文档库 最新最全的文档下载
当前位置:文档库 › 发动机的振动噪声

发动机的振动噪声

发动机的振动噪声
发动机的振动噪声

发动机的振动噪声机理

发动机的机械噪声源于发动机零部件的振动,而主要零部件的振动都直接或间接与曲轴的振动有关。一般将发动机噪声分为三种类型: 燃烧噪声、机械噪声和空气动力学噪声。

内燃机结构振动的传播和辐射噪声产生的机理和传递途径, 这些途径主要有: 1,燃烧所引起的气体力, 使缸盖产生振动, 进而传播到气缸盖罩和进、排气歧管等零件;

2.,作用在活塞上的燃烧气体力和惯性力使活塞产生垂向振动。燃烧产生的冲击

能量大部分是通过活塞-连杆-曲轴机构传到机体表面, 引起表面振动,称为燃烧激振, 由此诱发的噪声称为燃烧机械噪声;

3,与此同时, 这些作用力又引起活塞横向敲击, 激发起缸套和气缸体的振动,进而导致正时齿轮室盖、机油冷却器等零件的振动; 由于活塞与气缸壁之间存在有间隙, 作用在活塞上的气体压力、惯性力呈周期性变化, 这使得活塞对气缸壁的侧推力也呈两边反复作用的特性,活塞在一个工作循环中不断地由一侧接触, 变换为与另一侧相接触, 产生了活塞对于缸壁的不断敲击现象。称为活塞敲击激振, 相应产生的噪声, 称为活塞敲击( 机械) 噪声。

4,进排气流的压力波动激发进排气歧管及附件的表面振动。

另外, 配气机构、喷油泵、齿轮冲击和进排气压力波动等交变力激振都要产生机械噪声。

发动机工作中结构振动响应的大小不仅与结构的固有特性有关, 还与激励力的频谱特性有关。

原则上应从以下几个方面来降低发动机的燃烧噪声: 一是从根源上改变气体力频谱曲线, 降低中高频频率成分的幅值; 二是从传播途径上, 增加发动机结构对燃烧噪声的衰减, 可通过提高缸体刚度增大阻尼或采取隔声措施的方法; 另外, 在传播途径上需要控制各连接副之间的间隙, 增加油膜厚度, 避免在运动过程中产生更大的冲击。

降低活塞敲击噪声除从传播途径上降低结构对输入的衰减能力( 如提高刚度和增大阻尼) 之外, 还需要关注活塞组的设计。通过增大活塞裙部刚度、减小活塞重量、设计合理的活塞型线和配缸间隙、或采取其他措施, 降低活塞对缸套的敲击力是降低活塞敲击噪声的关键。

1.1燃烧噪音

1.1.1燃烧噪声产生机理

燃烧噪声是由于气缸内周期变化的气体压力的作用而产生的。它主要取决于燃烧的方式和燃烧的速度。燃烧噪声是由于燃烧室内气压急剧上升,致使发动机各部件振动而引起的噪声。

1.1.2燃烧噪声的控制策略

(1)采用隔热活塞以提高燃烧室壁温度,缩短滞燃期,降低空间雾化燃烧系统的直喷式柴油机的燃烧噪声。

(2)提高压缩比和应用废气再循环技术也可降低柴油机的燃烧噪声。但压缩比主要决定了柴油机的机械负荷与热负荷水平。废气再循环技术通过降低气缸最高压力,在抑制NOx产生的同时,也降低了燃烧噪声。

(3)采用双弹簧喷油阀实现预喷。即将原本打算一个循环一次喷完的燃油分两次喷。第一次先喷入其中的小部分,提前在主喷之前就开始进行着火的预反应,这样可减少滞燃期内积聚的可燃混合气数量。

(4)共轨喷油系统是一种很有前途的直喷式轿车柴油机电子控制高压燃油喷射系统,它能减少滞燃期内喷入的燃油量,特别有利于降低燃烧噪声。

(5)采用增压。柴油机增压后进入气缸的空气充量密度、温度和压力增加,从而改善了混合气的着火条件,使着火延迟期缩短。

(6)燃烧室的选择和设计。对于分开式燃烧室,精确的喷油通道、扩大通道面积、控制喷射方向和预燃室进气涡流半径的优化,均能抑制预混合燃烧,促进扩散燃烧,从而降低由低负荷到高负荷较宽范围的燃烧噪声、燃油消耗和碳烟排放。

活塞顶燃烧室结构对燃烧噪声有很大影响。孔口较小、深度较深者,燃烧噪声就小得多,排放也明显较好。再加上缩口形,减噪效果就更趋好转。因此,设计时在变动许可范围内,最好选用缩口并尽可能加深些的ω形燃烧室。

(7)减小供油提前角。供油提前角小,喷油时间延迟,气缸内温度和压力在燃油喷入时较高,燃油一经喷入即雾化,瞬间达到着火点,缩短了滞燃期。最先喷入的燃油爆发燃烧,而后续喷入火焰中的燃油因氧气不足而不会立即燃烧,这样,由于初期燃烧的燃油量少,压力升高率低,可使燃烧噪声减小。大多数柴油机的燃烧噪声随供油提前角的减小而有所降低。

(8)选用十六烷值高的燃料,着火延迟期较短,从而影响在着火延迟期内形成的可燃混合气数量,使压力升高率降低和减小燃烧噪声。

1.2机械噪声

机械噪声是由于运动件之间以及运动件与固定件之间周期性变化的机械运动而产生的,它与激发力的大小、运动件的结构等因素有关。主要有活塞敲击噪声和气门机械噪声。

1.2.1活塞敲击噪声

发动机运转时,活塞在上、下止点附近受侧向力作用产生一个由一侧向另一侧的横向移动,从而形成活塞对缸壁的强烈敲击,产生了活塞敲击噪声。产生敲击的主要原因是活塞与气缸套之间存在间隙,以及作用在活塞上的气体压力。降低活塞敲击噪声的措施有:

(1)采取活塞销孔偏置,即将活塞销孔适当地朝主推力面偏移1~2mm。

(2)采用在活塞裙部开横向隔热槽,活塞销座镶调节钢件,裙部镶钢筒,采用椭圆锥体裙等方式来减小活塞40℃冷态配缸间隙。

(3)增加缸套的刚度,不仅可以降低活塞的敲击声,也可以降低因活塞与缸壁摩擦而产生的噪声。为了增加缸套的刚度,可采用增加缸套厚度或带加强肋的方法。

(4)改进活塞和气缸壁之间的润滑状况,增加活塞敲击缸壁时的阻尼,也可以减小活塞敲击噪声。

1.2.2传动齿轮噪声

传动齿轮的噪声是齿轮啮合过程中齿与齿之间的撞击和摩擦产生的。在内燃机上,齿轮承载着交变的动负荷,这种动负荷会使轴产生变形,并通过轴在轴承上引起动负荷,轴承的动负荷又传给发动机壳体和齿轮室壳体,使壳体激发出噪声。此外,曲轴的扭转振动也会破坏齿轮的正常啮合而激发出噪声。传动齿轮噪声与齿轮的设计参数和结构型式、加工精度、齿轮材料配对、齿轮室结构以及运转状态有关。

降低传动齿轮噪声的措施有:

(1)控制齿轮齿形,提高齿轮加工精度,减小齿轮啮合间隙,即降低齿轮啮合时相互撞击的能量,从而降低齿轮啮合传动噪声。

(2)采用新材料,如高阻尼的工程塑料齿轮,采用工程塑料齿轮代替原钢制齿轮后,整机噪声降低约0.5dB(A)左右,效果明显。

(3)合理布置齿轮传动系位置,如将正时齿轮布置在飞轮端,可有效减少曲轴系扭振对齿轮振动的影响。

(4)采用正时齿形同步带传动代替正时齿轮转动,可明显降低噪声。

1.2.3降低配气机构噪声

内燃机大都采用凸轮、气门配气机构,机构中包括凸轮轴、挺柱、推杆、摇臂、气门等零件。配气机构中零件多、刚度差,在运动中易于激起振动和噪声,包括气门和气门座的撞击,由气门间隙引起的传动撞击,挺柱和凸轮工作面之间的摩擦振动,高速时气门不规则运动引起的噪声。配气机构噪声与气门机构的型式、气门间隙、气门落座速度、材料、凸轮型线、凸轮和挺柱的润滑状态、内燃机的转速等因素有关。

降低配气机构噪声的措施主要有:

(1)良好的润滑能减少摩擦,降低摩擦噪声。凸轮转速越高,油膜越厚。所以内燃机高速运转时,配气机构的摩擦振动和噪声就不突出了。

(2)减少气门间隙可减少摇臂与气门之间的撞击,但不能使气门间隙太小。采用液力挺柱可以从根本上消除气门间隙,降低噪声。

(3)缩短推杆长度是减轻系统重量、提高刚度的有效措施,顶置式凸轮轴取消了推杆,对减少噪声特别有利。

1.3空气动力噪声

由于气体扰动以及气体和其他物体相互作用而产生的噪声称为空气动力噪声,在发动机中,它包括进气噪声、排气噪声和风扇噪声。

1.3.1进气噪声

发动机工作时,高速气流经空气滤清器、进气管、气门进入气缸、在此气流流动过程中会产生一种强烈的空气动力噪声,有时比发动机本身噪声高出5 dB(A)左右,成为仅次于排气噪声的主要噪声源。该噪声随着发动机转速的提高而增强,与负荷的变化无关,其成分主要包括:周期性压力脉动噪声、涡流噪声、气缸的玄姆霍兹共振噪声和进气管的气柱共振噪声。

进气噪声的控制策略主要是:

(1)合理的设计和选用空气滤清器。合理设计进气管道和气缸盖进气通道,减少进气系统内压力脉动的强度和气门通道处的涡流强度。

(2)引进消声措施。

1.3.2排气噪声

排气噪声主要在排气开始时,废气以脉冲形式从排气门缝隙排出,并迅速从排气口冲入大气,形成能量很高、频率很复杂的噪声,包括基频及其高次谐波的成分。该噪声是汽车及发动机中能量最大最主要的噪声源,它的噪声往往比发动机整机噪声高10dB(A)~15dB(A)。除基频噪声及其高次谐波噪声外,排气噪声还包括排气总管和排气歧管中存在的气柱共振噪声、气门杆背部的涡流噪声、排气系统管道内壁面的紊流噪声等,此外,排气噪声还包括废气喷射和冲击噪声。排气噪声的控制策略主要是:

(1)从排气系统的设计方面入手,如合理设计排气管的长度与形状,以避免气流产生共振和减少涡流。

(2)废气涡轮增压器的应用可降低排气噪声,但最有效的方法还是采用高消声技术,使用低功率损耗和宽消声频率范围的排气消声器。

1.3.3风扇噪声

风扇噪声是发动机中不可忽视的噪声源,尤其风冷发动机更为突出,在高速全负荷时甚至和进排气噪声不相上下。它主要是空气动力噪声,由旋转噪声和涡流声所组成。旋转噪声是由旋转叶片周期性地打击空气质点,引起空气的压力脉动所产生的。涡流噪声是由于风扇旋转时使周围的空气产生涡流,这些涡流又因粘滞力的作用分裂成一系列独立的小涡流,这些涡流和涡流的分裂会使空气发生扰动,形成压力波动,从而激发出的噪声,涡流噪声一般是宽频带噪声。

发动机的风扇噪声在低速运转时涡流噪声占优势,高速时旋转噪声占优势,风扇的转速越高,直径越大,风扇的扇风量就越大,其噪声也越高;风扇的效率越低,消耗功率越大,风扇噪声越大。

风扇噪声的控制策略主要是:

(1)适当控制风扇转速,风扇噪声随转速的增长远比其他噪声大。在冷却要求已定的条件下,为降低转速,可在结构尺寸允许的范围内,适当加大风扇直径或者增加叶片数目;充分运用流体力学理论设计高效率的风扇,就可能在保证冷却风量和风压的前提下降低转速。

(2)采用叶片不均匀分布的风扇,叶片均匀分布往往会产生一些声压级很高的有调节器成分。当叶片不均匀布置后,一般可降低风扇中那些突出的线状频谱成分,使噪声频谱较为平滑。

(3)用塑料风扇代替钢板风扇,能达到降低噪声和减少风扇消耗功率的效果,但目前成本还稍高于钢板风扇。国外中小功率内燃机已普遍采用塑料风扇。还可采用一种安装角可以变化的“柔性风扇”,这种风扇叶片用很薄的钢板或塑料制造,当风扇转速提高后,由于空气动力的作用,叶片扭转变平(安装角变小),于是风扇消耗功率和噪声都减小;转速降低时,由于空气动力作用小,叶片的扭转变小,保证了足够的风量。

(4)在车用内燃机上采用风扇自动离合器,试验表明,在汽车行驶中,需要风扇工作的时间一般不到10%。因此,装用风扇离合器不仅可使内燃机经常处在适宜温度下工作和减少功率消耗,同时还能达到降噪的效果。

(5)风扇和散热器系统的合理设计。诸如发动机和风扇的距离、风扇与散热器的距离、风扇和风扇护罩的位置及护罩的形状、空气通过散热器的阻力等都会对

冷却风量的充分利用产生影响。合理布置和设计都有可能达到降低风扇转速的目的。

结束语

综上所述,影响汽车发动机噪声的因素多种多样,单靠采用某一种降噪方法很难大幅度地把噪声降低下来,要降低汽车发动机噪声,应从发动机噪声的噪声源、传播途径等方面入手,明确降噪的对象和目标,通过综合考虑,采取各种技术手段,在一定程度上可有效地控制和降低燃烧噪声、机械噪声和空气动力噪声,达到降低汽车发动机噪声的目的。

汽车发动机振动噪声测试实用标准系统

附件1 汽车发动机振动噪声测试系统 1用途及基本要求: 该设备主要用于教学和科研中的振动和噪声测量,要求能够测量试验对象的振动噪声特性(频率、阶次、声强等),能对试验数据进行综合分析。该产品的生产厂应具有多年振动噪声行业从业经验,有较高的知名度和影响力。系统软件和硬件应该为成熟的模块化设计,同时具有很强的扩展能力,能保证将来软件和硬件同时升级。 2设备技术要求及参数 2.1设备系统配置 2.1.1数据采集系统一套; 2.1.2数据测试分析软件一套; 2.1.3传声器 2个; 2.1.4加速度计 2个; 2.1.5声强探头 1套; 2.1.6声级校准器 1个; 2.1.7笔记本电脑一台 2.2数据采集、控制系统技术要求 2.2.1主机箱一个;供电采用9~36V直流和 200~240V交流; 2.2.2便携式采集前端,适用于实验室及现场环境; 2.2.3整机消耗功率<150W; 2.2.4工作环境温度:-10?C ~50?C; 2.2.5中文或英文WindowsXP下运行,操作主机采用笔记本电脑; 2.2.6输入通道数:4个以上,其中2个200V极化电压输入通道、不少一个转速输入通道; 2.2.7输入通道拥有Dyn-X技术,动态围160dB; 2.2.8每通道最高采样频率:≥65.5kHz,最大分析带宽:≥25.6kHz; 2.2.9系统留有扩充板插槽,根据需要可以进一步扩充;数据采集前端可同时连接多种形式传感器,包括加速度计、转速探头、传声器、声强探头等; 2.2.10系统具有堆叠和分拆能力,多个小系统可组成多通道大系统进行测量。大系统可分拆成多个小系统独立运行; 2.2.11采集前端的数据传输具备二种方式之一:①通过10/100M自适应以太网传输至PC; ②通过无线通讯以太网技术传输至PC,通信距离在100米以上。使测量过程更为灵活方便,方便硬件通道和计算机系统扩展升级;

发动机表面结构振动与辐射噪声的关系

第3章发动机表面振动与辐射噪声关系的系统研究 所谓发动机噪声除了进、排气噪声和风扇噪声外,主要是指由发动机外表面辐射出来的噪声,而辐射噪声与发动机表面结构振动有着密切的关系。系统地研究发动机表面振动与辐射噪声之间的关系,对于发动机噪声源预测和降低辐射噪声有着极其重要的意义。 3.1内燃机的表面振动 结构的表面振动和辐射噪声之间的关系非常复杂,通常无法确定。通过对噪声和单源振动测定的比较研究可知,大约有50%没有确切的关系。声场环境的影响、声的传播方向、结构振动的频率和相位的不均匀性,以及精确的数学模型极为复杂等因素导致精确的解析分析不可能实现。随机因素的影响和影响因素的随机性使得研究人员转而采用统计分析的方法来完成对振动和噪声辐射之间关系的研究[77-81]。 发动机结构振动可用其模态振型来表示,发动机结构振动的模态振型是由发动机设计所决定的,发动机质量分布、刚度和阻尼决定了其模态频率及其各阶模态之间的频率间隔。 柴油机是一种结构复杂、变工况运行的动力机械。柴油机的表面振动特性决定了其辐射噪声特性。为此,作者对一典型的直列柴油机-CY6102BZQ型柴油机的表面振动进行了实验测试与研究。实验框图如下:

实验仪器如下: 仪器名称 型号生产厂 传感器YJ2-1(665) 杨州无线电二厂 YJ2-1(667) 杨州无线电二厂 YD-42(24) 杨州无线电二厂 9024(2) 北戴河传感器技术研究所 电荷放大器7021 磁带机TEAC XR-30C TEAC CORP. Made in Japan 光线示波器 抗混滤波器DLF-6 北京东方振动和噪声技术研究所数据采集与分析系统INV306D 北京东方振动和噪声技术研究所测功机Y120-S 中国启东测功设备厂 测点布置如下:

汽车变速器的振动与噪声测试方法探讨

面?分类?数据库三成功登录的用户点击不同的分类即可跳转到不同的列表界面三 (3)新闻查看功能,录用户通过点击新闻列表界面的列表项三程序页面名称为newstext.xml三登录用户通过点击新闻列表的列表项即可跳转到详细信息查看界面,在该界面显示所选中的新闻的详细信息三 (4)图片查看,功能为实现详细新闻显示界面图片的查看三 登录用户在查看新闻的详细信息时,若该新闻有图片则可以点击图片可以调用系统的图片查看软件,进行图片的查看三(5)附件下载:详细新闻显示界面附件的下载三 5系统界面设计 系统用户界面是指用于和用户交流的外观二部件和程序等等三系统界面的设计,既要从外观上进行创意以到达吸引眼球的目的,还要结合图形和版面设计的相关原理,从而使得系统的设计变成了一门独特的艺术三通常应遵循以下几个基本原则: 5.1用户向导 设计用户界面首先要明确到底谁是使用者,要站在用户的观点和立场上来考虑设计软件三要作到这一点,必须要和用户来沟通,了解他们的需求二目标二期望和偏好等三设计者要清楚,用户之间差别很大,他们的能力各有不同三 5.2简单原则 简洁和易于操作是界面设计的最重要的原则三毕竟,软件建设出来是用于用户来查阅信息和使用服务三不需要在界面上设置过多的操作,堆集上很多复杂和花哨的图片三该原则一般的要求,是操作设计尽量简单,并且有明确的操作提示;软件所有的内容和服务都在显眼处向用户予以说明等三 5.3和谐与一致性 通过对系统中的各种元素使用一定的规格,使得设计良好的界面看起来应该是和谐的三或者说其应该看起来像一个整体三一致的结构设计,可以让浏览者对软件的形象有深刻的记忆;一致的导航设计,可以让浏览者迅速而又有效的进入在软件中自己所需要的部分;一致的操作设计,可以让浏览者快速学会在整个软件的各种功能操作三破坏这一原则,会误导浏览者,并且让整个软件显的杂乱无章,给人留下不良的印象三当然,一致性的设计并不意味着刻板和一成不变,在不同栏目下使用不同的风格,或者随着时间的推移不断的改版升级,会给浏览者带来新鲜的感觉三 6总结 智能建筑信息发布管理系统依据上述总体设计原则进行设计,在终端上实现智能建筑物信息管理中新闻二通知等沟通事务以及部分无纸化办公三大大提高了智能化服务的效率,避免了因沟通延误而造成的用户损失三 收稿日期:2015-2-19 作者简介:李明君(1981-),男,黑龙江牡丹江人,讲师,本科,研究方向为智能建筑三 汽车变速器的振动与噪声测试方法探讨张博强(郑州宇通客车股份有限公司,河南郑州450016) 【摘要】在我国经济发展中,汽车制造产业占据至关重要的地位。而消费者最为关心的是汽车性能的好坏和质量的优劣。作为一辆汽车的重要组成部分之一,汽车变速器的好坏尤为关键,它对汽车减震和汽车噪音的减小作用十分明显。本文从分析汽车变速器的震动与噪声的主要因素开始,并深入探讨减少这些因素对汽车性能影响的主要办法。 【关键词】汽车;变速器;振动;噪声 【中图分类号】U643【文献标识码】A【文章编号】1006-4222(2015)06-0235-02 由于汽车变速器对汽车减震和降低噪声的效果十分明显,所以对汽车变速器的深入研究十分重要三然而由于汽车变速器结构的复杂性,以及变速器与汽车各部分之间的配合效果与兼容性问题,对变速器性能的研究并不是一个简单的问题,想要提出一种行而有效的解决办法也不是一件容易的事情三以下是影响汽车变速器的振动和噪声主要因素,并对汽车变速器的振动与噪声测试方法进行了探究三 1影响汽车变速器的振动和噪声主要因素汽车的变速器结构较为复杂,它主要由齿轮二轴承以及箱体等组成三研究汽车变速器的振动与噪声问题,首先就要对变速器的这三个重要部位进行研究三由于在汽车运动过程中,变速器持续工作,就会因为不同的原因产生各种各样的振动和噪声三同时,由于变速器在装配过程中的各种偏差,受到的压力也不一样,因此变速器的振动和噪声的原因十分复杂,接下来本文将从轴承二齿轮和箱体三个方面来分析影响汽车变速器的振动和噪声的主要因素三 1.1汽车变速器轴承故障 汽车变速器轴承的优劣对汽车振动的影响十分明显,而振动的剧烈又会造成巨大的噪声,同时还可能引起汽车硬件的损坏三因此汽车变速器轴承的质量问题是汽车技术研究者和汽车制造商深入研究的一个问题,对汽车变速器轴承故障的检测也尤为重要三目前国内外许多汽车技术研究者都采用了专门的仪器来检测汽车变速器轴承故障三然而这些仪器对使用环境的要求十分苛刻,同时价格昂贵,并不适用于大多数情况,只能在实验室进行汽车试验等少数情况下使用三当汽车的变速器的轴承发生故障时,轴承旋转就会给汽车带来较大的振动,从而产生很大的噪声,同时,由于轴承的故障会压迫到齿轮的旋转,齿轮会因此产生严重的磨损,甚至会断齿三因此,有效地诊断出汽车变速器的轴承故障对汽车的减振和降噪十分重要三

发动机台架振动噪声试验规范

发动机台架 振动噪声 试验规范 湖南大学 先进动力总成技术研究中心

1.适用范围 本标准适用于缸径100mm以内,功率在150kW以内的往复活塞式发动机。 2.规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 1859-2000 往复式内燃机辐射空气噪声测量工程法及简易法。 GB/T 往复式内燃机性能第1部分:标准基准状况,功率、燃油消耗和机油消耗的标定及试验方法。 GB/T 往复式内燃机性能第3部分:试验测量。 3.试验目的 在发动机消声室试验台架上进行发动机振动噪声测试,评价发动机振动噪声水平。 4.测试设备 传声器应该符合GB/T3785规定的1级仪器要求,其测量装置必须至少覆盖20Hz~20000Hz的频率范围。 加速度传感器应该符合GB/T3785规定的1级仪器要求,其测量仪器频率范围至少为10Hz~2000Hz,并应包括发动机最低稳定转速到lO倍最高转速的激励频率。传声器、加速度传感器在测量前必须进行标定。 测量前后,仪器应该按照规定进行校准,两次校准值不应超过1dB。 发动机转速的测试仪器的准确度应优于1%。 5.安装条件和运转工况 发动机工作条件 测试前确保发动机为工作正常且油位、水位正常。 在测量过程中,发动机的所有运行条件,应该符合制造厂家的规定。测量开始前,发动机应该稳定在正常工作温度范围内。 发动机状态 发动机不带空气滤清器和排气消声器,引出进、排气噪声。

汽车NVH振动与噪声分析

汽车NVH介绍

1.NVH现象与基本问题 2.噪声与振动源 3.NVH传递通道 4.NVH的响应与评估 5.NVH试验 6.NVH的CAE分析 7.NVH开发 8.汽车声品质

动态性能 静态性能 汽车的性能 ?汽车的外观造型及色彩 ?汽车的内室造型、装饰、色彩?内室及视野 ?座椅及安全带对人约束的舒适性 ?娱乐音响系统?灯光系统?硬件功能 ?维修保养性能?重量控制 ?噪声与振动(NVH )?碰撞安全性能?行驶操纵性能?燃油经济性能?环境温度性能?乘坐的舒适性能?排放性能?刹车性能?防盗安全性能?电子系统性能?可靠性能 NVH 是汽车最重要的指标之一

汽车所有的结构都有NVH问题 ?车身 ?动力系统 ?底盘及悬架 ?电子系统 ?…… 在所有性能领域(NVH,安全碰撞、操控、燃油经 济性、等)中,NVH是设及面最广的领域。

什么是NVH? NVH : N oise, V ibration and H arshness ?噪声Noise: ●是人们不希望的声音 ●注解: 声音有时是我们需要的 ●是由频率, 声级和品质决定的 ●频率范围: 20-10,000 Hz ?振动Vibration ●人身体对运动的感觉, 频率通常在0.5-200 Motion sensed by the body, mainly in .5 hz-50 hz range ●是由频率, 振动级和方向决定的 ?不舒服的感觉Harshness ●-Rough, grating or discordant sensation

为什么要做NVH? ?NVH对顾客非常重要 ?NVH的好坏是顾客购买汽车的一个非常重要的因素. ?NVH影响顾客的满意度 ?在所有顾客不满意的问题中, 约有1/3是与NVH有关. ?NVH影响到售后服务 ?约1/5的售后服务与NVH有关

发动机结构振动及噪声预测

发动机结构振动及噪声预测 作者:奇瑞发动机工程研究邓晓龙 发动机是影响汽车NVH性能的最主要的因素,在发动机的设计阶段就深入进行振动噪声性能的预测与优化,已经成为发动机开发的基本流程,是发动机自主研发过程中的重要工作。 国内外对发动机结构噪声的预测做了大量研究,中低频结构噪声预测方法已趋成熟。结构振动响应与辐射噪声之间的关系非常复杂,目前根据强迫振动响应计算辐射噪声的计算方法主要有平板理想化法、有限元法和边界元法等。噪声预测技术的发展使得发动机在设计阶段进行噪声评价成为可能。 本文探讨了适于进行动力总成振动及结构噪声预测的方法;建立了动力总成各主要部件的有限元模型,通过AVL EXCITE软件进行了动力学分析,并计算发动机的振动响应。进行NVH的性能提升的最重要的就是首先要找到主要振动及噪声源,并开展有针对性的工作。为了更明确发动机的主要声源,采用自编软件,根据表面振动速度结果进行了主要表面的辐射声功率排序,最后进行结构噪声预测。 发动机结构振动预测 进行发动机结构振动及噪声预测,涉及到大量的研究工作,主要工作包括各部件有限元建模、子结构模态提取,EXCITE模型搭建,主要激励计算,动力学分析,振动响应计算,表面辐射声源排序,声边界元建模和空间声场预测等工作。 1. 动力总成有限元模型 动力总成有限元模型包括缸体、框架、缸盖、油底壳、缸套、进气歧管、排气歧管、气门室罩盖、4个悬置支架、变速器壳体、变速器传动轴及齿轮等。由于研究的动力总成的4个悬置支架中有3个是安装在变速器上,所以加入变速器壳体的有限元模型,这样可以更准确地模拟动力总成的振动情况,特别是怠速工况下的振动。图1所示为动力总成的有限元网格。同样需建立曲轴组件的有限元网格,曲轴组件包括曲轴、飞轮、扭转减振器、皮带轮和正时齿轮等部件。

发动机噪声与振动

发动机运转时,燃烧噪声,机械噪声和空气动力噪声是主要噪声源。 通常把燃烧时气缸压力通过活塞、连杆、曲轴、主轴承传至机体,以及通过气缸盖等引起发动机结构表面振动而辐射出来的这部分噪声,称为燃烧噪声。发动机的燃烧噪声,是在气缸中产生的。燃烧过程中,气缸内的压力波冲击燃烧室壁,气体自身产生的振动,这种振动及辐射噪声呈高频特性。气缸内压力在一个工作循环内呈周期变化,激起气缸内部机件的振动,其频率与发动机转速有关,通过发动机机体向外辐射噪声,这种振动及辐射噪声呈低频特性。其强弱程度,取决于压力增长率及最高压力增长率的持续时间。 发动机的机械噪声,是指在气体压力和惯性力的作用下,使运动部件产生冲击和振动而激发的噪声。主要有活塞敲击噪声、供油系噪声、配气机构噪声、正时系统噪声、辅机系统噪声、轴承噪声、不平衡惯性力引起的机体振动和噪声等。发动机工作时,由于冲击、摩擦、旋转不均匀和不平衡力作用等原因,激起零部件的机械振动而产生噪声。特别是当激振力频率与零部件的固有频率相一致时,会引起激烈的共振和噪声。发动机的机械噪声随转速的提高而迅速增加。 空气动力噪声,是气体流动(如周期性进气、排气)或物体在空气中运动,空气与物体撞击,引起空气产生的涡流,或者由于空气发生压力突变,形成空气扰动与膨胀(如高压气体向空气中喷射)等而产生的噪声。一般说来,空气动力噪声是直接向大气辐射的。主要分成进气噪声、排气噪声和风扇噪声。 汽车噪音改善材料和方法: 1、发动机噪,路噪,胎噪都属于结构噪音,它的主要产生是震动,最合理的解决办法就是制震。加入减振板配合吸音垫,能很好解决路噪和胎噪。弓I擎噪这个问题我们应理性去看待,引擎声的大小随发动机转速的不同而产生程度不同的噪音,它没有一个恒定的标准,但是,引擎的转速是由车辆行驶状态和驾驶人员操控的。对引擎的声音除了驾驶人员的控制外,汽车隔音工程还能再进一步的改善,具体施工部分如下:(1)引 擎盖的施工能延缓前盖板因温度过高而掉漆,并能减少发动机噪音通过上盖传出的噪音。(2)挡火墙内外部分施工可改善引擎发动后低频音的传入。施工后引擎声变得更加纯净,驾驶人员会有更好的操纵感。如果要引擎声有较明显的改善,施工部分是比较复杂的,具有一定高难度的作业,具体施工部分与步骤有以下几点:①拆开仪表台,完全处理挡火墙内部②卸下发动机,完全处理档火墙外部这个施工对引擎噪音的减少 效果是比较明显的,但是施工过程可能会对车体原有设备造成改变和影响,笔者一般不建议对此部分进行施工操作,对于引擎声应理性善待,不应过分追求引擎声的控制,让引擎发挥它应有的动力感。 2、路噪和胎噪是因为轮胎和路面摩擦产生震动和噪音,所以减震是最好的方法,用减振板或专用减振板和吸音垫及车门密封条对叶子板和车地板及车门进行全面施工可以从减震、吸音、隔音三个源头改善胎噪和路噪。 3、风噪是因为风的压力超过车门的密封抗阻力而形成,所以加强密封阻力是最直接最根本的解决方法,车门密封条和内心密封条就能很好解决这一问题。

汽车振动与噪声控制-综述

汽车振动噪声与控制文献综述 中国汽车产业已进入内涵式发展的稳健增长期,车型品质的提升已取代产能的增长成为发展的主流,这对汽车的噪声、振动与声振粗糙度(Noise, Vibration, Harshness, NVH)提出日益苛刻的要求,使得汽车NVH性能越来越受到重视,成为衡量汽车品质最重要的指标之一。 前期汽车NVH控制主要集中在发动机、车身等主要系统上,随着这些主要系统的NVH问题得到解决,其研究重心开始转向声品质技术、新能源汽车NVH、车身底盘NVH、制动系和悬架系NVH以及振动主动控制等方面。 汽车的NVH问题可以从三个层面上考虑:接受体(方向盘的加速度或人耳处的声压等,但最终是人对振动噪声的感觉);传递路径(隔振隔声系统,车身及内饰等);振动噪声源(发动机/驱动电机、齿轮传动系统、路面不平、风噪声等)。 一、接受体处NVH分析与控制 1.1声品质评价 首先,在对车辆振动与噪声进行分析前需对其NVH状况进行评价。驾驶室内成员处的振动评价相对简单,而人耳对噪声的感知则较为复杂,同时由于汽车车身及底盘技术、汽车发动机技术的突飞猛进,特别是新能源汽车的持续推广,除发动机噪声外,其他排气噪声、传动系噪声、轮胎噪声、空气动力噪声及车身壁板结构振动辐射噪声等,对车辆整体噪声的贡献相对增大,使得车辆噪声控制问题变得更加复杂。 因此,声品质技术应运而生。声品质是指在特定的技术目标或任务内涵中声音的适宜性,声品质中的“声”是人耳的听觉感知,“品质”则是指人耳对声音事件的听觉感知过程,并最终做出的主观判断。人是声品质最终的接受者和最直接的评价者,声品质受到声音固有特性、评价者的生理、心理等各方面的综合影响,因此声品质的研究是一个综合多领域的多学科研究。 声品质主观评价是以人为主体,通过问卷调查或评审团评议的形式,运用试验心理学来研究噪声问题,涉及测试对象选择、噪声准备、听测环境和评价方法

发动机振动特性分析与试验

发动机振动特性分析与试验 作者:长安汽车工程研究院来源:AI汽车制造业 完善的项目前期工作预示着更少的项目后期风险,这也是CAE工作的重要意义之一。在整机开发的前期(概念设计和布置设计阶段),由于没有成熟样机进行NVH试验,很难通过试验的方法预测产品的NVH水平。因此,通过仿真的方法对整机NVH性能进行分析甚至优化显得十分重要。 众所周知,发动机NVH是个复杂的概念,包括发动机的振动、噪声以及个体对振动和噪声的主观评价等。客观地说,噪声与振动也相互联系,因为发动机一部分噪声由结构表面振动直接辐射,另一部分由发动机燃烧和进排气通过空气传播。除此之外,发动机附件(如风扇)也存在噪声贡献。本文仅考虑发动机结构振动问题,即在主轴承载荷、燃烧爆发压力和运动件惯性力的作用下,对发动机结构振动进行分析以及与试验的对比。发动机结构噪声的激励源主要包括燃烧爆发压力、气门冲击、活塞敲击、主轴承冲击、前端齿轮/链驱动和变速器激励等,这些结构振动又通过缸盖罩、缸盖、缸体和油底壳等传出噪声。 发动机结构振动分析方法简介 图1 发动机结构振动分析方法 如图1所示,发动机结构噪声分析方法包括以下几个步骤: 1. 动力总成FE建模及模态校核 建立完整的短发动机和变速器装配的有限元模型;对该有限元模型进行模态分析,通过分析结果判断各零件间连接是否完好;通过分析结果判断动力总成整体模态所在频率范围是否合理,零部件的局部模态频率是否合理,若存在整体或局部模态不合理的情况,需要对结构进行初步更改或优化。

2. 动力总成模态压缩 缩减有限元模型,得到动力总成的刚度、质量、几何以及自由度信息,用于多体动力学分析。 3. 运动件简化模型建立 发动机中的部分动件不用进行有限元建模,可作简化处理,形成梁-质量点模型,用于多体动力学分析。其中包括:活塞组、连杆组和曲轴及其前后端。 4. 动力总成多体动力学分析 在定义了动力总成各零部件间连接并且已知各种载荷的情况下,对动力总成进行时域下的多体动力学分析,并对得到的发动机时域和频域下的动态特性进行评判,同时,其输出用于结构振动分析。 5. 动力总成结构振动分析 基于多体动力学分析结果,对整个动力总成有限元模型进行强迫振动分析,得到发动机本体、变速器以及各种外围件的表面振动特性,进行评判和结构优化。 实例分析 1. 分析对象 以一款成熟的直列四缸1.5L发动机为平台,针对其结构振动问题,对其进行结构振动CAE 分析,并与其台架试验结果相比较。发动机的部分参数如下:缸径75mm,冲程85mm,缸间距84mm,最大缸压6MPa。 2. 坐标定义 为了便于以后叙述,对动力总成进行了坐标定义(见图2)。

汽车振动与噪声控制复习

机械振动理论部分 第一章振动基础理论 1、振动系统的基本元件:弹性元件,惯性元件,阻尼元件 2、解决振动问题的基本方法:解析法和实验法 3、简谐振动的三要素:振幅,圆频率,初相位 4、简谐振动的合成,包括同频率,不同频率公有周期的求解和矢量图的表示 第二章单自由度系统的振动 1、要求掌握单自由度无阻尼系统的自由振动方程,包含计算和分析 2、串联弹簧和并联弹簧的特征及等效弹簧求解公式 3、单自由度有阻尼系统的衰减振动运动方程求解,阻尼固有频率,衰减振动周期及阻 尼比系数的求解 以上内容以作业题和例题为主要复习内容 第三章受迫振动 1、简谐激励作用下系统的受迫振动响应的计算和分析 2、任意激励作用下系统的受迫振动,以例题和作业题为重 3、受迫振动共振的条件激振力频率等于系统的固有频率 4、积极隔振和消极隔振的定义 5、隔振系统的设计,以例题和作业题为重 第四章多自由度系统的振动分析 第五章二自由度系统的振动分析 1、刚度影响系数的求解 2、固有频率和主振型的求解,例题和作业题为重点,会画振型图 3、无阻尼系统对初始条件作用下系统的振动分析,重点掌握结论 4、动力减振器的例题复习 汽车振动与噪声控制复习 汽车发动机的振动分析与控制 1、汽车发动机工作中主要激励源:不平衡惯性力和不平衡惯性力矩 2、针对单缸发动机,由于惯性力矩的作用产生使曲轴旋转的主动力矩,该力矩会激起曲轴的扭转振动。 3、作用在气缸活塞顶部的气体压力对汽车产生什么样的影响?只会使汽车气缸受到拉伸和压缩,不会传到发动机外而去引起汽车振动。 4、往复惯性力Pj和离心惯性力Pr的铅垂分量会使汽车产生()振动?整车的铅垂振动 5、气体压力Pg和惯性力Pj与活塞对缸壁的压力Pn构成的反转力矩,会产生何种影响?反转力矩将通过发动机支承点传到车架上,整车产生横向摆动,旋转矢量的离心惯性力Pr 的水平分量会传到车架上,引起整车的水平振动。 6、为了减少直列多缸发动机的干扰力和干扰力矩引起发动机和车架的振动,通常采取以下措施来减少或消除这些干扰。(合理布置曲柄间的相互位置、采取有效的平衡方法、点火顺序和采取隔振措施) 7、V型发动机在计算发动机的干扰力和力矩时,需考虑V型气缸的()。合成系数或V型角 8、振动隔离分为两种:()和()。主动隔振和被动隔振

车用发动机设备噪声形成原因及控制措施(新编版)

车用发动机设备噪声形成原因及控制措施(新编版) Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0038

车用发动机设备噪声形成原因及控制措施 (新编版) 1.噪声的主要危害 噪声污染不仅对人们的自我感觉和工作能力产生消极的影响,而且能导致健康严重失调、疲劳、早期失聪、高血压、神经疾病等。 2.车用发动机噪声的形成与对策 发动机噪声主要包括燃烧噪声、机械噪声、进排气噪声、冷却风扇及其他部件发出的噪声。燃烧噪声是在可燃混合气体燃烧时,因气缸内气体压力急剧上升冲击发动机各部件,使之振动而产生的噪声。柴油中的十六烷值不合适或喷油时间过于提前,会引起发动机工作粗暴,使噪声急剧增大。汽油机由于过热、汽油品质不良和点火提前角过大等原因造成高频爆炸声、敲缸。 发动机内部的燃烧过程和结构振动所产生的噪声,是通过发动

机外表面以及与发动机外表面刚性连接结构的振动向大气辐射的,因此称为发动机表面噪声。根据发动机表面噪声产生的机理,又可分为燃烧噪声和机械噪声。燃烧噪声主要是由于气缸内周期性变化的压力作用而产生的,与发动机的燃烧方式和燃烧速度密切相关;机械噪声是发动机工作时各运动件之间及运动件与固定件之间作用的周期性变化的力所引起的,它与激发力的大小和发动机结构动态特性等因素有关。一般来说,低转速时,燃烧噪声占主导地位,高转速时,机械噪声占主导地位。 降低燃烧噪声,需改善燃烧条件,提高燃烧质量,以达到圆滑的压力波形。采用合理布置火花塞和气门以及采用合适的燃烧室型式和冷却方式即可以达到最有效的燃烧。在燃油方面,汽油的辛烷值越高,点火质量及抗爆振性能越好;对柴油机来说,要选择合适的十六烷值的柴油,如果达不到,可加入点火加速剂,提高点火质量,这样可有效地防治因燃油燃烧引起的噪声。 机械噪声包括活塞敲击声、气门机构冲击声、正时齿轮运转声等。减小活塞敲击声,可采取减小活塞与缸壁之间的间隙和使活塞

《车辆振动与噪声控制》课程教学大纲

《车辆振动与噪声控制》课程教学大纲 课程代码:020242025 课程英文名称:Control of Vehicle Vibration and Noise 课程总学时:32 讲课:26 实验:6 上机:0 适用专业:车辆工程装甲车辆工程能源与动力工程交通运输 大纲编写(修订)时间:2017.5 一、大纲使用说明 (一)课程的地位及教学目标 车辆振动与噪声控制是车辆工程专业、装甲车辆工程、能源与动力工程和交通运输专业的专业选修课。面对激烈竞争的汽车市场,除了提高汽车的各项性能指标和经济指标外,降低汽车振动与噪声,提高汽车运行舒适度已成为现代汽车设计及新技术开发研究的一个重要方面。本课程的主要任务是使学生了解并掌握汽车振动的基本要素;单自由度、二自由度及多自由度振动的基本特性;随机振动的统计特性及汽车的平顺性分析。通过本课程的学习,能培养学生对工程实际问题观察、分析及解决的能力,为从事专业设计与研究打下坚实的基础。 (二)知识、能力及技能方面的基本要求 通过本课程的学习,学生要对本课的基本内容有系统的理解,掌握其基本概念、理论和方法,运用这些理论分析,解决工程实际问题,并达到如下要求: 1.具有建立典型汽车结构力学模型的能力,并能够确定其边界条件和初始条件。 2.掌握模型系统的模态分析与响应分析方法。 (三)实施说明 教师在授课过程中可以根据实际情况酌情安排各部分的学时,课时分配表仅供参考。教师要注重对基本概念、基本方法和解题思路的讲解,以便学生在实际应用中能举一反三,灵活运用。根据专业特点,教师应结合实际问题,在教学过程中注意理论与实际结合,突出实际应用。 (四)对先修课的要求 本课程的先修课程有《高等数学》等相关课程。 (五)对习题课、实验环节的要求 结合有关章节中的重点和难点问题以及典型的问题,安排一定的习题练习,并以讲、练、讨论相结合的方式进行。引导学生对所学内容的基本概念、基本原理和基本方法有更加深入的了解。结合每次课的内容、重点和难点,有针对性的布置与有关实际问题相联系的思考题。 (六)课程考核方式 1.考核方式:考查。 2.考核目标:考核学生对单自由度及多自由度振动基本原理掌握情况,在此基础上掌握模态分析的基本理论。通过对汽车模型的简化,在一定路面激励下,分析汽车的平顺性。 3.成绩构成:本课程的总成绩主要由两部分组成:平时成绩占10%,实验成绩占10%,考试成绩占80%。 平时成绩由任课教师视具体情况按百分制给出。 (七)主要参考书目:

(汽车行业)汽车发动机振动噪声测试系统

(汽车行业)汽车发动机振动噪声测试系统

附件1 汽车发动机振动噪声测试系统 用途及基本要求: 该设备主要用于教学和科研中的振动和噪声测量,要求能够测量试验对象的振动噪声特性(频率、阶次、声强等),能对试验数据进行综合分析。该产品的生产厂应具有多年振动噪声行业从业经验,有较高的知名度和影响力。系统软件和硬件应该为成熟的模块化设计,同时具有很强的扩展能力,能保证将来软件和硬件同时升级。 设备技术要求及参数 设备系统配置 数据采集系统壹套; 数据测试分析软件壹套; 传声器2个; 加速度计2个; 声强探头1套; 声级校准器1个; 笔记本电脑壹台 数据采集、控制系统技术要求 主机箱壹个;供电采用9~36V直流和200~240V交流; 便携式采集前端,适用于实验室及现场环境; 整机消耗功率<150W; 工作环境温度:-10?C~50?C; 中文或英文WindowsXP下运行,操作主机采用笔记本电脑; 输入通道数:4个之上,其中2个200V极化电压输入通道、不少壹个转速输入通道; 输入通道拥有Dyn-X技术,动态范围160dB; 每通道最高采样频率:≥65.5kHz,最大分析带宽:≥25.6kHz; 系统留有扩充板插槽,根据需要能够进壹步扩充;数据采集前端可同时连接多种形式传感器,包括加速度计、转速探头、传声器、声强探头等; 系统具有堆叠和分拆能力,多个小系统可组成多通道大系统进行测量。大系统可分拆成多个小系统独立运行; 采集前端的数据传输具备二种方式之壹:①通过10/100M自适应以太网传输至PC;②通过无线通讯以太网技术传输至PC,通信距离在100米之上。使测量过程更为灵活方便,方便硬件通道和计算机系统扩展升级; 多分析功能:对同壹信号可同时进行FFT和CPB分析和显示处理;对同壹信号也可同时设置不同的分析带宽进行分析; 输入通道采用至少24位的A/D; 自动检测带传感器电子数据表的传感器(即插即用) 数据测试分析软件系统技术要求 多通道输入测量信号且行采集、处理和存储;根据需要能够进壹步扩充; 多通道实时在线显示; 能测量传递函数、自功率谱、互功率谱、自相关函数、互相关函数、能测量相干函数、概率密度函数、脉冲相应函数、倒频谱、时域波形,能进行动态信号的微积分、四则运算、编辑等;系统具有自动报告生成功能。测试报告模板可根据用户需求定制,用户可从Word中自动得到实时更新的测量曲线和数据等; 函数可用各种图形类型显示,包括:瀑布图、彩色等高线图、条状图、线状图、曲线图、阶

发动机噪声与振动

汽车噪声与振动 ——理论与应用 汽车噪声的传递有固体波动和气体波动两种传播形式。通常500Hz以下的低、中频率噪声主要以固体波动形式传播,而在较高的频带则以空气传播为主。 第十章发动机的振动 第十一章发动机的噪声 在相同条件下,柴油机的排气噪声要比汽油机的排气噪声大,二冲程燃机的排气噪声要比四冲程的大。柴油机的排气声呈明显的低频性,能量主要集中在基频及其倍频的频率围;中频围主要是排气管气柱振荡的固有音;高频围主要包括燃烧声和气流高速通过气口的空气动力噪声。 发动机两种噪声:纯音和混杂音。纯音是窄频带的,用抗性消音器;混杂音是宽频带的,用阻性消声器。 抗性消声器:将能量反射回声源,从而抑制声音。 阻性消声器:声能被吸声材料吸收并转化成热能,从而消声。

发动机噪声估算: 1、柴油机声功率级 )lg( 30)lg(1057b b b W n n P n L ++≈ (dBA ) 式中:W L ——柴油机声功率级; b P ——柴油机标定功率(kW ); b n ——柴油机标定转速(r/min ); n ——柴油机实际转速(r/min )。 2、柴油机机体表面辐射声功率级的近似公式 柴油机机体表面辐射的31倍频程声功率级近似计算公式如下: )lg(2010001000) 1(lg 1052)(b b b b W n n f f m P P n f L +? ?????+++≈ 式中:f ——31倍频程中心频率(Hz ); m ——柴油机质量(kg )。 3、汽油机声功率级估算 )lg( 50)lg(1057b b b W n n P n L ++≈ (dBA ) 以上公式只是估算,公式已显旧。 机体结构特性: 结构特性主要指振型、固有频率和传递函数。 燃烧噪声:由于气缸燃烧,将活塞对缸套的压力振动通过缸盖—活塞—连杆—曲柄—机体向外辐射的噪声称为燃烧噪声。 机械噪声:活塞对缸套的撞击、正时齿轮、配气机构、喷油系统、辅助皮带、正时皮带等运动件之间的机械撞击所产生的振动激发的噪声称为机械噪声。

发动机机体振动噪声的预测方法

2008年5月M ay 2008 第29卷 第3期V o.l 29 N o .3 发动机机体振动噪声的预测方法 林 琼1 ,郝志勇1 ,贾维新1 ,刘 宏 2 (1.浙江大学机械与能源工程学院,浙江杭州310027; 2.杭州汽车发动机厂技术中心,浙江杭州310005) 摘要:采用综合多体动力学-有限元法-声学分析法的集成预测方法,对发动机机体振动噪声的预测方法进行了研究,并详细介绍了该方法的分析流程.通过多体动力学得到作用于机体上的载荷时间历程,用有限元法预测机体表面的振动,通过声学分析法预测机体表面辐射的噪声.将振动和 声学预测数据与试验数据进行比较,结果表明该方法可以准确预测机体的振动噪声水平,可用于机体的虚拟改进设计. 关键词:发动机机体;振动噪声;多体动力学;有限元法;声学仿真法 中图分类号:TN914.3 文献标志码:A 文章编号:1671-7775(2008)03-0210-04 Prediction m et hod of radiated noise by engi ne block LI N Qiong 1 ,HAO Zh i -yong 1 ,JI A W ei -x in 1 ,LIU H ong 2 (1.C ollege ofM echan i cal and E nergy Eng i neeri ng ,Zheji ang Un i versity ,H angz hou ,Zhe ji ang 310027,Ch i na ;2.H angzhou A uto m oti ve En - gi n e P l an tT echn i calC enter ,H angzhou ,Zhejiang 310005,C h i na) Abstract :The predicti o n m ethod o f sound and v i b rati o n o f the eng i n e b l o ck is descri b ed .The integ rated m e t h od co mprises the m ult-i body dyna m ic m ethod (MD M ),fi n ite ele m ent m ethod (FE M )and acoustic si m ulation m ethod (AS M ).By m ult-i body dyna m i c m ethod ,the loads that the eng i n e block is subjected can be obta i n ed ;by FE M the vibration characteristic can be predicted ;and by ASM,the radiated noise of the eng i n e block and the pressure at arbitrary po int i n the m edium can be calc u lated.The co m parison of t h e data fro m predicted quantity and that fro m the test proves that th ism et h od owns a high precision ,and thus can be used to d irect the v irtual desi g n of lo w -no ise engine b l o ck. Key w ords :eng ine b l o ck;no ise and v i b rati o n ;m u lt-i body dyna m ic m ethod ;finite e le m entm ethod ; acoustic si m u lation m ethod 收稿日期:2007-10-10 基金项目:国家自然科学基金资助项目(50575203) 作者简介:林 琼(1981 ),女,福建福州人,博士研究生(w agli n1981@hot m ai.l co m ),主要从事动力机械与车辆振动噪声控制研究. 郝志勇(1955 ),男,陕西绥德人,教授,博士生导师(h aoz y @zju .edu .cn),主要从事内燃机现代设计理论与方法、动力机械与 车辆振动噪声控制研究. 在发动机表面辐射噪声中,机体及其附件辐射噪声占有相当大的比例,而安装到机体上的薄壁件(如气门室罩、正时齿轮室盖、油底壳等)辐射的噪声也是由机体的振动激发的,所以,要降低发动机表面辐射噪声,应首先从机体结构优化入手 [1,2] .考虑 多种因素的发动机整机预测固然会得到相对准确的结果,但在有些情况下,减少每次改进的预测时间的要求可能要大于对计算精度的要求.一方面随着市 场竞争的需要,加快产品设计周期通常会给发动机厂商带来更多的收益;另一方面是设计工作通常有继承性,新的改进设计通常建立在某次较好的设计的基础上,这样,对某次设计进行快速评价就显得尤其重要.因此,提供一种既高效又能够满足一定精度的预测方法通常是发动机改进设计成功的关键. 发动机的振动噪声预测通常可以采用两种方法,一种是通过有限元模态计算得到发动机各部件的动

发动机辐射噪声分析

(研究生课程论文) 振动与噪声控制 论文题目:基于LMS https://www.wendangku.net/doc/bf14608815.html,b边界元法 发动机辐射噪声分析 指导老师: 学院班级: 学生姓名: 学号: 2015年 5月

基于LMS https://www.wendangku.net/doc/bf14608815.html,b边界元法发动机辐射噪声分析 摘要:在国家经济保持快速增长的背景下,国内汽车工业发展迅速。随着汽车保有量增加,汽车噪声污染问题越来越受到人们的重视。发动机的运行噪声是车辆产生环境噪声的主要因素,对其辐射噪声的数值分析能够为控制噪声提供良好的理论参考。本文主要介绍了外声场分析的边界元法的基本理论,利用LMS https://www.wendangku.net/doc/bf14608815.html,b声学模块计算了发动机辐射外声场及其频率响应,为之后的研究学习提供参考依据。 关键词:边界元法,辐射噪声,声固耦合 1 引言 在现代汽车设计过程中,CAE分析起到越来越重要的作用,在汽车设计初期即可快速的取得结果,从而取代后期大量的试验,使得汽车设计周期大大缩短,降低研发成本。而作为汽车性能重要指标的NVH(Noise Vibration and Harshness)在现代汽车市场中越来越受到人们的重视,也成为许多厂家核心竞争力的一部分,涉及车辆的振动噪声问题已经成为汽车技术领域的一个研究热点。 随着国内整机厂汽车CAE 技术的成熟,利用CAE 技术模拟汽车NVH 问题已经不仅仅局限于零部件及子系统的模态,基于整车模型的整车振动和噪声响应的模拟预测技术也已经逐渐被掌握。在设计的虚拟样机阶段即可预测振动噪声水平,以便及时的更改设计,达到可接受的振动噪声水平。发动机是汽车主要的振动和噪声源。发动机怠速时产生的振动与噪声水平是汽车用户对汽车NVH 性能的第一感觉。本文用直接边界元法计算了发动机的辐射噪声。 2 数值方法的基础理论 2.1 边界元法的基本理论 有限单元法的基本思想是将连续的求解区域离散为一组有限个、按一定方式相互联结在一起的单元的组合体。出于单元能按不同的联结方式进行组合,且单元本身又可以有不同形状,因此可以模型化几何形状复杂的求解域。有限单元作为数值计算方法的另一个重要特点是利用在每一个单元内假设的插值函数来分片地表示全求解域上待求的未知场函数。由于插值函数是已知的一个简单函数,那么有限元分析的基本未知量就是未知场函数的节点值。一经求解出这些未知量,就可以通过插值函数计算出各个单元内场函数的近似值,从而得到整个求解域上的近似解。显然随着单元数目的增加,也即单元尺寸的缩小,或者随着单元自由度的增加及插值函数精度的提高,解的近似程度将不断改进。如果单元是满足收敛要求的,近似解最后将收敛于精确解。 尽管有限元法所取得的成就与日俱增,但有限元法还不是十全十美的。改进有限元法的努力一直在进行着,但是有限元法的某些不足是无法克服的。例如有限元法需全域离散,导致问题的自由度和原始信息量大;对无限域只能人为地取成有限域;有限元法的离散技术本身也存在缺陷,它把本来是连续的介质用仅在节点处连接的有限单元的集合来模拟,这样不仅带进了离散的误差,而且在单元之间连续的要求较高时,有限单元的构造也很困难;对有限元法的精度和可靠性也常常会提出疑问,因为对同问题采用不同的程序计算时可能会得出不同的结果。 有限元法的不足用边界元法可以弥补。边界元法仅在边界上离散,使数值计算的维数降低一维,从而减少了问题的自由度和原始信息量。边界元法采用无限域的基本解,用边界元

发动机振动特性分析与试验(精)

发动机振动特性分析与试验(精)

发动机振动特性分析与试验 作者:长安汽车工程研究院来源:AI汽车制造业

完善的项目前期工作 预示着更少的项目后期风险,这也是CAE工作的重要意义之一。在整机开发的前期(概念设计和布置设计阶段),由于没有成熟样机进行NVH试验,很难通过试验的方法预测产品的NVH水平。因此,通过仿真的方法对整机NVH 性能进行分析甚至优化显得十分重要。 众所周知,发动机NVH是个复杂的概念,包括发动机的振动、噪声以及个体对振动和噪声的主观评价等。客观地说,噪声与振动也相互联系,因为发动机一部分噪声由结构表面振动直接辐射,另一部分由发动机燃烧和进排气通过空气传播。除此之外,发动机附件(如风扇)也存在噪声贡献。本文仅考虑发动机结构振动问题,即在主轴承载荷、燃烧爆发压力和运动件惯性力的作用下,对发动机结构振动进行分析以及与试验的对比。发动机结构噪声的激励源主要包括燃烧爆发压力、气门冲击、活塞敲击、主轴承冲击、前端齿轮/链驱动和变速器激2. 动力总成模态压缩

缩减有限元模型,得到动力总成的刚度、质量、几何以及自由度信息,用于多体动力学分析。 3. 运动件简化模型建立 发动机中的部分动件不用进行有限元建模,可作简化处理,形成梁-质量点模型,用于多体动力学分析。其中包括:活塞组、连杆组和曲轴及其前后端。 4. 动力总成多体动力学分析 在定义了动力总成各零部件间连接并且已知各种载荷的情况下,对动力总成进行时域下的多体动力学分析,并对得到的发动机时域和频域下的动态特性进行评判,同时,其输出用于结构振动分析。 5. 动力总成结构振动分析 基于多体动力学分析结果,对整个动力总成有限元模型进行强迫振动分析,得到发动机本体、

相关文档
相关文档 最新文档