(B)-P(AB) . 对于任意n 个事件A 1,A 2,…,A n ()()() () +∑ + ∑ - ∑=≤<<≤≤<≤=n k j i k j i n j i j i n i i n A A A P A A P A P A A A P 111 21 …+(-1)n-1P(A 1A 2…A n ) 四.等可能(古典)概型 1.定义 如果试验E 满足:(1)样本空间的元素只有有限个,即S={e 1,e 2,…,e n };(2)每一个基本事件的概率相等,即P(e 1)=P(e 2)=…= P(e n ).则称试验E 所对应的概率模型为等可能(古典)概型. 2.计算公式 P(A)=k / n 其中k 是A 中包含的基本事件数, n 是S 中包含的基本事件总数. 五.条件概率 1.定义 事件A 发生的条件下事件B 发生的条件概率P(B|A)=P(AB) / P(A) ( P(A)>0). 2.乘法定理 P(AB)=P(A) P (B|A) (P(A)>0); P(AB)=P(B) P (A|B) (P(B)>0). P(A 1A 2…A n )=P(A 1)P(A 2|A 1)P(A 3|A 1A 2)…P(A n |A 1A 2…A n-1) (n ≥2, P(A 1A 2…A n-1) > 0) 3. B 1,B 2,…,B n 是样本空间S 的一个划分(B i B j =φ,i ≠j,i,j=1,2,…,n, B 1∪B 2∪…∪B n =S) ,则 当P(B i )>0时,有全概率公式 P(A)= ()()i n i i B A P B P ∑=1

概率论与数理统计课后习题答案

习 题 一 1.写出下列随机试验的样本空间及下列事件中的样本点: (1)掷一颗骰子,记录出现的点数. A =‘出 现奇数点’; (2)将一颗骰子掷两次,记录出现点数. A = ‘两次点数之和为10’,B =‘第一次的点数,比第二次的点数大2’; (3)一个口袋中有5只外形完全相同的球,编号分别为1,2,3,4,5;从中同时取出3只球,观察其结果,A =‘球的最小号码为1’; (4)将,a b 两个球,随机地放入到甲、乙、丙三个盒子中去,观察放球情况,A =‘甲盒中至少有一球’; (5)记录在一段时间内,通过某桥的汽车流量, A =‘通过汽车不足5台’, B =‘通过的汽车不 少于3台’。 解 (1)123456{,,,,,}S e e e e e e =其中i e =‘出现i 点’1,2,,6i =L , 135{,,}A e e e =。 (2) {(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)S = (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}; {(4,6),(5,5),(6,4)}A =; {(3,1),(4,2),(5,3),(6,4)}B =。 (3) {(1,2,3),(2,3,4),(3,4,5),(1,3,4),(1,4,5),(1,2,4),(1,2,5)S = (4) {(,,),(,,),(,,),(,,),(,,),(,,), S ab ab ab a b a b b a =--------- (,,),(,,,),(,,)}b a a b b a ---,其中‘-’表示空盒; {(,,),(,,),(,,),(,,),(,,)}A ab a b a b b a b a =------。 (5) {0,1,2,},{0,1,2,3,4},{3,4,} S A B ===L L 。 2.设,,A B C 是随机试验E 的三个事件,试用 ,,A B C 表示下列事件: (1)仅A 发生; (2),,A B C 中至少有两个发生; (3),,A B C 中不多于两个发生; (4),,A B C 中恰有两个发生; (5),,A B C 中至多有一个发生。 解 (1)ABC (2)AB AC BC U U 或 ABC ABC ABC ABC U U U ; (3)A B C U U 或 ABC ABC ABC ABC ABC ABC ABC U U U U U U ; (4)ABC ABC ABC U U ; (5)AB AC BC U U 或 ABC ABC ABC ABC U U U ; 3.一个工人生产了三件产品,以(1,2,3)i A i =表示第i 件产品是正品,试用i A 表示下列事件:(1)没有一件产品是次品;(2)至少有一件产品是次品;(3)恰有一件产品是次品;(4)至少有两件产品不是次品。 解 (1)123A A A ;(2)123A A A U U ;(3) 123123123A A A A A A A A A U U ;(4)121323A A A A A A U U 。 4.在电话号码中任取一个电话号码,求后面四个数字全不相同的概率。 解 设A =‘任取一电话号码后四个数字全不相同’,则 5.一批晶体管共40只,其中3只是坏的,今从中任取5只,求 (1)5只全是好的的概率; (2)5只中有两只坏的的概率。 解 (1)设A =‘5只全是好的’,则 537540 ()0.662C P A C =B ;

概率论与数理统计复旦大学出版社第四章课后答案

概率论 习题四 答案 1.设随机变量X 的分布律为 X -1 0 1 2 P 1/8 1/2 1/8 1/4 求E (X ),E (X ),E (2X +3). 【解】(1) 11111 ()(1)012;8 2842 E X =-?+? +?+?= (2) 22 22211115()(1)012;82844 E X =-?+?+?+?= (3) 1 (23)2()32342 E X E X +=+=?+= 2.已知100个产品中有10个次品,求任意取出的5个产品中的次品数的数学期望、方差. X 0 1 2 3 4 5 P 5905100 C 0.583C = 14 1090 5 100 C C 0.340C = 231090 5 100 C C 0.070C = 321090 5 100 C C 0.007C = 4110905100 C C 0C = 510 5 100 C 0C = 故 ()0.58300.34010.07020.00730405E X =?+?+?+?+?+? 0.501,= 5 2 ()[()]i i i D X x E X P == -∑ 222(00.501)0.583(10.501)0.340(50.501)00.432. =-?+-?++-?=L 3.设随机变量X -1 0 1 P p 1 p 2 p 3 且已知E (X )=0.1,E (X 2)=0.9,求123,,p p p . 【解】因1231p p p ++=……①, 又12331()(1)010.1E X p p p p p =-++=-=g g ……②, 222212313()(1)010.9E X p p p p p =-++=+=g g g ……③ 由①②③联立解得1230.4,0.1,0.5.p p p ===

概率论与数理统计期末考试卷答案

《概率论与数理统计》 试卷A (考试时间:90分钟; 考试形式:闭卷) (注意:请将答案填写在答题专用纸上,并注明题号。答案填写在试卷和草稿纸上无效) 一、单项选择题(本大题共20小题,每小题2分,共40分) 1、A ,B 为二事件,则A B = U () A 、A B B 、A B C 、A B D 、A B U 2、设A ,B ,C 表示三个事件,则A B C 表示( ) A 、A , B , C 中有一个发生 B 、A ,B ,C 中恰有两个发生 C 、A ,B ,C 中不多于一个发生 D 、A ,B ,C 都不发生 3、A 、B 为两事件,若()0.8P A B =U ,()0.2P A =,()0.4P B =, 则( )成立 A 、()0.32P A B = B 、()0.2P A B = C 、()0.4P B A -= D 、()0.48P B A = 4、设A ,B 为任二事件,则( ) A 、()()()P A B P A P B -=- B 、()()()P A B P A P B =+U C 、()()()P AB P A P B = D 、()()()P A P AB P AB =+ 5、设事件A 与B 相互独立,则下列说法错误的是() A 、A 与 B 独立 B 、A 与B 独立 C 、()()()P AB P A P B = D 、A 与B 一定互斥 6、设离散型随机变量X 的分布列为 其分布函数为()F x ,则(3)F =() A 、0 B 、0.3 C 、0.8 D 、1 7、设离散型随机变量X 的密度函数为4,[0,1] ()0, cx x f x ?∈=??其它 ,则常数c = () A 、 15 B 、1 4 C 、4 D 、5

《概率论与数理统计》基本名词中英文对照表

《概率论与数理统计》基本名词中英文对照表英文中文 Probability theory 概率论 mathematical statistics 数理统计 deterministic phenomenon 确定性现象 random phenomenon 随机现象 sample space 样本空间 random occurrence 随机事件 fundamental event 基本事件 certain event 必然事件 impossible event 不可能事件 random test 随机试验 incompatible events 互不相容事件 frequency 频率 classical probabilistic model 古典概型 geometric probability 几何概率 conditional probability 条件概率 multiplication theorem 乘法定理 Bayes's formula 贝叶斯公式 Prior probability 先验概率 Posterior probability 后验概率 Independent events 相互独立事件 Bernoulli trials 贝努利试验 random variable 随机变量

probability distribution 概率分布 distribution function 分布函数 discrete random variable 离散随机变量distribution law 分布律hypergeometric distribution 超几何分布 random sampling model 随机抽样模型binomial distribution 二项分布 Poisson distribution 泊松分布 geometric distribution 几何分布 probability density 概率密度 continuous random variable 连续随机变量uniformly distribution 均匀分布exponential distribution 指数分布 numerical character 数字特征mathematical expectation 数学期望 variance 方差 moment 矩 central moment 中心矩 n-dimensional random variable n-维随机变量 two-dimensional random variable 二维离散随机变量joint probability distribution 联合概率分布 joint distribution law 联合分布律 joint distribution function 联合分布函数boundary distribution law 边缘分布律

相关文档
相关文档 最新文档