文档库 最新最全的文档下载
当前位置:文档库 › 物理学史上最美的十个实验

物理学史上最美的十个实验

物理学史上最美的十个实验
物理学史上最美的十个实验

物理学史上最美的十个实验

在科学家眼里,美,应该怎样阐释?

—用最简单的实验和设备获得最根本、最直接、最精确的科学结论,这就是美!

Whether they are blasting apart subatomic particles in accelerators, sequencing the genome or analyzing the wobble of a distant star, the experiments that grab the world's attention often cost millions of dollars to execute and produce torrents of data to be processed over months by supercomputers. Some research groups have grown to the size of small companies.

But ultimately science comes down to the individual mind grappling with something mysterious. When Robert P. Crease, a member of the philosophy department at the State University of New York at Stony Brook and the historian at Brookhaven National Laboratory, asked physicists to nominate the most beautiful experiment of all time, the 10 winners were largely solo performances, involving at most a few assistants. Most of the experiments took place on tabletops and none required more computational power than that of a slide rule or calculator.

What they have in common is that they epitomize the elusive quality scientists call beauty. This is beauty in the classical sense: the logical simplic ity of the apparatus, like the logical simplicity of the analysis, seems as inevitable and pure as the lines of a Greek monument. Confusion and ambigui t y are momentarily swept aside, and something new about nature becomes clear.

无论在加速器中裂解亚原子粒子,还是测序基因序列,或分析一颗遥远恒星的摆动,这些让世界瞩目的实验常常动辄耗资百万美元,产生出洪水般汹涌的数据,并需要超高速计算机处理几个月。一些实验小组因此成长为一个个的小公司。

罗伯特·克瑞丝是美国纽约大学石溪分校哲学系的教员、布鲁克海文国家实验室的历史学家,他最近在美国的物理学家中作了一次调查,要求他们提名历史上最美丽的科学实验。《物理学世界》刊登了排名前10位的最美丽实验,其中的大多数都是我们耳熟能详的经典之作。令人惊奇的是这十大实验中的绝大多数是科学家独立完成,最多有一两个助手。所有的实验都是在实验桌上进行的,没有用到什么大型计算工具比如电脑一类,最多不过是把直尺或者是计算器。

所有这些实验共同之处是他们都仅仅“抓”住了物理学家眼中“最美丽”的科学之魂,这种美丽是一种经典概念:最简单的仪器和设备,发现了最根本、最单纯的科学概念,就像是一座座历史丰碑一样,人们长久的困惑和含糊顷刻间一扫而空,对自然界的认识更加清晰。

科学史上最美的十个实验之一

Double-slit electron diffraction

双缝电子衍射

Neither Newton nor Young was qui t e right about the nature of light. Though i t is not simply made of particles, neither can i t be described purely as a wave. In the first five years of the 20th century, Max Planck and then Albert Einstein showed, respectively, that light is emitted and absorbed in packets —called photons. But other experiments continued to verify that light is also wavelike.

It took quantum theory, developed over the next few decades, to reconcile how both ideas could be true: photons and other subatomic particles — electrons, protons, and so forth — exhibit two complementary qualities; they are, as one physicist put it, "wavicles."

To explain the idea, to others and themselves, physicists often used a thought experiment, in w hich Young's double-slit demonstration is repeated wi t h a beam of electrons instead of light. Obeying the laws of quantum mechanics, the stream of particles would split in two, and the smaller streams would interfere with each other, leaving the same kind of light- and dark-striped pattern as was cast by light. Particles would act like waves.

牛顿和托马斯·杨对光的性质研究得出的结论都不完全正确。光既不是简单的由微粒构成,也不是一种单纯的波。20世纪初,麦克斯·普朗克和阿尔伯特·爱因斯坦分别指出一种叫光子的东西发出光和吸收光。但是其它实验还是证明光是一种波状物。经过几十年发展的量子学说最终总结了两个矛盾的真理:光子和亚原子微粒(如电子、光子等等)是同时具有两种性质的微粒,物理上称它们:波粒二象性。

将托马斯·杨的双缝演示改造一下可以很好地说明这一点。科学家们用电子流代替光束来解释这个实验。根据量子力学,电粒子流被分为两股,被分得更小的粒子流产生波的效应,它们相互影响,以至产生像托马斯·杨的双缝演示中出现的加强光和阴影。这说明微粒也有波的效应。

科学史上最美的十个实验之二

Galileo's experiment on falling objects

伽利略的自由落体实验

In the late 1500's, everyone knew that heavy objects fall faster than lighter ones. After all, Aristotle had said so. That an ancient Greek scholar still held such sway was a sign of how far science had declined during the dark ages.

Galileo Galilei, who held a chair in mathematics at the University of Pisa, was impudent enough to question the common knowledge. The story has become part of the folklore of science: he is reputed to have dropped two different weights from the town's Leaning Tower showing that they landed at the same time. His challenges to Aristotle may have cost Galileo his job, but he had demonstrated the importance of taking nature, not human authority, as the final arbiter in matters of science.

在16世纪末,人人都认为重量大的物体比重量小的物体下落得快,因为伟大的亚里士多德已经这么说了。

伽利略,当时在比萨大学数学系任职,他大胆地向公众的观点挑战。著名的比萨斜塔实验已经成为科学中的一个故事:他从斜塔上同时扔下一轻一重的物体,让大家看到两个物体同时落地。伽利略挑战亚里士多德的代价也许是他失去了工作,但他展示的是自然界的本质,而不是人类的权威,科学作出了最后的裁决。

Millikan's oil-drop experiment

密立根油滴实验

Since ancient times, scientists had studied electricity — an intangible essence that came from the sky as lightning or could be produced simply by running a brush through your hair. In 1897 the British physicist J. J. Thomson had established that electricity consisted of negatively charged particles — electrons. I t was left to the American scientist Robert Millikan, in 1909, to measure their charge.

Using a perfume atomizer, he sprayed tiny drops of oil into a transparent chamber. At the top and bottom were metal plates hooked to a battery, making one positive and the other negative. Since each droplet picked up a slight charge of static electricity as it traveled through the air, the speed of its descent could be controlled by altering the vol t age on the plates.

Millikan observed one drop after another, varying the voltage and noting the effect. After many repetitions he concluded that charge could only assume certain fixed values. The smallest of these portions was none other than the charge of a single electron.

很早以前,科学家就在研究电。人们知道这种无形的物质可以从天上的闪电中得到,也可以通过摩擦头发得到。1897年,英国物理学家J·J·托马斯已经确立电流是由带负电粒子即电子组成的。1909年美国科学家罗伯特·密立根开始测量电子的电荷。

密立根用一个香水瓶的喷头向一个透明的小盒子里喷油滴。小盒子的顶部和底部分别连接一个电池,让一边成为正电板,另一边成为负电板。当小油滴通过空气时,就会吸一些静电,油滴下落的速度可以通过改变电板间的电压来控制。

密立根不断改变电压,仔细观察每一颗油滴的运动。经过反复实验,密立根得出结论:电荷的值是某个固定的常量,最小单位就是单个电子的带电量。

Newton's decomposition of sunlight wi th a prism

牛顿用棱镜分解太阳光

Isaac Newton was born the year Galileo died. He graduated from Trinity College, Cambridge, in 1665, then holed up at home for a couple of years waiting out the plague. He had no trouble keeping himself occupied.

The common wisdom held that white light is the purest form (Aristotle again) and that colored light must therefore have been altered somehow.

To test this hypothesis, Newton shined a beam of sunlight through a glass prism and showed that i t decomposed into a spectrum cast on the wall. People already knew about rainbows, of course, but they were considered to be little more than pretty aberrations. Actually, Newton concluded, it was these colors — red, orange, yellow, green, blue, indigo, violet and the gradations in between — that were fundamental. What seemed simple on the surface, a beam of white light, was, if one looked deeper, beautifully complex.

艾萨克·牛顿出生那年,伽利略与世长辞。牛顿1665年毕业于剑桥大学的三一学院,后来因躲避鼠疫在家里呆了两年,后来顺利地得到了工作。

当时大家都认为白光是一种纯的没有其它颜色的光(亚里士多德就是这样认为的),而彩色光是一种不知何故发生变化的光。

为了验证这个假设,牛顿把一面三棱镜放在阳光下,透过三棱镜,光在墙上被分解为不同颜色,后来我们称作为光谱。人们知道彩虹的五颜六色,但是他们认为那是因为不正常。牛顿的结论是:正是这些红、橙、黄、绿、青、蓝、紫基础色有不同的色谱才形成了表面上颜色单一的白色光,如果你深入地看看,会发现白光是非常美丽的。

科学史上最美的十个实验之五

Young's light-interference experiment

杨氏光的干涉实验

Newton wasn't always right. Through various arguments, he had moved the scientific mainstream toward the conviction that light consists exclusively of particles rather than waves. In 1803, Thomas Young, an English physician and physicist, put the idea to a test. He cut a hole in a window shutter, covered it with a thick piece of paper punctured with a tiny pinhole and used a mirror to divert the thin beam that came shining through. Then he took "a slip of a card, about one-thirtieth of an inch in breadth" and held it edgewise in the path of the beam, dividing it in two. The result was a shadow of alternating light and dark bands — a phenomenon that could be explained if the two beams were interacting like waves. These so-called double-slit experiments became the standard for determining wavelike motion — a fact that was to become especially important a century later when quantum theory began.

牛顿也不是永远正确。在多次争吵后,牛顿让科学界接受了这样的观点:光是由微粒组成的,而不是一种波。1830年,英国医生、物理学家托马斯·杨用实验来验证这一观点。他在百叶窗上开了一个小洞,然后用厚纸片盖住,再在纸片上戳一个很小的洞。让光线透过,并用一面镜子反射透过的光线。然后他用一个厚约1/30英寸的纸片把这束光从中间分成两束。结果看到了相交的光线和阴影。这说明两束光线可以像波一样相互干涉。这个实验为一个世纪后量子学说的创立起到了至关重要的作用。

科学史上最美的十个实验之六

Cavendish's torsion-bar experiment

卡文迪许扭矩实验

Another of Newton's contributions was his theory of gravity, which holds that the strength of attraction between two objects increases with the square of their masses and decreases wi t h the square of the distance between them. But how strong is gravity in the first place?

In the late 1700's an English scientist, Henry Cavendish, decided to find out. He took a six-foot wooden rod and attached small metal spheres to each end, like a dumbbell, then suspended it from a wire. Two 350-pound lead spheres placed nearby exerted just enough gravitational force to tug at the smaller balls, causing the dumbbell to move and the wire to twist. By mounting finely etched pieces of ivory on the end of each arm and in the sides of the case, he could measure the subtle displacement. To guard against the influence of air currents, the apparatus (called a torsion balance) was enclosed in a room and observed with telescopes mounted on each side.

The result was a remarkably accurate estimate of a parameter called the gravitational constant, and from that Cavendish was able to calculate the density and mass of the earth. Cavendish had weig hed it:

6.0×1024 kilograms, or about 13 trillion trillion pounds.

牛顿的另一伟大贡献是他的万有引力定律,但是万有引力到底多大?

18世纪末,英国科学家亨利·卡文迪许决定要找出这个引力。他将两边系有小金属球的6英尺木棒用金属线悬吊起来,这个木棒就像哑铃一样。再将两个350磅重的铅球放在相当近的地方,以产生足够的引力让哑铃转动,并扭转金属线。然后用自制的仪器测量出微小的转动。

测量结果惊人的准确,他测出了万有引力恒量的参数,在此基础上卡文迪许计算地球的密度和质量。卡文迪许的计算结果是:地球重6.0×1024公斤,或者说13万亿万亿磅。

科学史上最美的十个实验之七

Eratosthenes' measurement of the Earth's circumference

埃拉托色尼测量地球圆周长

At noon on the summer solstice in the Egyptian town now called Aswan, the sun hovers straight overhead: objects cast no shadow and sunlight falls directly down a deep well. When he read this fact, Eratosthenes, the librarian at Alexandria in the third cent ury B.C., realized he had the information he needed to estimate the circumference of the planet. On the same day and time, he measured shadows in Alexandria, finding that the solar rays there had a bit of a slant, deviating from the vertical by about seven degrees.

The rest was just geometry. Assuming the earth is spherical, its circumference spans 360 degrees. So if the two ci t ies are seven degrees apart, that would constitute seven-360ths of the full circle — about one-fiftieth. Estimating from travel time that the towns were 5,000 "stadia" apart, Eratosthenes concluded that the earth must be 50 times that size — 250,000 stadia in girth. Scholars differ over the length of a Greek stadium, so it is impossible to know just how accurate he was. But by some reckonings, he was off by only about 5 percent.

古埃及的一个现名为阿斯旺的小镇。在这个小镇上,夏至日正午的阳光悬在头顶:物体没有影子,阳光直接射入深水井中。埃拉托色尼是公元前3世纪亚历山大图书馆馆长,他意识到这一信息可以帮助他估计地球的周长。在以后几年里的同一天、同一时间,他在亚历山大测量了同一地点的物体的影子。发现太阳光线有轻微的倾斜,在垂直方向偏离大约7度角。

剩下的就是几何学问题了。假设地球是球状,那么它的圆周应跨越360度。如果两座城市成7度角,就是7/360的圆周,就是当时5000个希腊运动场的距离。因此地球周长应该是25万个希腊运动场。今天,通过航迹测算,我们知道埃拉托色尼的测量误差仅仅在5%以内。

科学史上最美的十个实验之八

Galileo's experiments with rolling balls down inclined planes

伽利略的斜面滚球实验

Galileo continued to refine his ideas about objects in motion. He took a board 12 cubi t s long and half a cubit wide and cut a groove, as straight and smooth as possible, down the center. He inclined the plane and rolled brass balls down it, timing their descent wi t h a water clock — a large vessel that emptied through a thin tube into a glass. After each run he would weigh the water that had flowed out — his measurement of elapsed time — and compare it with the distance the ball had traveled.

Aristotle would have predicted that the velocity of a rolling ball was constant: double its time in transit and you would double the distance it traversed. Galileo was able to show that the distance is actually proportional to the square of the time: Double it and the ball would go four times as far. The reason is that it is being constantly accelerated by gravity.

伽利略继续提炼他有关物体移动的观点。他拿了一块大约六米长,廿五厘米宽的木板,中间挖了一个平滑的沟槽。他先将木板斜放,将许多铜球沿沟槽滑下,再用水鐘计算球落下的时间。铜球滑行的距离各有不同,最后一一比较。

亚里士多德曾预言滚动球的速度是均匀不变的:铜球滚动两倍的时间就走出两倍的路程。伽利略却证明铜球滚动的路程和时间的平方成比例:两倍的时间里,铜球滚动4倍的距离,因为存在恒定的重力加速度。

科学史上最美的十个实验之九

Rutherford's discovery of the nucleus

卢瑟福发现原子核

When Ernest Rutherford was experimenting wi t h radioactivity at the University of Manchester in 1911, atoms were generally believed to consist of large mushy blobs of positive electrical charge with electrons embedded inside — the "plum pudding" model. But when he and his assistants fired tiny positively charged projectiles, called alpha particles, at a thin foil of gold, they were surprised that a tiny percentage of them came bouncing back. I t was as though bullets had ricocheted off Jell-O.

Rutherford calculated that actually atoms were not so mushy after all. Most of the mass must be concentrated in a tiny core, now called the nucleus, w ith the electrons hovering around it.

1911年卢瑟福还在曼彻斯特大学做放射能实验时,原子在人们的印象中就好像是“葡萄干布丁”,大量正电荷聚集的糊状物质,中间包含着电子微粒。但是他和他的助手发现向金箔发射带正电的阿尔法微粒时有少量被弹回,这使他们非常吃惊。卢瑟福计算出原子并不是一团糊状物质,大部分物质集中在一个中心小核上,现在叫做原子核,电子在它周围环绕。

科学史上最美的十个实验之十

Foucault's pendulum

傅科钟摆实验

In 2001,when scientists mounted a pendulum above the South Pole and watched it swing,they were replicating a celebrated demonstration performed in Paris in https://www.wendangku.net/doc/bf4384658.html,ing a steel wire 220 feet long, the French scientist Jean-Bernard-Léon Foucault suspended a 62-pound iron ball from the dome of the Panthéon and set it in motion, rocking back and forth. To mark its progress he attached a stylus to the ball and placed a ring of damp sand on the floor below.

The audience watched in awe as the pendulum inexplicably appeared to rotate, leaving a slightly different trace wi t h each swing. Actually it was the floor of the Panthéon that was slowly moving, and Foucault had shown, more convincingly than ever, that the earth revolves on its axis. At the latitude of Paris, the pendulum's path would complete a full clockwise rotation every 30 hours; on the Southern Hemisphere i t would rotate counterclockwise, and on the Equator it wouldn't revolve at all. At the South Pole, as the modern-day scientists confirmed, the period of rotation is 24 hours.

2001年,科学家们在南极安置一个摆钟,并观察它的摆动。他们是在重复1851年巴黎的一个著名实验. 1851年法国科学家傅科在公众面前做了一个实验,用一根长220英尺的钢丝将一个62磅重的头上带有铁笔的铁球悬挂在屋顶下,观测记录它前后摆动的轨迹。周围观众发现钟摆每次摆动都会稍稍偏离原轨迹并发生旋转时,无不惊讶。实际上这是因为房屋在缓缓移动。傅科的演示说明地球是在围绕地轴自转的。在巴黎的纬度上,钟摆的轨迹是顺时针方向,30小时一周期。在南半球,钟摆应是逆时针转动,而在赤道上将不会转动。在南极,转动周期是24小时。

最美丽的十大物理实验

最美丽的十大物理实验 美国的物理学家最近评出的这些实验共同之处是:它们都“抓”住了物理学家眼中“最美丽”的科学之魂,这种美丽是一种经典概念:最简单的仪器和设备,最根本、最单纯的科学结论,就像是一座座历史丰碑一样,人们长久的困惑和含糊顷刻间一扫而空,对自然界的认识更加清晰。 无论在加速器中裂解亚原子粒子,还是测序基因序列,或分析一颗遥远恒星的摆动,这些让世界瞩目的实验常常动辄耗资百万美元,产生出洪水般汹涌的数据,并需要超高速计算机处理几个月。一些实验小组因此成长为一个个的小公司。 罗伯特•;克瑞丝是美国纽约大学石溪分校哲学系的教员、布鲁克海文国家实验室的历史学家,他最近在美国的物理学家中作了一次调查,要求他们提名历史上最美丽的科学实验。9月份出版的《物理学世界》刊登了排名前10位的最美丽实验,其中的大多数都是我们耳熟能详的经典之作。令人惊奇的是这十大实验中的绝大多数是科学家独立完成,最多有一两个助手。所有的实验都是在实验桌上进行的,没有用到什么大型计算工具比如电脑一类,最多不过是把直尺或者是计算器。 所有这些实验共同之处是他们都仅仅“抓”住了物理学家

眼中“最美丽”的科学之魂,这种美丽是一种经典概念:最简单的仪器和设备,发现了最根本、最单纯的科学概念,就像是一座座历史丰碑一样,人们长久的困惑和含糊顷刻间一扫而空,对自然界的认识更加清晰。 从十大经典科学实验评选本身,我们也能清楚地看出2000年来科学家们最重大的发现轨迹,就像我们“鸟瞰”历史一样。 《物理学世界》对这些实验进行的排名是根据公众对它们的认识程度,排在第一位的是展示物理世界量子特征的实验。但是,科学的发展是一个积累的过程,9月25日的美国《纽约时报》根据时间顺序对这些实验重新排序,并作了简单的解释。 去年,科学家们在南极安置一个摆钟,并观察它的摆动。他们是在重复1851年巴黎的一个著名实验。1851年法国科学家傅科在公众面前做了一个实验,用一根长220英尺的钢丝将一个62磅重的头上带有铁笔的铁球悬挂在屋顶下,观测记录它前后摆动的轨迹。周围观众发现钟摆每次摆动都会稍稍偏离原轨迹并发生旋转时,无不惊讶。实际上这是因为房屋在缓缓移动。傅科的演示说明地球是在围绕地轴自转的。在巴黎的纬度上,钟摆的轨迹是顺时针方向,30小时一周期。在南半球,钟摆应是逆时针转动,而在赤道上将不会转动。在南极,转动周期是24小时。

最著名的十大公式

最著名的十大公式 No.10 圆的周长公式(The Length of the Circumference of a Circle) No.9 傅立叶变换(The Fourier Transform) No.8 德布罗意方程组(The de Broglie Relations) No.7 1+1=2 No.6 薛定谔方程(The Schr?dinger Equation) 薛定谔方程是世界原子物理学文献中应用最广泛、影响最大的公式。 No.5 质能方程(Mass–energy Equivalence) No.4 毕达哥拉斯定理(Pythagorean Theorem) No.3 牛顿第二定律(Newton's Second Law of Motion) 有史以来最伟大的没有之一的科学家在有史以来最伟大的没有之一的科学巨作《自然哲学的数学原理》当中的被认为是经典物理学中最伟大的没有之一的核心定律。动力的所有基本方程都可由它通过微积分推导出来。 No.2 欧拉公式(Euler's Identity)

到了最后几名,创造者个个神人。欧拉是历史上最多产的数学家,也是各领域(包含数学的所有分支及力学、光学、音响学、水利、天文、化学、医药等)最多著作的学者。数学史上称十八世纪为“欧拉时代”。欧拉出生于瑞士,31岁丧失了右眼的视力,59岁双眼失明,但他性格乐观,有惊人的记忆力及集中力。他一生谦逊,很少用自己的名字给他发现的东西命名。不过还是命名了一个最重要的一个常数——e。这个公式的巧妙之处在于:它没有任何多余的内容,将数学中最基本的e、i、pie放在了同一个式子中,同时加入了数学也是哲学中最重要的0和1,再以简单的加号相连。 No.1 麦克斯韦方程组(The Maxwell's Equations) 积分形式: 微分形式:

高三物理专题复习(物理学史与物理方法)

专题复习:物理学史和物理方法 ●物理学史和物理方法是新课标选择题中常出的一种提醒。 ●物理学史包括物理学家发现物理规律的历史进程和物理实验。 ●物理方法:物理学家发现物理规律的思路和方法;物理学中一般研究方法,主要有观察、实验、抽象、理想化、比较、类比、假说、模型、数学方法等等:主要思维方法:类比法、等效法、理想模型法、图象法、合成与分解法、逆向思维法、假设法、微元法、极限法、对称法、外推法、数学(函数、几何、归纳、数列等)法。 【新课标高考试题回练】 1、(20XX年海南卷).自然界的电、热和磁等现象都是相互联系的,很多物理学家为寻找它们之间的联系做出了贡献。下列说法正确的是 A.奥斯特发现了电流的磁效应,揭示了电现象和磁现象之间的联系 B.欧姆发现了欧姆定律,说明了热现象和电现象之间存在联系 C.法拉第发现了电磁感应现象,揭示了磁现象和电现象之间的联系 D.焦耳发现了电流的热效应,定量得出了电能和热能之间的转换关系 2、(20XX年新课标)1873年奥地利维也纳世博会上,比利时出生的法国工程师格拉姆在布展中偶然接错了导线,把另一直流发电机发出的电接到了自己送展的直流发电机的电流输出端。由此而观察到的现象导致了他的一项重要发明,从而突破了人类在电能利用方中的一个瓶颐.此项发明是 A.新型直流发电机B.直流电动机 C.交流电动机D.交流发电机 3、(2012全国新课标).伽利略根据小球在斜面上运动的实验和理想实验,提出了惯性的概念,从而奠定了牛顿力学的基础。早期物理学家关于惯性有下列说法,其中正确的是 A.物体抵抗运动状态变化的性质是惯性 B.没有力作用,物体只能处于静止状态 C.行星在圆周轨道上保持匀速率运动的性质是惯性 D.运动物体如果没有受到力的作用,将继续以同一速度沿同一直线运动 4、(20XX年新课标)在力学理论建立的过程中,有许多伟大的科学家做出了贡献。关于科学家和他们的贡献,下列说法正确的是 A. 伽利略发现了行星运动的规律 B. 卡文迪许通过实验测出了引力常量 C.牛顿最早指出力不是维持物体运动的原因 D.笛卡尔对牛顿第一定律的建立做出了贡献 5、(2011新课标理综第14题).为了解释地球的磁性,19世纪安培假设:地球的磁场是由绕过地心的轴的环形电流I引起的。在下列四个图中,正确表示安培假设中环形电流方向的是(B) 【复习巩固题】 1、(2013上海徐汇测试))伽利略为了研究自由落体的规律,将落体实验转化为著名的“斜面

最美的十个公式和十个数形结合

英国科学期刊《物理世界》曾让读者投票评选了“最伟大的公式”,最终榜上有名的十个公式既有无人不知的1+1=2,又有著名的E=mc^2;既有简单的圆周公式,又有复杂的欧拉公式…… No.10 圆的周长公式(The Length of the Circumference of a Circle) 目前,人类已经能得到圆周率的2061亿位精度。还是挺无聊的。现代科技领域使用的圆周率值,有十几位就已经足够了。如果用35位精度的圆周率值,来计算一个能把太阳系包起来的一个圆的周长,误差还不到质子直径的百万分之一。现在的人计算圆周率,多数是为了验证计算机的计算能力,还有就是为了兴趣。 No.9 傅立叶变换(The Fourier Transform) 这个挺专业的,一般人完全不明白。不多作解释。简要地说,没有这个式子就没有今天的电子计算机,所以,你能在这里上网除了感谢党和政府外还要感谢这个完全看不懂的式子。傅立叶虽然姓傅,但他是法国人。 No.8 德布罗意方程组(The de Broglie Relations) 这个东西也挺牛B的,高中物理学到光学的活很多概念跟它是远亲。简要地说,德布罗意这人觉得电子不仅是一个粒子,也是一种波,它还有“波长”。于是搞啊搞,就有了这个物质波方程(属于量子物理的范畴),它表达了波长、能量…等之间的关系。同时他也获得了1929年的诺贝尔物理学奖。 No.7 哥德巴赫猜想(Goldbach Conjecture) 1+1=2 这个公式不需要名称,不需要翻译,更不需要解释。

No.6 薛定谔方程(The Schr?dinger Equation) 也是一般人完全不明白的。因此我摘录官方的评价:“薛定谔方程是世界原子物理学文献中应用最广泛、影响最大的公式”。由于对量子力学的杰出贡献,薛定谔获得1933年诺贝尔物理奖。另外,薛定谔虽然姓薛,但他是奥地利人。 No.5 质能方程(Mass–energy Equivalence) 好像从来没有一个科学界的公式有如此广泛的意义。在物理学的“奇迹年”1905年,由一个叫做爱因斯坦的年轻人提出。同年他还发表了《论动体的电动力学》——俗称狭义相对论。这个公式告诉我们:能量和质量是可以互换的。副产品:原子弹。 No.4 勾股定理/毕达哥拉斯定理(Pythagorean Theorem) No.3 牛顿第二定律(Newton's Second Law of Motion) 有史以来最伟大的有其没有之一的科学家在有史以来最伟大的科学巨作《自然哲学的数学原理》当中的被认为是经典物理学中最伟大的核心定律。动力学的所有基本方程都可由它通过微积分推导出来。对于学过高中物理的人,没什么好多讲了。 No.2 欧拉公式(Euler's Identity) 这个公式是上帝写的么?到了最后几名,创造者个个都是神人。欧拉是历史上最多产的数学家,也是各领域(包含数学的所有分支及力学、光学、音响学、水利、天文、化学、医药…等)最多著作的学者。数学史上称十八世纪为“欧拉时代”。 欧拉出生于瑞士,31岁丧失了右眼的视力,59岁双眼失明,但他性格乐观,有惊人的记忆力及注意力。他一生谦逊,很少用自己的名字给他发现的东西命名。不过还是命名了一个最重要的一个常数——e。

历史上最伟大的物理学家排名

历史上最伟大的物理学家排名 最伟大的物理学家Top10 PhysicsWeb曾经搞过历史上最伟大的物理学家的投票,结果如下表: 1:牛顿(经典力学、光学) 牛顿(Sir Isaac NewtonFRS, 1643年1月4日--1727年3月31日)爵士,英国皇家学会会员,是一位英国物理学家、数学家、天文学家、自然哲学家和炼金术士。他在1687年发表的论文《自然哲学的数学原理》里,对万有引力和三大运动定律进行了描述。这些描述奠定了此后三个世纪里牛顿像(21张)物理世界的科学观点,并成为了现代工程学的基础。他通过论证开普勒行星运动定律与他的引力理论间的一致性,展示了地面物体与天体的运动都遵循着相同的自然定律;从而消除了对太阳中心说的最后一丝疑虑,并推动了科学革命。在力学上,牛顿阐明了动量和角动量守恒之原理。在光学上,他发明了反射式望远镜,并基于对三棱镜将白光发散成可见光谱的观察,发展出了颜色理论。他还系统地表述了冷却定律,并研究了音速。在数学上,牛顿与戈特弗里德·莱布尼茨分享了发展出微积分学的荣誉。他也证明了广义二项式定理,提出了“牛顿法”以趋近函数的零点,并为幂级数的研究作出了贡献。在2005年,英国皇家学会进行了一场“谁是科学史上最有影响力的人”的民意调查,牛顿被认为比阿尔伯特·爱因斯坦更具影响力。

2:爱因斯坦(相对论、量子力学奠基人) 爱因斯坦(Albert Einstein,1879年3月14日-1955年4月18日),举世闻名的德裔美国科学家,现代物理学的开创者和奠基人。爱因斯坦1900年毕业于苏黎世工业大学,1909年开始在大学任教,1914年任威廉皇家物理研究所所长兼柏林大学教授。后因二战爆发移居美国,1940年入美国国籍。 十九世纪末期是物理学的变革时期,爱因斯坦从实验事实出发,从新考查了物理学的基本概念,在理论上作出了根本性的突破。他的一些成就大大推动了天文学的发展。他的量子理论对天体物理学、特

高中必备物理学史人物成就大全

高中物理中出现的所有物理学史资料的总结 1、胡克:英国物理学家;发现了胡克定律(F 弹=kx) 2、伽利略:意大利的著名物理学家;伽利略时代的仪器、设备十分简陋,技术也比较落后,但伽利略巧妙地运用科学的推理,给出了匀变速运动的定义,导出S 正比于t2 并给以实验检验;推断并检验得出,无论物体轻重如何,其自由下落的快慢是相同的;通过斜面实验,推断出物体如不受外力作用将维持匀速直线运动的结论。后由牛顿归纳成惯性定律。伽利略的科学推理方法是人类思想史上最伟大的成就之一。 3、牛顿:英国物理学家;动力学的奠基人,他总结和发展了前人的发现,得出牛顿定律及万有引力定律,奠定了以牛顿定律为基础的经典力学。 4、开普勒:丹麦天文学家;发现了行星运动规律的开普勒三定律,奠定了万有引力定律的基础。 5、卡文迪许:英国物理学家;巧妙的利用扭秤装置测出了万有引力常量。 6、布朗:英国植物学家;在用显微镜观察悬浮在水中的花粉时,发现了“布朗运动”。 7、焦耳:英国物理学家;测定了热功当量J= 焦/卡,为能的转化守恒定律的建立提供了坚实的基础。研究电流通过导体时的发热,得到了焦耳定律。 8、开尔文:英国科学家;创立了把-273℃作为零度的热力学温标。 9、库仑:法国科学家;巧妙的利用“库仑扭秤”研究电荷之间的作用,发现了“库仑定律”。 10、密立根:美国科学家;利用带电油滴在竖直电场中的平衡,得到了基本电荷e 。 11、欧姆:德国物理学家;在实验研究的基础上,欧姆把电流与水流等比较,从而引入了电流强度、电动势、电阻等概念,并确定了它们的关系。 12、奥斯特:丹麦科学家;通过试验发现了电流能产生磁场。 13、安培:法国科学家;提出了著名的分子电流假说。 14、汤姆生:英国科学家;研究阴极射线,发现电子,测得了电子的比荷e/m;汤姆生还提出了“枣糕模型”,在当时能解释一些实验现象。 15、劳伦斯:美国科学家;发明了“回旋加速器”,使人类在获得高能粒子方面迈进了一步。 16、法拉第:英国科学家;发现了电磁感应,亲手制成了世界上第一台发电机,提出了电

世界上最美的十个公式

世界上最美丽的十个公式 英国科学期刊《物理世界》曾让读者投票评选了“最伟大的公式”,最终榜上有名的十个公式既有无人不知的1+1=2,又有著名的E=mc2;既有简单的圆周公式,又有复杂的欧拉公式…… 从什么时候起我们开始厌恶数学?这些东西原本如此美丽,如此精妙。这个地球上有多少伟大的智慧曾耗尽一生,才最终写下一个等号。每当你解不开方程的时候,不妨换一个角度想,暂且放下对理科的厌恶和对考试的痛恨。因为你正在见证的,是科学的美丽与人类的尊严。 No.10 圆的周长公式(The Length of the Circumference of a Circle) 这公式贼牛逼了,初中学到现在。目前,人类已经能得到圆周率的2061亿位精度。还是挺无聊的。现代科技领域使用的圆周率值,有十几位已经足够了。如果用35位精度的圆周率值,来计算一个能把太阳系包起来的一个圆的周长,误差还不到质子直径的百万分之一。现在的人计算圆周率,多数是为了验证计算机的计算能力,还有就是为了兴趣。 No.9 傅立叶变换(The Fourier Transform) 这个挺专业的,一般人完全不明白。不多作解释。简要地说没有这个式子没有今天的电子计算机,所以你能在这里上网除了感谢党感谢政府还要感谢这个完全看不懂的式子。另外傅立叶虽然姓傅,但是法国人。 No.8 德布罗意方程组(The de Broglie Relations)

这个东西也挺牛逼的,高中物理学到光学的话很多概念跟它是远亲。简要地说德布罗意这人觉得电子不仅是一个粒子,也是一种波,它还有“波长”。于是搞啊搞就有了这个物质波方程,表达了波长、能量等等之间的关系。同时他获得了1929年诺贝尔物理学奖。 No.7 1+1=2 这个公式不需要名称,不需要翻译,不需要解释。 No.6 薛定谔方程(The Schr?dinger Equation) 也是一般人完全不明白的。因此我摘录官方评价:“薛定谔方程是世界原子物理学文献中应用最广泛、影响最大的公式。”由于对量子力学的杰出贡献,薛定谔获得1933年诺贝尔物理奖。 另外薛定谔虽然姓薛,但是奥地利人。 No.5 质能方程(Mass–energy Equivalence) 好像从来没有一个科学界的公式有如此广泛的意义。在物理学“奇迹年”1905年,由一个叫做爱因斯坦的年轻人提出。同年他还发表了《论动体的电动力学》——俗称狭义相对论。 这个公式告诉我们,爱因斯坦是牛逼的,能量和质量是可以互换的。副产品:原子弹。No.4 勾股定理/毕达哥拉斯定理(Pythagorean Theorem)

物理历史上的十大经典实验

物理历史上的十大经典实验 2002 年,美国两位学者在全美物理学家中做了一次调查,请他们提名有史以来最出色的十大物理实验,其中多数都是我们耳熟能详的经典之作。令人惊奇的是十大经典物理实验的核心是他们都抓住了物理学家眼中最美丽的科学之魂:由简单的仪器和设备,发现了最根本、最单纯的科学概念。十大经典物理实验犹如十座历史丰碑,扫开人们长久的困惑和含糊,开辟了对自然界的崭新认识。从十大经典物理实验评选本身,我们也能清楚地看出2000 年来科学家们最重大的发现轨迹,就像我们“鸟瞰”历史一样。 排名第一:托马斯·杨的双缝演示应用于电子干涉实验 在20世纪初的一段时间中,人们逐渐发现了微观客体(光子、电子、质子、中子等)既有波动性,又有粒子性,即所谓的“波粒二象性”。“波动”和“粒子”都是经典物理学中从宏观世界里获得的概念,与我们的直观经验较为相符。然而,微观客体的行为与人们的日常经验毕竟相差很远。如何按照现代量子物理学的观点去准确认识、理解微观世界本身的规律,电子双缝干涉实验为一典型实例。 杨氏的双缝干涉实验是经典的波动光学实验,玻尔和爱因斯坦试图以电子束代替光束来做双缝干涉实验,以此来讨论量子物理学中的基本原理。可是,由于技术的原因,当时它只是一个思想实验。直到1961 年,约恩?孙制作出长为50mm、宽为0.3mm、缝间距为1mm 的双缝,并把一束电子加速到50keV,然后让它们通过双缝。当电子撞击荧光屏时显示了可见的图样,并可用照相机记录图样结果。电子双缝干涉实验的图样与光的双缝干涉实验结果的类似性给人们留下了深刻的印象,这是电子具有波动性的一个实证。更有甚者,实验中即使电子是一个个地发射,仍有相同的干涉图样。但是,当我们试图决定电子究竟是通

物理数学中10个最伟大公式

10个最伟大公式 10 Greatest Formulae 英国科学期刊《物理世界》曾让读者投票评选了“最伟大的公式”,最终榜上有名的十个公式既有无人不知的1+1=2,又有著名的E=mc2;既有简单的圆周公式,又有复杂的欧拉公式……这些公式美丽而精妙,这个地球上有多少伟大的智慧曾耗尽一生,才最终写下一个等号。每当你解不开方程的时候,不妨换一个角度想,你正在见证的,是科学的美丽与人类的尊严。 让我们一起来看看这十个公式,你认识几个呢?

No.10 圆的周长公式 The Length of the Circumference of a Circle r 2C π= 这个公式虽然简单,但却蕴含着深刻的智慧。任何圆——不论大小——用它的周长比上直径,一定得到一个常数π。你别小看圆周率π。众所 周知,. . . 1415926 .3=π是一个无限不循环小数,也是数学中最重要的常数之一。许多数学家终其一生, 才能将圆周率计算到小数点后几十位. 而目前人类制造的超级计算机已经能得到圆周率的30万亿位,却仍然没有找到任何循环的迹象。

No.9 傅立叶变换 The Fourier Transform []dt e t f t f F F t i ωω-∞ ∞-?= = )()()( 傅里叶变换是一种特殊的积分变换。虽然这个公式复杂难懂,但是它在物理学、电子类科学、信号处理、统计学、密码学、声学、光学、海洋学等领域都有着广泛的应用。另外,没有这个公式,就没有今天的电子计算机。因此,你今天能够享受网上冲浪带来的乐趣,除了要感谢党和政府, 还要感谢傅里叶。

No.8 德布罗意方程组 The de Broglie Relations p=?k=h/λ E=?w=hv' 这个方程组不仅指出了微观粒子波长和动量的关系,频率和能量的关系,还表明了粒子具有“波粒二象性”,彻底颠覆了牛顿的光粒子说,还否定了光的波动说。德布罗意凭借这一发现荣获了1929年诺贝尔物理学奖。

物理学史和物理方法

2016届呼和浩特市段考物理圈题 题组4 物理学史和物理方法 (一)考法解法 命题特点分析 段考选取物理学史上一些重要事件、典型思想和科学研究方法,这些学史中所包含的艰辛探索、研究方法、创造性思想及其对物理学发展的影响、对社会的推动等无不深深地影响着考生的情感态度价值观。 解题方法荟萃 物理学史和物理方法类选择题由于比较简单,通常直接课本上知识点,应加强识记。一、直接判断法:对于科学家的突出贡献、对重要实验的研究方法,只要加强识记,可以直接判断正误。 附:常考物理学史人物与事件 力学: 1、1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的); 2、1654年,德国的马德堡市做了一个轰动一时的实验--马德堡半球实验; 3、1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即牛顿三大运动定律)。 4、17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。 同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。 5、英国物理学家胡克对物理学的贡献:胡克定律;经典题目:胡克认为只有在一定的条件下,弹簧的弹力才与弹簧的形变量成正比(对) 6、1638年,伽利略在《两种新科学的对话》一书中,运用观察-假设-数学推理的方法,详细研究了抛体运动。 17世纪,伽利略通过理想实验法指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。 7、人们根据日常的观察和经验,提出"地心说",古希腊科学家托勒密是代表;而波兰天文学家哥白尼提出了"日心说",大胆反驳地心说。 8、17世纪,德国天文学家开普勒提出开普勒三大定律; 9、牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量; 10、1846年,英国剑桥大学学生亚当斯和法国天文学家勒维烈(勒维耶)应用万有引力定律,计算并观测到海王星,1930年,美国天文学家汤苞用同样的计算方法发现冥王星。

最新物理学史上的三次大综合知识讲解

物理学史上的三次大综合 Three large comprehensive history of physics [Abstract]Four major comprehensive history of physics, every time a comprehensive realization of all physical theories make a big step forward. [Keyword]Classical mechanics; electromagnetic wave;electromagnetic induction; quantum mechanics In promoting the development of production and scientific experiments, physics continue to accumulate, development and integration, through the germination period, a different period of classical physics and modern physics during the development stage. Since the 16th century, physics theory theoretically achieve four large integrated. Every time a comprehensive realization, have made a major step forward in physics theory. 1 第一次伟大的综合 17世纪,牛顿力学构成了完整的体系。可以说,这是物理学第一次伟大的综合。牛顿将天上行星的运动与地球上苹果下坠等现象概括到一个规律里面去了,建立了所谓的经典力。至于苹果下坠启发了牛顿的故事究竟有无历史根据,那是另一回事,但它说明了人们对于形象思维的偏爱。 他在哥自尼、伽利略、开普勒、惠更斯、笛卡尔等前人工作的基础上,对大量丰富的资料进行了系统的整理和理论的概括,得到了万有引力定律和牛顿运动三定律。这三条定律是我们认识一切力学现象的依据,是整个经典力学的基础。经典力学成熟的另一个标志是万有引力定律的建立。 牛顿运动三定律和万有引力定律的提出,使经典力学成为一个完整的理论体系,标志着经典力学已经成熟,实现了宇宙中宏观低速物体的运动规律的统一。 2 第二次伟大的综合 麦克斯韦是电磁理论的集大成者。他总结了奥斯特到法拉第的工作,以安培定律、法拉第电磁感应定律和他自己引入的位移电流概念为基础,进行抽象的概念,并用数学分析方法加以整理,建立了麦克斯韦方程组,提出电磁波的概念,并证明了光是一种电磁波,从而把电、磁、光等现象统一起来,实现了物理学上的第二次大综合。 1820年奥斯特通过大量实验发现了电流的磁效应,安培得到了安培定律和安培定则。1831年,法拉第又发现了变化的磁场可以产生感应电流,得到电磁感应定律,并提出“场”的概念和力线图象。但由于数学水平的限制,无法使他的定性理论上升为精确的定量理论,无法用数学的方法描述电场和磁场。 麦克斯韦继承和发展了法拉第思想,自1858年开始,他系统地考察了自库仑、奥斯特以来的电学成就,认为应该把电流的规律与电场和磁场的规律统一起来。为此,他引进了位移电流和涡旋场及电磁波的概念。为了定量的刻画电磁场的转化和电磁波的传播规律,麦克斯韦于1826年引进了偏微分方程,并采用拉格朗日和哈密顿创立的数学方法由方程直接导出了电场和磁场的波动方程,其波的传播速度正好等于光速,因此他预言光是一种电磁波。1888年德国物理学家赫兹用实验证明了电磁波的存在及其具有反射、折射和干涉等性质,证明了麦克斯韦的预言。 麦克斯韦的理论揭示了电、磁和光的统一性,实现了人类对自然界认识的又一次综合,

科学—世上最伟大的十个公式,质能方程排名第五

世上最伟大的十个公式,薛定谔方程排名第六,质能方程排名第五 2011-09-08 08:49:56 135173 次阅读0条评论 英国科学期刊《物理世界》曾让读者投票评选了“最伟大的公式”,最终榜上有名的十个公式既有无人不知的1+1=2,又有著名的E=mc2;既有简单的-圆周公式,又有复杂的欧拉公式…… 从什么时候起我们开始厌恶数学?这些东西原本如此美丽,如此精妙。这个地球上有多少伟大的智慧曾耗尽一生,才最终写下一个等号。每当你解不开方程的时候,不妨换一个角度想,暂且放下对理科的厌恶和对考试的痛恨。因为你正在见证的,是科学的美丽与人类的尊严。 No.10 圆的周长公式(The Length of the Circumference of a Circle) 这公式贼牛逼了,初中学到现在。目前,人类已经能得到圆周率的2061亿位精度。还是挺无聊的。现代科技领域使用的-圆周率值,有十几位已经足够了。如果用 35位精度的-圆周率值,来计算一个能把太阳系包起来的一个圆的周长,误差还不到质子直径的百万分之一。现在的人计算圆周率,多数是为了验证计算机的计算能力,还有就是为了兴趣。 No.9 傅立叶变换(The Fourier Transform)

这个挺专业的,一般人完全不明白。不多作解释。简要地说没有这个式子没有今天的电子计算机,所以你能在这里上网除了感谢党感谢政府还要感谢这个完全看不懂的式子。另外傅立叶虽然姓傅,但是法国人。 No.8 德布罗意方程组(The de Broglie Relations) 这个东西也挺牛逼的,高中物理学到光学的话很多概念跟它是远亲。简要地说德布罗意这人觉得电子不仅是一个粒子,也是一种波,它还有“波长”。于是搞啊搞就有了这个物质波方程,表达了波长、能量等等之间的关系。同时他获得了1929年诺贝尔物理学奖。 No.7 1+1=2 这个公式不需要名称,不需要翻译,不需要解释。 No.6 薛定谔方程(The Schrödinger Equation) 也是一般人完全不明白的。因此我摘录官方评价:“薛定谔方程是世界原子物理学文献中应用最广泛、影响最大的公式。”由于对量子力学的杰出贡献,薛定谔获得1933年诺贝尔物理奖。 另外薛定谔虽然姓薛,但是奥地利人。 No.5 质能方程(Mass–energy Equivalence)

物理学史

物理学史 ★伽利略(意大利物理学家)对物理学的贡献: ①发现摆的等时性 ②物体下落过程中的运动情况与物体的质量无关 ③伽利略的理想斜面实验:在1683年出版的《两种新科学的对话》一书中,运用观察—假设—数学推理的方法,详细地研究了落体运动。将实验与逻辑推理结合在一起探究科学真理的方法为物理学的研究开创了新的一页(发现了物体具有惯性,同时也说明了力是改变物体运动状态的原因,而不是使物体运动的原因) 经典题目1 伽利略根据实验证实了力是使物体运动的原因(错) 伽利略认为力是维持物体运动的原因(错) 伽俐略首先将物理实验事实和逻辑推理(包括数学推理)和谐地结合起来(对) 伽利略根据理想实验推论出,如果没有摩擦,在水平面上的物体,一旦具有某一个速度,将保持这个速度继续运动下去(对) ★胡克(英国物理学家) 对物理学的贡献:胡克定律 经典题目2 胡克认为只有在一定的条件下,弹簧的弹力才与弹簧的形变量成正比(对) ★牛顿(英国物理学家)对物理学的贡献 ①牛顿在伽利略、笛卡儿、开普勒、惠更斯等人研究的基础上,采用归纳与演绎、综合与分析的方法,总结出一套普遍适用的力学运动规律——牛顿运动定律和万有引力定律,建立了完整的经典力学(也称牛顿力学或古典力学)体系,物理学从此成为一门成熟的自然科学 ②经典力学的建立标志着近代自然科学的诞生 经典题目3 牛顿发现了万有引力,并总结得出了万有引力定律,卡文迪许用实验测出了引力常数(对) 牛顿认为力的真正效应总是改变物体的速度,而不仅仅是使之运动(对)牛顿提出的万有引力定律奠定了天体力学的基础(对) ★卡文迪许 贡献:测量了万有引力常量 典型题目4 牛顿第一次通过实验测出了万有引力常量(错)卡文迪许巧妙地利用扭秤装置,第一次在实验室里测出了万有引力常量的数值(对) ★亚里士多德(古希腊) 观点: ①重的物理下落得比轻的物体快 ②力是维持物体运动的原因 经典题目5 亚里士多德认为物体的自然状态是静止的,只有当它受到力的作用才会运动(对) ★开普勒(德国天文学家) 对物理学的贡献开普勒三定律 经典题目6 开普勒发现了万有引力定律和行星运动规律(错)★托勒密(古希腊科学家) 观点:发展和完善了地心说 ★哥白尼(波兰天文学家)观点:日心说 ★第谷(丹麦天文学家)贡献:测量天体的运动 ★库仑(法国物理学家) 贡献:发现了库仑定律——标志着电学的研究从定性走向定量 典型题目7 库仑总结并确认了真空中两个静止点电荷之间的相互作用(对) 库仑发现了电流的磁效应(错) ★密立根贡献:密立根油滴实验——测定元电荷通过油滴实验测定了元电荷的数值。 e=1.6×10-19C ★昂纳斯(荷兰物理学家)发现超导 ★欧姆:贡献:欧姆定律(部分电路、闭合电路)★奥斯特(丹麦物理学家) 电流可以使周围的磁针偏转的效应,称为电流的磁效应(电流能够产生磁场)

数学九大最美公式

第九名: 把圆周率和e联系起来的初等公式在数学界是少之又少,是数学王国中的国宝级公式。除了大名鼎鼎的欧拉公式,恐怕就是这个式子比较出名了。这个 公式的形式异常的漂亮,只可惜它只是个近似公式。所以排名第九。虽然是个 近似公式,但是近似程度相当的高,有七位有效数字是相同的,也就是说二者 的差别在千万分之一以内。您不妨用电脑上的计算器一试。 第八名: 这个公式就是著名的梅钦公式,熟悉圆周率计算方法的人应该对这个公式 不陌生。这个公式的神奇之处在于它将圆周率表示为了两个分数的反正切之和。利用复数的指数表达式可以直接证明这个式子。它是历史上第一个用于快速计 算圆周率的公式,因为上式中的反正切函数值可以被泰勒级数所逼近。真不知 道如果祖冲之知道了这个计算圆周率的方法会埋头算到小数点后几百位…… 第七名: 这个神奇的公式传说是约翰-伯努利发现的。式子的神奇之处就不用我说了

吧,连续与离散的关系被表现的淋漓尽致。如果你自认为你的微积分水平还不错,可以挑战一下这个已经具有300多年历史的公式,看你能否证明它。 第六名: 说世人皆知勾三股四弦五,而鲜有知道这个简单等式的。这个简单的式子可以在英国分析学大师G·H·哈代(就是拉马努金在英国的合作者)所著的《数论导引》中找到,它是一类三次不定方程最简单的特解。 第五名: 这个公式来自于印度数学奇才拉马努金。他曾经深入的研究了形如上式的无穷根式并得到了这个神奇的结果。传说拉马努金曾经把这个结果放在《印度数学会刊》上征集证明,结果数月内无人能应。各位看官有没有蠢蠢欲动的? 第四名:

这个结果来自于卡尔-高斯。这个余弦特殊值足以说明:正十七边形是可以尺规作图的。在发现此式之前人们找到的、能用根式表达余弦值的角度大部分还停留在欧几里得时期的水平。高斯也因为他在19岁就做出的这项了不起的成果而开始从事数学研究。古典文学从此永远的失去了高斯。在作出这项告慰古希腊先贤们的贡献之后,小高斯就建立了一个自己的科学笔记,专门介绍自己最新的数学发现。 第三名: 这个貌似神奇的式子来自50多年前的《Scientific American》。当时著名的趣味数学大师马丁·加德纳所主持的一个专栏上出现了这个公式,只可惜出版的当天日期是4月1号。这个式子或许可以蒙普通读者,但是绝对蒙不了数学家,因为根据著名的林德曼定理容易判定等式左边的e指数一定是一个超越数,绝对不可能是一个整数。然而如果你用mathematica去计算的话会惊奇的发现:这个超越数的值是: 262537412640768743.9999999999992500725972…… 第二名: 上面欧拉公式的漂亮之处就不用我解释了吧。人们经常把它与老爱同志的

物理学史上的著名“理想实验”

物理学史上的著名“理想实验”

物理学史上的著名理想实验 在物理学发展的历史中,理想实验以其独特方式在物理学发展的许多关键时刻发挥了重要作用,直接或间接地导致了许多物理规律的发现和物理理论的建立。下面我们一起欣赏物理学史上的著名理想实验,感怀物理学家的睿智。 1伽利略的“理想斜面”实验 力与物体的运动的关系是力学的一个最基本的问题。亚里士多德认为:物体的运动是由于外力的作用,当外力的作用停止时,运动的物体就会静止,所以力是维持物体运动的原因。亚里士多德这一观点与人们的一些生活经验相一致,正是由于这样的原因,亚里士多德的观点易于被人们接受,以至于长期以来被人们奉为真理。 彻底推翻亚里士多德错误观点的是伽利略。伽利略凭借的有力武器不是数学推导,不是真实的实验,而是理想实验。伽利略设想:如图1在A点悬一单摆,拉至AB时放开,在忽略空气阻力的情况下,摆球会沿着弧线升至对面的C 处。如果在摆线经过的E或F处钉上小钉子,可以使摆球沿不同的弧线上升至同一水平高度G、H,由此得到单摆的等高性结论。 以单摆的等高性为基础,伽利略进一步设想,如图2中从A点释放一个光滑坚硬的小球,让它沿坚硬光滑的斜面AB下落。到达B点后,小球将以获得的速度沿对面的BC、BD或BE中的某一斜面上升至通过A点的水平面,比较斜面BC、BD和BE,倾角越来越小,斜面越来越长,即小球在斜面上走过的距离越来越远,运动的时间越来越长。当斜面的倾角为零而成为水平面BF时,物体由于不可能达到A点的高度而永远地运动下去。至此,伽利略得出结论:“任何速度一旦施加给一个运动着的物体,只要除去加速或减速的外因,此速度就可以保持不变……”伽利略的结论从根本上否定了亚里士多德的“力是维持物体运动的原因”的错误论断,指出力与运动的正确关系是:力是改变物体运动状态的原因。 伽利略从单摆等高性的理想实验到理想斜面实验,忽略了空气阻力和摩擦力,而这些忽略在现实中都是无法真正实现的。在真实的实验中,人们可以用各种方法减小空气阻力和摩擦力,但永远也无法彻底消除它们,因而人们无法

常用十个泰勒展开公式

常用bai泰勒展开公式如下: 1、due^x = 1+x+x^2/2!+x^3/3!+……zhi+x^n/n!+…… 2、daoln(1+x)=x-x^2/2+x^3/3-……+(-1)^(k-1)*(x^k)/k(|x|<1) 3、sin x = x-x^3/3!+x^5/5!-……+(-1)^(k-1)*(x^(2k-1))/(2k-1)!+……。(-∞

9、cosh x = 1+x^2/2!+x^4/4!+……+(-1)k*(x^2k)/(2k)!+……(-∞

高中物理学史和物理方法总结

高中物理学史总结 1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的);伽利略时代的仪器、设备十分简陋,技术也比较落后,但伽利略巧妙地运用科学的推理,给出了匀变速运动的定义,最早研究“匀加速直线运动”,导出S正比于t2并给以实验检验;伽利略的科学推理方法是人类思想史上最伟大的成就之一。17世纪,伽利略通过构思的斜面理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。1638年,伽利略在《两种新科学的对话》一书中,运用观察-假设-数学推理的方法,详细研究了抛体运动。另外他还发现了“摆的等时性”。 1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即牛顿三大运动定律)。牛顿于1687年正式发表万有引力定律,1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量(微小形变放大思想);另外牛顿还发现了光的色散原理;创立了微积分、发明了二项式定理;研究光的本性并发明了反射式望远镜。历史上关于光的本质有两种学说:一种是牛顿主张的微粒说——认为光是光源发出的一种物质微粒;一种是荷兰物理学家惠更斯提出的波动说——认为光是在空间传播的某种波。 爱因斯坦,德籍犹太人,后加入美国籍,20世纪最伟大的科学家,他提出了“光子”理论及光电效应方程,建立了狭义相对论及广义相对论。提出了“质能方程E=mc2”。经典力学不适用于微观粒子和高速运动物体。1905年爱因斯坦:受到普朗克的启发在德国物理学家赫兹首先发现“光电效应”实验(注:实验做法)的基础上提出了“光子说”,成功地解释了光电效应规律,提出著名的爱因斯坦光电效应方程:E k=hv—W)因此获得诺贝尔物理奖。 1905年爱因斯坦:提出狭义相对论,有两条基本原理: ①相对性原理——不同的惯性参考系中,一切物理规律都是相同的; ②光速不变原理——不同的惯性参考系中,光在真空中的速度一定是c不变。 狭义相对论的其他结论: ①时间和空间的相对性——长度收缩和动钟变慢(或时间膨胀) ②相对论速度叠加:光速不变,与光源速度无关;一切运动物体的速度不能超过光速,即光速是物质运动速度的极限。 ③相对论质量:物体运动时的质量大于静止时的质量。 1900年,德国物理学家普朗克为解释物体热辐射规律提出:电磁波的发射和吸收不是连续的,而是一份一份的,提出能量子假说:物质发射或吸收能量时,能量不是连续的,而是一份一份的,每一份就是一个最小的能量单位,即能量子,把物理学带进了量子世界;E与频率υ成正比,即E=hv;另外其在热力学方面也有巨大贡献。 1913年,丹麦物理学家玻尔把普朗克的量子理论应用到原子系统上,提出了自己的原子结构假说,成功地解释和预言了氢原子的辐射电磁波谱,为量子力学的发展奠定了基础;玻尔最先得出氢原子能级表达式。十九世纪末以前建立的物理学通常称为经典物理学,按照经典物理学理论,如果带电粒子做变速运动,包括振动和圆周运动,粒子一定以电磁波的形式向外辐射能量,辐射的频率等与振动或圆周运动的频率。为了解释与经典物理学的一系列矛盾,玻尔提出了自己的原子结构假说,即玻尔理论。 英国物理学家汤姆生发现电子,说明原子是可分的,有复杂的内部结构,并提出原子的枣糕模型,在当时能解释一些实验现象。并测得了电子的比荷e/m;研究了阴极射线,并指

相关文档
相关文档 最新文档