文档库 最新最全的文档下载
当前位置:文档库 › 基于光电传感器的智能小车控制系统设计与实现

基于光电传感器的智能小车控制系统设计与实现

基于光电传感器的智能小车控制系统设计与实现
基于光电传感器的智能小车控制系统设计与实现

第1章绪论 (2)

1.1速度闭环控制系统 (2)

1.2直流电机闭环控制的目的和意义 (3)

1.3主要内容 (4)

第2章总体设计思路及方案论证 (5)

2.1硬件设计方案论证 (5)

2.1.1单片机模块方案 (5)

2.1.25V稳压电源模块方案 (8)

2.1.3直流电机驱动模块 (9)

2.1.4测速方案 (10)

2.2控制方案论证 (10)

2.3本章小结 (11)

第3章系统硬件电路设计 (12)

3.1Freescale单片机模块 (12)

3.1.1时钟电路 (12)

3.1.2复位电路和BDM接口 (13)

3.1.3单片机最小系统电源电路 (14)

3.25V稳压电源模块 (14)

3.3测速传感器模块 (16)

3.3.1光电码盘的工作原理及设计 (16)

3.3.2光电编码器的安装结构 (18)

3.4直流电机及其驱动模块 (18)

3.4.1直流电机 (18)

3.4.2直流电机驱动器 (19)

3.5本章小结 (20)

第4章系统软件设计 (21)

4.1软件功能及流程 (21)

4.2单片机系统初始化 (22)

4.2.1单片机最小系统初始化 (22)

4.2.2定时器初始化 (25)

4.2.3PWM初始化 (26)

4.3速度闭环控制程序 (29)

4.3.1PID控制原理 (29)

4.3.2数字PID控制算法 (30)

4.3.3速度闭环控制程序设计 (31)

4.3.4具体程序设计 (32)

4.4本章小结 (34)

第5章系统调试 (35)

5.1开发工具介绍 (35)

5.2系统硬件调试 (36)

5.3系统软件调试 (37)

5.4本章小结 (38)

结论 (39)

参考文献 (40)

1

第1章绪论

闭环控制是自动控制论的一个基本概念,也称反馈控制,在日常生活的各种控制实例中有具体的表现方式,比如常用交通工具中电车的速度控制,汽车的速度控制,冰箱的温度调节等,其中采用闭环控制方案对直流电机进行调速是生产生活中最常见的一种闭环控制实例。在工业自动化飞速发展的今天,利用高性能单片机来完成对仪器设备的自动化控制是其中最重要的一个环节。本文研究对象是基于Freescale单片机的移动小车控制系统设计,涉及到对直流电机的速度控制,舵机转向的控制,应用了所学的电路基础知识、自动控制理论知识,又充分利用了Freescale单片机的高性能与可靠性。

1.1速度闭环控制系统

随着工业自动化以及电子信息技术和自动控制技术的不断发展,电机的种类不断增加,性能也更加出色。以电机为动力的车辆的自动化程度也越来越高,对车辆自动化程度的要求也越来越高,电车近几十年来发展十分迅速,直流电机电瓶车的速度控制水平也得到了极大的提高。转速控制作为电机控制中最关键的部分,具体反映到电车就是在车体速度控制上,而速度闭环控制作为重要的控制方式,得到了最广泛的应用。

直流电机速度闭环控制系统包括以下内容:

(1)直流电机在接到起动电压后起动;

(2)转速达到预设速度后,利用PWM脉宽调制电路产生方波,并通过单片机设定占空比,达到无级调速;

(3)采用直流电机反接制动原理来调速,在增量PID控制算法下达到稳定转速的效果。

速度闭环控制系统硬件组成:

(1)PWM脉宽调制电路

(2)测速装置(光电编码器)

2

(3)动力装置(直流电机)

(4)直流电机驱动器

本设计以Freescale CodeWarrior为开发环境,采用MC9S12XS128(16位)MCU(Micro Control Unit)作为主控芯片,利用MC9S12XS128教学实验系统并增加必要的外围辅助电路,设计完成直流电机的速度闭环控制,直流电机驱动器,整个系统的设计不仅是对小车控制系统的开发,达到了理论与实践的结合,加深了对自动控制理论的了解。

1.2直流电机闭环控制的目的和意义

电机在工业生产中的主要控制方式为闭环控制,电机闭环控制技术的不断改进带来生产和生活了众多的好处:能够提高电机运行过程中的平稳,进而使以电机为动力的机械可靠性增加;增加各类机械中的自动化技术含量;增加电力机车在交通运输工具中所占的比例,减少环境污染等。

而为了提高直流电机调速系统的动静态性能指标,通常采用闭环控制系统(包括单闭环系统和多闭环系统)。对调速指标要求不高的场合,采用单闭环系统,而对调速指标较高的则采用多闭环系统。按反馈的方式不同可分为转速反馈、电流反馈、电压反馈等。在单闭环控制系统中,转速单闭环使用较多。在对调速性能有较高要求的领域常利用直流电机作动力,但直流电机开环系统稳态性能不能满足要求,可利用速度负反馈提高稳态精度。

反馈控制系统的规律是要想维持系统中的某个物理量基本不变,就引用该被控量的负反馈信号去与恒值给定相比较,构成闭环系统。对调速系统来说,若想提高动静态指标,希望电机转速在负载电流变化时或受到扰动时基本不变。要想维持转速这一物理量不变,最直接和最有效的方式就是采用转速负反馈构成速度闭环控制系统。

PWM简称脉宽调制,即英文Pulse Width Modulation的缩写,是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用

3

在从测量、通信到功率控制与变换的许多领域中。采用单片机产生PWM脉冲进行直流电机的无级调速是目前直流电机调速的最常用方法之一。

1.3主要内容

本文以Freescale CodeWarrior为开发环境,采用飞思卡尔MC9S12XS128(16位)MCU作为主控芯片,进行课题的设计与研究。具体研究内容如下:

1、选用恒压恒流H桥式驱动芯片L298N,完成基于PWM(脉宽调制)电路的直流电机驱动器设计,实现对7.2V直流电机的无级调速。

2、采用增量式PID控制算法进行直流电机闭环控制程序设计,编写相应C语言程序,完成对直流电机的速度单闭环控制,从而实现小车速度的实时控制。

3、基于超声波测距原理设计倒车防撞报警器,并用C语言编写功能程序,使小车在倒车过程具有防撞报警功能。

4、设计制作LCD显示系统,用于显示小车的实时速度值,使速度量可视化,完善小车功能。

5、利用Freescale单片机开发板和Freescale CodeWarrior 4.7开发软件包,完成对速度闭环控制程序、超声波倒车防撞报警程序、LCD显示功能程序的调试。

4

第2章总体设计思路及方案论证基于Freescale S12单片机对移动小车控制系统进行设计,实现对小车的速度闭环控制。因为需要设计直流电机驱动器、倒车防撞报警器、LCD液晶显示系统等硬件实物,并通过Freescale CodeWarrior4.7软件包开发设计相应的驱动和功能程序,所以对设计总体思路进行把握主要工作分为两部分:硬件和软件。首先对硬件和软件的设计方案分别进行可行性论证,在此基础上才能进行具体的方案设计与软硬件调试。

2.1硬件设计方案论证

采用Freescale MCU作为控制芯片,对个功能模块进行控制。由于涉及到的功能相对较多,首先需要在原理上对每一部分功能模块进行分析,再把软硬件集成到一起进行可行性论证。

2.1.1单片机模块方案

MC9S12XS128属于Freescale MC9S12系列微控制器[19],是飞思卡尔半导体公司的汽车电子类产品,早在飞思卡尔还没有从摩托罗拉分离出来前就已经诞生了。其内核为CPU12高速处理器。MC9S12XS128拥有丰富的片内资源,flash达128kb,加入裁减过的μC/OS都没有问题,所以对于中等复杂程度的控制系统它不用扩充片外存储器。

1、Freescale MC9S12系列微控制器

Freescale MC9S12系列MCU是以高速CPU12内核为基础的微控列,简称S12系列[2]。典型的HC12总线频率为8MHz,而典型的S12总线频率为25MHz。HC12与S12指令完全兼容,故统称为HCS12系列微控制器。

智能产品的设计人员可利用S12系列微控制器低成本的FLASH存储器,轻松实现以微控制器为基础的远程升级、换代和现场进行快速再编程系统设计,可缩短嵌入式产品的设计周期,改善性能,同时亦降低售后服务系统的整体成本。S12微控制器已广泛应用于通信、工业以及无数消费类电子

5

产品中,例如空调、冰箱、PC外围设备和通信机电产品等。

S12系列微控制器主要有A、B、C、D、E、F、G、H、L等系列,分为以下几大类:

(1)MC 9S12A系列和B系列16位微控制器;

(2)带CAN总线的MC 9S12D系列16位微控制器;

(3)带液晶驱动的MC 9S12H系列和MC 9S12L系列16位微控制器;

(4)低供电电压的MC 9S12E128和MC 9S12E64系列16位微控制器;

(5)带USB接口的MC 9S12UF32系列16位微控制器;

(6)带以太网接口的MC 9S12NE系列16位微控制器。

S12系列微控制器有以下优点:

(1)S12系列具有FLASH存储器;

(2)S12系列采用的C语言已进行了最优化设计,编码方式效率高;

(3)S12系列具有低成本调试功能。

2、MC9S12XS128微控制器的组成

MC9S12XS128有16路AD转换,精度最高可设置为10位;有8路8位PWM并可两两级联为16位精度PWM,特别适合用于控制多电机系统。它的串行通信端口也非常丰富,有2路SCI,2路SPI此外还有IIC,CAN总线,增强型捕捉定时器等端口,并且采用了引角复用功能,使得这些功能引角也可设置为普通的I/O端口使用。此外它内部还集成了完整的模糊逻辑指令,可大大简化我们的程序设计。

MC9S2XS128的封装有两种,一种为80引角的QFP-8封装形式,它没有引出扩展总线,且AD转换只引出了8路;一种为112引角的LQFP-112封装形式,两种都采用了表面贴片式封装。从下面的引角图我们可以看到MC9S2XS128的引角复用情况,一个引角往往有双重或多重功能,而这些功能的设置大部分是通过编程来实现的,非常方便。对于MC9S2XS128的学习,先从各引角的功能学起,然后试着下载程序,再逐渐编程实现各引角的功能。

在单片模式下,A口、B口和部分E口都可以用作通用I/O接口,如果

6

7

所有接口工作在通用I/O 方式下,那么I/O 口将达到63个。这些双重功能的I/O 口本身及控制逻辑完全集成在MCU 内部,其体积、功耗、可靠性、应用简单方便程度都与用户自行扩充的I/O 口有着重要区别。

LQFP-112封装的MC9S12XS128[1]引脚图如图2.1。

图2.1 MC9S12XS128引脚图

3、单片机基本硬件系统

目前多数单片机产品都是表面贴片封装的器件,因为直接设计目标板有相当难度,不妨先设计一个最小系统,将单片机所有I/O引脚都引出到排针或者插座上。I/O接口板另外设计,最小系统板可以像一个直插的器件,插在目标板上。虽然S12单片机将CPU、ROM、RAM、以及I/O都集成在一个集成电路芯片上,但仍需要一些外部电路的支持。如为单片机系统提供电源、时钟、复位信号和I/O驱动等。

2.1.25V稳压电源模块方案

由于采用7.2V镍镉电池作为驱动直流电机的电源,而飞思卡尔单片机的工作电压为5V,故需要进行5V稳压电路设计。有以下两种设计方案。

方案一:基于LM7850稳压芯片的电路设计。

采用以TO- 220 标准封装的LM7850作为稳压芯片,它只有三条引脚输出,分别是输入端、接地端和输出端。样子象是普通的三极管,是最常见的三端稳压集成电路。这是起始时候我的设计方案。LM7850电路内部还有过流、过热及调整管的保护电路,使用起来可靠、方便,而且价格便宜。但是LM7850稳压电路的稳压性能在电池电压低于7V时候没有稳压效果,直接输出7V电压,这样会高于单片机的工作电压5V,导致烧毁单片机。

电池采用的是实验室的镍镉电池,但是由于其投入使用时间较长导致损耗比较大,持续供电会导致电压不稳,小于7V。

方案二:基于LM2940稳压芯片的电路设计[26]。

采用LM2940作为稳压芯片,当时实验室没有此种芯片,方案二便成了开始时候的备选方案。

这种方案可以保证稳压输出端电压稳定在5V左右,满足单片机的电压要求。由于LM2940是低压差线性稳压器(low dropout regulator),LM2940比LM7805的转换效率高。LM7805直接输入不接输出的情况下,其内部还会有3mA的电流消耗(静态电流)。而LDO元件(即LM2940)的静态电流就比它远远小得多了。用此稳压电源给飞思卡尔单片机和LCD字符液晶以及超声波测距模块供电。

8

由于电池损耗原因,第一种方案达不到要求的5V稳定电压,弃用,改用为第二种方案,通过电压表的实际测试,不管电池状态怎样,电压始终稳定在4.95—5.05V,满足设计要求。LM2940稳压电路原理图如图2.2。

图2.2 LM2940稳压电路

2.1.3直流电机驱动模块

由于本设计中直流电机的功率限制,不可能由单片机直接驱动直流电机。所以要设计直流电机驱动器,进而驱动直流电机的正反转。这里我采用以恒压恒流桥式2A驱动芯片L298N为驱动芯片的直流电机驱动器设计。

L298是SGS公司的产品,比较常见的是15脚Multiwatt封装的L298N,内部同样包含4通道逻辑驱动电路。可以方便的驱动两个直流电机,或一个两相步进电机。输出电压最高可达50V,可以直接通过电源来调节输出电压;可以直接用单片机的IO口提供信号;而且电路简单,使用比较方便,能完成本设计的要求。图2.7为L298N的引脚图。

9

10

图2.7 L298N 引脚图

2.1.4 测速方案

速度传感器感知小车的行驶速度,有如下两种方案:

2、采用光学编码器

这是目前应用最多的测速传感器,光学编码器[15]由光源、码盘、接收器组成,码盘周围有小孔,光源透过小孔投射在接收管上,由于光电码盘与电动机同轴,电动机旋转时,光栅盘与电动机同速旋转,经发光二极管等电子元件组成的检测装置检测输出若干脉冲信号,通过计算每秒光电编码器输出脉冲的个数就能反映当前电动机的转速。市场上有现成的光学编码盘出售,但体积和重量普遍较大,不符合轻量化设计的原则。自制品稳定性较差。

2.2 控制方案论证

速度控制算法:常用的控制规律有:比例控制;积分控制;微分控制;比例积分控制;比例微分控制;比例、积分、微分控制。

对直流电机的速度控制优先采用PID 控制算法,在工程实际中,应用最

为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID 调节。PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。即当我们不完全了解一个系统和被控对象,或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。PID控制,实际中也有PI和PD控制。PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。

因为直流电机带动小车在行驶过程中,路面信息不可确定,首先要保证小车在行驶过程中的运行平稳性,所以为了提高动态性能和稳态性能,采用PID控制方式,理论上PID控制方式可以很好的满足设计性能要求。在实际的调试中只需要选择合适的参数,可以使控制性能达到最佳。

2.3本章小结

本章主要讨论的是设计思路论证和方案的选择。首先讨论硬件设计思路,在满足系统性能要求的前提下对备选方案进行论证。接着进行了单片机外围电路与各个功能部分模块的实际分析,对主要硬件及核心芯片进行了选型。随后进行主要控制算法的论证,了解被控对象的控制要求,匹配单片机的内部电路功能及引脚功能,进行控制算法的选择。针对速度控制系统与超声波测距模块的特点,分析单片机的片内资源,选择合适的控制算法进程序的设计。通过论证和分析,基本保证了软硬件的可行性,并设计了大体框架。

11

第3章系统硬件电路设计

开发单片机的思路是先设计最小系统,给单片机上电,提供必要的时钟让单片机活起来;通过这个最小系统,人要能与单片机沟通,一般是通过BDM 接口等来实现。包括发命令给单片机、下载程序、调试程序等。有了这个基本环境后才可以调试硬件,本章讲述基本硬件系统的设计。

3.1Freescale单片机模块

以MC9S2XS128为核心控制芯片的最小系统[21]主要包括以下几个部分:时钟电路、BDM接口、供电电路、复位电路和调试小灯。其最小系统板如图3.1所示。

图3.1MC9S2XS128最小系统板

3.1.1时钟电路

时钟电路给单片机提供一个外接的石英晶振,单片机及系统运行需要两个最基本的条件:电源与时钟。其中时钟电路的设计甚为关键,如果由于设计中的毛病,造成时钟电路不稳定,会导致嵌入式系统瘫痪。通过把一个16MHz 的外部晶振接在单片机的外部晶振接入口EXTAL和XTAL上,然后利用MC9S2XS128内部的压控振荡器和锁相环(PLL)把这个频率提高到了

12

40MHz。作为单片机工作的内部总线时钟。其电路图如图3.2。

图3.2外部振荡电路

3.1.2复位电路和BDM接口

复位电路是通过一个复位芯片在电压达到正常值时给单片机一个复位信号。复位电路使用了低压复位芯片MC34064,使用专门的上电复位电路使系统上电复位更加可靠。

BDM接口可用于BDM在线调试,其中,BDMIN接口是接BDM调试工具,向MC9S2XS128单片机下载和调试程序用的。电路原理如图3.3。

图3.3复位电路与BDM接口电路原理图

13

3.1.3单片机最小系统电源电路

MC9S2XS128 系列单片机的外部供电电压为5V,分别为单片机的内部电压调整器,IO 端驱动器,AD 转换器提供电源,下图中除了加入了扼流电感,滤波电容以外还串接了可恢复熔断器F1 和并接了稳压二极管D,这样就可以为单片机提供安全,稳定和纯净的电源了。最后我们别忘了并接一个发光二极管来指示单片机的工作状态。图3.4为单片机供电电路。

图3.4单片机供电电路

3.25V稳压电源模块

由于采用学院自动化技术创新中心提供的7.2V、2Ah的镍镉电池作为电源来驱动直流电机,而飞思卡尔单片机的额定工作电压皆为5V,故需要进行5V稳压电路设计。

采用低压差稳压集成芯片LM2940。由于LM2940是低压差线性稳压器(low dropout regulator),静态电流非常小,它的特点是在整个温度范围内按典型0.5V和最大1V的失稳电压提供1A的电流输出。此外还有静态电流降低电路,当输入与输出的电压大于3V时还可以自动降低静态电流,该稳压器同样也具有一般稳压器的短路保护和热过载保护等功能。

主要性能:

14

●输出电压5V

●最大输出电流1A

●典型失稳电压0.5V

●最大工作电压26V

●工作温度40℃~+125℃

●引线温度(焊接,10S)+260℃

●输出电压组装前微调

●反接电池保护

●内部短路保护

图3.5为LM2940的引脚图。

图3.5LM2940的引脚图

LM2940引脚名称见表3.1。

表 3.1LM2940的引脚名称

LM2940芯片在焊接时候注意引脚方向,切不能焊错,也不能让烙铁接触引脚时间太长,以免损坏内部电路,经典实用稳压电路如图3.6所示。

15

16

图3.6 LM2940稳压电路

注意事项:

1、C1远离电源位置;

2、要稳定的话C2必须高于22μF ,并尽可能的接近稳压器。焊接完进行调试,用7.2V 电池进行供电,用万用表电压端测量输出引脚,为4.95V 。

3.3 测速传感器模块

本模块采用光电码盘作为测速传感器,通过码盘转轴齿轮与后轮车轴齿轮的啮合,进行小车的测速。

3.3.1 光电码盘的工作原理及设计

光电编码器[32],是一种通过光电转换将输出轴上的机械几何位移量转换成脉冲或数字量的传感器。这是目前应用最多的传感器,广泛用于自动控制,自动测量,作为转角与转速传感器。光电编码器是由光栅盘和光电检测装置组成。光栅盘是在一定直径的圆板上等分地开通若干个长方形孔。由于光电码盘与电动机通过齿轮啮合,电动机旋转时,光栅盘与电动机以一定传动比旋转,经发光二极管等电子元件组成的检测装置检测输出若干脉冲信号,通过计算每秒光电编码器输出脉冲的个数就能反映当前电动机的转速。

增量式编码器是直接利用光电转换原理输出三组方波脉冲A 、B 和Z 相;

A 、

B 两组脉冲相位差90º,从而可方便地判断出旋转方向,而Z 相为

17

每转一个脉冲,用于基准点定位。它的优点是原理构造简单,机械平均寿命可在几万小时以上,抗干扰能力强,可靠性高,适合于长距离传输。其缺点是无法输出轴转动的绝对位置信息。

光电码盘的工作原理如图3.11。

码盘

透镜放大整形

图3.11 光电码盘工作原理1、产品型号与编号

● 电压输出型 ZVH-4A-50BM-ES~26E

● 精度 500P/r

● 零位宽 Tm=1T

● 工作电压 DC 5~26V

● 码盘直径 Φ18mm

● 最高转速 10000rpm

● 允许角加速度 10000rad/s 2

● 最大负载 轴向4.9N 径向9.8N

2、注意事项

(1)光电码盘属于高精密仪器,如安装使用不当会影响仪器的性能和寿命;

(2)避免与光电编码器刚性联接;

(3)安装时注意其允许的轴最大负载,严禁敲击和摔打。

3.3.2光电编码器的安装结构

光电编码器用于测量电机转速,由于电机驱动后轮,故需要安装在后轮轮轴附近,通过与轮轴上的齿轮进行啮合。

机械安装结构如图3.12。

图3.12光电码盘安装结构

3.4直流电机及其驱动模块

直流电机作为本系统的动力来源,通过齿轮来带动后轮转动,但要完成闭环调速的功能,决定了直流电机不可能直接由单片机或者外接电源供电,必须通过设计直流电机驱动器来驱动直流电机。

3.4.1直流电机

直流电机参数:

●电机型号RS380_ST

●驱动电压7.2V

●空载最大转速15300转/分

18

●堵转电流16.72A

●最大功率26.68W

●堵转扭矩680gcm

●电机直径Φ27.7mm

3.4.2直流电机驱动器

采用以恒压恒流桥式2A驱动芯片L298N为驱动芯片进行直流电机驱动器设计。

L298N是SGS公司的产品,比较常见的是15脚Multiwatt封装的L298N,内部同样包含4通道逻辑驱动电路。可以方便的驱动两个直流电机,或一个两相步进电机。

L298N可接受标准TTL逻辑电平信号VSS,VSS可接4.5~7 V电压。4脚VS接电源电压,VS电压范围VIH为+2.5~46 V。输出电流可达2.5 A,可驱动电感性负载。1脚和15脚下管的发射极分别单独引出以便接入电流采样电阻,形成电流传感信号。L298可驱动2个电动机,OUT1,OUT2和OUT3,OUT4之间可分别接电动机,本装置我们选用驱动一台电动机。5,7脚接输入控制电平,控制电机的正反转。EnA接控制使能端,控制电机的停转。表3.2列举了L298N功能逻辑。

表 3.2L298N功能逻辑

19

由表3.2可知当EnA为低电平时,输入电平对电机控制起作用,当EnA 为高电平,输入电平为一高一低,电机正或反转。同为低电平电机停止,同为高电平电机刹停。

L298N与MC9S12XS128的连接电路如图3.15。

图3.15电机驱动电路原理图

3.5本章小结

本章主要进行了系统硬件电路的具体设计。首先对单片机各模块和内部功能进行了详细的说明,并附有原理图和实物图;而超声波测距模块作为主要功能模块,是讨论的重要对象,从超声波的发射接收原理到发送接收电路,都做了说明,并进行硬件的焊装;测速传感器模块关系到本设计最主要的速度闭环控制部分,在此对光电编码器的原理跟技术参数进行了介绍;随后进行LCD显示模块的具体设计,它的设计能否完成很大程度上影响了整个系统的运行。最后直流电机驱动模块单列出来,进行具体的设计说明,附电路原理图、工作逻辑图。通过以上对进行硬件电路的设计,做出硬件实物。

20

基于51单片机设计智能避障小车

单片机设计智能避障小车 摘要 利用红外对管检测黑线与障碍物,并以STC89C51单片机为控制芯片控制电动小汽车的速度及转向,从而实现自动循迹避障的功能。其中小车驱动由L298N 驱动电路完成,速度由单片机输出的PWM波控制。本文首先介绍了智能车的发展前景,接着介绍了该课题设计构想,各模块电路的选择及其电路工作原理,最后对该课题的设计过程进行了总结与展望并附带各个模块的电路原理图,和本设计实物图,及完整的C语言程序。 关键词:智能小车;51单片机;L298N;红外避障;寻迹行驶 abstract Using infrared detection black and obstacles to the line and STC89C51 microcontroller as the control chip to control the speed of the electric car and steering, so as to realize the function of automatic tracking and obstacle avoidance. Which the car driven by the L298N driver circuit is completed, the speed of the microcontroller output PWM wave control. This article first introduces the development of the intelligent car prospect, then introduces the design idea, the subject selection of each module circuit and working principle of the circuit, the design process of the subject is summarized and prospect with each module circuit principle diagram, and the real figure design, and complete C language program. Key words: smart car; 51 MCU; L298N; infrared obstacle avoidance; track driving

基于单片机的智能寻迹小车毕业设计

基于单片机的智能寻迹小车毕业设计 系统主要由红外避障模块、声控模块、光电寻迹、电机驱动及语音播报模块组成。 采用P89V51单片机作为智能小车控制核心。系统能实现对线路进行寻迹,小 车可以 前进或后退,遇到障碍物可以自行停止并可以实现反向运行,系统可以利用声 音控 制小车的启停。整个系统小巧紧凑,控制准确,性价比高,人机互动性好。 P89V51单片机;红外避障;线路寻迹;直流减速电机 ABSTRACT System is mainly by infrared obstacle avoidance module, voice module, opto-electronics and motor drive tracing module. Used as a single- chip smart car P89V51 control core. System can realize the tracing lines, cars can go forward or backward, encountered obstacles can stop and reverse operation can be achieved, the system can use voice to control the start and stop car. Compact the entire system to control the accurate, cost-effective, good human-computer interaction. KEYWORD: P89V51MCU;Infrared obstacle avoidance;Tracing;DC motor speed 1

智能超声波避障小车地设计与制作

江阴职业技术学院项目设计报告 项目:超声波避障小车的设计与制作 专业 学生姓名 班级 学号 指导教师 完成日期

摘要 智能小车是一种能够通过编程手段完成特定任务的小型化机器人,它具有制作成本低廉,电路结构简单,程序调试方便等优点。由于具有很强的趣味性,智能小车深受广大机器人爱好者以及高校学生的喜爱。 本论文介绍的是具有自动避障功能的智能小车的设计与制作(以下简称智能小车),论文对智能小车的方案选择,设计思路,以及软硬件的功能和工作原理进行了详细的分析和论述。经实践验收测试,该智能小车的电路结构简单,调试方便,系统反映快速、灵活,设计方案正确、可行,各项指标稳定、可靠。

Abstract Smart cars can be programmed to perform a specific task means the miniaturization of robot, it has to make cost is low, circuit simple structure, convenient program test. Because of it has strong interest, intelligent robot car favored by the majority of the university students' enthusiasts and love. This paper introduces the is a automatic obstacle avoidance function of intelligent car design and production (hereinafter referred to as the smart car), the thesis to the intelligence of the car scheme selection, design idea, and the implementation of hardware and software function and working principle of a detailed analysis and discusses. After practice acceptance test, this intelligent car circuit structure is simple, convenient debug, fast, flexible system reflect, correct and feasible design scheme, each index is steady and reliable.

基于STM32 智能抓物小车的设计 电子设计II课程报告

摘要 本实验主要分析把握对象的智能车基于STM32F103的设计。智能系统的组成主要包括STM32F103控制器、伺服驱动电路、红外检测电路、超声波避障电路。本试验采用STM32F103微处理器作为核心芯片,速度和转向的控制采用PWM技术,跟踪模块、检测、障碍物检测和避免功能避障模块等外围电路,实现系统的整体功能。 小车行驶时,避障程序跟踪程序,具有红外线跟踪功能的汽车检测电路。然后用颜色传感器识别物体的颜色和抓取。在硬件设计的基础上提出了实现伺服控制功能,简单的智能车跟踪和避障功能的软件设计和控制程序,在STM32集成开发环境IAR编译,并使用JLINK下载程序。 关键词:stm32;红外探测;超声波避障;颜色传感;舵机控制

ABSTRACT This experiment mainly analyzed the grasping object intelligent car based on STM32F103 design. The composition of the intelligent system mainly includes STM32F103 controller, servo drive circuit, infrared detection circuit, ultrasonic obstacle avoidance circuit. This test uses the STM32F103 microprocessor as the core chip, the speed and steering control using PWM technology, tracking module and detection, obstacle avoidance module for obstacle detection and avoidance function, other peripheral circuit to achieve the overall function of the system. The car is moving, obstacle avoidance procedures prior to tracking program, car tracking function with infrared detection circuit. Then use color sensor to recognize object color and grab. On the basis of the hardware design is proposed to realize the servo control function, simple intelligent car tracking and obstacle avoidance function of the software design, and the control program is compiled in the STM32 integrated development environment IAR, and download the program using Jlink. Key words: STM32; infrared detection; ultrasonic obstacle avoidance; color sensing; steering control

智能避障小车设计--毕业设计完整版-附程序编程

毕业设计设计题目:智能避障小车设计 系别:机电工程系 班级:测控技术与仪器 姓名:XXX 指导教师: XXX

智能小车设计 摘要 随着近年来机器人的智能水平不断提高,其中机器人的感觉传感器种类越来越多,而视觉传感器成为自动行走和驾驶的重要部件。智能小车可应用于无人工厂,仓库,服务机器人等领域解决一些高危环境下的难题。同时单片机技术的迅速发展使得机器人的智能控制更加智能化,人性化。 该设计是利用光电传感器以一定的频率发射红外线来检测障碍物,然后将检测信号发送到STC89C52单片机,并以STC89C52单片机为控制芯片进而电动小汽车的速度及转向,以此实现自动避障的功能。其中小车驱动由L298N驱动电路完成,速度由单片机输出的PWM波调速控制。本设计结构简单,较容易实现,与实际相结合,现实意义很强,但具有高度的智能化、人性化,一定程度体现了智能。 关键词:智能小车; STC89C52单片机; L298N; PWM波

Design Of Smart Car Abstract Along with the robot's intelligent level rises ceaselessly, the types of robot sensory sensor are more and more, and the vision sensor have become the important part in the automatic walking and driving .Smart car can be applied to unmanned factory, warehouse, service robot and etc. to solve some high risk environment problems,At the same time,The rapid development of MCS technology makes the intelligent control of robot more intelligent ang humane. This design uses a photoelectric sensor sending a certain frequency transmitting infrared to detect obstacles, and then sends a detection signal to a STC89C52 MCS. While the car is drived by the L298N circuit, its speed is controlled by the output PWM signal from the STC89C52 MCS.This design is practical ,easy realization and simple in the structure, but highly intelligent, humane, Intelligent in some degree. Key words:Smart Car; STC89C52 MCS; L298N; PWM Signa

智能小车硬件系统-STM32最小系统

智能小车硬件系统设计-STM32最小系统 1.智能小车的车体结构选择 目前常用的移动机器人运行机构的方式有轮式、履带式、腿式以及上述几种方式的结合。轮式和履带式机器人适合于条件较好的路面,而腿式步行机器人则适合于条件较差的路面。为了适应各种路面的情况,可采用轮、腿、履带并用。在各种实用的移动机器人中以轮式机器人,最为常见,它具有悠久的历史,在机械设计上非常成熟。本文中智能小车的设计思想是作为在路面环境较好的场合中工作的机器人使用,所以采用轮式机器人。机器人车体由车架、蓄电池、直流电机、减速器、车轮等组成,它是整个小车的基础部分。 从轮式移动机器人的车轮个数来说,常用的为三轮或四轮,更多轮的机器人则多见于可变构形的移动机器人应用。四轮机构在稳定性方面强于三轮机构。而一般轮式移动机器人转向装置的结构通常有两种方式,第一种方式是使用舵机转向,在此方式下前轮是自由轮,后轮是驱动轮,使用一个电机进行驱动,转向使用舵机控制转向轮前轮实现另外一种方式使用差动控制转向,与舵机转向相同的是,后轮是驱动轮,但左、右轮使用独立的电机驱动,前轮为自由轮,转向通过控制左右驱动轮速度的方式实现。综合考虑到智能小车承载能力、稳定性以及转向精度的要求,系统采用了四轮差动转向式,其中后部两轮为驱动轮,前部两轮为随动万向轮。 2.智能小车控制系统方案 在整个智能小车系统的总体设计之中,控制系统是最重要的,它是整个系统的灵魂。控制系统的先进与否,直接关系到整个机器人系统智能化水平的高低。机器人的各种功能都在控制系统的统一协调前提下实现,控制系统设计的策略也决定了整个机器人系统的功能特点及其可扩展性。本文设计的智能小车控制系统,具备了障碍物检测、自主定位、自主避障、总线通信、无线通信等一系列功能。根据上述所提及的智能小车的功能要求,课题研究的控制系统主要包括电源模块、微控制器模块、障碍检测模块、电机驱动模块、速度检测模块、通讯扩展模块等部分。系统总体框图如图1所示。具体设计过程中,各模块硬件以及软件部分力求相对独立,为日后的更新和后续升级提供便利。

基于Arduino智能寻迹小车开题报告

云南农业大学 本科生毕业设计开题报告 设计题目:基于Arduino的智能寻迹小车控制系统设计毕业设计起止时间: 年月日~月日(共 17 周) 专业:电气工程及其自动化 姓名: 学号: 指导教师: 报告时间: 云南农业大学教务处制 200 年月日

1. 本课题所涉及的问题在国内(外)的研究现状综述 国外智能车辆的研究历史较长,始于上世纪50年代。它的发展历程大体可以分成三个阶段: 第一阶:20世纪50年代是智能车辆研究的初始阶段。1954年美国Barrett Electronic 公司研究开发了世界上第一台自主引导车系统,该系统只是一个运行在固定路线上的拖车式运货平台,但它却具有了智能车辆最基本的特征即无人驾驶。 第二阶段:从80年代中后期开始,世界主要发达国家对智能车辆开展了卓有成效的研究。在欧洲,普罗米修斯项目开始在这个领域的探索。在美洲,美国成立了国家自动高速公路系统联盟(NAHSC)。在亚洲,日本成立了高速公路先进巡航/辅助驾驶研究会。 第三阶段:从90年代开始,智能车辆进入了深入、系统、大规模研究阶段。最为突出的是,美国卡内基.梅隆大学(Carnegie Mellon University)机器人研究所一共完成了Navlab系列的10台自主车(Navlab1—Navlab10)的研究,取得了显著的成就。 相比于国外,我国开展智能车辆技术方面的研究起步较晚,开始于20世纪80年代。而且大多数研究处在于针对某个单项技术研究的阶段。虽然我国在智能车辆技术方面的研究总体上落后于发达国家,并且存在一定得技术差距,但是我们也取得了一系列的成果,主要有: (1)中国第一汽车集团公司和国防科技大学机电工程与自动化学院与2003年研制成功我国第一辆自主驾驶轿车。 (2)南京理工大学、北京理工大学、浙江大学、国防科技大学、清华大学等多所院校联合研制了7B.8军用室外自主车,该车装有彩色摄像机、激光雷达、陀螺惯导定位等传感器。 可以预计,我国飞速发展的经济实力将为智能车辆的研究提供一个更加广阔的前景。因此,对智能小车进行深入细致的研究,不但能加深课堂上学到的理论知识,更能将理论转化为实际运用,为将来打下坚实的基础。 2.本人对课题提出的任务要求及实现预期目标的可行性分析

智能寻迹避障小车寻迹系统设计说明

第二章智能寻迹避障小车寻迹系统设计 1.任务 任务一:产生智能寻迹避障小车沿黑线转圈的控制程序; 任务二:产生智能寻迹避障小车带状态显示沿黑线转圈的控制程序; 2.要求 (1)能控制智能寻迹避障小车沿黑线实现转圈功能; (2)行走过程中小车一直压着黑线走,不得冲出黑线圆圈之外或之; (3)智能寻迹避障小车可以从小于90度的任意方向寻找到黑线圆圈; 2.1 项目描述 该项目的主要容是:在智能寻迹避障小车电机控制系统之上扩展寻迹电路,然后运用C 语言对系统进行编程,使智能寻迹避障小车实现沿黑线转圆圈的功能,并且在行走过程中小车一直压着黑线走,不得冲出黑线圆圈之外或之;当人为将小车拿开,再从小于90度的任意方向放置小车,小车应能重新找回轨道,并沿黑线继续转圈。通过该项目的学习与实践,可以让读者获得如下知识和技能: 继续掌握单片机I/O端口的应用; 掌握红外线收、发对管的工作原理与控制方法; 掌握数码管的工作原理与控制方法; 掌握单片机C语言的编程方法与技巧; 能够编写出智能寻迹避障小车沿黑线实现转圈功能的控制函数; 2.1 必备知识 2.1.1 关于红外线传感器 红外线定义:在光谱中波长自0.76至400微米的一段称为红外线,红外线是不可见光线。所有高于绝对零度(-273.15℃)的物质都可以产生红外线。现代物理学称之为热射线。医用红外线可分为两类:近红外线与远红外线。 红外线发射器:红外线发射管在LED封装行业中主要有三个常用的波段,如下850NM、875NM、940NM。根据波长的特性运用的产品也有很大的差异,850NM波长的主要用于红外线监控设备,875NM主要用于医疗设备,940NM波段的主要用于红外线控制设备。如:红外线遥控器、光电开关、光电计数设备等。 红外线对管应用:本项目中,小车的寻迹功能采用红外线收、发对管实现。具体工作过程如下:两对红外线收、发对管安装在智能寻迹避障小车底盘正前方,红外发射管一直发射信号,接收管时刻准备接收信号。两对对着地的红外管发射红外信号,信号在白色的地面上反射回接收管,通过接收管把信号送回单片机进行处理,完成相应的动作。假如在黑色的地面上,信号被地面吸收,就无信号返回,单片机检测到无信号,根据程序也会做出相应的动作。如图2.1所示为红外线收、发对管外型示意图。

智能小车控制系统设计

智能小车控制系统设计 ——ARM控制模块设计 EasyARM615是一款基于32位ARM处理器,集学习和研发于一体的入门级开发套件,该套件采用Luminary Micro(流明诺瑞)公司生产的Stellaris系列微控制器LM3S615。本系统设计是以EasyARM615开发板为核心,通过灰度传感器检测路面上的黑线,运用PWM直流电机调速技术,完成对小车运动轨迹等一系列的控制。同时利用外扩的液晶显示器显示出各个参数。以达到一个简易的智能小车。 本文叙述了系统的设计原理及方法,讨论了ISR集成开发环境的使用,系统调试过程中出现的问题及解决方法。 据观察,普通的玩具小车一般需要在外加条件下才能按照自己的的设想轨迹去行驶,而目前可借助嵌入式技术让小车无需外加条件便可完成智能化。在小车行驶之前所需作的准备工作是在地面上布好黑线轨迹,设计好的小车便可按此黑线行驶,即为智能小车。其设计流程如下: 1、电机模块 采用由达林顿管组成的H型PWM电路。PWM电路由四个大功率晶体管组成,H桥电路构成,四个晶体管分为两组,交替导通和截止,用单片机控制达林顿管使之工作在开关状态,根据调整输入控制脉冲的占空比,精确调整电机转速。这种电路由于管子工作只在饱和和截止状态下,效率非常没。H型电路使实现转速和方向的控制简单化,且电子开关的速度很快,稳定性也极强,是一种广泛采用的PWM调整技术。 具体电路如下图所示。本电路采用的是基于PWM原理的H型驱动电路。该电路采用TIP132大功率达林顿管,以保证电动机启动瞬间的8安培电流要求。

2、传感器模块 灰度测量模块,是一种能够区分出不同颜色的的电子部件。灰度测量模块是专为机器人设计的灰度传感器。例如:沿着黑色轨迹线行走,不偏离黑色轨迹线;沿着桌面边沿行走,不掉到地上,等等。足球比赛时,识别场地中灰度不同的地面,以便于进行定位。不同的物体对红外线的反射率不同,黑色最低,白色最高;它通过发射红外线并测量红外线被反射的强度来输出反映物体颜色的电压信号,有效距离3-30毫米。 其技术规格如下: 已知灰度传感器的输出电压为0-3.3V,所以可通过ARM615开发板上的ADC 模块转换成数字信号,最后通过不断测试得出黑线与白线的大概参数值,完成对小车传感器部分的设计。 在本次设计中选择二个灰度传感器,其实现效果与布局如下所示。

避障小车制作讲解

智能避障小车实验报告与总结 学院:机电工程学院 专业年级:09级电气工程及其自动化 队员姓名:

智能避障小车实验报告与总结 摘要:本设计制作的是单片机控制的自动避障小汽车,以单片机为小汽车的“大脑”,红外线探头为小汽车的“眼睛”,电机为小汽车的“双足”。“大脑”控制“眼睛”去看前方是否有障碍物,当“眼睛”看到障碍后,由大脑来控制“双足”的行动方向。从而实现小汽车的自动避障。 关键词: 单片机红外线传感器避障小车 一、设计任务与要求 小车从无障碍地区启动前进,感应前进路线上的障碍物后,根据障碍物的位置选择下一步行进方向。 二、方案设计与论证 本设计制作的是单片机控制的自动避障小汽车,以单片机为小汽车的“大脑”,红外线探头为小汽车的“眼睛”,电机为小汽车的“双足”。“大脑”控制“眼睛”去看前方是否有障碍物,当“眼睛”看到障碍后,由大脑来控制“双足”的行动方向。从而实现小汽车的自动避障。电路原理简单,结构明了。如图为整个系统的框图。 根据设计要求,我们的自动避障小车主要由六个模块构成:车体框架、主控模块、探测模块、电机驱动模块组成。各模块分述如下: 1、小车车体 在设计车体框架时,我们有两套起始方案,自己制作和直接购买车身。 方案二:自己设计制作车架自己制作小车底盘,用两个直流减速电机作为主动轮,利用两电机的转速差完成直行、左转、右转、左后转、右后转、倒车等动作。减速电机扭矩大,转速较慢,易于控制和调速,符合避障小车的要求。而且自己制作小车框架,可以根据电路板及传感器安装需求设计空间,使得车体美观紧凑。但这种方法费时费力且成本较高。 方案二:购买半成品小车底盘改装,此种方案方便简洁而且价格低廉,小车各个机械部分安装完整,只需稍加改装就可以使用。而且我们主要是目的是小车控制系统的设计,因此我们采取该方案。 2、主控板 小车的主控系统,即小车的大脑,我们采用了STC89C52单片机制作的最小系统。 3、避障模块 避障方案选择,方案一:采用超声波避障。超声波受环境影响较大,电路复杂,而且地面对超声波的反射,会影响系统对障碍物的判断。

4智能避障小车系统的设计与实现

智能避障小车系统的设计与实现 电子信息工程 200709837 王小龙 罗维薇 摘要 本设计以单片机STC89C52为控制核心,设计实现具有避障和里程显示功能的智能小车。其主要由三部分组成:液晶显示模块、避障模块和电机驱动模块。 智能避障小车分别运用直接反射式红外传感器TCRT5000和霍尔传感器3144来进行路径检测和里程计算,并将实时数据传送到液晶显示模块和单片机分别进行显示和数据处理。并用L298N电机驱动芯片控制小车的运行状态。 Abstract This design based on the single chip computer STC89C52 as control core, design a car with obstacle avoidance and mileage display function. It mainly consists of three parts: the liquid crystal display module, obstacle avoidance module and motor driver module. Intelligence obstacle avoidance car detecting external environment by direct reflex respectively infrared sensor TCRT5000 and hall sensor 3144, transfer the real-time data to LCD module and single chip microcomputer to display respectively and data processing. And use L298N motor drive chip to control the operation status of the car. 一、绪论 1.课题背景介绍 随着单片机技术的迅速发展,其控制能力越来越强大。人们利用单片机强大的控制功能设计出各种各样的系统,全国电子设计大赛几乎每次都有智能小车这方面的题目,全国各高校也都很重视该题目的研究。本设计就是在这样的背景下提出的,设计的智能小车能够通过光电开关完成避障功能,并且可以计算和显示出小车的行驶距离。 2.设计的主要内容 (1)采用STC89C52单片机作为控制小车的核心器件,用收发一体的红外传感器光电TCRT5000来检测和感应外界环境。 (2)用L298N驱动芯片控制电动小车的运行。 (3)用霍尔传感器计算小车行驶的距离并用1602液晶显示器显示。 这种方案能实现对智能小车的运动状态进行实时控制,控制灵活、可靠,可满足对系统的各项要求。 二、系统的总体设计 1.硬件总体设计 以AT89C51单片机为核心的控制电路,采用模块化的设计方案,运用红外光电传感器、霍尔传感器,实现小车在行驶中自动躲避障碍物、测量里程等问题。并将测量数据传送至单片机进行处理,然后由单片机根据所检测的各种数据实现对电动小车的智能化控制。 在本系统中,反射式红外光电传感器检测障碍物,然后将信号传送到单片机系统进行处理,使小车沿轨道自主行走;通过霍尔元件测量小车行驶里程;采用L298N芯片控制电机的转向,实现电动小车的正反向行驶、快慢速行驶及转弯;采用1602液晶显示器显示小车行驶的路程。此系统采用软件方法来解决复杂的硬件电路部分,使系统硬件简洁化,各类功能易于实现,能满足系统的要求,其原理图如图1所示。

智能小车控制系统开题

毕业设计(论文)开题报告 题目智能小车控制系统研究 系部车辆工程系 专业 学生姓名学号 指导教师职称讲师 毕设地点 2016年1 月16 日

1.结合毕业设计(论文)课题任务情况,根据所查阅的文献资料,撰写1500~2000字左右的文献 综述: 一丶选题背景 智能汽车的概念在上世纪80 年代初由美国提出,随着智能控制算法的不断发展,以及硬件设备的快速更新,对智能车的发展起到了巨大的促进作用。同时交通问题也逐渐成为世界各个国家都要面临的重要问题,这也加快了新技术、新方法的应用。在这样的背景下智能车的研究逐渐成为新的热点。 当前世界公路的总里程每年都在高速增长,同时汽车的总量也在成倍增加,其中我国的增量更是非常明显,随着汽车的越来越多,出现交通事故的概率也在不断提高。世界各国为了解决这方面的问题提出了很多的想法,而智能车是众多想法中最可行的一种解决当前问题的方法。许多国家在无人驾驶汽车和智能交通系统的研究上都取得了不错的成果,有些研究结构已经研制成功了智能车的原型,并进行相关试验。最近10 年在传统汽车中半导体和电子技术应用的越来越多。汽车产业已经进入到了电子时代,智能汽车将是未来的发展趋势。根据相关部门的统计数据,2012 年之后生产的汽车,汽车上电子装置系统占整个汽车总成本超过30%,甚至在一些配置较高的汽车上,比重超过50%。 随着改革开放的不断深入,我国经济在过去的一段时间迅速崛起,人民的生活水平和幸福指数每年都在提高,拥有一辆汽车也不在是一个的梦想,而是变成了一个很多家庭都能消费的起的代步工具,当前我国的汽车数量,每年以两位数增长,然而我国的公共配套却相对落后,这就造成了我国严重的交通问题,道路拥挤十分严重,出现了开车不如骑车快的现象。 因此发展智能车和智能交通系统,是解决现有问题的一种有效的方法,通过不断的研究会在交通拥堵、减少事故方面起到十分显著的作用。未来通过无人驾驶技术,实现汽车的自动行驶,对于我国汽车、控制、电子等领域在新时期提高国际竞争力和自主创新能力有着重要的作用。 智能汽车控制系统的研究是一项复杂的系统工程,其中包含了机械、电子、自动循迹、自适应控制、机器人技术、传感器技术等多学科相互交融的一项研究。智能车通过多个传感器模块的协同工作,经过控制单元进行决策实现汽车的自动行驶、最优化路径等功能。 同时无人驾驶智能车在货运、农业生产、军事等领域具有很好的应用前景。 综上所述,发展智能汽车控制技术能够提高我国在微电子技术、人工智能、电机控制等新技术领域的技术水平。同时随着智能汽车的不断发展也能够有效的改善现有的交

智能循迹避障小车方案设计书

封面

作者:PanHongliang 仅供个人学习 目录 摘要………………………………………………………………………………………2 ABSTRACT………………………………………………………………………………

…2 第一章绪论 (3) 1.1智能小车的意义和作用 (3) 1.2智能小车的现状 (3) 第二章方案设计与论证 (4) 2.1 主控系统 (4) 2.2 电机驱动模块 (4) 2.3 循迹模块 (6) 2.4 避障模块 (7) 2.5 机械系统 (7) 2.6电源模块 (8) 第三章硬件设计 (8) 3.1总体设计 (8) 3.2驱动电路 (9) 3.3信号检测模块 (10) 3.4主控电路 (11) 第四章软件设计 (12) 4.1主程序模块 (12) 4.2电机驱动程序 (12) 4.3循迹模

块 (13) 4.4避障模块 (15) 第五章制作安装与调试 (18) 结束语 (18) 致谢……………………………………………………………………………………… 19 参考文献 (19) 智能循迹避障小车 摘要:利用红外对管检测黑线与障碍物,并以STC89C52单片机为控制芯片控制电动小汽车的速度及转向,从而实现自动循迹避障的功能。其中小车驱动由 L298N驱动电路完成,速度由单片机输出的PWM波控制。 关键词:智能小车;STC89C52单片机; L298N;红外对管 Intelligent tracking and obstacle-avoid car Abstract:Based infrared detection of black lines and theroad obstacles, and use a STC89C52 MCU as the controlling core for the speed and direction, A electronic drived, which can automatic track and avoid the obstacle, was designed and fabricated. In which, the car is drived by the L298N circuit, its speed is controlled by the output PWM signal from the STC89C52. Keywords: Smart Car。STC89C52 MCU。L298N。Infrared Emitting Diode 第一章绪论 1.1智能小车的意义和作用 自第一台工业机器人诞生以来,机器人的发展已经遍及机械、电子、冶金、交通、宇航、国防等领域。近年来机器人的智能水平不断提高,并且迅速地改变着人们的生活方式。人们在不断探讨、改造、认识自然的过程中,制造能替代人劳动的机器一直是人类的梦想。 随着科学技术的发展,机器人的感觉传感器种类越来越多,其中视觉传感器成为自动行走和驾驶的重要部件。视觉的典型应用领域为自主式智能导航系统,对于视觉的各种技术而言图像处理技术已相当发达,而基于图像的理解技术还很落后,机器视觉需要通过大量的运算也只能识别一些结构化环境简单的目标。视

智能循迹避障声控小车设计__毕业设计

智能循迹避障声控小车设计 摘要 系统主要由红外避障模块、声控模块、光电寻迹、电机驱动及语音播报模块组成。采用P89V51单片机作为智能小车控制核心。系统能实现对线路进行寻迹,小车可以前进或后退,遇到障碍物可以自行停止并可以实现反向运行,系统可以利用声音控制小车的启停。整个系统小巧紧凑,控制准确,性价比高,人机互动性好。 关键词:P89V51单片机;红外避障;线路寻迹;直流减速电机 ABSTRACT System is mainly by infrared obstacle avoidance module, voice module, opto-electronics and motor drive tracing module. Used as a single-chip smart car P89V51 control core. System can realize the tracing lines, cars can go forward or backward, encountered obstacles can stop and reverse operation can be achieved, the system can use voice to control the start and stop car. Compact the entire system to control the accurate, cost-effective, good human-computer interaction. KEYWORD:P89V51MCU;Infrared obstacle avoidance;Tracing;DC motor speed

毕业设计智能循迹避障小车设计

毕业设计智能循迹避障 小车设计 Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

单片机系统课程设计 轮式移动机器人的设计 学院:通信与电子工程学院 班级:电子131 姓名:初清晨 学号: 13 同组成员:孟庆阳张轩 指导老师:王艳春 日期:2015年12月24日

组员分工 1、组长:张轩,实物焊接,报告整理,程序设计 2、组员:孟庆阳,实物焊接,仿真测试,报告整理 3、组员:初清晨,实物焊接,报告整理,仿真测试

目录

摘要 随着计算机、微电子、信息技术的快速进步,智能化技术的开发速度越来越快,智能度越来越高,应用范围也得到了极大的扩展。智能作为现代的新发明,是以后的发展方向,它可以按照预先设定的模式在一个环境里自动的运作,不需要人为的管理,可应用于科学勘探等用途。智能电动小车就是其中的一个体现。设计者可以通过软件编程实现它的行进、循迹、停止的精确控制以及检测数据的存储、显示,无需人工干预。因此,智能电动小车具有再编程的特性,是机器人的一种。 本设计采用AT89S52单片机加电机驱动电路和红外遥控及循迹模块还有红外接收一体化传感器设计而成,采用模块化的设计方案,运用红外遥控器控制小车的前进、后退、左转、右转、启动和停止。 关键词:智能小车;STC89C52单片机;L9110;红外对管 Intelligent tracking and obstacle-avoid car Abstract:Based infrared detection of black lines and the road obstacles, and use a STC89C52 MCU as the controlling core for the speed and direction, A electronic drived, which can automatic track and avoid the obstacle, was designed and fabricated. In which, the car is drived by the L298N circuit, its speed is controlled by the output PWM signal from the STC89C52. Keywords: Smart Car; STC89C52 MCU; L298N; Infrared Emitting Diode 第一章绪论 智能小车的意义和作用 自第一台工业机器人诞生以来,机器人的发展已经遍及机械、电子、冶金、交通、宇航、国防等领域。近年来机器人的智能水平不断提高,并且迅速地改变着人们的生活方式。人们在不断探讨、改造、认识自然的过程中,制造能替代人劳动的机器一直是人类的梦想。 随着科学技术的发展,机器人的感觉传感器种类越来越多,其中视觉传感器成为自动行走和驾驶的重要部件。视觉的典型应用领域为自主式智能导航系统,对于视觉的各种技术而言图像处理技术已相当发达,而基于图像的理解技术还很落后,机器视觉需要通过大量的运算也只能识别一些结构化环境简单的目标。视觉传感器的核心器件是摄像管或CCD,目前的CCD已能做到自动聚焦。但CCD传

毕业设计 智能循迹避障小车设计

单片机系统课程设计轮式移动机器人的设计 学院:通信与电子工程学院 班级:电子131 姓名:初清晨 学号: 2013131013 同组成员:孟庆阳张轩 指导老师:王艳春 日期: 2015年12月24日

组员分工 1、组长:张轩,实物焊接,报告整理,程序设计 2、组员:孟庆阳,实物焊接,仿真测试,报告整理 3、组员:初清晨,实物焊接,报告整理,仿真测试

目录 摘要 0 第一章绪论 0 1.1智能小车的意义和作用 0 1.2智能小车的现状 (1) 第二章方案设计与论证 (2) 2.1 主控系统 (2) 2.2 电机驱动模块 (2) 2.3 循迹模块 (3) 2.4 避障模块 (3) 2.5 机械系统 (4) 2.6电源模块 (4) 第三章硬件设计 (5) 3.1 AT89S52单片机的简介 (5) 3.2总体设计 (8) 3.3驱动电路 (9) 3.4信号检测模块 (10) 3.5主控电路 (10) 第四章软件设计 (10) 4.1主程序框图 (10) 4.2电机驱动程序 (10) 4.3循迹模块 (11) 4.4避障模块 (15) 结束语 (19) 致谢 (20) 附录一循迹加红外避障综合程序 (22) 附录二实物图 (25)

摘要 随着计算机、微电子、信息技术的快速进步,智能化技术的开发速度越来越快,智能度越来越高,应用范围也得到了极大的扩展。智能作为现代的新发明,是以后的发展方向,它可以按照预先设定的模式在一个环境里自动的运作,不需要人为的管理,可应用于科学勘探等用途。智能电动小车就是其中的一个体现。设计者可以通过软件编程实现它的行进、循迹、停止的精确控制以及检测数据的存储、显示,无需人工干预。因此,智能电动小车具有再编程的特性,是机器人的一种。 本设计采用AT89S52单片机加电机驱动电路和红外遥控及循迹模块还有红外接收一体化传感器设计而成,采用模块化的设计方案,运用红外遥控器控制小车的前进、后退、左转、右转、启动和停止。 关键词:智能小车;STC89C52单片机;L9110;红外对管 Intelligent tracking and obstacle-avoid car Abstract:Based infrared detection of black lines and the road obstacles, and use a STC89C52 MCU as the controlling core for the speed and direction, A electronic drived, which can automatic track and avoid the obstacle, was designed and fabricated. In which, the car is drived by the L298N circuit, its speed is controlled by the output PWM signal from the STC89C52. Keywords: Smart Car; STC89C52 MCU; L298N; Infrared Emitting Diode 第一章绪论 1.1智能小车的意义和作用 自第一台工业机器人诞生以来,机器人的发展已经遍及机械、电子、冶金、交通、宇航、国防等领域。近年来机器人的智能水平不断提高,并且迅速地改变着人们的生活方式。人们在不断探讨、改造、认识自然的过程中,制造能替代人劳动的机器一直是人类的梦想。 随着科学技术的发展,机器人的感觉传感器种类越来越多,其中视觉传感器成为自动行走和驾驶的重要部件。视觉的典型应用领域为自主式智能导航系统,

相关文档
相关文档 最新文档