文档库 最新最全的文档下载
当前位置:文档库 › 手机射频性能测试方法介绍

手机射频性能测试方法介绍

手机射频性能测试方法介绍
手机射频性能测试方法介绍

手机射频性能空中测试方法介绍

[摘要] 本文首先简单介绍了手机天线的特性和指标,然后对CTIA协会制定的OTA(空中测试)方法进行了介绍。手机的一些关键指标(如辐射总功率TRP、全向接收灵敏度TIS、人体感应)的测试方法以及相关测试环境,在文中作了详细的描述。本文所介绍的OTA测试方法,对于改进手机研发阶段的测试方法具有很好的参考价值,而且在某些国家(美国),OTA测试已经成为GSM手机的必测项目,我们的研发测试需增加相关的测试内容。

一、前言

良好的射频性能对于手机在数字蜂窝网、PCS网络中的表现至关重要。由于手机的体积日趋小巧,天线性能通常不得不做出牺牲。在很小的空间范围以内,要实现天线在各频段的良好性能是一件困难的工作。这也对测试提出了一个更高的要求:全面、精确的测试,可以客观评估手机在实际网络中的表现,并不断改进设计;而不正确的测试数据,会有误导研发的可能。

现阶段公司的研发测试手段以平板耦合器与塔型天线测试为主。在这样的近场测试环境中,手机与测量天线之间的距离小于3倍波长,和实际网络环境差异较大;且操作中常常需要根据实际情况调整手机的摆放位置,测试数据的可再现性、重复性较差,研发、测试、质检易出现分歧。实际上,在项目的不同阶段,测试的重点也应区分:

1. 研发测试

研发测试时间相对比较充裕,需要利用各种测试手段,提供更多、更全面的数据,对手机的射频性能做出准确、客观的评估,这对手机性能的不断改进非常重要,也是项目转产的重要依据;

2. 生产测试

生产测试的目的是关注产品性能的一致性。射频测试方面,其任务是把性能低于正常水平的不良品检测出来,防止不良品流入市场;另外生产测试必须操作性强,简单迅速,不降低产能。此时可以使用屏蔽盒内的平板耦合器进行测试:由射频性能已知的样机作为金机(Golden Sample),经试验后确定手机摆放位置和通过准则,不同型号的手机摆放位置和通过准则不一定相同。

整机射频的测试和天线特性密切相关,下文首先介绍天线的特性和指标。

二、天线特性与指标

天线是发射和接收电磁波的一个重要的部件。无线电发射机输出的射频信号功率,通过馈线(电缆)输送到天线,由天线以电磁波形式辐射出去;电磁波在空间可以由天线接收(仅能接收到很小一部分功率),并通过馈线送到无线电接收机。

表征天线性能的技术指标可以分成两类:一类是表征天线的辐射能力,如天线效率、增益、输入阻抗、驻波比、工作带宽,一类描述天线能量在空间的分布情况,如辐射方向图、极化方式。

2.1 天线效率

输入到天线的射频功率,由于天线系统中的热损耗、介质损耗、感应损耗而消耗一部分,因此不能全部变为电磁波辐射出去。天线效率表示天线是否有效地转换能量,是天线重要参

数之一,发射天线的效率η是指真正射出去的功率rad P 与输入到天线的总功率in P (辐射功率rad P 与天线损耗功率s P 之和)的比值,即:

s

rad rad in rad P P P P P +==η 上式表明天线的效率总是小于1。天线效率还可以用天线输入端的辐射电阻rad R 和损耗电阻s R 表示。即:

s

rad rad in rad R R R R R +==η 可见,要提高天线辐射效率,应设法提高辐射电阻,尽可能降低损耗电阻。

2.2 天线增益

天线是无源器件,并不放大电磁信号的能量,因此天线的效率始终小于1。所谓天线增益是指:在输入功率相等的条件下,实际天线与理想的点源辐射单元在空间同一点处所产生的信号的功率密度之比。天线增益定量地描述一个天线把输入功率集中辐射的程度。增益显然与天线方向图有密切的关系,方向图主瓣越窄,副瓣越小,增益越高。因此,高的天线增益是以减小天线波束的辐射范围作为代价的。

2.3 输入阻抗

天线的输入阻抗是天线馈电端输入电压与输入电流的比值。天线与馈线的连接,最佳情形是天线输入阻抗是纯电阻且等于馈线的特性阻抗,这时馈线终端没有功率反射,馈线上没有驻波,天线的输入阻抗随频率的变化比较平缓。通过天线阻抗调试的方法,可以实现天线的输入阻抗在要求的工作频率范围内,输入阻抗的虚部近似为零,且实部相当接近50欧。

天线匹配就是消除天线输入阻抗中的电抗分量,使电阻分量尽可能地接近馈线的特性阻抗。匹配的优劣一般用四个参数来衡量,即反射系数,行波系数,驻波比和回波损耗。四个参数之间有固定的数值关系,通常用得较多的是电压驻波比和回波损耗。

2.4 电压驻波比

天线的输入阻抗在完全匹配时阻抗是纯电阻,对于实际的宽频天线而言,50欧姆的纯电阻特性只是在个频率上实现,而无法实现在整个频带内都呈现纯电阻特性,此时发射机输出的一部分能量被发射并与入射波迭加,在馈线上形成驻波。VSWR (Voltage Standing Wave Ratio ,电压驻波比)描述了宽频天线的阻抗特性与50欧姆的偏离程度。VSWR 越大,反射越大,匹配越差,一般要求VSWR 小于1.5。

VSWR 的计算方法为:

r r U U U U U U VSRW R V R V -+=-+==

11min max 式中,max U 为波腹电压;min U 为波节电压,r 为反射因子V R U U /。

另一个表征天线匹配的常用参数为回波损耗(Return Loss ),回波损耗越大表示匹配越好,移动通信系统中一般要求大于14dB 。其计算方法为:

r dB a r log 20][-=

2.5 工作带宽

无论是发射天线还是接收天线,它们都需要在一定的频率范围(频带宽度)内工作。天线的频带宽度有两种不同的定义:一种是指在VSWR≤1.5的条件下,天线工作的频率范围;一种是指天线增益下降3分贝范围内的频率范围。在移动通信系统中,通常是按前一种定义的,具体的说,天线的频带宽度就是天线的VSWR不超过1.5 时的频率范围。一般说来,在工作频带宽度内的各个频率点上, 天线性能有一定差异,但这种差异造成的性能下降可以接受。

2.6 辐射方向图

天线辐射电磁波是有方向性的,它表示天线向一定方向辐射电磁波的能力。反之,接收天线的方向性表示接收不同方向来的电磁波的能力。通常用垂直平面(E1、E2-Plane)及水平平面(H-Plane)上表示不同方向辐射(或接收)电磁波功率大小的曲线来表示天线的方向性,并称为天线辐射的方向图。半功率点之间的夹角表示了天线方向图中的水平波束宽度及垂直波束宽度。由于手机在使用过程中基站的方位是随机的,因此手机天线应能够把功率向各个方向均匀地辐射,并良好地接收从各方向发送过来的电磁波。图1所示为ZTE P106A1与SIEMENS A65两款GSM机型在H-Plane上的辐射方向图,在CH62信道测量。

图1

2.7 极化方式

电磁波由交变的电场和磁场组成,其中电场强度方向被定义为天线极化方向。当电场强度方向垂直于地面时,此电磁波就称为垂直极化波;当电场强度方向平行于地面时,此电磁波就称为水平极化波。水平极化波在贴近地面传播时,会在大地表面产生极化电流,极化电流因受大地阻抗影响产生热能而使电场信号迅速衰减;而垂直极化方式则不易产生极化电流,从而避免了能量的大幅衰减,保证了信号的有效传播。因此,本地广播信号常采用水平极化波,而在移动通信系统中,一般均采用垂直极化的传播方式。另外,随着话务量的增长,一种±45°双极化天线应运而生,用于基站密集的高话务地区。

三、射频空中测试简介

3.1 CTIA协会与OTA测试

天线具有方向性,尤其是在高频段时,其方向图变得不规则;实际使用中,人体感应可能会给手机性能带来8-10dB的损失,且手机体积越小损失越严重;GSM规范05.05并没有对人体感应对指标的恶化程度设限;入网、型号核准测试也仅仅测试其传导射频性能。另外,手机在使用中所处的实际环境非常复杂,很难找到一个能模拟真实环境又很实用的测试方法。因此长期以来,射频空中测试是一项既困难又非强制测试的内容。虽然众多制造商有自己的测试手段,但业界一直缺少统一的测试方法和标准。

蜂窝通信与英特网协会CTIA(Cellular Telecommunications & Internet Association)主导制定了一套测试规范和测试计划,并用于无线电话机的CTIA认证测试。参与该测试规范起草的公司包括Motorola、Ericsson、Qualcomm、Nokia,以及欧洲著名的电信运营商Cingular Wirelss、Verizon Wireless。

CTIA协会成立于1984年,它有两个主要职能:其一,代表美国的无线电工业向议会和FCC(Federal Communications Commission,联邦通信委员会)发出行业的呼声;其二,就运营商和设备制造商都关注的移动台的性能,CTIA于1991年开展了相关的性能测试及认证工作。CTIA的测试认证程序由三部分组成,前两部分是由CTIA授权的实验室根据CTIA 的测试计划完成,而第三部分是FCC型号认证,由FCC授权的实验室进行测试。第一部分针对CDMA、GSM、TDMA、AMPS等无线移动台进行测试,主要是传导测试;第二部分包括了OTA(Over-The-Air)测试。OTA测试是CTIA认证工作组CPWG建立的一套空中测试方法。从2004年6月开始,所有销售给美国运营商的GSM无线移动台,都必须通过OTA测试。

3.2 测试环境与配置

CTIA定义了两种三维扫描方法:圆锥切割法(Conical Cut Test Method)以及大环测试法(Great Circle Test Method),以用于对手机进行全方位测试。圆锥测试法中,测试手机在自身的长轴上旋转,而测量天线被移动到空间各个角度进行测试;大环测试法则保持测量天线位置不变,而测试手机能够在两个轴上旋转,以完成3D空间所有角度的测试。图2定义了直板和折叠手机在三维坐标中的摆放位置。

图2

两种测试方法均定义手机围绕自身长轴旋转所形成的角度为Ф,而测量天线所处的方位与Z 轴之间的夹角为θ,因此两种测试方法采样得到的数据,处理方法相同。在圆锥切割测试法中,Ф每隔一定的角度采集一个数据,在一个θ角度上完成所有的数据采集后,θ转动到下一个角度,再重复Ф上的测试;大环测试法的测试顺序基本相同。在远场条件下,θ和Ф每15度采集一个数据,通常能满足测试精度的要求。此时在12个θ角度进行测试,完全的θ测试角度为:T0,T15,~T150,T165,而在每个θ角度上,Ф每15度,完成一周24个点的采样。测量天线需要能够在垂直极化和水平极化两个极化方向上测量。图3所示的球坐标系定义了测量天线的θ和Ф极化方向。两个极化方向上的测试需在手机定位后同时同时完成,以减少测量天线和手机重定位带来的不确定性。

图3

图4所示为大环测试法示意图,测试在屏蔽的无反射微波暗室中进行,手机支架必须采用低介电常数的材料(如聚苯乙烯泡沫塑料)。被测试手机需要能在两个轴上旋转。而测量天线包含了H 、V 两个方向。测量天线和手机之间的最短距离为λ/22

D 、D 3、λ3中的最大值,以满足远场测试条件。在自由空间测试中,D 表示手机自身的尺寸;但在仿真头附近测试时,D 要把仿真头的尺寸计算在内。

图4

测试需要包含手机所有配置的组合,如不同种类的电池都需要测试,除非有相关的数据能证明其带来的影响可以忽略。

3.3 发射机性能测试

EIRP (Effective Isotropic Radiated Power ,有效各向同性辐射功率)同时考虑了天线的输入功率、天线方向图及增益,因此通常使用EIRP 来表征无线电发射机的性能。在卫星通信以及其他点对点的定向通信中,发射机的EIRP 通常很高;但蜂窝通信系统中,EIRP 的峰值并不能较好地评估手机的性能:如果手机的辐射方向图具有高的方向性,EIRP 的峰值会很高,然而必然会导致其他方向上的覆盖变差。在蜂窝网络中,手机应能最大限度地完成空间上的覆盖,这样用户就不需要将手机天线指向某一角度以获得好的通话效果。

因此CTIA 使用TRP (Total Radiated Power ,辐射总功率)来描述手机的发射性能。TRP 是手机辐射出去的总功率,它可以表示为:

eff L P TRP m A ??=

其中A P 为传导功率,m L 是天线匹配损耗,eff 是天线辐射效率。由此可见,TRP 是射频功放输出功率、天线匹配、天线辐射效率三者的联合效果。为了计算TRP ,需要从整个球面的不同角度以及两个正交极化方向上,测试其辐射功率。所有离散的采样数据能够描述手机在三维空间的辐射特性,并参与计算得出TRP 值。计算方法如下的公式所示。

()()i N i M j j i EiRP NM TRP θφθπsin ,211∑∑==?

上式表明,TRP 是EiRP 的加权平均值,加权因子为()i Sin θ。这表明近水平位置的采样数据比近两极的采样数据具有更大的权重(因为近水平位置的积分单元面积较大所致)。这也符合手机在实际使用中的情形。另外,EIRP 的测量数据通常以dBm 单位给出,需转换成单位为毫瓦(mW )的线性数据后参与计算。

3.4 接收机性能测试

接收机性能和下行链路质量密切相关。接收灵敏度低会导致用户听到差的通话效果,甚至失去与基站的联络而掉话。如果发射机产生的功率被辐射到接收机模块,或者其他一些带内噪声的引入,会导致接收机性能变差。因此,测试接收性能的时候需将手机设置到最大发射功率。

手机接收性能测试利用了BER 或者FER ,在一定的通信误码率的情况下,测量其能接收到的最低功率电平。通常用TIS (Total Insotropic Sensitivity ,全向接收灵敏度)表征接收机性能。为了测试TIS ,需要从空间各个角度测试其有效接收灵敏度,一般在θ和Ф两个轴上每30度取一个采样点,这样的采样频率能够保证GSM 和PCS 频段内的测量精度。TIS 的计算方法如下:

()()()

i N i M j EIS EIS NM

TIS θφθφθπφθsin ,1,1211∑∑==????????+?

式中,()φθθ,EIS 和()φθφ,EIS 分别指θ和Ф两个极化方向上的接收灵敏度。另外,TRP 和TIS 的测试均可采用替代法测试:先测试一个TRP 、TIS 性能已知的样机,然后保持测试条件不变,换上待测手机进行测试,最后根据两者测试结果的差异,计算待测手机TRP 和TIS 。这样能使测量误差(如路径损耗偏移导致的系统误差)降低。

3.5人体感应测试

打电话时人体会显著改变手机天线的辐射方向图和辐射功率,其影响程度与手机的工作频段、尺寸、天线方案等因素都有一定关系。手机的实际使用环境与自由空间内的测试环境差异较大,因此在人体模型上进行仿真测试,比自由空间内的测试更有实际意义。

图5

CTIA测试计划采用了IEEE定义的一种称为SAM的仿真人体模型,其外壳材料和内部的仿真组织液配方均有严格的说明。手机被置于仿真人体模型的左耳、右耳位置进行测试。如图5所示。为了减少测试的不确定因素,仿真头内不能留有气泡,而应该充满液体。

图6

图6所示为各个机型在SAM人体模型的右耳处的测试结果,数据表明:三星S508的人体感应的影响较大,TRP下降了约10dB;Motorola V3在自由空间、人体感应两种情况下均表现了良好的辐射性能,人体感应的影响约5dB,可能是由于该款手机的内置天线在底部所致;诺基亚6170在两种情况下都得到了较差的测试数据,人体感应带来约5dB的恶化。中兴P100D1的自由空间TRP为所有被测机型中的最大值,其人体感应影响约6.5dB;而P106A1在两种情况下的TRP均比P100D1低2~3dBm。P100D1和P106A1的传导功率基本相同,说明与P100D1相比,P106A1的天线或匹配电路还有进一步优化的空间。

参考文献

[1] Test Plan for Mobile Station Over the Air Performance Rev 2.0, March 2003, CTIA

[2] Basic Antenna Principles for Mobile Communications, Dipl.Ing.Peter Scholz, KATHREIN

[3] The CTIA Authorized Test Lab (CATL) For Over-The-Air Performance Testing, Dr. Michael D. Foegelle

手机APP测试报告模板

手机APP测试总结报告

目录 1.测试概述 (1) 1.1. 编写目的 (1) 1.2. 测试范围 (1) 2. 测试计划执行情况 (1) 2.1. 测试类型 (1) 2.2. 测试环境与配置 (3) 2.3. 测试人员 (3) 2.4. 测试问题总结 (3) 3. 测试总结 (4) 3.0.程序流程 图 (3) 3.1.测试用例执行结果 (4) 3.2. 安全测试 (6) 3.2.1. 软件权限 (7) 3.2.2. 安装与卸载安全性 (7) 3.2.2. 数据安全性 (8) 3.2.3. 通讯安全性 (9) 3.2.4. 人机接口安全性 (10) 3.3. 安装、卸载测试 (11) 3.3.1. 安装 (11)

3.3.2. 卸载 (11) 3.4. UI测试 (12) 3.4.1. 导航测试 (12) 3.4.2. 图形测试 (12) 3.4.3. 内容测试 (13) 3.5. 功能测试 (13) 3.5.1. 运行 (13) 3.5.2. 注册 (13) 3.5.3. 登录 (14) 3.5.4. 注销 (14) 3.5.5. 应用的前后台切换 (15) 3.5.6. 免登入 (15) 3.5.7. 数据更新 (16) 3.5.8. 离线浏览 (16) 3.5.9. APP更新 (17) 3.5.10. 时间测试 (17) 3.5.11. 性能测试 (17) 3.5.12. 交叉性事件测试 (17) 3.6. 兼容测试 (18) 3.7. 用户体验测试 (19) 4. 测试结果 (19) 软件缺

陷 (15)

1.测试概述 1.1.编写目的 本测试报告为招标手机APP的测试报告,目的在于总结测试阶段的测试情况以及分析测试结果,描述系统是否符合用户需求,是否已达到用户预期的功能目标,并对测试质量进行分析。 测试报告参考文档提供给用户、测试人员、开发人员、项目管理者、其他管理人员和需要阅读本报告的高层经理阅读。 1.2.测试范围 测试主要根据用户需求说明书和软件需求规格说明书以及相应的文档进行系统测试,包括功能测试、性能测试、安全性和访问控制测试、用户界面测试以及兼容性测试等,而单元测试和集成测试由开发人员来执行。 主要功能包括:用户登录、我的项目、推荐项目订阅、软件设置、我的收藏、消息中心,借阅同步等。 2.测试计划执行情况 2.1.测试类型

(完整版)射频指标测试介绍

目录 1GSM部分 (1) 1.1常用频段介绍 (1) 1.2 发射(transmitter )指标 (2) 1.2.1发射功率 (2) 122 发射频谱(Output RF spectrum) (4) 1.2.2.1调制频谱 (4) 1.2.2.2开关频谱 (5) 1.2.3 杂散(spurious emission) (5) 1.2.4 频率误差(Frequency Error) (6) 1.2.5 相位误差( Phase Error) (6) 1.2.6功率时间模板(PVT) 7 1.2 接收(receiver) 指标 (8) 1.2.1接收误码率(BER (8) 2 WCDMA (9) 2.1常用频段介绍 (9) 2.2 发射(Transmitter )指标 (9) 2.3 接收(receiver) 指标 (15) 3 CDMA2000 (15) 3.1常用频段介绍 (15) 3.2 发射(transmitter )指标 (16) 3.3 接收(receiver) 指标 (19) 4 TD-SCDMA 部分 (20) 4.1常用频段介绍 (20) 4.2 发射(transmitter )指标 (20) 4.3 接收指标( Receiver) (26) 1GS M部分 1.1常用频段介绍

1.2 发射(transmitter)指标 1.2.1发射功率 定义:发射机载波功率是指在一个突发脉冲的有用信息比特时间上内,基站传送 到手机天线或收集及其天线发射的功率的平均值。 测量目的:测量发射机的载波输出功率是否符合GSM规范的指标。如果发射功 率在相应的级别达不到指标要求,会造成很难打出电话的毛病,即离基站近时容易打出而离基站远时打出困难,往往表现出发射时总是提示用户重拨号码。如果 发射功率在相应的级别超出指标的要求,则会造成邻道干扰。 测试方法: 手机发射部分由发射信号形成电路、功率放大电路、功率控制电路三个单元组成。 GSM频段分为124个信道,功率级别为5----33dBm,即卩LEVEL5--LEVEL19共15 个级别;DCS频段分为373个信道(512----885),功率级别为0----30dBm,即LEVEL0---LEVEL15共15个级别;每个信道有15个功率等级,测试时选上、中、下三个信道对每个功率等级进行测试,每个功率等级以2dBm增减。 功率控制:由于手机不断移动,手机和基站之间的距离不断变化,因此手机的发射功率不是固定不变的,基站根据距离远近的不同向手机发出功率级别信号,手机收到功率级别信号后会自动调整自身的功率,离基站远时发射功率大,离基站 近时发射功率小。具体过程如下:手机中的数据存储器存放有功率级别表,当手 机收到基站发出的功率级别要求时,在CPU的控制下,从功率表中调出相应的 功率级别数据,经数/模转换后变成标准的功率电平值,而手机的实际发射功率经取样后也转换成一个相应的电平值,两个电平比较产生出功率误差控制电压,去调节发射机激励放大电路、预放、功放电路的放大量,从而使手机的发射功率调整到要求的功率级别上。 测试指标: DCS1 800 Power con trol Nomi nal Output Toleranee (dB) for con diti ons

RF测试的基础知识

1. 什么是RF 答:RF 即Radio frequency 射频,主要包括无线收发信机。 2. 当今世界的手机频率各是多少(CDMA,GSM、市话通、小灵通、模拟手机等) 答:EGSM RX: 925-960MHz, TX:880-915MHz; CDMA cellular(IS-95)RX: 869-894MHz, TX:824-849MHz。 3. 从事手机Rf工作没多久的新手,应怎样提高 答:首先应该对RF系统(如功能性)有个系统的认识,然后可以选择一些芯片组,研究一个它们之间的连通性(connectivities among them)。 4. RF仿真软件在手机设计调试中的作用是什么 答:其目的是在实施设计之前,让设计者对将要设计的产品有一些认识。 5. 在设计手机的PCB时的基本原则是什么 答:基本原则是使EMC(电磁兼容性)最小化。 6. 手机的硬件构成有RF/ABB/DBB/MCU/PMU,这里的ABB、DBB和PMU等各代表何意答:ABB是Analog BaseBand, DBB是Ditital Baseband,MCU往往包括在DBB芯片中。 PMU是Power Management Unit,现在有的手机PMU和ABB在一个芯片上面。将来这些芯片(RF,ABB,DBB,MCU,PMU)都会集成到一个芯片上以节省成本和体积。 7. DSP和MCU各自主要完成什么样的功能二者有何区别

答:其实MCU和DSP都是处理器,理论上没有太大的不同。但是在实际系统中,基于效率的考虑,一般是DSP处理各种算法,如信道编解码,加密等,而MCU处理信令和与大部分硬件外设(如LCD等)通信。 8. 刚开始从事RF前段设计的新手要注意些什么 答:首先,可以选择一个RF专题,比如PLL,并学习一些基本理论,然后开始设计一些简单电路,只有在调试中才能获得一些经验,有助加深理解。 9. 推荐RF仿真软件及其特点 答:Agilent ADS仿真软件作RF仿真。这种软件支持分立RF设计和完整系统设计。详情可查看Agilent网站。 10. 哪里可以下载关于手机设计方案的相应知识,包括几大模快、各个模块的功能以及由此对硬件的性能要求等内容 答:可以看看和,或许有所帮助。关于TI的wireless solution,可以看看中的wireless communications. 11. 为什么GSM使用GMSK调制,而W-CDMA采用HPSK调制 答:主要是由于GSM和WCDMA标准所定。有兴趣的话,可以看一些有关数字调制的书,了解使用不同数字调制技术的利与弊。 12. 如何解决LCD model对RF的干扰 答:PCB设计过程中,可以在单个层中进行LCD布线。 13. 手机设计过程中,在新增加的功能里,基带芯片发射数据时对FM产生噪声干扰,如何解决这个问题

性能测试报告模版

目录 第1章概述 (1) 第2章测试需求分析 (1) 第3章测试场景设计 (4) 第1章概述 1.1目的 说明为什么要进行此测试;参与人有哪些;测试时间是什么时候;项目背景等。 编写此测试方案的目的是通过测试确认软件是否满足产品的性能需求,同时发现系统中存在的性能瓶颈,起到优化系统的目的。测试的依据是产品的需求规格说明书;如果用户没有提出性能指标则根据用户需求、测试设计人员的经验来设计各项测试指标。此模板使用于性能测试的方案设计和测试报告记录。 1.2名词解释 此方案中涉及的业务和技术方面的专业名词。 1.3参考资料 此方案参考和依据的所有文档。 第2章测试需求分析 2.1测试目的

说明此测试的目的。例如: 1、IAGW增加了短信过滤功能和鉴权功能,需要执行性能测试,得出系统的性能指标; 2、持续进行大压力测试,对系统进行稳定性测试。 2.2测试对象 说明被测试产品的名称,版本,特性说明。 比如: Product Name: IAGW License Version: v1.1 Build Date: 20060715 2.3系统结构 简要描述被测系统的结构。 2.4测试范围 2.4.1测试范围 如:XXXX系统各项性能指标,软件响应时间的性能测试、CPU、Memory的性能测试、负载的性能测试(压力测试) 2.4.2主要检测内容 如: 1. 典型应用的响应时间 2. 客户端、服务器的CPU、Memory使用情况 3. 服务器的响应速度 4. 系统支持的最优负载数量 5. 网络指标 6. 系统可靠性测试 2.5系统环境

说明测试所需要的软硬件环境。 2.5.1硬件环境 2.5.2软件环境 2.5.2.1测试软件产品 主要说明被测试的软件产品模块名称和各模块分布情况。 2.5.2.2测试工具 说明所使用的测试工具。 第3章测试场景设计 3.1场景1 说明测试执行时的业务操作情况。相当于Use Case。不同场景下,将得到不同的测试结果。因此性能测试的结果必须与场景关联。例如: 测试IAGW在不与其他Server通讯的情况下,多用户并发访问交易响应时间<3秒的限制下,系统每秒钟处理的最大短信条数。 3.1.1测试目的 说明此场景测试的目的。例如: IAGW每秒钟处理最大短信条数。 3.1.2测试配置 说明该测试所使用的配置

射频测量指标参数

射频指标 1)频率误差 定义 :发射机的频率误差是指测得的实际频率与理论期望的频率之差。它是通过测量手机的I/Q 信号并通过相位误差做线性回归,计算该回归线的斜率即可得到频率误差。频率误差是唯一要求在衰落条件下也要进行测试的发射机指标。 测试目的 :通过测量发射信号的频率误差可以检验发射机调制信号的质量和频率稳定 度。频 率误差小,则表示频率合成器能很快地切换频率,并且产生出来的信号足够稳 定。只有信号 频率稳定,手机才能与基站保持同步。若频率稳定达不到要求 (±0.1ppm),手机将出现信 号弱甚至无信号的故障,若基准频率调节范围不 够,还会出现在某一地方可以通话但在另一 地方不能正常通话的故障。 条件参数 : GSM 频段选 1、62、124 三个信道,功率级别选 最大LEVEL5 ;DCS 频段选 512、698、885 三个信道,功率级别选最 大LEVEL0 进行测试。 GSM 频段的频率误差范围为+90HZ —— -90HZ ,频率误差小 于40HZ 时为最好,大于40HZ 小于 60HZ 时为良好,大于60HZ 小于 90HZ 时为一般,大 于90HZ 时为不合格; DCS 频段的频率误差范围为 +180HZ —— -180HZ ,频率误差小于 80HZ 时为最好,大于 80HZ 小于 100HZ 时为良好,大 于100HZ 小于 180HZ 时为一般,大于180HZ 时为不合格。 2)相位误差 定义 :发射机的相位误差是指测得的实际相位与理论期望的相位之差。理论上的相位 轨迹可 根据一个已知的伪随机比特流通过0.3 GMSK 脉冲成形滤波器得到。相位轨迹可看作与载 波 相位相比较的相位变化曲线。连续的1 将引起连续的 90 度相位的递减,而连续的0 将引起连续的 90 度相位的递 增。 峰值相位误差表示的是单个抽样点相位误差中最恶略的情况,而均方根误差表示的是所有 点 相位误差的恶略程度,是一个整体性的衡量。 测试目的 :通过测试相位误差了解手机发射通路的信号调制准确度及其噪声特性。可以看出 调制器是否正常工作,功率放大器是否产生失真,相位误差的大小显示了I 、Q 数位类比转 换器和高斯滤波器性能的好坏。发射机的调制信号质量必须保持一定的指标,才能当存在着各种外界干扰源时保持无线链路上的低误码率。 测试方法 :在业务信道( TCH )激活 PHASE ERROR 即可观测到相位误差值。测试时通过 综合测试仪 MU200 产生比特流进行调制后送给手机,并指令手机处于环回模式。然后去捕 捉 手机的一个突发信号,对其进行均匀相位抽样,抽样周期为调制信号周期的1/2,最后根据

手机RF部分的测试项目、指标及调试方法

PHS 生产交接的内容提要(讲座部分)(注:测试线上的操作要点或内容提要遗漏处在本周完成后再形成书面报告) 一.射频部分收发信机的测试项目及指标 发射部分: 1)载频频率、载频误差及飘移: 仅测量载频误差,要求值为+/-3PPM 2)调制精度(RMS及峰值矢量误差、幅度及相位误差,初始偏移): 调制精度仅测量RMS及峰值矢量误差,即EVM,要求值为6%---7%。幅度及相位误差在测试线上为提高测量速度不测,一般EVM符合要求,幅度及相位误差也差不多,其具体要求为,幅度误差,3%;相位误差,4DEG(度)。 3)发射功率: PEAK POWER为10mW,标准为10mW 4)发射功率之突发模板测试: 在测试线上为提高测量速度不测,仅测发射功率即可。一般没有实际意义。但在R&D时,该项要测试。具体要求为,BURST POWER RAMP 要在TEMPLATE(模板)之内。 5)占用带宽(OBW): 占用带宽平均为288KHZ。标准为300KHZ 6)邻道泄漏功率ACP:

+/-600K失谐:200nW以下(标准为800nW及以下) +/-900K失谐:100nW以下(标准为250nW及以下) 7)带内及带外的杂散辐射: 带内(IN BAND):30nW ----300 nW (标准为250nW及以下) 带外(OUT OF BAND):(标准为2.5uW及以下) 8)天线焊接及测试: 在CABLE 测试完毕,焊接RF 板上的RF CONNECTOR 至天线的传输线短接焊盘,并焊接天线或接上天线金属触片。采用感应方式测试,主要测试发射功率POWER LEVEL 及调制精度EVM。 测试要求 接收部分: 1)接收灵敏度或误码率测试: 灵敏度或误码率条件为: TEST PATTERN: PN9 TESTED OBJECT: PS-TCH 在输入电平为15dBuV的前提下,BER 应小于或等于0.5%. 二.射频模块及基带的调试及较正方法 1)调制精度、发射功率的微调: H99: 调制精度的微调主要由SFR102(TRIMMER RES(可

手机app测试方法

1 APP测试基本流程 1.1流程图 仍然为测试环境

1.2测试周期 测试周期可按项目的开发周期来确定测试时间,一般测试时间为两三周(即15个工作日),根据项目情况以及版本质量可适当缩短或延长测试时间。正式测试前先向主管确认项目排期。 1.3测试资源 测试任务开始前,检查各项测试资源。 --产品功能需求文档; --产品原型图; --产品效果图; --行为统计分析定义文档; --测试设备(ios3.1.3-ios5.0.1;Android1.6-Android4.0;Winphone7.1及以上;Symbian v3/v5/Nokia Belle等); --其他。 1.4日报及产品上线报告 1)测试人员每天需对所测项目发送测试日报。 2)测试日报所包含的内容为: --对当前测试版本质量进行分级; --对较严重的问题进行例举,提示开发人员优先修改; --对版本的整体情况进行评估。 3)产品上线前,测试人员发送产品上线报告。 4)上线报告所包含的内容为: ---对当前版本质量进行分级; ---附上测试报告(功能测试报告、兼容性测试报告、性能测试报告以及app可用性能标准结果); --总结上线版本的基本情况。若有遗留问题必须列出并记录解决方案。 2 App测试点 2.1安全测试 2.1.1软件权限 1)扣费风险:包括发送短信、拨打电话、连接网络等

2)隐私泄露风险:包括访问手机信息、访问联系人信息等 3)对App的输入有效性校验、认证、授权、敏感数据存储、数据加密等方面进行检测 4)限制/允许使用手机功能接人互联网 5)限制/允许使用手机发送接受信息功能 6)限制/允许应用程序来注册自动启动应用程序 7)限制或使用本地连接 8)限制/允许使用手机拍照或录音 9)限制/允许使用手机读取用户数据 10) 限制/允许使用手机写人用户数据 11) 检测App的用户授权级别、数据泄漏、非法授权访问等 2.1.2安装与卸载安全性 1)应用程序应能正确安装到设备驱动程序上 2)能够在安装设备驱动程序上找到应用程序的相应图标 3)是否包含数字签名信息 4)JAD文件和JAR包中包含的所有托管属性及其值必需是正确的 5)JAD文件显示的资料内容与应用程序显示的资料内容应一致 6)安装路径应能指定 7)没有用户的允许,应用程序不能预先设定自动启动 8)卸载是否安全,其安装进去的文件是否全部卸载 9)卸载用户使用过程中产生的文件是否有提示 10)其修改的配置信息是否复原 11)卸载是否影响其他软件的功能 12)卸载应该移除所有的文件 2.1.3数据安全性 1)当将密码或其他的敏感数据输人到应用程序时,其不会被储存在设备中,同时密码也不会被解码 2)输人的密码将不以明文形式进行显示 3)密码,信用卡明细,或其他的敏感数据将不被储存在它们预输人的位置上 4)不同的应用程序的个人身份证或密码长度必需至少在4一8个数字长度之间 5)当应用程序处理信用卡明细,或其他的敏感数据时,不以明文形式将数据写到其它单独的文件或者临时文件中。以防止应用程序异常终止而又没有侧除它的临时文件,文件可能遭受人侵者的袭击,然后读取这些数据信息。 6)当将敏感数据输人到应用程序时,其不会被储存在设备中 7)备份应该加密,恢复数据应考虑恢复过程的异常通讯中断等,数据恢复后再使用前应该经过校验 8)应用程序应考虑系统或者虚拟机器产生的用户提示信息或安全替告 9)应用程序不能忽略系统或者虚拟机器产生的用户提示信息或安全警告,更不能在安全警

探讨射频电缆的各种指标和性能

探讨射频电缆的各种指标和性能 射频电缆组件的正确选择除了频率范围,驻波比,插入损耗等因素外,还应考虑电缆的机械特性,使用环境和应用要求,另外,成本也是一个永远不变的因素。在本文中,详细讨论了射频电缆的各种指标和性能,了解电缆的性能对于选择最佳的射频电缆组件是十分有益的。射频同轴电缆是用于传输射频和微波信号能量的。它是一种分布参数电路,其电长度是物理长度和传输速度的函数,这一点和低频电路有着本质的区别。射频同轴电缆分为半刚,半柔和柔性电缆三种,不同的应用场合应选择不同类型的电缆。半刚和半柔电缆一般用于设备内部的互联;而在测试和测量领域,应采用柔性电缆。 半刚性电缆 顾名思义,这种电缆不容易被轻易弯曲成型,其外导体是采用铝管或者铜管制成的,其射频泄露非常小(<-120dB),在系统中造成的信号串扰可以忽略不计。这种电缆的无源互调特性也是非常理想的。如果要弯曲到某种形状,需要专用的成型机或者手工的磨具来完成。如此麻烦的加工工艺换来的是非常稳定的性能,半刚性电缆采用固态聚四氟乙烯材料作为填充介质,这种材料具有非常稳定的温度特性,尤其在高温条件下,具有非常良好的相位稳定性。半刚性电缆的成本高于半柔性电缆,大量应用于各种射频和微波系统中。 半柔性电缆 半柔性电缆是半刚性电缆的替代品,这种电缆的性能指标接近于半刚性电缆,而且可以手工成型。但是其稳定性比半刚性电缆略差些,由于其可以很容易的成型,同样的也容易变形,尤其在长期使用的情况下。 柔性(编织)电缆 柔性电缆是一种"测试级"的电缆。相对于半刚性和半柔性的电缆,柔性电缆的成本十分昂贵,这是因为柔性电缆在设计时要顾及的因素更多。柔性电缆要易于多次弯曲而且还能保持性能,这是作为测试电缆的最基本要求。柔软和良好的电指标是一对矛盾,也是导致造价昂贵的主要原因。柔性射频电缆组件的选择要同时考虑各种因素,而这些因素之间有些的相互矛盾的,如单股内导体的同轴电缆要比多股的具有更低的插入损耗和弯曲时的幅度稳定性,但是相位稳定性能就不如后者。所以一条电缆组件的选择,除了频率范围,驻波比,插入损耗等因素外,还应考虑电缆的机械特性,使用环境和应用要求,另外,成本也是一个永远不变的因素。 特性阻抗 射频同轴电缆由导体,介质,外导体和护套组成。 "特性阻抗"是射频电缆,接头和射频电缆组件中最常提到的指标。最大功率传输,最小信号反射都取决于电缆的特性阻抗和系统中其它部件的匹配。如果阻抗完全匹配,则电缆的损耗只有传输线的衰减,而不存在反射损耗。电缆的特性阻抗(Zo)与其内外导体的尺寸

射频各项测试指标.

双频段GSM/DCS移动电话射频指标分析 2003-7-14 [摘要]本文对GSM移动电话的射频指标进行了分析,并讨论了改进办法。其中一些测试及提高射频指标的方法是从实践经验中总结出来的,有一定的参考价值。第一部分对各射频指标作了简要介绍。第二部分介绍了射频指标的测试方法。第三部分介绍了一些提高射频指标的设计和改进方法。 1 射频(RF)指标的定义和要求 1.1 接收灵敏度(Rx sensitivity) (1)定义 接收灵敏度是指收信机在满足一定的误码率性能条件下收信机输入端需输入的最小信号电平。衡量收信机误码性能主要有帧删除率(FER)、残余误比特率(RBER)和误比特率(BER)三个参数。这里只介绍用残余误比特率(RBER)来测量接收灵敏度。 残余误比特率(RBER)的定义为接收到的错误比特与所有发送的的数据比特之比。 (2)技术要求 ●对于GSM900MHz频段 接收灵敏度要求:当RF输入电平为-102dBm(分贝)时,RBER不超过2%。测量时可测试实际灵敏度指标。根据多款移动电话的测试结果来看:当RBER=2%时,若RF输入电平为-l09~-l07dBm,则接收灵敏度为优;若RF输入电平为-l07~l05dBm,则接收灵敏度为良好;若RF输入电平为 -105~-l02dBm,则接收灵敏度为一般;若RF输入电平>-l02dBm,则接收灵敏度为不合格。 ●对于DCSl800MHz频段 接收灵敏度要求:当RF输入电平为-l00dBm,RBER不超过2%。测量时可测试实际灵敏度指标。根据多款移动电话的测试结果来看:当RBER=2%时,若RF输入电平为-l08~-105dBm,则接收灵敏度为优;若RF输入电平为-105~ -l03dBm,则接收灵敏度为良好;若RF输入电平为-l03~ -100dBm,则接收灵敏度为一般;若RF输入电平为>-l00 dB mm,则接收灵敏度为不合格。 1.2频率误差Fe、相位误差峰值Pepeak、相位误差有效值PeRMS (1)定义 测量发射信号的频率和相位误差是检验发信机调制信号的质量。GSM调制方案是高斯最小频移键控(GMSK),归一化带宽为BT=0.3。 发射信号的相位误差定义为:发信机发射信号的相位与理论上最好信号的相位之差。理论上的相位轨迹可根据一个己知的伪随机比特流通过GMSK脉冲成形滤波器得到。

XX系统性能测试报告

XXXX系统性能测试报告

1 项目背景 为了了解XXXX系统的性能,特此对该网站进行了压力测试2 编写目的 描述该网站在大数据量的环境下,系统的执行效率和稳定性3 参考文档 4 参与测试人员 5 测试说明 5.1 测试对象 XXXX系统

5.2 测试环境结构图 5.3 软硬件环境 XXXXX 6 测试流程 1、搭建模拟用户真实运行环境 2、安装HP-LoadRunner11.00(以下简称LR) 3、使用LR中VuGen录制并调试测试脚本 4、对录制的脚本进行参数化 5、使用LR中Controller创建场景并执行 6、使用LR中Analysis组件分析测试结果 7、整理并分析测试结果,写测试总结报告 7 测试方法 使用HP公司的性能测试软件LoadRunner11.00,对本系统业务进行脚本录制,测试回放,逐步加压和跟踪记录。测试过程中,由LoadRunner的管理平台调用各前台测试,发起 各种组合业务请求,并跟踪记录服务器端的运行情况和返回给客户端的运行结果。录制登陆业务模块,并模拟30、50、80、100 个虚拟用户并发登陆、添加和提交操作,进行多次连续测试,完成测试目标。 测试评估及数据统计 此次测试通过同一台客户机模拟多个并发用户在因特网环境进行,未考虑因特网的稳定 性的问题。此次测试用户操作流程相对简单,只录制了三个事务,即:用户登录、添加和信息提交,从测试的数据来分析,各项性能指标基本在可控的范围之内。但在测试过程中也发 现一些不容忽视的问题,应予以重视。 1 、模拟80 个用户并发操作时,出现1 个未通过的事务,具体原因需结合程序、网络和服务器综合分析,系统的稳定性并非无可挑剔。 2 、用户登陆事务的平均响应时间与其他两个事务相比等待的时间要长,且波动也较大, 在网速变慢、用户数增加的外部条件下,有可能会影响到系统的稳定性。建议优化系统登录页面程序,提高系统的稳定性。

推荐-WCDMA射频测试经验总结 精品

WCDMA主要射频指标测试经验总结 本文档列写了在使用Agilent 8960进行WCDMA射频各项测试的简要测试方法及步骤,注意事项和相关归纳总结,敬请参考。 一、测试前的设置 1.选择前面板上的“CALL SETUP” 2.按下F1键,把Operating Mode选择成“Cell Off” NOTE: 若不在CELL OFF状态下,有些参数无法设置

3.按More键,把页面切换到第二页,共四页。“2 of 4”4.按下F2,设置Cell Parameter --- 设置“BCCH Update Page” 到“Auto”状态 --- 设置“ATT Flag State” 到“set”状态 --- 按下F6,关闭当前窗口

5、按下F4设置“Uplink Parameters” --- 设置“Maximum Uplink Transmit Power Level”到24dBm --- 按下F6,关闭当前窗口 6、按下前面板左边的“More”切换页面到第一页,“1 of 4” 7、按下F1,设置“Operating Mode”到“Active Cell” 8、按下F7,设置“Cell Power”到-93dBm/3.84MHz 9、手机开机,等待手机registration 注:1、“security settings” 要依据UE的要求,通常情况应设置为“Auth.&Int”

NOTE: 使用小白卡,在8960关闭鉴全的情况下,依然可以注册,并且模块本身也应使用QPST关闭鉴全,若默认已关闭无需操作。 2、假如UE用的是Qualm chipset,就必须把“RLC Reestablish”设置成“Off”

射频测试指导

第一章测试条件 手机的测试条件包括测试环境条件、测试温度、湿度条件、测试电压及震动测试等内容。 民用设备的测试一般应在正常测试条件下进行,如有特殊要求时,也可在极限条件下进行测试。鉴于移动站的特殊使用环境,下面将对移动站的测试条件作重点介绍。 1.1 正常测试条件 对于移动站来说,正常测试温度和湿度条件应为以下范围的任意组合: 温度:15—35℃ 相对湿度:25—75% 正常测试电压应为设备的标称工作电压,其频率(测试电源)应为标称频率±lHz 范围内。对于用在车载整流铅酸电他上的无线设备,其正常测试电压应为电池标称电压的 1.1 倍。 1.2 极限测试条件 对于移动站,极限测试条件应为极限电压部极限温度的任意组。 其中对于手持机来说极限环境温度为-10~+55℃。 对于车载台和便携式移动站来说,其极限测试温度为-20~+55℃。 极限测试电压对于使用交流市电的移动站,为其标称电压的0.9~1.1 倍。 对于采用汞/镍镉电池的移动站,极限测试电压为其标称电压的0.9~1.0 倍。 对于采用整流铅酸电他的移动站来说,极限测试电压为其标称电压的0.9~1.3 倍。 在极限温度下的测试过程: 对于高温,当实现温度平衙后,移动站在发射条件下(非DTx)开机1 分钟再在空闲模式(idle mode)(非DTx)下开机4 分钟,Ms 应满足规定的要求。 对于低温,当实现温度平衡后,移动站应在Ms空闲模式(非DTx)下开机1 分钟再进行测试,Ms 应满足规定的要求。 1.3 震动条件 在震动条件下测试移动站,应采用随机震动,其震动频率范围和加速度频谱密度(ASD)如下: 在频率为5~20Hz范围内,其震动ASD为0.96m2/s3。 在频率为20~500Hz范围内,在20Hz时ASD为0.96m2/s3,其它频率为-3dB/倍频程。 1.4 其它测试条件及规定 1.系统模拟器(SS) 系统模拟器是一系列测试设备的总称,它是一个功能性工具,能对被测设备提供必要的输入测试信号并能分析被测设备的输出信号以实施GSM 规范中所有的测试、市场上现存的测试仪器可以实现全部或部分系统模拟器的测试功能。如HP8922B/E/G 系列、R /S 公司的CMD54、CMD52 及CRTS02、04、24 系列等可以提供对移动站和基站不同级别的测试。在测试基站时,系统模拟器可以模拟移动站和网络在A(或Abis)接口及空中接口(Um 接口)对基站进行测量。在测试移动站时,系统模拟器可以模拟基站及网络在空中接口(Um接口)对移动站进行测量。 2.衰落和多径传播棋拟器(MFs)

版本发布测试总结报告 特

测试总结报告 _SMAIL1.2.2.001_CPORTAL 卓望数码技术(深圳)有限公司版权所有 内部资料注意保密

修订记录:

目录 1 概述 (4) 1.1 上次报告的遗留问题 (4) 1.2 本次报告的范围 (4) 1.3 参考资料 (7) 2 测试记录 (8) 2.1 活动简述 (8) 2.2 测试环境 (8) 2.3 案例执行记录 (9) 2.4 缺陷记录 (10) 3 测试分析 (11) 3.1 测试覆盖情况分析 (11) 3.1.1.1 测试场景一:注册 (11) 3.1.1.2 测试场景二:登录综合请求 (11) 3.1.1.3 测试场景三:综合业务请求 (11) 3.1.1.4 测试场景四:登录适配下载请求 (12) 3.1.1.5 测试场景五:登录上传请求 (12) 3.1.1.6 测试场景六:登录升级请求 (12) 3.2 缺陷分析 (13) 3.2.1 缺陷收敛点分析 (13) 3.2.2 修复但没有验证缺陷分析 (13) 3.2.3 未修复缺陷 (13) 3.3 其它角色意见 (15) 3.3.1 项目组对遗留问题的意见 (15) 3.3.2 系统集成对遗留问题的意见 (15) 3.3.3 其它人员对遗留问题的意见 (15) 4 总结 (15) 4.1 后续活动和建议 (15) 4.2 结论 (16)

1概述 超级邮箱是集成手机网盘、通信、超市为一体的手机客户端软件. 其基本组成包括: 内部网元:CPPS/CPORTAL/MGROUP/手机客户端(KJA V A版和S60版) 等 外部网元:内容适配平台/网盘服务器/UC服务器/点卡服务器/彩铃平台等 本报告主要针对于手机客户端后台cportal。 1.1上次报告的遗留问题 无 1.2本次报告的范围 本次测试的版本号 本次测试版本为: SMAIL1.2.2.0_CPORTAL SMAIL1.2.2.001_CPORTAL(包含SMAIL1.2.2.0的所有功能)本次测试: CPORTAL(1.2.2.0)包括如下Build的测试: SMAIL1.2.2.0_CPORTAL_SSYT_1__20080602_16.33.58 SMAIL1.2.2.0_CPORTAL_SSYT_2__20080604_13.49.18 SMAIL1.2.2.0_CPORTAL_SSYT_3__20080610_17.34.20 SMAIL1.2.2.0_CPORTAL_SSYT_4__20080612_17.29.06 SMAIL1.2.2.0_CPORTAL_SSYT_5__20080623_17.55.49 SMAIL1.2.2.0_CPORTAL_SSYT_6__20080627_17.23.12 SMAIL1.2.2.0_CPORTAL_SSYT_7__20080708_14.33.51 SMAIL1.2.2.0_CPORTAL_SSYT_8__20080710_18.46.17 SMAIL1.2.2.0_CPORTAL_SSYT_9__20080717_18.42.06 CPORTAL(1.2.2.001)包括如下Build的测试: SMAIL1.2.2.001_CPORTAL_SSYT_1__20080714_18.36.16 SMAIL1.2.2.001_CPORTAL_SSYT_2__20080717_18.45.48 SMAIL1.2.2.001_CPORTAL_SSYT_3__20080723_11.29.20

常用射频指标测试大纲

常用射频指标 测试大纲 通信对抗 2015/10/30 Ver. 1.0

目录 目录1 1.1dB压缩点(P1dB) (1) 1.1基本概念 (1) 1.2测量方法 (1) 2.三阶交调(IP3) (2) 2.1基本概念 (2) 2.2测量方法 (3) 3.三阶互调(IM3) (4) 3.1基本概念 (4) 3.2测量方法 (5) 3.2.1直接测量 (5) 3.2.2间接法 (5) 4.噪声系数(NF) (5) 4.1基本概念 (5) 4.2测量方法 (6) 4.2.1使用噪声系数测试仪 (6) 4.2.2增益法 (6) 4.2.3Y因数法 (8) 4.2.4测量方法小结 (10) 5.灵敏度 (10) 5.1基本概念 (10) 5.2测量方法 (11) 5.2.1间接法-噪声系数法测量 (11) 5.2.2直接法-临界灵敏度测量 (11) 6.镜频抑制 (11) 6.1基本概念 (11) 6.2测量方法 (12) 7.相位噪声 (13) 7.1基本概念 (13) 7.2测量方法 (13)

7.2.1基于频谱仪的相位噪声测试方法 (13)

1.1dB压缩点(P1dB) 1.1基本概念 射频电路(系统)有一个线性动态范围,在这个范围内,射频电路(系统)的输出功率随输入功率线性增加,即输出功率P out– P in = G,输出信号的功率步进等于输入信号的功率步进ΔP out = ΔP in,这种射频电路(系统)称之为线性射频电路(系统),这两个功率之比就是功率增益G。 随着输入功率的继续增大,射频电路(系统)进入非线性区,其输出功率不再随输入功率的增加而线性增加,也就是说,其输出功率低于小信号增益所预计的值。当输出功率满足P out– P in = G – 1时,对应的P out即为输出1dB压缩点,对应的P in即为输入1dB压缩点。 通常把增益下降到比线性增益低1dB 时的输出功率值定义为输出功率的1dB 压缩点,用P1dB表示(图1)。典型情况下,当功率超过P1dB时,增益将迅速下降并达到一个最大的或完全饱和的输出功率,其值比P1dB大3dB~4dB。 1dB压缩点愈大,说明射频电路(系统)线性动态范围愈大。 图 1 输出功率随输入功率的变化曲线 1.2测量方法 频谱仪直接测量。 1,DUT的输入端连接信号源,输出端连接频谱仪; 2,将输入信号的功率由小至大缓慢增加,并记录输入功率、输出功率极其

手机射频知识

GSM手机射频测试指导

目录 序言 (2) 第一章测试条件 (3) 1.1 正常测试条件 (3) 1.2 极限测试条件 (3) 1.3 震动条件 (3) 1.4 其它测试条件及规定 (4) 1.5 附件要求 (5) 第二章发射机指标及其测试 (6) 2.1 发射载波峰值功率 (6) 2.2 发射载频包络 (11) 2.3调制频谱(Spectrum Due to Modulation) (15) 2.4开关频谱(Spectrum Due to Switching) (18) 2.5频率误差(Frequency Error) (20) 2.6相位误差(Phase Error) (22) 2.7传导杂散骚扰(Conduct Spurious Emissions) (24) 2.8发射峰值电流和平均电流 (27) 第三章接收机指标及其测试 (29) 3.1接收灵敏度(Rx Sensitivity) (29) 3.2接收信号指示电平(RX Level) (33) 3.3接收信号指示质量(RX Quality) (35) 第四章其余测试补充 (38) 4.1 RC滤波电路对PA-RAMP的影响 (38) 4.2 PA匹配调整 (42) 4.3天线开关指标测试 (42) 第五章附录 (44)

序言 目前国家对手机的质量问题越来越重视,对于手机质量的客户满意度和返修率也一致关注。其中,GSM手机的射频问题仍然是一个影响手机质量、开发进度和生产效率的重要因素。为了保证产品的品质和性能符合GSM规范和国家标准,需要在手机测试方面建立一套完整、科学的测试体系。为此我们参照GSM规范欧洲标准、国家邮电部移动通信技术规范、国家信息产业部通信行业标准以及日常积累的测试经验编写了这份射频测试规程。 本规范的目的是针对研发阶段的GSM手机提供一个较全面测试和校准的指标依据,尽量保证研发阶段GSM手机的点测指标满足FTA、CTA与批量生产点测指标要求,使手机的射频问题尽可能在研发阶段暴露出来并在量产前解决,同时为评估手机的RF点测性能、指标余量、一致性、稳定性提供参考依据,另外为不熟悉测试的新员工提供一些指导。本文主要内容包括射频指标术语解释,发射机和接收机部分射频指标的测试方法,测试结果,测试参考标准等,最后还给出了指标超标的一般分析。 由于我们射频知识与经验有限,不足之处请指导。

射频测试规范

1、目的 规范WCDMA射频测试标准,使工程师在作业时有所遵循,特制订本规范。 2、适用范围 本规范适用于公司研发的WCDMA产品项目。 3、参考文件 《3rdGenerationPartnershipProject;TechnicalSpecificationGroupRadioAccessNetworkUserEquipment (UE)radiotransmissionandreception(FDD)(Release9)》 《3rdGenerationPartnershipProject;TechnicalSpecificationGroupRadioAccessNetwork;Requirementsfo rsupportofradioresourcemanagement(FDD)(Release9)》 4、缩略语和术语 ACLRAdjacentChannelLeakagepowerRatio邻道泄漏抑制比 ACSAdjacentChannelSelectivity邻道选择性 AWGNAdditiveWhiteGaussionNoise加性高斯白噪声 BERBitErrorRatio误比特率 BLERBlockErrorRatio误块率 CPICHCommonPilotChannel公共导频信道 CQIChannelQualityIndicator信道质量指示 CWContinuousWave(un-modulatedsignal)连续波(未调制信号) DCHDedicatedChannel专用信道(映射到专用物理信道)DPCCHDedicatedPhysicalControlChannel专用物理控制信道DPCHDedicatedPhysicalChannel专用物理信道 DPDCHDedicatedPhysicalDataChannel专用物理数据信道 DTXDiscontinuousTransmission非连续发射 EcAverageenergyperPNchip每个伪随机码的平均能量 EVMErrorVectorMagnitude误差矢量幅度 FDDFrequencyDivisionDuplex频分复用 FuwFrequencyofunwantedsignal非有用信号频率 HARQHybridAutomaticRepeatRequest自动混合重传请求 HS-DPCCHHighSpeedDedicatedPhysicalControlChannel高速专用物理控制信道 HS-PDSCHHighSpeedPhysicalDownlinkSharedChannel高速物理下行共享信道 HS-SCCHHighSpeedSharedControlChannel高速共享控制信道IblockingBlockingsignalpowerlevel阻塞信号功率电平IoThetotalreceivedpowerspectraldensity总接收功率频谱密度IoacThepowerspectraldensityoftheadjacentfrequencychannel邻信道功率谱密度IocThepowerspectraldensityofabandlimitedwhitenoisesource带限白噪声功率谱密度IorThetotaltransmitpowerspectraldensityofthedownlinksignalattheNodeBantennaconnector基站发送的总功率谱密度orThereceivedpowerspectraldensityofthedownlinksignalasmeasuredattheUEantennaconnector下行链路所接收的功率谱密度 IouwUnwanted signalpowerlevel非有用信号功率电平 OCNSOrthogonalChannelNoiseSimulator正交信道噪声模拟器PCCPCHPrimaryCommonControlPhysicalChannel主公共控制物理信道PICHPagingIndicatorChannel寻呼指示信道 PRACHPhysicalRandomAccessChannel物理随机接入信道QqualminMinimumRequiredQualityLevel小区质量最小需求

相关文档