文档库 最新最全的文档下载
当前位置:文档库 › 系统辨识试验

系统辨识试验

系统辨识试验
系统辨识试验

《系统辨识实验》实验指导书

赵英凯

南京工业大学自动化学院

2006-04-17

目录

实验一基于OLS法的系统辨识数字仿真实验 (2)

实验二基于RLS法的系统辨识数字仿真实验 (7)

实验一基于OLS法的系统辨识数字仿真实验

一、实验目的

1、深入理解系统辨识中相关分析法及最小二乘法的相关内容。

2、学会用Matlab或C语言等进行系统辨识的仿真研究

二、实验设备

装有相应软件的计算机。

三、实验原理(请见教材,次处从略)

四、实验内容

1.伪随机二位式信号(PRBS)的生成。

2.用普通最小二乘法(OLS)法辨识对象数学模型。

五、实验要求

1.熟悉系统辨识中的相关内容。

2.掌握Matlab或C语言等进行系统辨识仿真研究的一般步骤。

3.实验前基本应完成相关的编程任务,实验时调试相应程序。

4.修改相应参数与随机噪声幅度,观察并分析结果。

5.软件包人机界面的开发与设计。(选做)

六、.实验步骤

实验步骤:

1、运行matlab

1)File->New->M-File打开M文件编辑窗口

2)输入自己编写的程序

3)点击run按钮,如果程序出错则调试程序,如果运行正常的话则观察程序的运行

结果

具体的实验步骤:

1.伪随机二位式信号(PRBS)的生成:

X1=1;X2=0;X3=1;X4=0; %移位寄存器输入Xi初态(0101), Yi为移位寄存器各级输出

m=60; %置M序列总长度

for i=1:m

Y4=X4; Y3=X3; Y2=X2; Y1=X1;

X4=Y3; X3=Y2; X2=Y1;

X1=xor(Y3,Y4); %异或运算

if Y4==0

U(i)=-1;

else

U(i)=Y4;

end

end

M=U

%绘图

i1=i

k=1:1:i1;

plot(k,U,k,U,'rx')

xlabel('k')

ylabel('M序列')

title('移位寄存器产生的M序列')

注:这是一个采用四级移位寄存器产生prbs信号的程序,同学们可以将这个程序编写的更具通用性,使得移位寄存器的级数可以选择。

2.用普通最小二乘法(OLS)法辨识对象数学模型

选择的仿真对象的数学模型如下

z

k

k

u

k

z+

k

z

-

+

-

-

-

=

+

u

-

)1

5.0

(

k

(

)2

)

(

(

)2

7.0

v

)

(k

)1

(

5.1

其中,)

(k

v是服从正态分布的白噪声N)1,0(。输入信号采用4阶M序列,幅度为1。选择如下形式的辨识模型

)()2()1()2()1()(2121k v k u b k u b k z a k z a k z +-+-=-+-+

设输入信号的取值是从k =1到k =16的M 序列,则待辨识参数LS

θ?为LS θ?=L τL 1L τL z H )H H -(。其中,被辨识参数LS

θ?、观测矩阵z L 、H L 的表达式为

??

?

???

??????=2121?

b b a a LS

θ , ????????????=)16()4()3(z z z L z , ?

????

???????------=)14()2()1()15()3()2()14()2()1()15()3()2(u u u u u u z z z z z z L H 程序框图如下所示:

参考程序: %ols

u=[-1,1,-1,1,1,1,1,-1,-1,-1,1,-1,-1,1,1]; %系统辨识的输入信号为一个周期的M 序列

z=zeros(1,16); %定义输出观测值的长度 for k=3:16

z(k)=1.5*z(k-1)-0.7*z(k-2)+u(k-1)+0.5*u(k-2); %用理想输出值作为观测值 end

subplot(3,1,1) %画三行一列图形窗口中的第一个图形 stem(u) %画出输入信号u 的经线图形

subplot(3,1,2) %画三行一列图形窗口中的第二个图形

i=1:1:16; %横坐标范围是1到16,步长为1

plot(i,z) %图形的横坐标是采样时刻i, 纵坐标是输出观测值z, 图形格式为连续曲线subplot(3,1,3) %画三行一列图形窗口中的第三个图形

stem(z),grid on%画出输出观测值z的经线图形,并显示坐标网格

u,z%显示输入信号和输出观测信号

%L=14%数据长度

HL=[-z(2) -z(1) u(2) u(1);-z(3) -z(2) u(3) u(2);-z(4) -z(3) u(4) u(3);-z(5) -z(4) u(5) u(4);-z(6) -z(5) u(6) u(5);-z(7) -z(6) u(7) u(6);-z(8) -z(7) u(8) u(7);-z(9) -z(8) u(9) u(8);-z(10) -z(9) u(10) u(9);-z(11) -z(10) u(11) u(10);-z(12) -z(11) u(12) u(11);-z(13) -z(12) u(13) u(12);-z(14) -z(13) u(14) u(13);-z(15) -z(14) u(15) u(14)] %给样本矩阵HL赋值

ZL=[z(3);z(4);z(5);z(6);z(7);z(8);z(9);z(10);z(11);z(12);z(13);z(14);z(15);

z(16)]% 给样本矩阵zL赋值

%calculating parameters%计算参数

c1=HL'*HL; c2=inv(c1); c3=HL'*ZL; c=c2*c3 %计算并显示

%DISPLAY PARAMETERS

a1=c(1), a2=c(2), b1=c(3), b2=c(4) %从中分离出并显示a1 、a2、 b1、 b2

%End

注:由于输出观测值没有任何噪音成分,所以辨识结果也无任何误差,同学们可以在输出观测值中添加噪音,观察ols的辨识效果。同时,可以尝试增加输入信号的数量,看辨识结果有何变化。

七、实验报告要求

1、整理分析实验结果与程序,并打印之。

2、小结调试程序的方法,并提出改进意见。

3、上交相关软盘或将程序与电子文档通过EMAIL发给老师。

八.实验思考题:

1、用C语言编程实现递推最小二乘法和对象阶的辨识的编程。

2、用F检验法来进行对象阶的辨识。

3、修改相应参数与随机噪声幅度,观察并分析结果

4、编制系统辨识的软件包,制作良好的用户界面。(选作)

5、自己可选取一个具体的对象(如某化工厂的加热炉)进行建模。

实验二 基于RLS 法的系统辨识数字仿真实验

一、实验目的

1、深入理解系统辨识中相关分析法及最小二乘法的相关内容。

2、学会用Matlab 或C 语言等进行系统辨识的仿真研究

二、实验设备 装有相应软件的计算机。 三、实验原理

1. 考虑如下图所示的仿真对象:

图中, )(k v 是服从N )1,0(分布的不相关随机噪声。且

)(1

-z

G )

()

(1

1

--=z A z B ,)

(1-z N )

()(1

1--=

z

C z

D , (1)

???

????=+==+-=--------1)(5.00.1)()

(7.05.11)(1

2

111211

1z D z z

z B z C z z a z A

选择上图所示的辨识模型。仿真对象选择如下的模型结构:

)()2()1()2()1()(2121k v k u b k u b k z a k z a k z +-+-=-+-+ (2)

其中,)(k v 是服从正态分布的白噪声N )1,0(。输入信号采用4位移位寄存器产生的M 序列,幅度为0.03。按式(3)

)()2(5.0)1()2(7.0)1(5.1)(k v k u k u k z k z k z +-+-=-+-- (3)

构造h (k );加权阵取单位阵I Λ=L ;利用如下公式计算K (k )、)

(?k θ和P (k ),计算各

次参数辨识的相对误差,精度满足要求后停机。

递推最小二乘法的推导公式如下:

(1)()()(1)(1)

1

(1)()(1)(1)()(1)

(1)()(1)

()

(1)[]

[1](1)T k k k k k T

k k k k k k T

k k k k k k y x

K P x x

P x P P k k x

P θθθ∧

+++-++++++=++-=+=-+ (4)

2.阶的辨识

前面所讨论的系统辨识方法,都是假定模型的阶次是已知的,因此仅仅要求估计差分方程的系数。但实际上,系统的阶次是很难被准确知道的。因为对阶次的理解程度是直接与一个线性差分方程的准确结构有关的,所以有关阶次的确定也可以称为系统结构的确定。经验指出,一个模型的阶次不准,就可能在控制系统设计时发生严重问题。故在辨识过程中,模型的阶次是否合适是必须加以检验的。一般阶的方法中,常用的有这么几种:零极点相消法、目标函数法和F 检验法。下面只介绍其中的目标函数法。

当我们用不同阶的模型给系统的输入——输出观测数据进行最小二乘拟合时,会得到不同的估计误差:

因此利用J 极小化确定阶是很自然的。实验表明,假设模型具有大于1而小于m ax

N 的

阶n ,当n 取1,2,…时, 若随着n 的增加, 在?n

(阶的估计量)-1时,J 最后一次出现陡峭的下降,往后J 就近似地保持不变或者只有微小的下降(见下图),则取?n n

=。也就是说,模型阶次的确定可以直接依次计算阶次n =1,2,…时的最小二乘估计?n

以及相应的损失函数J ,然后选择当J 下降不明显时的阶次作为合适的模型阶次n ,这种方法也叫确定阶的估计准则方法,有很广的应用。

∑===

N

k T

E

E k e

J 1

2

)(

J

n

四、实验内容

1. 用递推最小二乘法(RLS)法辨识对象数学模型。

2. 对象阶的辨识。

五、实验要求

1. 熟悉系统辨识中的相关内容。

2. 掌握Matlab或C语言等进行系统辨识仿真研究的一般步骤。

3. 实验前基本应完成相关的编程任务,实验时调试相应程序。

4. 修改相应参数与随机噪声幅度,观察并分析结果。

5. 软件包人机界面的开发与设计。(选做)

六、实验步骤

1.首先要熟悉一下MATLAB的运行环境:

1)File->New->M-File打开M文件编辑窗口

2)输入自己编写的程序

3)点击run按钮,如果程序出错则调试程序,如果运行正常的话则观察程序的

运行结果

2. 用递推最小二乘法(RLS)法辨识对象数学模型

在这个实验中,我们采用以下模型进行仿真:

y=1.5*y[k-1]-0.7*y[k-2]+0*u[k]+1.0*u[k-1]+0.5*u[k-2]+e[k] (5)

其中u[k]是幅值为1的PRBS信号输入,e[k]是白噪声,即(0,1)的正态分布序列,它的方差时可以调整的。这个系统的采样值y(k)和u(k)作为已知数据,采用实验一的最小二乘法估计这个系统的参数。

下面是递推最小二乘法的流程图:

相关程序如下:

%RLS

clear%清理工作间变量

L=15;% M序列的周期

y1=1;y2=1;y3=1;y4=0;%四个移位寄存器的输出初始值

for i=1:L;%开始循环,长度为L

x1=xor(y3,y4);%第一个移位积存器的输入是第3个与第4个移位积存器的输出的“或”

x2=y1;%第二个移位积存器的输入是第3个移位积存器的输出

x3=y2;%第三个移位积存器的输入是第2个移位积存器的输出

x4=y3;%第四个移位积存器的输入是第3个移位积存器的输出

y(i)=y4;%取出第四个移位积存器幅值为"0"和"1"的输出信号,

if y(i)>0.5,u(i)=-0.03;%如果M序列的值为"1"时,辨识的输入信号取“-0.03”

else u(i)=0.03;%当M序列的值为"0"时,辨识的输入信号取“0.03”

end%小循环结束

y1=x1;y2=x2;y3=x3;y4=x4;%为下一次的输入信号做准备

end%大循环结束,产生输入信号u

figure(1);%第1个图形

stem(u),grid on%以径的形式显示出输入信号并给图形加上网格

z(2)=0;z(1)=0;%取z的前两个初始值为零

for k=3:15;%循环变量从3到15

z(k)=1.5*z(k-1)-0.7*z(k-2)+u(k-1)+0.5*u(k-2);%给出理想的辨识输出采样信号

end

%RLS递推最小二乘辨识

c0=[0.001 0.001 0.001 0.001]';%直接给出被辨识参数的初始值,即一个充分小的实向量

p0=10^6*eye(4,4);%直接给出初始状态P0,即一个充分大的实数单位矩阵

E=0.000000005;%相对误差E=0.000000005

c=[c0,zeros(4,14)];%被辨识参数矩阵的初始值及大小

e=zeros(4,15);%相对误差的初始值及大小

for k=3:15; %开始求K

h1=[-z(k-1),-z(k-2),u(k-1),u(k-2)]'; x=h1'*p0*h1+1; x1=inv(x); %开始求K(k) k1=p0*h1*x1;%求出K的值

d1=z(k)-h1'*c0; c1=c0+k1*d1;%求被辨识参数c

e1=c1-c0;%求参数当前值与上一次的值的差值

e2=e1./c0;%求参数的相对变化

e(:,k)=e2; %把当前相对变化的列向量加入误差矩阵的最后一列

c0=c1;%新获得的参数作为下一次递推的旧参数

c(:,k)=c1;%把辨识参数c 列向量加入辨识参数矩阵的最后一列

p1=p0-k1*k1'*[h1'*p0*h1+1];%求出 p(k)的值

p0=p1;%给下次用

if e2<=E break;%若参数收敛满足要求,终止计算

end%小循环结束

end%大循环结束

c%显示被辨识参数

e%显示辨识结果的收敛情况

%分离参数

a1=c(1,:); a2=c(2,:); b1=c(3,:); b2=c(4,:); ea1=e(1,:); ea2=e(2,:); eb1=e(3,:); eb2=e(4,:);

figure(2);%第2个图形

i=1:15;%横坐标从1到15

plot(i,a1,'r',i,a2,':',i,b1,'g',i,b2,':') %画出a1,a2,b1,b2的各次辨识结果title('Parameter Identification with Recursive Least Squares Method')%图形标题

figure(3); %第3个图形

i=1:15; %横坐标从1到15

plot(i,ea1,'r',i,ea2,'g',i,eb1,'b',i,eb2,'r:') %画出a1,a2,b1,b2的各次辨识结果的收敛情况

title('Identification Precision') %图形标题

注:同样这个程序使用的输出信号也没有噪音,所以辨识的结果没有误差,请同学们在输出信号中加入噪音,再使用RLS 对其辨识,观察辨识结果,进行分析。 2. 同样采用这个模型采用MATLAB 或者C 语言进行阶的辨识:

y=1.5*y[k-1]-0.7*y[k-2]+0*u[k]+1.0*u[k-1]+0.5*u[k-2]+e[k]

其中u[k]是幅值为1的PRBS 信号输入,e[k]是白噪声,即(0,1)的正态分布序列,它的方差时可以调整的。这个系统的采样值y (k )和u(k)作为已知数据,采用实验一的最小二乘法估计这个系统的参数。令模型的阶次分别为n =1,2,3,其J 值如下表所示。从

表中看出,由?1n

=到?2n =,J 发生显著的变化。而由?2n =到?3n =,J 没有多大的变化,故可确定这系统的阶次?2n

= 辨识的结果如下,具体编程由同学们来实现。

七、实验报告要求

1、整理分析实验结果与程序,并打印之。

2、小结调试程序的方法,并提出改进意见。

3、上交相关软盘或将程序与电子文档通过EMAIL发给老师。八.实验思考题:

1、用C语言变成实现递推最小二乘法和对象阶的辨识的编程。

2、用F检验法来进行对象阶的辨识。

3、修改相应参数与随机噪声幅度,观察并分析结果

4、编制系统辨识的软件包,制作良好的用户界面。(选作)

5、自己可选取一个具体的对象(如某化工厂的加热炉)进行建模。

6、小结调试程序的方法,并提出改进意见。

系统辨识实验1实验报告

实验报告 --实验1.基于matlab的4阶系统辨识实验 课程:系统辨识 题目:基于matlab的4阶系统辨识实验 作者: 专业:自动化 学号:11351014 目录 实验报告 (1) 1.引言 (2) 2.实验方法和步骤 (2) 3.实验数据和结果 (2) 4.实验分析 (4)

1、 引言 系统辨识是研究如何确定系统的数学模型及其参数的理论。而模型化是进行系统分析、仿真、设计、预测、控制和决策的前提和基础。 本次实验利用matlab 工具对一个简单的4阶系统进行辨识,以此熟悉系统辨识的基本步骤,和matlab 里的一些系统辨识常用工具箱和函数。 这次实验所采取的基本方法是对系统输入两个特定的激励信号,分别反映系统的动态特性和稳态特性。通过对输入和输出两个系统信号的比较,来验证系统的正确性。 2、 实验方法和步骤 2.1 实验方法 利用matlab 对一个系统进行辨识,选取的输入信号必须能够反映系统的动态和稳态两个方面的特性,才能更好地确定系统的参数。本次实验采取了两种输入信号,为反映动态特性,第一个选的是正弦扫频信号,由下面公式产生: 选定频率范围 ,w(t)是时间t 的线性函数,具有扫频性质,可以反映系统的动态特性。 为反映稳态特性,选的输入信号是阶跃信号。以上的到两组数据,利用matlab 的merge()函数,对两组数据融合,然后用matlab 系统辨识工具箱中的基于子空间方法的状态空间模型辨识函数n4sid()来对系统进行辨识 2.2 实验步骤 (1)建立一个4阶的线性系统,作为被辨识的系统,传递函数为 3243211548765 ()125410865 s s s G s s s s s -+-+=++++ (2)产生扫频信号u1和阶跃信号u2 (3)u1、u2作为输入对系统进行激励,分别产生输出y1和y2 (4)画出稳态测试输入信号u1-t 的曲线,和y1-t 的曲线 画出动态测试输入信号u2-t 的曲线,和y2-t 的曲线 (5)使用merge()函数对u1-y1数据和u2-y2数据进行融合,并使用n4sid()函数对系统进行辨识。 (6)画出原系统和辨识出的系统的零极点图,画出原系统和辨识出的系统的阶跃响应特性曲线,通过对比,验证辨识出的系统的准确性。 3、 实验数据和结果 (1) 分别以扫频正弦函数、阶跃函数作为系统的激励,得到的输出:

系统辨识实验二

《系统辨识与自适应控制》实验报告 题目:最小二乘法在系统辨识中的应用 班级:工控08.1 指导老师: 学生姓名: 学号: 时间:2011.5.19 成都信息工程学院控制工程系

实验目的: 1、掌握系统辨识的基本步骤。 2、熟悉matlab 下系统辨识编程(M 文件)。 3、M 序列的产生方法。 4、用最小二乘法对系统进行辨识。 实验设备: 硬件:计算机一台(参数:主频2.8G 、奔腾4核处理器、内存512M ) 软件:matlab6.5 实验原理: 1、最小二乘法系统辨识结构: 把待辨识的过程看作“黑箱”。只考虑过程的输入输出特性。 图中,输入u(k)和输出z(k)是可测的;G (错误!未找到引用源。)是系统模型,用来描述系统的输入输出特性;N (错误!未找到引用源。)是噪声模型,v(k)是白噪声,e(k)是有色噪声,根据表示定理: 可以表示为 )()()()()(11k v k u q B k z q A +=-- (1) + + e (k ) 图1 SISO 系统辨识“黑箱” y (k ) u (k ) z (k ) v (k ) )(1-z N )(1-z G

???+++=++++=-------nb nb na na q b q b b q B q a q a q a q A ...21)(...211)(11211 (2) 由上两式可以表示: l k k v i k u bi i k z ai k z nb i na i ,...,2,1)....()(*)(*)(11=+-+--=∑∑== (3) 上式可以描述成如下最小二乘法格式: )()()(k v k h k z +=θ (4) 2、准则函数 设一个随机序列{}),,2,1(),(L k k z ∈的均值是参数θ的线性函数: {}θ)()(k h k z E T =,其中)(k h 是可测的数据向量,那么利用随机序列的一个实现,使准则函数: 21])()([)(∑=-=L k T k h k z J θθ (5) 达到极小的参数估计值∧ θ称作θ的最小二乘估计。 最小二乘格式: )()()(k e k h k z t +=θ,θ为模型参数向量,()k e 为零均值随机噪声。 3、最小二乘问题的解 考虑系统模型: )()()(k e k h k z t +=θ (6) 准则函数可写成: ()()()θθθL L L T L L H z H -Λ-=z J (7) 极小化准则函数得到:

系统辨识答案

1:修改课本p61的程序,并画出相应的图形; u = -1 -1 -1 1 -1 1 1 -1 1 -1 1 -1 -1 1 1 z = Columns 1 through 11 0 0 Columns 12 through 16 HL =

0 0 0 ZL = c = a1 =

a2 = b1 = 1 b2 = 2:修改课本p63的程序,并画出相应的图形(V的取值范围为54-200); V = [, , , , , ]τ P = [, , , , , ]τ ZL = [, , , , , ]τ HL = c4 = alpha = beita = +004 3:表1中是在不同温度下测量同一热敏电阻的阻值, 70时根据测量值确定该电阻的数学模型,并求出当温度在C?

的电阻值。 要求用递推最小二乘求解: (a )设观测模型为 利用头两个数据给出 ?? ???===-0L T L L T L L z H P θH H P P 000)0()0(?)()()0(1 0 (b )写出最小二乘的递推公式; (c )利用Matlab 计算 T k a k b k )](),([)(?=θ 并画出相应的图形。 解:首先写成[][]?? ? ???=??????=+==a b t a b h h a bt k k z k k 1)()(12 θτ h θL L H z = T L L z z ],...,[1=z ,????? ???? ???=1 (112) 1 L L t t t H ,??????=a b θ 的形式。 利用头两个数据给出最小二乘的初值: ,126120.50??????=L H ?? ????=7907650L z 这样可以算得 i i v bt a y ++=

系统辨识实验报告30288

一、相关分析法 (1)实验原理 图1 实验原理图 本实验的原理图如图1。过程传递函数()G s 中12120,8.3, 6.2K T Sec T Sec ===;输入变量()u k ,输出变量()z k ,噪声服从2(0,)v N σ,0()g k 为过程的脉冲响应理论 值,?()g k 为过程脉冲响应估计值,()g k 为过程脉冲响应估计误差。 过程输入()u k 采用M 序列,其输出数据加白噪声()v k 得到输出数据()z k 。利 用相关分析法估计出过程的脉冲响应值?()g k ,并与过程脉冲响应理论值0()g k 比较,得到过程脉冲响应估计误差值()g k 。 M 序列阶次选择说明:首先粗略估计系统的过渡过程时间T S (通过简单阶跃响应)、截止频率f M (给系统施加不同周期的正弦信号或方波信号,观察输出)。本次为验证试验,已知系统模型,经计算Hz T T f M 14.01 2 1≈= ,s T S 30≈。根据式M f t 3 .0≤ ?及式S T t N ≥?-)1(,则t ?取值为1,此时31≥N ,由于t ?与N 选择时要求完全覆盖,则选择六阶M 移位寄存器,即N =63。

(2)编程说明 图2 程序流程图 (3)分步说明 ① 生成M 序列: M 序列的循环周期63126=-=N ,时钟节拍1t Sec ?=,幅度1a =,移位寄存器中第5、6位的内容按“模二相加”,反馈到第一位作为输入。其中初始数据设为{1,0,1,0,0,0}。程序如下:

② 生成白噪声序列: 程序如下: ③ 过程仿真得到输出数据: 如图2所示的过程传递函数串联,可以写成形如1212 11 ()1/1/K G s TT s T s T = ++, 其中112 K K TT = 。 图2 过程仿真方框图 程序如下: ④ 计算脉冲响应估计值:

系统辨识习题解答(最新)

系统辨识习题解答 1-14、若一个过程的输入、输出关系可以用MA 模型描述,请将该过程的输入输出模 型写成最小二乘格式。 提示:① MA 模型z k D z u k ()()()=-1 ② 定义ττθ)](,),1(),([)(,],,,[10n k u k u k u k d d d n --== h 解:因为MA 模型z k D z u k ()()()=-1,其中 n n z d z d d z D ---+++= 1101)(,从而 )()1()()(10n k u d k u d k u d k z n -++-+= 所以当定义ττθ)](,),1(),([)(,],,,[10n k u k u k u k d d d n --== h ,则有最小二乘格式: )()()()()(0 k e k h k e k h d k z n i i i +=+=∑=τ , 其中e(k)是误差项。 2-3、设)}({k e 是一个平稳的有色噪声序列,为了考虑这种噪声对辨识的影响,需要 用一种模型来描述它。请解释如何用白噪声和表示定理把)(k e 表示成AR 模型、MA 模型和ARMA 模型。 解:根据表示定理,在一定条件下,有色噪声e(k)可以看成是由白噪声v(k)驱动的线 性环节的输出,该线性环节称为成形滤波器,其脉冲传递函数可写成 ) () ()(1 11 ---=z C z D z H 即 )()()()(1 1k v z D k e z C --= 其中 c c n n z c z c z C ---+++= 1 11 1)( d d n n z d z d z D ---+++= 1 111)(

系统辨识实验报告

南京理工大学 电加热炉动态特性辨识实验报告 作者: 张志鹏(94)学号:813001010014 实验时间2013年11月24日 组员: 刘心刚(63)李昊(88)倪镭(90) 任课老师:郭毓教授 2013 年 11 月

1.熟悉对实际控制系统的辨识与参数估计,并利用所得模型进行控制仿真,进而控制实际系统。 2.掌握实际工程中常用的辨识方法,如LS,RLS,RLES等。 二、实验平台: 嵌入式温度控制系统主要由嵌入式温度控制器、立式RGL-9076A 型温箱、NETGEAR 无线路由器和24V 开关电源等组成。系统电气连接如图1 所示。系 统采用CS(客户端—服务器)模式实现了一对一的服务器、客户端的数据通信。 嵌入式控制系统软软硬件运行平台. 硬件:PC 机、嵌入式温度控制器、NETGEAR 无线路由器等。 软件:Windows XP、Microsoft Visual C++ 6.0、Matlab 2007a 等。 图1 实验硬件平台

1.设置硬件。根据实验手册上的连接方式,确认硬件连接是否正确。根据使用手册进行IP设置、系统参数设置,直至软件可以实时显示温度曲线。 2.达到稳态。我们首先采用81V的加热电压加热使系统尽快到达某一较稳定温度。使用3S的采样周期进行采样温度信号。当温箱实际温度达到135度左右时,温度变化曲线几乎持平,我们认定此时温箱系统处于稳态。 3.加入辨识信号。这里选选取M序列进行辨识,在试验阶段我们组做了一组数据:选取M序列幅值为+20,-20,,辨识信号的采样周期为40s。加入辨识信号后继续进行数据采集。 4.数据处理、辨识系统模型。 5.分析辨识结果得出结论。 四、辨识算法及过程 经过分析研究,确定使用计算残差平方和的RELS方法验证模型的阶次及延时并辨识系统模型参数。 1、确定系统的延迟d

系统辨识内容与要求

系统辨识实验内容与要求 实验题目:三温区空间晶体生长炉温度系统建模 实验对象:三温区空间晶体生长炉 单晶体是现代电子设备制造技术的一个必不可少的部分,它应用广泛,如二极管、三极管等半导体器件都需要用到单晶体。组分均匀(compositional uniformity)、结晶完整(crystallographic perfection)的高质量晶体材料是保证电子设备性能重要因素。 目前,单晶体制备主要靠晶体生长技术完成。其主要过程是:首先在坩埚等加热器皿中对籽晶进行加热,使其由固相转变为液相或气相,再降低器皿中温度,使液相或气相的籽晶材料冷却结晶,就可得到最终的单晶体。这个过程中,为保证晶体的组分均匀和结晶完整,必须使晶体内部各晶格的受力均匀。因此,为减小重力对晶体生长的影响,研究者提出在空间微重力环境下进行晶体生长的方案。我们研究的空间晶体生长炉就是该方案中的晶体加热设备。 我们研究的空间晶体生长炉采用熔体Bridgman生长方式,其结构如图1所示。炉身由三部分构成:外筒、炉管以及炉管外部的隔热层。炉管由多个加热单元组成,每个加热单元组成一个温区。加热单元由导热性能良好的陶瓷材料制成,两个加热单元之间有隔热单元隔开。加热单元的外测均匀缠绕加热电阻丝,内侧中间部位安装有测温热电偶。炉管外部的隔热层由防辐射绝热材料制成。 微重力环境下,晶体内部各晶格之间的热应力是影响晶体生长质量的关键因素,而热应力是由炉内温场决定的。因此,必须对晶体炉内各温区的温度进行控制,以构造一个具有一定的梯度的、满足晶体生长需要的温场。工作时,将装有籽晶的安瓿管按一定的速度插入晶体炉炉膛内,通过控制流过各温区加热电阻丝的电流控制炉内温场,通过热电偶在线获取各温区的实时温度值,进行闭环控制,。其中,流过电阻丝的电流通过PWM(脉宽调制)方式进行控制。另外,由于晶体炉工作温度的变化范围比较大,传感器热电偶难以在全量程范围内保持很高的线性度,因此,使用的热电偶的电压读数与实际温度值间需要进行查表变换。 本实验内容是运用系统辨识的方法建立晶体炉中某个温区的动力学模型,辨识数据已给出,见SI_Data.xls文件。

系统辨识习题解答

系统辨识习题解答 1-14、若一个过程的输入、输出关系可以用MA 模型描述,请将该过程的输入输出模型写成 最小二乘格式。 提示:① MA 模型z k D z u k ()()()=-1 ② 定义ττθ)](,),1(),([)(,],,,[10n k u k u k u k d d d n --==ΛΛh 解:因为MA 模型z k D z u k ()()()=-1,其中 n n z d z d d z D ---+++=Λ1101)(,从而 所以当定义ττθ)](,),1(),([)(,],,,[10n k u k u k u k d d d n --==ΛΛh ,则有最小二乘格式: )()()()()(0k e k k e k h d k z n i i i +=+=∑=θτ , 其中e(k)是误差项。 2-3、设)}({k e 是一个平稳的有色噪声序列,为了考虑这种噪声对辨识的影响,需要用一种 模型来描述它。请解释如何用白噪声和表示定理把)(k e 表示成AR 模型、MA 模型和ARMA 模型。 解:根据表示定理,在一定条件下,有色噪声e(k)可以看成是由白噪声v(k)驱动的线性环 节的输出,该线性环节称为成形滤波器,其脉冲传递函数可写成 即 )()()()(11k v z D k e z C --= 其中 c c n n z c z c z C ---+++=Λ1111)( 根据其结构,噪声模型可区分为以下三类: 自回归模型(AR 模型): )()()(1k v k e z C =- 平均滑动模型(MA 模型): )()()(1k v z D k e -= 自回归平均滑去模型(ARMA 模型): )()()()(11k v z D k e z C --= 3-4、根据离散Wiener-Hopf 方程,证明 解:由于M 序列是循环周期为t N P ?,12-=P P N ,t ?为M 序列移位脉冲周期,自相关函数 近似于δ函数,a 为M 序列的幅度。设数据的采样时间等于t ?,则离散Wiener-Hopf 方程为: 当M 序列的循环周期t N P ?大于过程的过渡过程时间时,即P N 充分大时,离散Wiener-Hopf 方程可写成:

系统辨识建模

上海大学2015 ~2016学年冬季学期研究生课程考试 小论文格式 课程名称:系统建模与辨识课程编号: 09SB59002 论文题目: 基于改进的BP神经网络模型的网络流量预测 研究生姓名: 李金田学号: 15721524 论文评语: 成绩: 任课教师: 张宪 评阅日期:

基于改进的BP神经网络模型的网络流量预测 15721524,李金田 2016/3/4 摘要:随着无线通信技术的快速发展,互联网在人们的日常生活中占据了越来越重要的位置。网络中流量监控和预测对于研究网络拓扑结构有着重要的意义。本文参考BP算法,通过分析算法的优势和存在的一些问题,针对这些缺陷进行了改进。通过建立新的流量传输的传递函数,对比了经典的传递函数,并且在网络中进行了流量预测的实验和验证。新方法在试验中表现出了良好的实验性能,在网络流量预测中有很好的应用,可以作为网络流量预测的一个新方法和新思路,并且对研究网络拓扑结构有着重要的启发作用。网络流量预测在研究网络行为方面有着重要的作用。ARMA时间序列模型是比较常见的用于网络流量预测的模型。但是用在普通时间序列模型里面的一些参数很难估计,同时非固定的时间序列问题用ARMA模型很难解决。人工神经网络技术通过对历史数据的学习可能对大量数据的特征进行缓存记忆,对于解决大数据的复杂问题很合适。IP6 网络流量预测是非线性的,可以使用合适的神经网络模型进行计算。 A Novel BP Neural Network Model for Traffic Prediction of The Next Generation Network. Abstract:With the rapid development of wireless communication technology, the internet occupy an important position in people’s daily life. Monitoring and predicting the traffic of the network is of great significant to study the topology of the network. According to the BP algorithm, this paper proposed an improved BP algorithm based on the analysis of the drawback of the algorithm. By establishing a new transfer function of the traffic transmission, we compare it with the previous transmission function. Then, the function is used to do experiments, found to be the better than before. This method can be used as a new way to predict the network traffic, which has important implications for the study of the network topology. Network traffic prediction is an important research aspect of network behavior. Conventionally, ARMA time sequence model is usually adopted in network traffic prediction. However, the parameters used in normal time sequence models are difficult to be estimated and the nonstationary time sequence problem cannot be processed using ARMA time sequence problem model. The neural network technique may memory large quantity of characteristics of data set by learning previous data, and is suitable for solving these problems with large complexity. IP6 network traffic prediction is just the problem with nonlinear feature and can be solved using appropriate neural network model.

系统辨识报告

系统辨识实验报告

实验一 最小二乘法 1 最小二乘算法 1.1 基本原理 系统模型 )()()()()(11k n k u z B k z z A +=-- a a n n z a z a z a z A ----++++= 221111)( b b n n z b z b z b z B ----+++= 22111)( 最小二乘格式 )()()(k n k h k z T +=θ [][] ?????=------=T n n T b a b a b b a a n k u k u n k z k z k h 11)()1()()1()(θ 对于L k ,,2,1 =,构成线性方程组 L L L n H z +=θ 式中, []T L L z z z z )()2()1( = []T L L n n n n )()2()1( = ? ????? ???? ??--------------= ??????????????=)()1()()1()2()1()2()1()1() 0() 1()0()()2()1(b a b a b a T T T L n L u L u n L z L z n u u n z z n u u n z z L h h h H 参数估计值为 ()L T L L T L LS z H H H 1 ?-=θ 1.2 Matlab 编程 % 基本最小二乘法LS clear;clc A=ones(5,1);B=ones(4,1);%A 为首1多项式,B 中体现时滞(d=1) na=length(A)-1;nb=length(B); load dryer2

系统辨识基础实验指导书

实验一 离散模型的参数辨识 一、实验目的 1. 掌握随机序列的产生方法。 2. 掌握最小二乘估计算法的基本原理。 3. 掌握最小二乘递推算法。 二、实验内容 1. 基于Box--Jinkins 模型模拟一个动态过程,动态过程取为各种不同的情况,输入信号采用M 序列,实验者可尝试不同周期的M 序列。信噪比、观测数据长度也由实验者取为各种不同情况。 2. 模拟生成输入输出数据。 3. 根据仿真过程的噪声特性,选择一种模型参数估计算法,如RLS 、RIV 、RELS 、RGLS 、COR-LS 、STAA 、RML 或MLS 等,估计出模型的参数。 三、实验器材 计算机 1台 四、实验原理 最小二乘法是一种经典的有效的数据处理方法。它是1795年高斯(K.F.Guass )在预测行星和彗星运动的轨道时提出并实际使用的。 最小二乘法也是一种根据实验数据进行参数估计的主要方法。这种方法容易被理解,而且由于存在唯一解,所以也比较容易实现。它在统计学文献中还被称为线性回归法,在某些辨识文献中还被称为方程误差法。正如各个学科都用到系统辨识技术建立模型一样,最小二乘法也用于很多场合进行参数估计,虽然不一定是直接运用,但很多算法是以最小二乘为基础的。 在系统辨识和参数估计领域中,最小二乘法是一种最基本的估计方法。它可用于动态系统,也可用于静态系统;可用于线性系统,也可用于非线性系统;可用于离线估计,也可用于在线估计。在随机的环境下利用最小二乘法时,并不要求知道观测数据的概率统计信息,而用这种方法所获得的估计结果,却有相当好的统计性质。 在系统辨识和参数估计领域中,应用最广泛的估计方法是最小二乘法和极大似然法,而其他的大多数算法都与最小二乘法有关。最小二乘法采用的模型为 11()()()()()A z y k B z u k e k --=+ 最小二乘估计是在残差二乘方准则函数极小意义下的最优估计,即按照准则函数 ????()()min T T J e e Y Y ΦθΦθ==--= 来确定估计值?θ。求J 对?θ的偏导数并令其等于0,可得 ????()()()()0??T T T J Y Y Y Y ΦθΦθΦΦθΦΦθθ θ??=--=----=?? 即?T T Y ΦΦθΦ=。当T ΦΦ为非奇异,即Φ列满秩时,有1?()T T LS Y θΦΦΦ-=,此即参数的最小二乘估计值。 具体使用时不仅占用内存量大,而且不能用于在线辨识。一次完成算法还有如下的缺陷: (1)数据量越多,系统参数估计的精度就越高。为了获得满意的辨识结果,矩阵T ΦΦ的阶数常常取得相当大。这样,矩阵求逆的计算量很大,存储量也很大。 (2)每增加一次观测量,都必须重新计算1,()T ΦΦΦ-。 (3)如果出现Φ列相关,即不满秩的情况,T ΦΦ为病态矩阵,则不能得到最小二乘估计值。 解决这个问题的办法是把它化成递推算法。依观测次序的递推算法就是每获得一次新的观测数据就修正一次参数估计值,随着时间的推移,便能获得满意的辨识结果。递推辨识算法具有无矩阵求逆,以及跟踪时变系统等特点,这样不仅可以减少计算量和储存量,而且能实现在线辨识。

系统辨识试卷B参考答案

襄樊学院2008-2009学年度上学期《系统辨识》试题 B卷参考答案及评分标准 一、选择题:(从下列各题的备选答案中选出一个或几个正确答案,并将其代号写在题干后面的括号内。答案选错或未选全者,该题不得分。每空2分,共12分) 1、(D) 2、(A) 3、(C) 4、(ABC) 5、(BCD) 6、(B) 二、填空题:(每空2分,共14分) 1、图解 2、阶次和时滞 3、极大似然法和预报误差法 4、渐消记忆的最小二乘递推算法和限定记忆的最小二乘递推算法 三、判断题(下列命题你认为正确的在题后括号内打“√”;错误的打“×”并改正;每小题2分,共20分)(注:正确的题目括号内打“√”得2分,打“×”得0分;错误的题目括号内打“×”得1分,改正正确再得1分,错误的题目括号内打“√”得0分;) 1、(×)非零→零 2、(√) 3、(×)完全相同→不完全相同 4、(√) 5、(×)不相同→相同 6、(√) 7、(√) 8、(√) 9、(×)灰箱→白箱 10、(×)不需要→需要 四、简答题:(回答要点,并简明扼要作解释,每小题6分,共18分) 1、答:计算中用一个数值来表示对观测数据的相对的“信任程度”,这就是权。(2分) 对于时变参数系统,其当前的观测数据最能反映被识对象当前的动态特性,数据愈“老”,它偏离当前对象特性的可能性愈大。因此要充分重视当前的数据而将“过时的”、“陈旧的”数据逐渐“遗忘”掉,这就是加权的概念。(2分)具体的方法是,每当取得一个新的量测数据,就将以前的所有数据都乘上一个加权因子ρ(0<ρ<1),这个加权因子体现出对老数据逐步衰减的作用,所以ρ也可称为衰减因子,因此在L次观测的基础上,在最小二乘准则中进行了某ρ=μ(0<μ<1),选择不同的μ就得到不同的加权效果。μ愈小,表示将过种加权,即取2 去的数据“遗忘”得愈快。(2分) 2、答:相关分析法的主要优点是由于M序列信号近似于白噪声,噪声功率均匀分布于整个频带,从而对系统的扰动甚微,保证系统能正常工作(1.5分)。此外。因为相关函数的计算是一种

最优控制实验报告

实验报告 课程名称:现代控制工程与理论实验课题:最优控制 学号:12014001070 姓名:陈龙 授课老师:施心陵

最优控制 一、最优控制理论中心问题: 给定一个控制系统(已建立的被控对象的数学模型),选择一个容许的控制律,使被控对象按预定要求运行,并使给定的某一性能指标达到极小值(或极大值) 二、最优控制动态规划法 对离散型控制系统更为有效,而且得出的是综合控制函数。这种方法来源于多决策过程,并由贝尔曼首先提出,故称贝尔曼动态规划。 最优性原理:在一个多级决策问题中的最优决策具有这样的性质,不管初始级、初始状态和初始决策是什么,当把其中任何一级和状态做为初始级和初始状态时,余下的决策对此仍是最优决策 三、线性二次型性能指标的最优控制 用最大值原理求最优控制,求出的最优控制通常是时间的函数,这样的控制为开环控制当用开环控制时,在控制过程中不允许有任何干扰,这样才能使系统以最优状态运行。在实际问题中,干扰不可能没有,因此工程上总希望应用闭环控制,即控制函数表示成时间和状态的函数。 求解这样的问题一般来说是很困难的。但对一类线性的且指标是

二次型的动态系统,却得了完全的解决。不但理论比较完善,数学处理简单,而且在工际中又容易实现,因而在工程中有着广泛的应用。 一.实验目的 1.熟悉Matlab的仿真及运行环境; 2.掌握系统最优控制的设计方法; 3.验证最优控制的效果。 二.实验原理 对于一个给定的系统,实现系统的稳定有很多途径,所以我们需要一个评价的指标,使系统在该指标下达到最优。如果给定指标为线性二次型,那么我们就可以利用MATLAB快速的计算卡尔曼增益。 三.实验器材 PC机一台,Matlab仿真平台。 四.实验步骤 例题1 (P269)考虑液压激振系统简化后的传递函数方框图如下,其中K a为系统前馈增益,K f为系统反馈增益,w h为阻尼固有频率。(如图5-5所示) 将系统传递函数变为状态方程的形式如下: ,

系统辨识及自适应控制实验..

Harbin Institute of Technology 系统辨识与自适应控制 实验报告 题目:渐消记忆最小二乘法、MIT方案 与卫星振动抑制仿真实验 专业:控制科学与工程 姓名: 学号: 15S004001 指导老师: 日期: 2015.12.06 哈尔滨工业大学 2015年11月

本实验第一部分是辨识部分,仿真了渐消记忆递推最小二乘辨识法,研究了这种方法对减缓数据饱和作用现象的作用; 第二部分是自适应控制部分,对MIT 方案模型参考自适应系统作出了仿真,分别探究了改变系统增益、自适应参数的输出,并研究了输入信号对该系统稳定性的影响; 第三部分探究自适应控制的实际应用情况,来自我本科毕设的课题,我从自适应控制角度重新考虑了这一问题并相应节选了一段实验。针对挠性卫星姿态变化前后导致参数改变的特点,探究了用模糊自适应理论中的模糊PID 法对这种变参数系统挠性振动抑制效果,并与传统PID 法比较仿真。 一、系统辨识 1. 最小二乘法的引出 在系统辨识中用得最广泛的估计方法是最小二乘法(LS)。设单输入-单输出线性定长系统的差分方程为: ()()()()()101123n n x k a x k a k n b u k b u x k n k +-+?+-=+?+-=,,,, (1.1) 错误!未找到引用源。 式中:()u k 错误!未找到引用源。为控制量;错误!未找到引用源。为理论上的输出值。错误!未找到引用源。只有通过观测才能得到,在观测过程中往往附加有随机干扰。错误!未找到引用源。的观测值错误!未找到引用源。可表示为: 错误!未找到引用源。 (1.2) 式中:()n k 为随机干扰。由式(1.2)得 错误!未找到引用源。 ()()()x k y k n k =- (1.3) 将式(1.3)带入式(1.1)得 ()()()()()()()101111()n n n i i y k a y k a y k n b u k b u k b u k n n k a k i n =+-+?+-=+-+?+ -++-∑ (1.4) 我们可能不知道()n k 错误!未找到引用源。的统计特性,在这种情况下,往往把()n k 看做均值为0的白噪声。 设 错误!未找到引用源。 (1.5)

matlab实验报告

专业仿真课程设计题目: 学院: 专业班级: 学号: 学生姓名: 指导教师: 设计时间:

专业仿真课程设计题目 主要研究内容: 从所拍摄的多个目标物中检测三角形物,给出三角形物几何中心、三个边长以及边长的方向、面积。 设计要求: (1)提交能够实现题目要求、并通过演示验收的可执行文件。 (2)提交课程设计报告(包括程序清单)。 (3)通过答辩,答辩成绩满分20分,其中个人设计部分10分,非个人设计部分10分。 (4)软件设计要求:有一个人机交互界面,模块化设计,在模块之间通过BMP文件或者文本文件传送数据,可以查看中间结果。 (5)5个人一组,组长协调分工,每个组员一定要有具体任务,以便考核。预期达到的目标: 1、能够通过相关文献查阅、文献综述和总结,给出问题求解的多种可行方案。 2、能够综合运用测控技术与仪器专业理论和技术手段,设计实验方案、分析实验结果,得出有效的结论。 3、能够借助MATLAB仿真软件,进一步掌握高等数学、复变函数与积分变换等相关数学和自然科学知识以及测控技术与仪器专业的基本理论知识,能够结合本专业“自动控制原理”、“数字信号处理”、“误差理论”等相关课程,采用MATLAB软件对复杂工程问题建立模型并进行预测与模拟; 4、能够与团队中其他学科成员合作开展工作,能够与其他队员很好地沟通和交流意见,能够通过口头或书面方式表达自己的设计思路,具有一定的表达能力和人际交往能力。

目录 第一章课程设计相关知识综述 1.1 MATLAB相关知识叙述 1.1.1 MATLAB基本知识介绍 1.1.2 MATLAB的优势特点 1.1.3 MATLAB的发展历程 1.2 MATLAB工具箱与函数 1.2.1 MATLAB图像处理工具箱 1.2.2 课程设计所用图像处理函数介绍第二章课程设计内容和要求 2.1 课程设计主要研究内容 2.2 课程设计要求 2.3 课程设计预期目标 第三章设计过程 3.1 设计方案 3.2 设计步骤及流程图 3.3 程序清单及相关注释 3.4 实验结果分析 3.5 结论 第四章团队情况 第五章总结 第六章参考文献

系统辨识复习资料

1请叙述系统辨识的基本原理(方框图),步骤以及基本方法 定义:系统辨识就是从对系统进行观察和测量所获得的信息重提取系统数学模型的一种理论和方法。 辨识定义:辨识有三个要素——数据、模型类和准则。辨识就是按照一个准则在一组模型类中选择一个与数据拟合得最好的模型 辨识的三大要素:输入输出数据、模型类、等价准则 基本原理: 步骤:对一种给定的辨识方法,从实验设计到获得最终模型,一般要经历如下一些步骤:根据辨识的目的,利用先验知识,初步确定模型结构;采集数据;然后进行模型参数和结构辨识;最后经过验证获得最终模型。 基本方法:根据数学模型的形式:非参数辨识——经典辨识,脉冲响应、阶跃响应、频率响应、相关分析、谱分析法。参数辨识——现代辨识方法(最小二乘法等) 2随机语言的描述 白噪声是最简单的随机过程,均值为零,谱密度为非零常数的平稳随机过程。 白噪声过程(一系列不相关的随机变量组成的理想化随机过程) 相关函数: 谱密度: 白噪声序列,白噪声序列是白噪声过程的离散形式。如果序列 满足: 相关函数: 则称为白噪声序列。 谱密度: M 序列是最长线性移位寄存器序列,是伪随机二位式序列的一种形式。 M 序列的循环周期 M 序列的可加性:所有M 序列都具有移位可加性 辨识输入信号要求具有白噪声的统计特性 M 序列具有近似的白噪声性质,即 M 序列“净扰动”小,幅度、周期、易控制,实现简单。 3两种噪声模型的形式是什么 第一种含噪声的被辨识系统数学模型0011()()()()n n i i i i y k a y k i b u k i v k ===-+-+∑∑,式中,噪声序列v(k)通常假定为均值为零独立同分布的平稳随机序列,且与输入的序列u(k)彼此统计独立. 上式写成:0 ()()()T y k k v k ψθ=+。其中,()()()()()()()=1212T k y k y k y k n u k u k u k n ψ------????L L ,,,,,,, ) ()(2τδστ=W R +∞ <<∞-=ωσω2)(W S )}({k W Λ,2,1,0,)(2±±==l l R l W δσ2)()(σωω== ∑ ∞-∞=-l l j W W e l R S ???≠=≈+=?0 , 00,Const )()(1)(0ττττT M dt t M t M T R bit )12(-=P P N

系统辨识试验

2、用普通最小二乘法(OLS)法辨识对象数学模型 选择得仿真对象得数学模型如下 )()2(5.0)1()2(7.0)1(5.1)(k v k u k u k z k z k z +-+-=-+-- 其中,)(k v 就是服从正态分布得白噪声N )1,0(。输入信号采用4阶M 序列,幅度为1。选择如下形式得辨识模型 )()2()1()2()1()(2121k v k u b k u b k z a k z a k z +-+-=-+-+ 设输入信号得取值就是从k =1到k =16得M 序列,则待辨识参数LS θ?为LS θ?=L τL 1L τL z H )H H -(。其中,被辨识参数LS θ?、观测矩阵z L 、H L 得表达式为 ????? ???????=2121?b b a a LS θ , ????????????=)16()4()3(z z z L z , ????????????------=)14()2()1()15()3()2()14()2()1()15()3()2(u u u u u u z z z z z z L H 程序框图如下所示: 参考程序: %ols M 序列z=zeros(1,16); %for k=3:16 z(k)=1、end subplot(3,1,1) %stem(u) %subplot(3,1,2) %画三行一列图形窗口中得第二个图形 i=1:1:16; %横坐标范围就是1到16,步长为1 plot(i,z) %图形得横坐标就是采样时刻i, 纵坐标就是输出观测值z, 图形格式为连续曲线

subplot(3,1,3) %画三行一列图形窗口中得第三个图形 stem(z),grid on%画出输出观测值z得经线图形,并显示坐标网格 u,z%显示输入信号与输出观测信号 %L=14%数据长度 HL=[-z(2) -z(1) u(2) u(1);-z(3) -z(2) u(3) u(2);-z(4) -z(3) u(4) u(3);-z(5) -z(4) u(5) u(4);-z(6) -z(5) u(6) u(5);-z(7) -z(6) u(7) u(6);-z(8) -z(7) u(8) u(7);-z(9) -z(8) u(9) u(8);-z(10) -z(9) u(10) u(9);-z(11) -z(10) u(11) u(10);-z(12) -z(11) u(12) u(11);-z(13) -z(12) u(13) u(12);-z(14) -z(13) u(14) u(13);-z(15) -z(14) u(15) u(14)] %给样本矩阵HL赋值 ZL=[z(3);z(4);z(5);z(6);z(7);z(8);z(9);z(10);z(11);z(12);z(13);z(14);z(15); z(16)]% 给样本矩阵zL赋值 %calculating parameters%计算参数 c1=HL'*HL; c2=inv(c1); c3=HL'*ZL; c=c2*c3 %计算并显示 %DISPLAY PARAMETERS a1=c(1), a2=c(2), b1=c(3), b2=c(4) %从中分离出并显示a1 、a2、 b1、 b2 %End 注:由于输出观测值没有任何噪音成分,所以辨识结果也无任何误差,同学们可以在输出观测值中添加噪音,观察ols得辨识效果。同时,可以尝试增加输入信号得数量,瞧辨识结果有何变化。

系统辨识实验报告

实验一:系统辨识的经典方法 一、实验目的 掌握系统的数学模型与输入、输出信号之间的关系,掌握经辨辨识的实验测试方法和数据处理方法,熟悉MATLAB/Simulink环境。 二、实验内容 1、用阶跃响应法测试给定系统的数学模型 在系统没有噪声干扰的条件下通过测试系统的阶跃响应获得系统的一阶加纯滞后或二阶加纯滞后模型,对模型进行验证。 2、在被辨识系统中加入噪声干扰,重复上述1的实验过程。 三、实验方法 在MATLAB环境下用Simulink构造测试环境,被测试的模型为水槽液位控制对象。 利用非线性水槽模型(tank)可以搭建单水槽系统的模型,也可以搭建多水槽系统的模型,多水槽模型可以是高低放置,也可以并排放置。

1.噪声强度0.5,在t = 20的时候加入阶跃测试信号相应曲线 2.乘同余法产生白噪声 A=19;N=200;x0=37;f=2;M=512; %初始化; for k=1: N %乘同余法递推100次; x2=A*x0; %分别用x2和x0表示xi+1和xi-1; x1=mod(x2,M); %取x2存储器的数除以M的余数放x1(xi)中; v1=x1/M; %将x1存储器中的数除以256得到小于1的随v(:,k)=(v1-0.5 )*f; x0=x1; % xi-1= xi; v0=v1; end %递推100次结束; v2=v; k1=k; h=k1; %以下是绘图程序; k=1:1:k1; plot(k,v,'r'); grid on set(gca,'GridLineStyle','*'); grid(gca,'minor')

3.白噪声序列图像 020406080100120140160180200 -1 -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8 1 四、 思考题 (1) 阶跃响应法测试系统数学模型的局限性。 答:只适用于某些特殊对象或者低阶简单系统;参数估计的精度有限,估计方法缺乏一般性。 (2) 对模型测试中观察到的现象进行讨论。 答:由系统的阶跃响应曲线可以看出,加入干扰后二阶系统明显比一阶系统相应缓慢,但由于此系统是自恒模型,故最终将从一个稳态到另一个稳态。

相关文档