文档库 最新最全的文档下载
当前位置:文档库 › 高层建筑结构设计知识点

高层建筑结构设计知识点

高层建筑结构设计知识点
高层建筑结构设计知识点

1 高层定义:(1)JGJ3—2002《高层建筑混凝土结构技术规范》将10层及10层以上或高度超过28m 的混凝土划为高层民用建筑。(2)GB50045—1995《高层民用建筑防火技术规范》和JGJ99—1998《高层民用建筑钢结构技术规范》中规定10层以及10层以上的居住建筑和24m 以上的其他民用建筑为高层建筑。

2 建筑结构的功能:建筑结构是建筑中的主要承重骨架。其功能为在规定的设计基准期内,在承受其上的各种荷载和作用下,完成预期的承载力、正常使用、耐久性以及突发时间中的整体稳定功能。

3 高层建筑结构体系:框架结构、剪力墙结构、框架—剪力墙结构、筒体结构、悬挂结构以及巨型框架结构等。

4 地震作用:指地震波从震源通过基岩传播一的地面运动,使处于静止的建筑物受到动力作用而产生的强烈振动。

5 三水准二阶段:小震不坏,小震作用下,结构应维持在弹性状态,保证正常使用;中震可修,中等地震作用下,结构可以局部进入塑性状态,但结构不允许破坏,震后经修复可以重新使用;大震不倒,强烈地震作用下,应保证结构不能倒塌。第一阶段:是针对所有进行抗震设计的高层建筑,除了在确定结构方案和进行结构布置时考虑抗震要求外,还应按照小震作用进行抗震计算和保证结构延性的抗震构造设计;第二阶段:主要针对甲级建筑和特别不规则的结构,用大震作用进行结构易损部位的塑性变形验算。

6 高层建筑结构布置总原则:综合考虑使用要求,建筑美观、结构合理及便于施工等。不应采用严重不规则的结构体系;宜采用规则结构;应使结构具有必要的承载能力、刚度和变形能力;应避免因部分结构或构件的破坏而导致整个结构丧失承受重力荷载、风荷载和地震作用的能力。

7 框架—剪力墙结构体系特点:既具有框架结构布置灵活、具有大空间、使用方便的特点,又有较大的抗侧刚度和较强的承载能力和抗震性能。框架和剪力墙共同受力,剪力墙承担绝大部分水平荷载,而框架则以承受竖向荷载为主。

8 高层建筑结构的概念设计:指工程结构设计人员运用所学掌握的理论知识和工程经验,在方案决断及初步设计阶段,从宏观上、总体上和原则上去决策和确定高层建筑结构设计中的一些最基本、最本质也是最关键的问题,主要涉及结构方案的选定和布置、荷载和作用传递途径的设置、关键部位和薄弱环节 判定和加强、结构整体稳定性保证和耗能作用的发挥以及承载力和结构刚度在平面内和沿高度的均匀分配;结构分析理论的基本假定等等。要点:

(1):结构简单规则均匀;(2)刚柔适度,性能高;(3)加强连接,整体稳定性强。

9 结构设计的基本假定:(1)弹性变形假定:高层建筑结构的内力与位移采用弹性方法计算;(2)刚性楼板假定:联系各抗侧力结构的楼板在其自身平面内有无限大的刚度。而在其平面外的刚度很小,可忽略不计;(3)平面抗侧力假定:任何一片结构在其平面外的刚度可忽略不计,它只承受在其平面内的侧向力。

10 结构稳定验算:主要是控制风荷载或水平地震作用下,重力荷载产生的二阶效应不致过大,以免引起结构的失稳倒塌。应满足:对剪力墙结构、框架—剪力墙结构、筒体结构为211.4n d i i EI H G

=≥∑;对框架结构满足:10/n

i i i j i D D h =≥∑ (i=1,2···n )。抗倾覆验算:主要是考虑到高层建筑高度较大,基础底面积较小,在水平风荷载和水平地震作用下产生较大的倾覆力矩,必须满足/ 1.0S O M M ≥。

11 高层建筑结构水平位移限值:为保证在正常使用条件中,主体结构基本处于弹性受力状态,控制裂缝的开展及控制其宽度在规定允许范围内,以及保证填充墙、隔墙及幕墙等非结

构构件的完好,要求高层建筑结构必须具有足够的刚度,且须对楼层层间的最大位移与层高之比进行限值。按弹性方法计算。

12 抗震措施:钢筋混凝土高层建筑的抗震设计,应根据房屋的设防烈度、结构类型、房屋的高度分为不同的抗震等级,并采用相应的计算和构造措施。满足(1)甲类、乙类建筑;当抗震设防烈度为6—8时,应符合抗震设防烈度提高一度的要求,当设防烈度为9度时,应符合比9度抗震设防更高的要求。(2)丙类建筑:应符合抗震设防烈度的要求。当建筑场 曲折地为I 类时,除6度外,应允许按抗震设防烈度降低一度要求采取抗震构造措施。多道抗震防线:一是指一个抗震结构体系,应由若干个延性较好的分体系组成并由延性较好的结构构件将各分体系联系来协同工作:二是抗震结构体系应有最大可能数量的内部,、外部外部赘余度,有意识的建立起一系列分布的屈服区,以使结构能吸收和消耗大量的地震能量,一旦遭受破坏也易于修复。

13 延性:结构屈服后变形能力大小的一种性质,是结构吸收能量能力的一种体现,常用延性系数来表示,所谓的延性系数是结构最大变形与屈服变形的比值/y u μ=??。延性结构设计原则:(1)强柱弱梁(或强墙弱梁),要控制梁、柱的相对强度,使塑性铰首先在梁端出现,尽量避免或减少柱子中的塑性铰;(2)强剪弱弯;(3)强节点、强锚固。保证延性的抗震措施:(1)先划分抗震等级(分四个等级);(2)根据抗震等级,按延性设计原则控制 计算:内力调整;构造:截面尺寸、主筋、箍筋、锚固等要求。

14 基础方案;基础设计应根据工程地质条件、上部结构的类型及荷载分布,施工条件及相邻建筑物影响等多种因素进行综合分析,在确保建筑物不致发生过量变形,满足正常使用要求下,选择经济合理的基础方案。

15 构造措施:由于地震作用的随机性,在结构满足承载力要求和侧移现实要求后,还须满足一定的构造要求,使结构有足够的整体工作性能。(1)保证构件的延性性能,强调“强柱弱梁,强剪弱弯,强节弱杆及强压弱拉”的设计原则及相应的构造措施。(2)室内个填充墙尽可能采用各类轻质隔墙。

16 框架结构:是指由梁柱杆系构件构成,能够承受竖向和水平荷载作用的承重结构体系。受力变形特点:(1)竖向荷载作用下的受力特点:竖向荷载作用下,框架结构以梁受弯为主要受力特点,梁端弯矩和跨中弯矩成为梁结构的控制内力。(2)水平荷载作用下的受力变形特点:

17 材料强度选择要求:(1)现浇框架梁、柱、节点的混凝土强度等级,按一级抗震等级设计时,不应低于C30;按2—44级抗震设计时,不应低于C20。(2)现浇框架梁的混凝土强度等级不宜大于C40;框架柱的混凝土强度等级,抗震设防烈度为9度时不宜大于C60,抗震设防烈度为8度时不宜大于C70。

填充墙布置要求(1)避免形成上、下层刚度变化过大;(2)避免形成短柱;(3)减少因抗侧刚度偏心所造成的扭转。

18 分层法的基本假定:(1)梁上荷载仅在该梁上及与其上下层柱上产生内力,在其他层梁及柱上产生的内力可以忽略不计;(2)竖向荷载作用下框架结构产生的水平位移可忽略不计。一般情况下,分层法用于计算强柱弱梁的对称框架结构时,误差较小,精度较高。反弯点法的基本假定:(1)梁的线刚度与柱子的刚度之比大于3时,可认为梁刚度无限大;(2)梁、

柱轴向变形均可忽略不计。特点:弯矩为零的点。D值法的基本假定:(1)水平荷载作用下,框架结构同各层特点转角相等;(2)梁,柱轴向变形均忽略不计。

19 剪力墙结构类型:整体墙和小开口整体墙、双肢墙、多肢墙、壁式框架。

特点:结构刚度很大,空间整体性好,水平荷载作用下侧向变形小,用钢量较省,抗震性能好,剪力墙的间距取决于楼板跨度3~8m,适于小开间建筑。缺点:自重大,基础处理要求较高,不利于布置大开间房间,不能满足公共建筑的使用要求。剪力墙的破坏形态:弯曲破坏,剪切破坏;滑移破坏。

20 剪力墙结构的内力和侧移的简化近似计算的基本假定:(1)竖向荷载在纵横向剪力墙平均按45度刚性角传力;(2)每片墙体结构仅在其自身平面内提供抗侧刚度,在平面外的刚度可以忽略不计;(3)平面楼盖在其自身平面内刚度无限大;(4)剪力墙结构在使用荷载下结构材料均处于线弹性阶段。

21 概念设计:以功能优越、造型美观、技术先进的总体方案为目标的设计阶段。是指一些难以作出精确力学分析或在规范中难以具体规定的问题,必须由工程师运用“概念”进行分析,作出判断,以便采取相应措施。

22 目前我国高层建筑的发展特点:层数不断增多,高度不断加大;高层建筑向多用途、多功能方向发展;平面布置和立面体型日益复杂化;结构体系日趋多样化;高强材料和新技术的应用;玻璃幕墙的广泛应用;计算机应用水平迅速提高;设计规程的不断完善。

23 荷载效应:指结构或构件在某种荷载作用下的结构的内力和位移。荷载效应组合:指在所有可能同时出现的诸荷载组合下,确定结构或构件内产生的效应。其中最不利组合是指所有可能产生的荷载组合中,对结构构件产生总效应为最不利的一组。

24 框架—剪力墙(筒体)结构特点:剪力墙(核心筒)承担大部分水平力(80%~90%),是主要的抗侧力构件,框架承担竖向荷载,提供较大的空间,既具有框架结构布置灵活、方便使用的特点,又有较大的刚度和较强的抗震能力,适用于公共建筑和旅馆建筑。

25 剪力墙数量:以满足位移限制为依据设置剪力墙数量。剪力墙的布置及间距:宜分散不宜集中;满足建筑使用要求和结构刚度的要求;纵横向剪力墙布置均应满足要求;布置应均匀、对称、周边,使刚度中心和质量中心尽量接近,避免扭转效应;剪力墙的间距不宜过大,保证楼盖刚度足够;剪力墙应贯通全高,结构上下刚度连贯均匀。

26 筒体结构的布置原则:减少剪力滞后。(1)密柱深梁:柱中距为1.2m~3.0m,横梁跨高比为2.5~4;(2)长宽比不宜大<2,接近正方形较好;(3)高宽比宜大,以利于空间作用发挥,高宽比>3,高度不宜低于60m;(4)选择合适的楼板体系,楼板具有足够的刚度。

27 结构竖向布置的要求:高宽比限制:保证建筑物在水平力作用下不发生倾覆,保证建筑物的整体稳定性。布置原则:结构的强度、刚度宜均匀、连续、不突变。

28 地下室的作用:利用土体的侧压力防止水平力作用下结构的滑移、倾覆;减小土的重,降低地基的附加压应力;提高地基土的承载能力;减少地震作用对上部结构的影响。

29 剪力墙的布置原则:(1)剪力墙宜均匀布置在建筑物的周边附近、楼梯间、电梯间、平面形状变及恒载较大的部位,剪力墙间距不宜过大;抗震设计时,剪力墙的布置宜使结构两个主轴方向的侧向刚度接近;(2)平面形状凹凸较大时,宜在凸出部分的端部附近布置剪力墙;(3)纵、横剪力墙宜组成L形、T形和[形等型式;(4)单片剪力墙底部承担的水平剪力不宜超过结构底部总水平剪力的40%,以免受力过分集中;(5)剪力墙宜贯通建筑物的全高,宜避免刚度突变;剪力墙开洞时,洞口宜下对齐;(6)楼、电梯间等竖井的设置,宜尽量与其附近的框架或剪力墙的布置相结合,使之形成连续、完整的抗侧力结构。

30 框架-剪力墙协同工作原理:在下部:剪力墙帮框架受剪——框架底部剪力减少;在上部:框架帮剪力墙受剪——框架顶部剪力加大;框架-剪力墙结构中的框架,其所受剪力以及层间变形趋于均匀化。

高层建筑结构设计分析王方成

高层建筑结构设计分析王方成 发表时间:2016-07-28T15:02:06.787Z 来源:《基层建设》2016年10期作者:王方成 [导读] 本文结合工程实际,对高层建筑结构设计分析。 深圳市建筑设计研究总院有限公司 摘要:随着我国科学技术的不断进步和经济的快速发展,城市中高楼耸立,高层建筑物已成为人们共同的追求。本文结合工程实际,对高层建筑结构设计分析。 关键词:高层建筑;结构设计 1 工程概况 该建筑总长46.10m,总宽35.90m,总高 111.563m,大屋面层高96.90m。地上共23层,地下 2 层。地下室层高 4.7m 与 3.75m。1~22 层层高 4.2m,23 层层高4.5m。上部均为办公室,地下部分为车库和设备用房。总建筑面积53065.79 m2,其中地上37307.59 m2,地下 15758.20 m2,建筑占地面积 10636m2。 2 自然地质情况 本工程场地地震基本烈度 7 度,设计地震分组第三组,设计基本地震加速度 0.1g,属于抗震不利地段,建筑场地类别Ⅱ类,设计特征周期取 0.45s。50 年遇基本风压 0.80kN/m2,场地地基土自上而下可划分为 7 层,从上至下依次为①层填石,层厚 2.7~19m;②层中砂,层厚 0.90~22.9m;②-A 层淤泥,层厚 1.70~1.90m;③层(含砾砂)粉质粘土,层厚 1.3~3.2m;④层残积砂质粘性土,层厚 2.6~8.0m;⑤层全风化花岗岩,层厚1.1~7.3m;⑥层强风化花岗岩:灰白、灰黄、灰褐色,饱和。⑥-1层砂土状强风化花岗岩,层厚 1.1~11.1m;⑥-2 层碎块状强风化花岗岩,层厚 0.8~11.5m;⑦层中风化花岗岩:灰、灰黄、灰白色,岩芯多呈短柱状和长柱状,局部呈块状,中粗粒花岗结构,块状构造,岩芯裂隙较发育,多呈闭合,岩芯采取率 67%~87%,RQD=38~71,岩石饱和单轴抗压试验为 64.60~70.10MPa,标准值为 66.03MPa,岩石坚硬程度为坚硬岩,岩体完整程度为破碎~较完整,岩体基本质量等级为Ⅱ~Ⅳ级。本次勘察所有钻孔均有揭示至该层,均未揭穿,揭露厚度为2.20~10.76m。 3 基础形式 由于办公楼及其周边纯地下室在基坑开挖后存在一定厚度的①层填石(厚度为 3.46~11.54m),采用预应力管桩时难以穿越填石层,另可供预应力管桩选择的桩端持力层④层残积砂质粘性土、⑤层全风化花岗岩和⑥-1 层砂土状强风化花岗岩分布不均匀,考虑到⑥-2层碎块状强风化花岗岩和⑦层中风化花岗岩分布较均匀,根据拟建场地岩土层特性、拟建物结构特点及荷载情况,采用冲(钻)孔灌注桩基础。 4 主体结构设计 4.1 结构选型 本建筑抗震设防类别为标准设防类(丙类)。由于建筑功能布局多为开敞办公区、大会议室等大空间,中间部分以及建筑外形要求美观、大方等方面因素,故本建筑主体部分采用钢筋混凝土框架———核心筒结构形式。框架———核心筒结构的周边框架与核心筒之间形成的可用空间较大,能使房屋空间布局灵活,又能使高层建筑结构满足较大刚度的要求,因此广泛用于写字楼、多功能建筑。具体做法是在建筑中部的电梯井筒及楼梯间四周布置抗震墙框筒,加大外框筒的柱距,减小梁的高度,周边形成稀柱框架。参照规范抗震设防烈度为7 度,确定抗震等级框架为二级,核心筒为二级。 4.2 主要荷载取值 高压配电房、电梯机房、通风机房活荷载为 7.0 kN/ m2,储藏间活荷载为 5.0 kN/m2,备餐间、车库活荷载为 4.0 kN/m2,商场、消防疏散楼梯活荷载为3.5 kN/ m2,办公室、卫生间、走廊、门厅、屋面花园、多功能厅大会议室活荷载为 3.0 kN/ m2,食堂活荷载为 2.5 kN/m2,上人屋面活荷载为 2.0 kN/m2,不上人屋面活荷载为 0.5 kN/m2。大型设备按实际情况考虑。 4.3 主要受力构件尺寸取值 地下室~1 层墙厚度为 400mm,2~23 层墙厚度为300mm。框架柱截面尺寸:地下室为 1200mm×1200mm,1~3层为1100mm×1100mm,4~6 层为 1000mm×1100mm,7~9 层为 1000mm×1000mm,10~12 层为 900mm×1000mm,13~15层为 800mm×900mm,16~18 层为 800mm×800mm,19~21 为700mm×700mm,22~23 层为 600mm×600mm。地下室负一层顶板的厚度为 200mm,地下室顶板除核心筒内板厚 180mm之外,其余部位板厚为 300mm,屋面层的板厚为 120mm,其它各楼层的板厚为 100mm。 4.4 主要结构材料选取 梁板混凝土强度等级为 C30,柱墙混凝土强度等级:-2~4层为C50,5~9层为C45,10~14 层为 C40,15~19 层为C35,20构架层为 C30。此外,圈梁、构造柱、挑檐、雨篷及楼梯均采用 C30 混凝土。主要用于基础梁、板,墙和柱以及楼面梁的纵筋选用 HRB400级钢筋。 4.5 计算软件及计算依据 本工程计算使用程序为中国建筑科学研究院开发的建筑结构三维设计与分析软件 SATWE。计算依据为建筑条件图以及《建筑结构荷载规范》GB50009-2012、《建筑抗震设计规范》GB50011-2010、《建筑地基基础设计规范》GB50007-2011、《高层建筑混凝土结构技术规程》JGJ3-2010等国家相关规范。 4.6 计算结果分析 (1)位移比。基于刚性楼板假定,考虑偶然偏心的条件下,X 方向最大层间位移与平均层间位移的比值:1.19 (第26层第1塔),Y 方向最大层间位移与平均层间位移的比值:1.28(第 26 层第 1 塔),属于平面不规则中的扭转不规则。位移比超过 1.2,需要考虑双向地震作用。 (2)层间位移。计算时不扣除整体弯曲变形,不考虑偶然偏心的影响,X 方向地震力作用下的楼层最大位移:1/1055<1/800;Y 方

高层建筑结构设计简答题

(1.)框筒,筒中筒和束筒结构的布置? a框筒性能以正多边形为最佳,边数越多越好,剪力滞后越不明显,结构的空间作用越大 b筒中筒高宽比不应小于3,宜大于4,适用于高度不宜低于80米 c筒中筒的外框筒宜做成密柱深梁,柱距为1-3米,不宜大于4米,框筒的开洞率不宜大于60% d框筒结构的柱截面宜做成正方形,矩形或T形 e筒中筒的内筒居中,面积不宜太小内筒应贯通建筑物的全高,竖向刚度均匀变化。 f框筒当相邻层的柱不贯通时,应设置转换梁 g.框筒中楼盖高度不宜太大。可做成平板或密肋楼盖。 (3).框架核心筒的布置原则? a核心筒宜贯通建筑物全高,当宽度不宜小于筒体总高的二分之一. b框架核心筒结构的周边逐渐必须设置框架梁,结构平面布置尽可能规则,对称以减小扭转影响 c框架核心筒结构外框构建的界面不宜过小结构总高度不宜过大 d非地震区的抗风设计采用伸臂加强结构对增大侧向侧度是有利的e框架--核心筒的楼盖,选用结构高度小,整体性强,结构自重轻有利于施工楼盖,宜选用现浇梁板式楼板,密肋式楼板以及叠合楼板。 (4).高层建筑主要承受那些作用?

高层建筑结构主要承受竖向荷载,风荷载和地震作用等。竖向荷载包括结构构件自重,楼面活荷载,屋面雪荷载,施工荷载,与多层建筑结构有所不同,高层建筑结构的竖向荷载效应远大于多层建筑结构,水平荷载的影响显著增加,成为其设计的主要因素,同事对高层建筑结构应考虑竖向地震作用,高层建筑结构应考虑温度变化,材料收缩和徐变。地基不均匀沉降等间接作用在结构中产生的效应。 (5).结构承受的风荷载与哪些因素有关? 1基本风压 2风压高度变化系数 3风荷载体型系数 4群体风压体型,单体风压体系,局部风压体型系数 5风振系数。 (6)为什么水平荷载称成为设计的决定因素? 因为竖向荷载在结构的竖向构件中主要产生轴向压力其仅仅与结构高度的一次放成正比,而水平荷载对结构产生的倾覆力矩以及由此在竖向构件中所引起的轴力,数值与结构高度的二次方成正比。 (8)高层建筑结构平面布置基本原则? 尽量避免结构扭转和局部应力集中,平面简单规则对称,刚心与质心形心重合。

浅析高层建筑结构设计的难点

浅析高层建筑结构设计的难点 我国建筑行业发展至今,不管是其规模还是建筑技术在国际领域都是名列前茅。在建筑工程中,结构设计环节,是高层建筑未来施工的主要参考依据。它具有基础性、关联性、创新性等特征,在当代城市规划中,发挥着越来越重要的作用。基于此,结合国内高层结构设计的相关理论,着重对其设计难点进行分析,以达到降低高层建筑建设成本,保障结构设计质量的目的。 标签:高层建筑;结构设计;难点分析 一、高层建筑结构的特征 与普通建筑相比,高层建筑需承载垂直和水平两个方向的荷载,因此,其对结构的荷载承受能力要求更高,其中垂直荷载主要是由建筑物高度引起的,而水平荷载则是由外界风力产生的,外界风力和地震都是影响高层建筑结构稳定性的重要因素,另外,建筑层数的增高也会加快建筑物的位移速度,而过快得位移速度则会对建筑物的功能性和建筑物内住户的舒适度产生直接的影响,并且过大的侧移位还会对建筑的结构和非结构构件造成损害,因此,相关人员在进行高层建筑结构设计时,需合理控制建筑物的侧移范围,才能保证其结构功能性良好。 二、高层建筑结构的设计原则 (一)基础方案的合理性 高层建筑结构基础施工方案,是保证高层建筑施工整体性和良好性的基础保障,在实际的建筑结构方案设计当中,相关设计单位需要依照具体施工地质条件,依照具体的建筑施工要求来对结构实施设计。一方面,在建筑结构基础方案的配置上,需要和地质调查报告进行对接,保证其中各项调查数据充分符合工程施工标准。另一方面,在进行高层建筑施工过程中,还需要对建筑实施综合性进行分析,特别是对建筑整体结构的稳定程度、每一个环节的负载加以考虑,通过这种施工设计方式,充分保证工程施工的稳定性。 (二)结构措施完善 在高层建筑施工当中,除了需要对基础施工方案和施工图纸进行设计之外,其中还有一个比较重要的施工原则是相关施工单位经常忽略的问题,那就是需要保证建筑结构实施措施完善化。相关设计单位在对高层建筑结构进行设计的过程当中,需要充分地注意各部分组件相互之间的衔接程度。比如建筑体当中的钢筋锚固长度等,同时,设计单位还需要充分注意建筑体存在的一些薄弱环节,建筑体本身的温度对建筑体组件产生的影响等,对这几个方面的问题,在实际的设计工作当中,需要充分遵循“强柱弱梁、强剪弱弯、强压弱拉”的基本结构设计原则,保证高层建筑结构设计的稳定性。

浅析高层建筑结构设计的中震设计概念

浅析高层建筑结构设计的中震设计概念 发表时间:2016-06-27T14:51:54.553Z 来源:《基层建设》2016年5期作者:隆凡梅 [导读] 本文主要阐述了中中震设计的原理、设计方法及软件操作,并提出一些个人见解以供参考。 摘要:对于普通建筑物的结构抗震设计,目前我国是以小震为设计基础,中震和大震则是通过地震力的调整系数和各种抗震构造措施来保证的。但是对于较重要的、超高的、超限的建筑物则需要进行中震和大震的抗震计算。本文主要阐述了中中震设计的原理、设计方法及软件操作,并提出一些个人见解以供参考。 关键词:中震设计概念;地震影响系数;荷载 《建筑抗震设计规范》(GB50011-2001 2008年版)(下简称《抗规》)中对中震设计仅在总则中提到“小震不坏、中震可修、大震不倒”的抗震设防目标,但没有给出中震设计的设计要求和判断标准。 首先我们了解一下现行《抗规》存在几个问题: 1规范未对结构存在的薄弱构件进行分析并作出专门的设计规定,仅对框架类剪切型结构适用的薄弱层作了一些规定; 2在中震作用下,规范仅提出“中震可修”的概念设计要求,没有具体的抗震设计方法; 3“中震可修”的技术经济问题:可修的标准决定工程????造价、破坏损失、震后修复费用。 随着时代的进步,现在的建筑物体型复杂,结构新颖,超高超限越来越多,因此要求对结构进行中震的设计也越来越多。 2 中震设计 2.1 为何要进行中震设计呢? 《抗规》条文说明1.0.1条指出,对大多数结构,可只进行第一阶段设计(即小震下的弹性计算),而通过概念设计和抗震构造措施来实现“中震可修和大震不倒”的设计要求,但前提是建筑物的体型常规、合理,经验上一般能满足大中震的抗震要求。反之对于一些体型很不好的甚至超限的建筑物,在大震下的结构反应和小震完全不同,不进行相应的中震和大震计算是没法保证结构安全的。 为达到各阶段抗震要求,须对于上述体型异常、刚度变化大、超高超限等类型建筑物进行中震抗震设计,其余类型建筑物建议可按中震抗震进行验算。 2.2 中震设计的基本概念 抗震设计要达到的目标是在不同频数和强度的地震时,要求建筑物具有不同的抵抗能力。中震设计就是为了使建筑物满足该地区的基本设防烈度,即能够抵抗50年限期内可能遭遇超越概率为10%的地震烈度。 中震设计和大震设计都可称为性能设计。基于性能的抗震设计是建筑结构抗震设计的一个新的重要发展,它的特点是使抗震设计从宏观性、规范指定的目标向具体量化的多重目标过渡,业主(设计者)可选择所需的性能目标,而不仅仅是按现行规范通过分项系数、内力调整系数、抗震构造措施等粗略、定性的手段来满足中震和大震的设防要求。针对本工程的结构特点,设定本结构的抗震性能目标。对超限结构而言,利用这些指标能更合理地判断整体结构在中震、大震作用下的性能表现,给超限设计提供可靠的判断依据。 2.3 中震设计的分类 中震设计就是结构在地震影响系数按小震的2.875倍(αmax=0.23)取值下进行验算。目前工程界对于结构的中震设计有两种方法,第一种按照中震弹性设计,第二种是按照中震不屈服设计。 首先明确一点,中震弹性和中震不屈服是两个完全不同的概念,两者所采用的设计方法与设防目的均不相同。中震弹性设计,设计中取消《抗规》要求的各项地震组合内力调整系数,保留材料、荷载等分项系数,对应地保留了结构的安全度和可靠度,结构仍属于弹性阶段,属正常设计。中震不屈服设计,设计中除了地震内力不作调整,同时也取消了材料、荷载等分项系数,对应地不考虑结构的安全度和可靠度,结构已经处于弹塑性阶段,属承载力极限状态设计,是一种基于性能的设计方法。由此可见,中震弹性设计接近于平常的小震弹性设计,而中震不屈服设计则与大震设计同属于基于性能的设计。 3 基本方法及应用 根据中震设计的分类,以下分别阐述中震弹性及中震不屈服的具体设计方法,介绍如何在satwe、etabs、midas等软件中实现中震设计。 3.1 中震不屈服设计 3.3.1 不同抗震烈度下的各级屈服控制 若场地安评报告提供实际的地震影响系数,则应取用所提供的多遇地震、设防烈度地震下相应的地震影响系数,屈服判别地震作用1、2 的地震影响系数可相应插值求得。 3.3.2 SAWTE计算:地震信息中抗震等级均为四级;αmax按表3取值;总信息中风荷载不参加计算;勾选地震信息中的按中震(或大震)不屈服做结构设计选项;其它设计参数的定义均同小震设计。 3.3.3 MIDAS/Gen计算:主菜单→设计→钢筋混凝土构件设计参数→定义抗震等级:四级;主菜单→荷载→反应谱分析数据→反应谱函数:定义中震反应谱,在相应的小震反应谱基础上输入放大系数β即可,β值按表3计算所得;总信息中风荷载不参加计算;主菜单→结果→荷载组合:将各项荷载组合中的地震作用分项系数取为1.0;主菜单→设计→钢筋混凝土构件设计参数→材料分项系数:将材料分项系数取为1.0;其它同小震。 3.3.4 ETABS计算:选项→首选项→混凝土框架设计→定义抗震设计等级:四级;定义→反应谱函数→Add Chinese 2002 Spectrum→定义中震反应谱,地震影响系数最大值αmax取值,其余参数按《抗规》;静荷载工况中不定义风荷载作用;定义→荷载组合→各项荷载比例系数均取为荷载分项系数1.0x荷载组合系数φ;定义→材料属性→填写各材料的强度标准值其它同小震。 4 工程算例 4.1 示范算例 4.1.1 基本参数:二十二层框支剪力墙结构,三层楼面转换,无地下室,首、二层4.5米,标准层3.5米,总高79m。结构平面布置如图一所示。结构高宽比3.76,长宽比1.22;抗震参数,7 度,第一组,0.10g;场地II类;风荷载100年一遇为0.9kN/㎡。

高层建筑结构设计简答题及答案

.1 框架—支撑结构 在框架中设置支撑斜杆,即为支撑框架,一般用于钢结构,由框架和支撑框架共同承担竖向荷载和水平荷载的结构,称为框架—支撑结构。 2.(框筒结构的)剪力滞后现象 翼缘框架中各柱轴力分布并不均匀,角柱的轴力大于平均值,中部柱的轴力小于平均值,腹板框架各柱的轴力也不是线性分布,这种现象称为剪力滞后现象 3. 框架的剪切刚度 C框架产生单位层间剪切变形所要施加的层间剪力。 f 三.. 简述房屋建筑平面不规则与竖向不规则的类型,在设计中应如何避免上述不规则结构?平面不规则包括扭转不规则、楼板凹凸不规则和楼板局部不连续。 竖向不规则包括侧向刚度不规则、竖向抗侧力构件不连续和楼层承载力突变。 在设计中可以通过限制建筑物的长宽比,立面的外挑和内收以及限制沿向刚度的变化来避免不规则结构。 四. 剪力墙抗震设计的原则有哪些?为什么要设置剪力墙的加强部位?试说明剪力墙加强部位的范围。(10分) 强墙弱梁、强剪弱弯、限制墙肢轴压比和墙肢设置边缘构件、加强重点部位、连梁特殊措施。 因为剪力墙加强部位的弯矩和剪力均很大; 总高1/8和底部2层高度中的较大值,且不大于15m.。 五.什么是抗震设计的二阶段设计方法?为什么要采用二阶段设计方法? (10分) 第一阶段为结构设计阶段,第二阶段为验算阶段。保证小震不坏、中震可修、在震不倒的目标实现。 七. 简述框架-剪力墙结构的主要特点 (10分) 框架-剪力墙结构是由框架和剪力墙组成的结构体系,具有两种结构的优点,既能形成较大的使用空间,又具有较好的抵抗水平荷载的能力。 八.简述高层建筑结构结构设计的基本原则。(11分) 注重概念设计,注重结构选型与平、立面布置的规则性,择优选用抗震和抗风好且经济的体系,加强构造措施,在抗震设计中,应保证结构的整体性能,使整个结构具有必要的承载力、刚度和延性。结构应满足下列基本要求:1)具有必要的承载力、刚度和变形能力;2)避免因局部破坏而导致整个结构破坏;3)对可能的薄弱部位采取加强措施;4)避免局部突变和扭转效应形成的薄弱部位;5)宜具有多道抗震防线。 1. 框架结构和框筒结构的结构平面布置有什么区别? 框架是平面结构,主要由于水平力方向平行的框架抵抗层剪力及倾覆力矩。 框筒是空间结构,沿四周布置的框架参与抵抗水平力,层剪力由平行于水平力作用方向的腹板框架抵抗。倾覆力矩由腹板框架和垂直于水平力方向的翼缘框架共同抵抗。框筒结构的四榀框架位于建筑物周边,形成抗侧、抗扭刚度及承载力都很大的外筒,使建筑材料得到充分的利用。因此,框筒结构的适用高度比框架结构高得多。 2.计算水平地震作用有哪些方法? 计算等效水平地震作用是将地震作用按水平和竖直两个方法分别来进行计算的。具体计算方法又分为反应谱底部剪力法和反应谱振型分解法两种方法。 3.什么是抗震设计的二阶段设计方法?为什么要采用二阶段设计方法? 第一阶段为结构设计阶段,第二阶段为验算阶段。保证小震不坏、中震可修、在震不倒的目标实现。 9.什么是地震系数、动力系数和地震影响系数? 地震系数:地面运动最大加速度与g的比值。 动力系数:结构最大加速度反应相对于地面最大加速度的最大系数。 地震影响系数:地震系数与动力系数的积。 4.延性和延性比是什么?为什么抗震结构要具有延性?

高层建筑结构设计试题及复习资料

高层建筑结构设计 名词解释 1. 高层建筑:10层及10层以上或房屋高度大于28m 的建筑物。 2. 房屋高度:自室外地面至房屋主要屋面的高度。 3. 框架结构:由梁和柱为主要构件组成的承受竖向和水平作用的结构。 4. 剪力墙结构:由剪力墙组成的承受竖向和水平作用的结构。 5. 框架—剪力墙结构:由框架和剪力墙共同承受竖向和水平作用的结构。 6. 转换结构构件:完成上部楼层到下部楼层的结构型式转变或上部楼层到下部楼层结构布置改变而 设置的结构构件,包括转换梁、转换桁架、转换板等。 7. 结构转换层:不同功能的楼层需要不同的空间划分,因而上下层之间就需要结构形式和结构布置 轴线的改变,这就需要在上下层之间设置一种结构楼层,以完成结构布置密集、墙柱较多的上层向结构布置较稀疏、墙术较少的下层转换,这种结构层就称为结构转换层。(或说转换结构构件所在的楼层) 8. 剪重比:楼层地震剪力系数,即某层地震剪力与该层以上各层重力荷载代表值之和的比值。 9. 刚重比:结构的刚度和重力荷载之比。是影响重力?-P 效应的主要参数。 10. 抗推刚度(D ):是使柱子产生单位水平位移所施加的水平力。 11. 结构刚度中心:各抗侧力结构刚度的中心。 12. 主轴:抗侧力结构在平面内为斜向布置时,设层间剪力通过刚度中心作用于某个方向,若结构产 生的层间位移与层间剪力作用的方向一致,则这个方向称为主轴方向。 13. 剪切变形:下部层间变形(侧移)大,上部层间变形小,是由梁柱弯曲变形产生的。框架结构的 变形特征是呈剪切型的。 14. 剪力滞后:在水平力作用下,框筒结构中除腹板框架抵抗倾复力矩外,翼缘框架主要是通过承受 轴力抵抗倾复力矩,同时梁柱都有在翼缘框架平面内的弯矩和剪力。由于翼缘框架中横梁的弯曲和剪切变形,使翼缘框架中各柱轴力向中心逐渐递减,这种现象称为剪力滞后。 15. 延性结构:在中等地震作用下,允许结构某些部位进入屈服状态,形成塑性铰,这时结构进入弹 塑性状态。在这个阶段结构刚度降低,地震惯性力不会很大,但结构变形加大,结构是通过塑性变形来耗散地震能量的。具有上述性能的结构,称为延性结构。 16. 弯矩二次分配法:就是将各节点的不平衡弯矩,同时作分配和传递,第一次按梁柱线刚度分配固 端弯矩,将分配弯矩传递一次(传递系数C=1/2),再作一次分配即结束。 第一章 概论 (一)填空题 1、我国《高层建筑混凝土结构技术规程》(JGJ3—2002)规定:把10层及10层以上或房屋高度大于28m 的建筑物称为高层建筑,此处房屋高度是指室外地面到房屋主要屋面的高度。 2.高层建筑设计时应该遵循的原则是安全适用,技术先进,经济合理,方便施工。 3.复杂高层结构包括带转换层的高层结构,带加强层的高层结构,错层结构,多塔楼结构。

高层建筑结构设计分析论文

关于高层建筑结构设计分析 摘要:随着社会经济的迅速发展,人民物质生活水平的不断提高,居住条件的不断改善,高层住宅如雨后春笋一座座拔地而起。一个优秀的建筑结构设计往往是适用、安全、经济、美观便于施工的最佳结合。 关键词:建筑结构结构设计 abstract: with the rapid development of social economy, the people’s material life level unceasing enhancement, the constant improvement of the living conditions, high-rise residential have mushroomed place have sprung up. a good structure design is often apply, safety, economy, beautiful is advantageous for the construction of the best combination. keywords: building structure design 中图分类号: tu3文献标识码:a 文章编号: 一、高层建筑各专业设计的协调 高层建筑设计是个多专业、多程序的复杂系统工程,涉及“建筑、结构、设备”三个基本环节,参与高层建筑设计的工程师都深深体会到,对于每个专业单独而言是最完美的设计,但结合在一起却不是优秀的设计。各专业之间的矛盾如不妥善处理!高层建筑就无法施工,建成后也无法使用。“建筑、结构、设备”是互相制约的三个有机组成部分,高层建筑设计既是各个专业自我完善的过

高层建筑结构设计分析论文

高层建筑结构设计分析论文 1结构分析及设计分析 1.1分析三种重要的体系 1.1.1剪力墙体系 剪力墙结构是利用建筑的内、外墙做成剪力墙以承受垂直和水平荷载的结构体系。剪力墙的变形状态和受力特性同剪力墙的开洞情况联系密切,其中依据轧受力特性的不同,单片剪力墙可以分为特殊开洞墙和单肢墙。类型不同的剪力墙,对应的也会有不同的截面应力分布,所以,在对位移和内力进行计算时,也应该对不同的计算和设计方法进行使用,将平面有限元法应用到剪力墙的结构计算中。此种方法能够比较准确地完成计算,能够应用到各类剪力墙之间,然而,也有一定的弊端存在于这种方法中,其有着较多的自由度。所以,在具体的应用时,较为普遍地应用了开洞墙这一类型。 1.1.2筒体结构 筒体结构分为框架—核心筒、筒中筒等结构体系,其中框架—核心筒受力特点为框架主要承受竖向荷载,筒体主要承受水平荷载,变性特点类似于框架剪力墙,但抗侧刚度较大。依据不同的计算机模型处理手段,有三种类型的分析方法:主要为离散化方法、三维空间分析和连续化方法,其中三维空间方法的精确性会更高。 1.1.3框架—剪力墙体系 框架—剪力墙结构,是由若干个框架和剪力墙共同作为竖向承重结构的建筑结构体系。此种结构位移和内力等计算方法尽管种类较

多,然而,连梁连续化假定方法会经常被使用,在对位移协调条件进行计算时,应该按照框架水平位移和剪力墙转角进行设计,将外荷载和位移的关系用微分方程建立起来。然而,应该考虑需求和因素量会存在的差异,所以,也会有着不同形式的解答方式。 1.2具体的设计与分析 1.2.1合理地确定水平荷载 每一个建筑结构都应该一同承受风产生的水平荷载和垂直荷载,对于抵抗地震的能力也应该具备。高层建筑中,尽管结构设计会较大程度上受到竖向荷载的影响,然而,水平荷载却占据着重大的比重。随着不断增多的高层建筑层数,在高层建筑的结构设计中,水平荷载成为了其中一个重要的影响因素。首先,由于楼面使用荷载和楼房自重在竖构件中发挥的功能,对应水平荷载会将一定的倾覆作用施加到结构中,并且竖构件中就会出现高层建筑结构的作用力;其次,就高层建筑结构而言,地震作用和竖向荷载,也会跟着建筑结构的动力情况而出现较大的改变。 1.2.2合理地确定侧控 同低层建筑不同,在高层建筑结构设计中,结构侧移已经成为 了其中一个非常重要的影响因素。随着不断增加的楼层数量,结构侧移在水平荷载侧向变形下会逐渐增大。在高层建筑结构进行设计中,不但规定结构要有一定的强度,对于荷载作用带来的内力能够有效的予以承受,同时,还应该确保具备一定的抗侧刚度,确保在某一限度内控制结构在水平荷载作用出现的侧移情况。

高层建筑结构抗震与设计考试重点复习题(含答案)

1.从结构的体系上来分,常用的高层建筑结构的抗侧力体系主要有:_框架结构,剪力墙结构,_框架-剪力墙_结构,_筒体_结构,悬挂结构和巨型框架结构。 2.一般高层建筑的基本风压取_50_年一遇的基本风压。对于特别重要或对风荷载比较敏感的高层建筑,采用_100_年一遇的风压值;在没有_100_年一遇的风压资料时,可近视用取_50_年一遇的基本风压乘以1.1的增大系数采用。 3.震级――地震的级别,说明某次地震本身产生的能量大小 地震烈度――指某一地区地面及建筑物受到一次地震影响的强烈程度 基本烈度――指某一地区今后一定时期内,在一般场地条件下可能遭受的最大烈度设防烈度――一般按基本烈度采用,对重要建筑物,报批后,提高一度采用 4.《建筑抗震设计规范》中规定,设防烈度为_6_度及_6_度以上的地区,建筑物必须进行抗震设计。 5.详细说明三水准抗震设计目标。 小震不坏:小震作用下应维持在弹性状态,一般不损坏或不需修理仍可继续使用 中震可修:中震作用下,局部进入塑性状态,可能有一定损坏,修复后可继续使用大震不倒:强震作用下,不应倒塌或发生危及生命的严重破坏 6.设防烈度相当于_B_ A、小震 B 、中震C、中震 7.用《高层建筑结构》中介绍的框架结构、剪力墙结构、框架-剪力墙结构的内力和位移的近似计算方法,一般计算的是这些结构在__下的内力和位移。 A 小震 B 中震C大震 8.在建筑结构抗震设计过程中,根据建筑物使用功能的重要性不同,采取不同的抗震设防 标准。请问建筑物分为哪几个抗震设防类别? 甲:高于本地区设防烈度,属于重大建筑工程和地震时可能发生严重次生灾害的建筑乙:按本地区设防烈度,属于地震时使用功能不能中断或需尽快恢复的建筑 丙:除甲乙丁外的一般建筑 丁:属抗震次要建筑,一般仍按本地区的设防烈度 9.下列高层建筑需要考虑竖向地震作用。(D) A 8°抗震设计时 B 跨度较大时 C 有长悬臂构件时 D 9°抗震设计

高层建筑结构设计特点.

浅论高层建筑结构特点及其体系 [摘要]文章分析高层建筑结构的六个特点,并介绍目前国内高层建筑的四大结构体系:框架结构、剪力墙结构、框架剪力墙结构和筒体结构。 [关键词]高层建筑;结构特点;结构体系 我国改革开放以来,建筑业有了突飞猛进的发展,近十几年我国已建成高层建筑万栋,建筑面积达到2亿平方米,其中具有代表性的建筑如深圳地王大厦81层,高325米;广州中天广场80层,高322米;上海金茂大厦88层,高420.5米。另外在南宁市也建起第一高楼:地王国际商会中心即地王大厦共54层,高206.3米。随着城市化进程加速发展,全国各地的高层建筑不断涌现,作为土建工作设计人员,必须充分了解高层建筑结构设计特点及其结构体系,只有这样才能使设计达到技术先进、经济合理、安全适用、确保质量的基本原则。 一、高层建筑结构设计的特点 高层建筑结构设计与低层、多层建筑结构相比较,结构专业在各专业中占有更重要的位置,不同结构体系的选择,直接关系到建筑平面的布置、立面体形、楼层高度、机电管道的设置、施工技术的要求、施工工期长短和投资造价的高低等。其主要特点有: (一水平力是设计主要因素 在低层和多层房屋结构中,往往是以重力为代表的竖向荷载控制着结构设计。而在高层建筑中,尽管竖向荷载仍对结构设计产生重要影响,但水平荷载却起着决定性作用。因为建筑自重和楼面使用荷载在竖向构件中所引起的轴力和弯矩的数值,仅与建筑高度的一次方成正比;而水平荷载对结构产生的倾覆力矩、以及由此在竖向构件中所引起的轴力,是与建筑高度的两次方成正比。另一方面,对一定高度建筑来说,竖向荷载大体上是定值,而作为水平荷载的风荷载和地震作用,其数值是随着结构动力性的不同而有较大的变化。

高层建筑结构设计习题

一、简答题 1..试述高层建筑结构的受力特点。 2. .框架结构抗震延性设计的原则是什么? 3..剪力墙按受力特性的不同分为哪几类?各类的受力特点是什么? 4.对于剪力墙结构,平面及竖向结构布置有哪些基本要求? 5.在什么情况下,框架——剪力墙结构的计算简图应采用刚接体系? 二、选择题 1、计算框架结构梁截面惯性矩I时考虑楼板影响,对现浇楼盖,中框架取I= ()。 A.2 I B.05.1I C.02.1I D.0I 2、整体小开口剪力墙计算宜选用()分析方法。 A. 连续化方法 B. 材料力学分析法 C. 壁式框架方法 D. 有限元法 3、在下列地点建造相同高度的高层建筑,什么地点所受的风力最大?() A. 建在大城市郊区 B. 建在小城镇 C. 建在有密集建筑群的大城市市区 D. 建在海岸

4、对现浇框架支座处弯矩可以进行调幅,以下不正确的论述是( ) A.负弯矩调幅系数为0.8—0.9 B.只需对竖向荷载作用下的弯矩进行调幅 C.调幅必须在荷载效应组合之前完成 D.对水平和竖向荷载效应均需要调幅 5、关于框架结构的变形,哪个结论是正确的( ) A. 框架结构的整体变形主要呈现为弯曲型 B. 框架结构的层间变形一般为下大上下 C. 框架结构的层间变形一般为下小上大 D.框架结构的层间位移仅与柱的线刚度有关,而与梁的线刚度无关 6、在有地震作用组合设计表达式RE E E R S γ≤中,承载力抗震调整系数RE γ满足 ( ) A. 大于1 B. 小于1 C. 不一定 D. 1 7、剪力墙中,墙肢刚度不变时,如果增加连梁刚度,整体系数α将( ) A 、增加 B 、减小 C 、不减 D 、不增 8、结构在水平静荷载的作用下其内力计算方法为( ) A 、底部剪力法 B 、力矩分配法 C 、反弯点法 D 、时程分析法 9 ) A. 框架结构体系 B. 剪力墙结构体系 C. 筒体结构 D. 框架剪力墙结构

结构工程师必知的100个设计要点

方案阶段 1.建设场地不能选在危险地段。 由于结构设计在建设场地的选择中一般是被动的接受方,因此,在结构方案及初步设计阶段, 应特别注重对建设场地的再判别。对不利地段,应根据不利程度采取相应的技术措施。 2.山地建筑尤其需要注意总平布置。 山区建筑场地应根据地质、地形条件和使用要求, 因地制宜设置符合抗震设防要求的边坡工程; 边坡附近的建筑基础应进行抗震稳定性设计。建筑基础与土质、强风化岩质边坡应留有足够的 距离, 其值应根据抗震设防烈度的高低确定, 并采取措施避免地震时地基基础破坏。当需要在 条状突出的山嘴、高耸孤立的山丘、非岩石的陡坡、河岸和边坡边缘等不利地段建造丙类及丙 类以上建筑时,除保证其在地震作用下的稳定性外, 尚应估计不利地段对设计地震动参数可能 产生的放大作用, 其地震影响系数最大值应乘以增大系数。其值可根据不利地段的具体情况确定, 在1.1~1.6 范围内采用。 此条为强条; 台地边缘建筑地震力放大系数也意味着单体建筑成本的增加。实际上, 有时边坡 支护的费用可能远远大于边坡上单体的费用。曾经有的方案设计单位布置总平时将 18~33层的高层布置在悬崖边缘或跨越十多米高的边坡, 这些都是对结构及地质不了解才会产生的错误。3.是否有地下室。 高层建筑宜设地下室;对无地下室的高层建筑,应满足规范对埋置深度的要求。 4.高度问题 室内外高差是多少,房屋高度是多少,房屋高度有没有超限。 5.结构高宽比问题 设计规定,6、7度抗震设防烈度时,框架- 剪力墙结构、剪力墙结构高宽比不宜超过 6。高 宽比控制的目的在于对高层建筑结构刚度、整体稳定、承载能力和经济合理性(主要影响结构 设计的经济性,对超高层建筑,当高宽比大于7时,结构设计难度大,费用高)的宏观控制。6.结构设计应与建筑师密切合作优化建筑设计和结构布置。 采取必要的结构和施工措施尽量避免设置各类结构缝(伸缩缝、沉降缝、防震缝)。当必须设 置时,应符合现行规范有关缝的要求,并根据建筑使用要求、结构平面和竖向布置的情况、地 基情况、基础类型、结构刚度以及荷载、作用的差异、抗震要求等条件、综合考虑后确定。 各缝宜合并布置,并应按规范的规定采取可靠的构造措施和保证必要的缝宽,防止地震时发生 碰撞导致破坏。结构长度大于规范时, 应设置伸缩缝, 高层建筑结构伸缩缝的最大间距: 框架 结构为 55m, 剪力墙结构为 45m。 7.结构平面布置不规则问题

高层建筑结构设计特点及体系分析

高层建筑结构设计特点及体系分析 发表时间:2016-07-08T16:27:19.500Z 来源:《基层建设》2016年6期作者:李晓瑞 [导读] 近年来,我国高层建筑设计及施工又有很大的发展,各种结构型式得到充分应用。 广西南都建筑设计有限公司 530021 摘要:近年来,我国高层建筑设计及施工又有很大的发展,各种结构型式得到充分应用,高层建筑的体型和功能更加多样化,结构复杂程度增加。基于此本文着重对高层建筑结构设计特点及体系进行了分析,旨在为提高高层建设工程质量提供参考。 关键词:高层建筑;结构设计;体系 前言 高层建筑结构的最主要特点是水平荷载为设计的主要因素,侧移限值为确定各抗侧力构件数量和截面尺寸的控制指标。有些构件除必须考虑弯曲变形外,尚需考虑轴向变形和剪切变形的影响,地震区的高层建筑结构还需要控制结构和构件的延性指标。目前国内高层建筑类型不断增多,发展较快,由此需要结合钢结构和混凝土结构的优点,承载力高、延性好、变形能力强等理论基础,对建筑结构设计进行研究。 1高层建筑结构设计特点分析 1.1重视侧向荷载对结构的影响 随着建筑高度的增大,侧向荷载对结构影响的增长速率大于竖向荷载的增长速率,到某一高度时,侧向荷载对结构的影响将超过竖向荷载。从这开始,侧向荷载将成为确定高层建筑结构方案和影响土建造价的决定性因素。为此,对侧向荷载的作用,该倍加关注。 1.2结构设计除需满足承载力以外,还需满足侧移要求 (1)侧移的限值 结构受侧向荷载后,结构将发生水平变位——侧移。按侧移对结构的影响,可分为绝对侧移和层间侧移这两项。这里,绝对侧移是指建筑结构相对于地面原点的水平变位大小;而层间侧移则是指两相邻楼层绝对侧移值之差(见图1)。绝对侧移量过大,将会使结构产生P-效应,增大结构内力;有时甚至还会引起电梯运行困难,增加结构倾覆和失稳的危险性;同样,层间侧移过大,将会导致装修和非承重墙体的损伤[1]。 图1绝对侧移和层间侧移 (2)减少侧移的途径 一是减少风荷载或地震作用。对不考虑地震作用的高层建筑,风荷载是侧向荷载中的主要荷载。减少风荷载,就可减少侧移量。圆形平面时的风荷载最小,约只为矩形平面时的60%;即使将房屋的已定平面形状略加修饰,使之更近于流线形时,则同样也可起到减少风压的效果。 二是选用合适的结构方案。根据房屋的高度、高宽比、平面形状和它的体型,在选择结构方案时,将一并考虑控制侧移的这一因素。因一旦选定了结构方案,实际上,这时结构的侧移也就确定了。 三是设置刚性层。如我国某高层建筑 (地上37层、地下2层、高140m),钢筋混凝土框架一核芯筒结构,平面呈单轴对称的六边形,高宽比达5.2。但由于在第20层和第35层处各设了一道刚性层,使结构的顶点侧移量、由原先的284mm降至250mm,减少了10%。 1.3注意减轻楼面自重,减少楼面的结构高度 楼面(包括楼板及楼面梁)自重将占结构竖向荷载的大部分,由于高层建筑的层数多,虽每层的竖向荷载减少有限,但积累后的值对下层的柱、墙和基础都会产生不小的影响。 在确保楼层净高不变的条件下,减少楼面的结构高度,就可减少每层的层高。积累后,有时使房屋总高不变而增加楼层层数达1层或2层;或也可在楼层层数不变的条件下,减少房屋的总高。这些都将产生十分可观的经济效益。 2高层建筑结构设计体系分析 2.1框架结构体系 对于水平荷载作用,常用的方法有以下几种: 1)反弯点法。反弯点法的基本假设是把框架巾的横粱简化为刚性梁,因而框架节点不发生转角,只有侧移,同层各柱剪力与柱的移

浅析高层建筑结构设计存在的问题及对策

浅析高层建筑结构设计存在的问题及对策 发表时间:2016-05-25T10:16:41.620Z 来源:《工程建设标准化》2016年2月供稿作者:吴志星[导读] (山西平阳重工机械有限责任公司,山西,侯马,043003)众所周知,高层建筑的最大优势就是能够充分提高土地的利用率,这一优势在一定程度上充分缓解了当前我国土地资源短缺的压力。(山西平阳重工机械有限责任公司,山西,侯马,043003) 【摘要】在实行改革开放以后,随着时代的发展和科技的进步,我国的建筑业不仅与时俱进,楼层不断向高处扩展,而且在一定程度上取得了不小的成就,然而在高层建筑结构设计上各种问题频发,这也成为了一个亟待解决的问题。本文通过着重介绍高层建筑结构设计的原则、当前高层建筑结构设计中存在的问题和改进建筑结构设计中常见问题的对策,来强化和确保高层建筑结构设计的不断完善。 【关键词】高层建筑;结构设计;问题;对策 众所周知,高层建筑的最大优势就是能够充分提高土地的利用率,这一优势在一定程度上充分缓解了当前我国土地资源短缺的压力,但是,高层建筑的质量会受到多重因素的影响,一旦产生安全事故,必将对人们的生命和财产带来极大的影响,因此,对建筑的结构设计提出了更高的要求,只有高层建筑的结构设计科学合理,其质量才能有保障,才会有利于社会和谐稳定发展。 一、高层建筑结构的设计原则 1、选择合理的结构方案 只有结构方案经济合理,才能让一个建筑设计合理,可行性强的结构形式和传力简捷、受力明确的结构体系也会促进一个良好设计的形成。因此在进行结构设计时应当具体分析建筑所处的地理环境、材料和设计的需求及施工条件等,充分考虑高层建筑自身的特点,根据实际情况来选择一个合理的结构方案。 2、选择合适的基础方案 在设计过程中要注意最大程度地发挥地基的潜力,在基础设计时要形成详尽的地质勘察报告,如果缺少报告,必须进行现场勘查来制定设计方案,要先通过综合分析工程的地质地貌、施工条件、上部结构类型、相邻建筑物的影响及荷载分布等因素的考虑再进行基础设计,只有这样,才能设计出经济合理的基础方案。 3、进行正确的分析计算 随着科技的发展,计算机技术在结构设计方面已得到广泛应用,种类繁多的计算软件都存在不同程度的缺陷,因此在结构设计的计算过程中会出现不精确的情况,这就要求设计师在使用软件过程中细致认真,对产生的结果认真分析和校对,作出合理判断。 二、当前高层建筑结构设计中存在的问题 1、结构体系选用不科学 由于我国所处地球的板块较为活跃,因此地震频发,对与这些地震多的地区建设高层建筑就应当选用抗震性强的结构体系和建筑材料,一些发达国家通常是使用的钢结构,而我国大多使用的钢筋混凝土结构或者混合结构,但钢框架的刚度较小,钢结构会产生一定程度的负担,也不会起到较好的效果,钢筋混凝土很容易产生弯曲变形而导致侧移,因此在进行结构设计时必须注意使用加强层把侧移量降低或者加大混凝土制土桶刚度。 2、高层建筑普遍超高 高层建筑对抗震能力的要求较高,因此国家严格规定了建筑物的高度,但是实际需求的不断改变使得建筑的高度不断发生改变,因此国家又对A级高度和B级高度进行新的规定和细致划分。即使如此,一些设计师在进行结构设计时往往会忽视高度的问题,对于一些不适合建设高层建筑的地段或条件也会出现为了追求利益的最大化而违反相关规定进行施工,这种情况对整个建筑的成本预计和建设进度都会造成诸多不良影响。 3、结构设计的刚度问题 楼层竖向结构的规则性与平面刚度问题是高层建筑结构设计过程中一个经常遇到的问题,由于在高层建筑的设计过程中每位设计师都有自己的想法和设计理念,因此在设计时就会产生差异,导致结构设计产生矛盾和分歧,在建筑施工过程中很容易出现一味追求独特新颖的外观而忽视抗侧移的刚度对高层建筑能否抗震的影响。 4、材料配备和资源配置不科学 高层建筑的结构特点非常明显,其结构设计的复杂性是由其功能的复杂性决定的,传统的建筑选材多为可燃性材料,这种材料很可能增加高层建筑火灾发生的可能性,对于建筑施工过程中劳动力等资源的配置如果未能提前进行预计和计算,还会对后期的施工造成一定的难度,对于其引发的一系列突发状况也很难及时处理和解决,造成施工进度无法按期完成。 三、改进建筑结构设计中常见问题的对策 1、选用科学的结构体系 受自然灾害的影响,人们对建筑的稳定性能要求逐渐提高,对高层建筑的要求越来越严格,由于高层建筑限制性较大,因此必须对高层建筑结构设计中选用的结构体系进行严格限制,以免在后期的项目施工的设计阶段发生不必要的变动,对计算简图也要慎重选择和使用,根据建筑物的影响因素和自身特点来选用一套科学合理的的结构体系。 2、注重建筑的设计高度 设计师在进行高层建筑的结构设计过程中,要明确意识到有关的高度规范,严格审查设计图纸,确保结构设计与相关的要求和规范相符合,对于建筑施工过程中出现的问题要及时调集有关专家加以具体分析,对高层建筑重新进行设计和评估,以免对建筑的施工进度和质量产生不良影响。国家相关部门也应当加大对高层建筑的审查力度,对不合乎规范的行为进行严加处理,确保高层建筑结构的稳定性和安全性。 3、选择合理的刚度设计

相关文档
相关文档 最新文档