文档库 最新最全的文档下载
当前位置:文档库 › 石油工程专业英语

石油工程专业英语

石油工程专业英语
石油工程专业英语

Reservoir Model Construction

High-frequency cycles were picked in 48 well with in the study area using Porosity as a surrogate for rock fabric. A segmented of the resulting cycle Stratigraphy in the middle upper Clear Fork is shown in Fig 48. In order

Fig.7.48.Cross section from a portion of the middle Clear Fork reservoir showing Correlation of high-frequency cycles and flow layers based on porosity logs

to maintain the high-and low-permeability intervals, each high-frequency

cycle is divided into two rock-fabric flow layers, sandstone and mud- dominateddolostones at the base and grain-dominated dolostones at the

top. The middle upper Clear Fork reservoir is divided into 21 high-

frequency cycles and 42 flow layers, and the lower Clear Fork is also divided

into 42 flow layers. The high-frequency cycles are the basic geological elements, and the flow layers are the basic petrophysical elements for constructing the reservoir model.

The high-frequency cycles and flows layers were correlated over the

study area, forming the basis for the reservoir model. A cross section of the middle upper Clear Fork reservoir showing cycles and flow layers is illustrated

in Fig. 49. No cycles are described in the lower measures because it

is not part of the reservoir due to high water saturations typical of the transition zone.Forillustrative purposes, petrophysical properties distributed within the flow layers using simple linear interpolation methods(Fig.50).

Fig. 7.49. Cross section illustrating the layer model for the middle Clear Fork reservoir Showing 7 silt-based cycles labeled A-G, 14 carbonate cycles, and 21 rock-fabric flow layers.

Fig. 7.50. North-to-south Stratamodel cross section of the middle Clear Fork reservoir Showing permeability distribution.

Flow Simulation Model

A 3-D reservoir flow simulation model of the study area was constructed

(Fig.51) using a method that links high-resolution sequence-stratigraphic

frameworks, porosity-permeability relations from core data ,outcrop-derived

models of small-scale spatial statistics, and a practical approach to

porosity-pemeabilityscaleup(Jennings et al.in press).Identification and

Fig.7.51.Tracer simulation results.a Tracer sweep pattern in the improved model At one pore volume injection. b Tracer sweep pattern in the traditional model at one pore volume injection

modeling of petrophysical layering are critical for waterflood performance prediction. In this study the layering is based on high-frequency cycles and rock-fabric flow layer.The large-scal component of petrophysical variability

is spatially organized into rock-fabric flow units with abrupt vertical

contrasts at flow-unit boundaries and gradual lateral transitions. The

flow-unit-scalepetrophysical layering is laterally persistent at interwell scales, leading to highly stratified reservoir behavior with rapid waterflood sweep in the higher permeability layers, bypassing of the lower permeability layers, minimal cross-flow between layers, and early water break-through.

Fluid-flow simulation was conducted to assess the benefits to reservoir Performance prediction provided by the improved model described here Compared with an existing model. The existing model was constructed Without a high-resolution sequence-stratigraphic framework,and layering Wasassigned by proportioning layers between traditional stratigraphic markers.This model will be referred to as the “traditional model.” The

model developed in this study using layers defined by rock fabrics and

high-frequency cycles will be referred to as the “improved model.” The

areal grid of the improved model was chosen to coincide exactly with that

of the traditional model, and the same set of well-log data was used for the construction of both models. The same simplified set of well controls was

used in both models.

Injectivity and sweep were the aspects of reservoir performance addressed

in this study. Meaningful comparison of the injectivity and sweep

predictions of the two models was achieved by conducting single-phase

tracer injection simulations, avoiding the additional complications of waterflood modeling. Thus, no initial saturation, residual saturation, or relative permeability modeling was required. The single-phase fluid was modeled

as an incompressible liquid having a constant viscosity.

Detailed waterflood matching of the traditional model to historical

SWCF performance was conducted in a previous study. A good history

match was obtained by applying a kv/kh multiplier of 0.0002 to reduce

cross-flow between the layers and by increasing the horizontal permeabilities

by a factor of 2 to match reservoir pressure behavior. In this study the improved model was matched to the traditional model, with both models running the same simplified incompressible tracer displacement case, by adjusting the same two parameters.

The kv/kh multiplier in the improved model was adjusted to obtain the

same sweep at one pore volume injection. However, the kv/kh multiplier required to achieve this match was 0.02, two orders of magnitude larger than

the 0.0002 required in the traditional model and much closer to the moderate flow-unit scale kv/kh ratio expected from typical whole-core data in carbonates. This improvement in performance modeling was produced by the

improved representation of petrophysical layering in the model.

The tracer sweep patterns at one pore volume injection in the improved model are stratigraphically organized into alternating high- and lowpermeability flow units in the middle Clear Fork, and thin higher permeability

flow units near the top of the lower Clear Fork (Fig. 51a). These

sweep patterns were produced by the stratigraphically organized petrophysical layering. The corresponding sweep patterns in the traditional

model are more random (Fig. 51b). The improved model also predicts

more injection in the southern portion of the model, relative to the injection predicted by the traditional model, because of the subtle north-tosouth porosity increase detected by the trend modeling portion of this

study. Careful comparison with reservoir performance data, outside of the scope of this study, would be required to demonstrate that these sweep patterns in the improved model constitute a superior representation of reservoir behavior. Nevertheless, the sweep patterns are consistent with the

SWCF geological interpretation and are thus more satisfying

7.5.3 Fullerton Clear Fork Reservoir

The Fullerton Clear Fork study is an example of using stratigraphy to obtain petrophysical class numbers where only gamma-ray/neutron logs are available and multiple values are required because of the diversity of rock

fabrics. The Fullerton Clear Fork field in Andrews County, Texas (Fig. 52)

was discovered in 1942, and the Fullerton Clear Fork Unit formed in 1953. The unit has produced 289 million barrels of oil from 1,250 wells and covers an area of about 30,000 acres, or 47 square miles. Original oil in place (OOIP) is estimated at between 1.6 and 1.9 billion stock-tank barrels (BSTB), for a recovery efficiency of about 17%. The field produces from permeability zones scattered over 500 ft of Permian-age Wichita and

Lower Clear Fork limestones and dolostones. The full report of this study

can be found at the Department of Energy Web site (Ruppel 2004)..

Vertical Succession of Depositional Textures

Twelve facies can be identified in the Fullerton reservoir succession on the basis of grain type, grain size and sorting, fabric, depositional texture, and lithology (Ruppel et al. 2004):

1. Peritidal Mudstone–Wackestone: generally dolomitized and most abundant in the Wichita and locally in the Lower Clear Fork associated with

tidal-flatfacies.

2. Clay-rich Carbonate Mudstone: generally thin and locally found associated withperitidal mudstone-wackestonefacies.

3. Exposed Tidal Flat: defined by fenestra, pisolites, mudcracks, microbial laminations, and marked sea-level changes in the Wichita and Lower

Clear Fork.

4. PeloidWackestone: a burrowed mud-dominated fabric deposited in a

low-energysubtidal setting

. Fig.7.52.Location of Fullerton Clear Fork field

5. PeloidPackstone: a burrowed mud-dominated fabric with abundant

peloids (probably fecal pellets) deposited in a low-energy subtidal setting.

6. Peloid Grain-dominated Packstone: moderately well sorted peloids in

intergrain pore space deposited in a subtidal setting having moderate energy levels.

7. Ooid-Peloid Grain-dominated Packstone-Grainstone: contains ooids and

skeletal grains, in addition to peloids, and is moderate (grain-dominated packstone) to well (grainstone) sorted, suggesting moderate to high energy

levels.

8. FusulinidWackestone-Packstone: most abundant in the Lower Clear

Fork, found in sites suggesting water depths of 30 m of more, the deepest waterfacies at Fullerton.

9. Skeletal Wackestone-Packstone: found mainly in the Lower Clear Fork, containing mollusks and crinoids, suggesting a low-energy inner platform

setting.

10.OncoidWackestone-Packstone: abundant at the base of the Lower

Clear Fork through the entire field associated with fusulinids and other

faunas, suggesting an open-marine environment during flooding of the platform.

11.Siltstone-Sandstone: restricted to the Tubb Formation that overlies the Lower Clear Fork, but traces can often be found in peritidal and tidalflat facies.

12.LithoclasticWackestone: thin beds of tidal-flat fabrics overlying tidalflat facies.

The producing interval of the Fullerton field is divided into sequences

and cycles based on vertical successions of depositional facies from core description. Two sequences are defined: Leonardian 1 (L 1) and Leonardian 2 (L 2). Most of the reservoir is found in the L 2 sequence, which

is divided into four high-frequency sequences (HFS): Leonardian 2.0 (HFS

L 2.0), Leonardian 2.1 (HFS L 2.1), Leonardian 2.2 (HFS L 2.2), and Leonardian 2.3 (HFS L 2.3) (Fig. 53).

The Wichita consists of a diverse assemblage of peritidal and tidal-flat facies that group into the highstand leg of sequence L 1 and the transgressive leg of sequence L 2 (Fig. 54). The highstand leg of L 1 represents the landward tidal-flat equivalent of the basinward outer platform facies of the Abo Formation, and the transgressive leg of L 2 represents the landward tidal-flat equivalent of the basal Lower Clear Fork subtidalfacies. Evidence

of karst is found in a few cores below the L 1 – L 2 boundary in the

middle Wichita (Fig. 54). Intervals of polymict breccia of at least 25 ft to

as much as 60 ft in thickness are present in one core. Their discontinuous nature and association with other features indicative of karst processes suggest that they originated as cave-fill deposits.

Sequence L 2 is subdivided into four high-frequency sequences (L 2.0,

L 2.1, L 2.2, L 2.3) (Fig. 54). HFS L 2.0 documents the initial flooding of

the platform following exposure at the end of L 1 time. In the field area it consists of peritidal and tidal-flat facies of the upper Wichita. HFS L 2.1 forms the base of the Lower Clear Fork and consists of a basal section of transgressivesubtidal platform facies and an upper section of highstand

tidal-flatfacies. It represents the sharp change from peritidal deposition of the Wichita to subtidal deposition of the basal Lower Clear Fork. HFS L

2.2 is similar to HFS L 2.1 in consisting of a basal transgressive leg composed ofbackstepping tidal-flat facies, a middle leg composed dominantly ofsubtidalfacies, and an uppermost highstand leg composed of tidal-flat

Fig.7.53.Fullerton field type log showing formation, sequences,high-frequency cycles, and flow layers(Ruppel 2004)

facies. HFS L 2.3 is composed of tidal-flat-capped restricted subtidal cycles

in the field area and is capped by the siliciclasticTubb Formation.

The fundamental goal of cycle stratigraphy is to develop a correlation framework based on time-equivalent surfaces. These surfaces form the basic correlations for constructing the reservoir model and define highfrequency cycles (HFC’s). Because the Wichita is composed of peritidal

and tidal-flat facies, cycles are difficult to define and correlate. Only one

bed of good subtidalfacies was found. Most of the correlations were based

on porosity and limestone-dolostone layering, the porous intervals being dolostone and the dense intervals being mostly limestone and occasionally densedolostone. It is assumed that each dolostone bed was formed by hypersaline reflux flowing down from a tidal-flat into peritidalfacies.

Fig.7.54.Schematic cross section of Fullerton field showing formations,sequences, And general faciesdistribution(Ruppel,2004)

Therefore, the dolostone beds mark the tops of the HFC’s (Fig. 55). Using

this approach, we divided the Wichita into 10 HFS’s labeled W1 – W5 and

W8 – W12. The interval between W5 and W8 has little porosity and was

not subdivided.

HFS L 2.1 is divided into seven high-frequency cycles (Fig. 53). These

cycles are labeled LC4 – LC10. The lower cycles are transgressive and

typically grade upward from fusulinid and oncoid mud-dominated facies to better sorted peloid-rich and tidal-flat caps. The upper cycles are highstand

and are typically composed of peloidalfacies at their bases and grain-rich

peloid- or ooid-bearing facies at their tops. The top two cycles are composed ofperitidal and tidal-flat facies.

Cycle definition was difficult in the dolostones of HFS L.2.2 because

of low poro sity. However, three HFC’s were proposed on the basis of a

rare limestone core that consisted of three upward-shoaling successions. These successions are labeled LC 1 – LC 3. The three cycles were subdivided

into eight autocycles for the purposes of full field mapping, but these subdivisions were not used in the simulation model.

High-frequency cyclicity is most readily definable in HFS L.2.3. These

rocks, which are characterized by a tidal-flat-capped subtidal cycle, are

Fig.7.55.Well log of Wichita formation showing high-frequency cycles and flow Layers based primarily on porosity and lithology

more easily correlated than HFC’s in L 2.1 or L 2.2. However, this HFS is

not considered to be part of the reservoir and is not included in the reservoir model.

通信与信息工程英语教程翻译

A business survives and thrives on information: information within the organization and information changed with suppliers, customers,and regulators. Moreover, the information needs to be consistent, accessible, and at the right location. We consider information in four forms-voice, data, image, and video-and the implications of distributed requirements. The term voice communications refers primarily to telephone related communications. By far the most common form of communication in any organization and for most personnel is direct telephone conversation. The telephone has been a basic tool of business for decades. Telephone communications has recently been enhanced by a variety of computer-based services, including voice mail and computerized telephone exchange systems. V oice mail provides the ability to send, forward , and reply to voice messages nonsimultaneously , and it has become a cost-efficient tool even for many midsize organizations. It provides saving on answering machines and services as well as more responsive service to customers and suppliers. Advances have also been made in computerized telephone exchange systems, including in-house digital private branch exchanges(PBX) and Centrex systems provided by the local telephone company. These new systems provide a host of features, including call forwarding, call waiting, least-cost routing of long-distance calls, and a variety of accounting and auditing features. The term data communications is sometimes used to refer to virtually any form of information transfer other than voice. It is sometimes convenient to limit this term to information in the form of text(such as reports, memos, and other documents) and numerical data(such as accounting files). The rapid changes in technology have created fresh challenges for management in making effective use of data communications. We will briefly outline the changes in technology in transmission, networks, and communications software that present the manager with new powerful business tools but also the necessity of making choices among complex alternatives. 一个企业生存和蓬勃发展的信息:在改变与供应商,客户和监管机构的组织和信息的信息。此外,对信息的需求是一致的,访问,并在合适的位置。我们认为,在四种形式的语音,数据,图像,视频和分布式需求的影响的信息。 长期的语音通信,主要是指以电话相关的通讯。迄今为止最常见的沟通形式中的任何组织和大多数工作人员是直接的电话交谈。电话已几十年来的基本的业务工具。电话通讯最近已加强各种以计算机为基础的服务,包括语音邮件和程控电话交换系统。语音信箱提供的能力,发送,转发和回复语音邮件nonsimultaneously,它已成为一个成本效益的工具,甚至许多中小型组织。提供节省答录机和服务,以及更快捷的服务客户和供应商。程控电话交换系统,包括内部数字专用分支交换机(PBX)和本地电话公司提供的Centrex系统也取得了进展。这些新系统提供主机的功能,包括呼叫转接,呼叫等待,长途电话的最低成本路由,各种会计和审计功能。 长期的数据通信有时被用来指几乎任何其他信息传输比语音形式。有时可以很方便限制这个术语在文本形式的信息(如报告,备忘录和其他文件)和数字数据(如会计档案)。已创建管理新的挑战,在有效地利用数据通信技术的迅速变化。我们将简要概述在传输技术的变化,网络和通信软件,经理提出新的强大的商业工具,但也使复杂的替代品之间的选择的必要性。

石油工程专业英语单词

石油工程专业英语单词 A abnormal pressure 异常高压 absolute open flow potential 绝对敞喷流量 absolute permeability 绝对渗透率 acetic acids 乙酸 acid-fracturing treatment 酸化压裂处理 acidize 酸化 acidizing 酸化 additives 添加剂 Alkali/Surfactant/Polymer(ASP)tertiary combination flooding 三元复合驱anhydrite 无水石膏 annular space 环形空间 appraisal well 估计井,评价井 aquifer 含水层 areal sweep efficiency 面积波及系数 artificial lift methods 人工举升方法

B beam pumps 游梁式抽油机 bitumen 沥青 blast joint 耐磨钻头 block and tackle 滑轮组 blowout preventes 防喷器 blowout 井喷 bone strength 胶结强度 borehole 井筒,井眼 bottomhole/wellhead pressure 井底/井口压力bottorm water 底水 breakthrough 突破,穿透 bubble point 泡点 bubble point pressure 泡点压力 C cable tool drilling 顿钻钻井 capillary action 毛细管作用

carbonate reservoirs 碳酸盐储层 casing hanger 套管悬挂器 casing head 套管头 casing collapse 套管损坏 casing corrosion 套管腐蚀 casing leak 套管漏失 casing pressure 套管压力 casing string 套管柱 casing 套管 casing-tubing configuration 套管组合casing-tubing configuration 油套管井身结构caustic flooding 碱水驱油 cavings 坍塌 cement additive 水泥浆添加剂 cement job 固井作业 cement plug 水泥塞 cement slurry 水泥浆

石油工程专业英语单词总结

3-D seismic survey (D: dimension:) 三维地震勘探 5-spot pattern n.五点井网Abandon v.(油井)报废,废弃Abandon well n.废井Acid wash n.酸洗 Acidization n.酸化(作用)Acidization n.酸化(作用) Acidize v.酸化Additive n.添加剂 Agent n.试剂,媒介Alkane n.烷烃,链烷烃 Analytic solution n.解析解Anisotropic a.各向异性的,非均质的Annular a.环形的Annular mist flow n.环雾流 Annulus n.环形空间,环空Anticline n.背斜 API standards n.美国石油协会标准Aromatic n.芳香族,芳香族环烃;a. 芳香的 Artifical lift n.人工举升Artificial lift n.人工举升 Artificial water drive n.人工注水驱Asphaltene n.沥青烯 Asphaltic a.含沥青的,沥青质的;n.沥青质Associated a.伴生的 Attribute n.属性,特征,标志Baffle n.隔板;v.阻碍,挫折Barefoot completion n.裸眼完井Barite n.重晶石 Barrel n.桶Barrier n.隔层 Bbl (blue barrel) Bean n.油嘴,节流器 Belt cover n.皮带盖Bentonite n.膨润土,斑脱岩 Bit n.钻头Black-oil simulator n.黑油模拟器Blender truck n.混砂车Blow out v.井喷 Blowout n.井喷Blowout preventer (BOP) n.防喷器Borehole n.井眼Bottom hole n.井下 Collapse v.坍塌,倒塌Collar n.钻铤 Compaction n.压实作用Compaction n.压实(作用),挤压Completion n.完井,完成,结束Compress v.压缩 Compressor n.压缩机Concentration n.浓度;集中Condensate n.凝析油Condensate n.凝析油 Conductor casing n.导管Conductor casing n.导管 Conductor hole n.导管孔Conductor pipe n.导管 Cone n.圆锥,(锥形)牙轮Configuration n.构造 Connate a.原生的,共生的Connate water n.原生水,共生水Contaminant n.杂质,污染物Continuous lift n.连续气举 Core n.岩心Core n.岩心 Core holder n.岩心夹持器Core slug n.岩心塞 Coring bit n.取芯钻头Corrode v.腐蚀 Corrode v.腐蚀,侵蚀;锈蚀Corrosion n.腐蚀 Corrosion n.腐蚀Corrosive a.腐蚀的;n.腐蚀剂Corrosive a.腐蚀的;n.腐蚀剂Counterbalance n.平衡(块);v.使平衡,抵消 Counterweight n.平衡块Crack v.裂开 Crank n.曲柄,摇把Crown block n.钻台 Crumble v.坍塌,破碎Crust n.地壳 Curve n.曲线Cutting/chips n.钻屑

信息工程专业英语课程论文

鲁东大学信息与电气工程学院2015 -2016 学年第-----2----学期 《 专业英语 》课程论文 课程号: 220821071 任课教师 贾世祥 成绩 论文题目:专业科技论文翻译 对给定的发表在正规外文期刊上的电子信息类专业科技论文进行翻译,包含 Title 、Introduction 、Algorithm 、Result 、Discussion 、Reference 等内容。 论文要求:(对论文题目、内容、行文、字数等作出判分规定。) 1.论文格式参考学院学士毕业论文要求,要有题目、摘要、关键字、正文、参考文献。 2.原文不包含摘要和关键字,请阅读原文并写出200~300字的英文摘要,给出5个英文关键字。 3.语言表达流畅,涉及到的图表字迹清晰,公式使用公式编辑器编辑。 4.设计报告使用B4纸打印,正文的图表可黑白打印。 教师评语: 教师签字: 年 月 日 一个简单、快速、有效的多边形减面算法 Stan Melax Abstract :This article describes a new type of 3D model to optimize the reduction surface algorithm. Previous algorithms although it can reduce operating surface, but it in the reduction process will generate a lot of only makes processing speed becomes slow excess facet. This new algorithm is mainly through the edge collapse operation to achieve the effect of reducing the surface. This paper explains the characteristics and advantages of this algorithm by means of examples. The advantages and disadvantages of the new algorithm are also analyzed. Our initial goal is simple: we want to find a method can be reduced due to excessive blasting effects of polygons, now our art personnel only need to create a detailed model for every game objects. But there are limitations, this algorithm can only be applied to the triangle, if you need to be able to other more edges of the polygon into a simple triangle, in addition to this there is no other restrictions on the. Keywords :Polygon reduction ;Edge Collapse ;Pretreatment ;Optimization model ;Optimization model; Application algorithm ; 如果你是一个游戏开发者,那么3D 多边形模型非常有可能是日常生活中的一部分,而且你对多少个多边形每秒、少多边形建模、细节层次等概念非常熟悉。你可能知道多边形减面算法的 目的在于通过一个有着大量多边形的高细节的模型生成一个 多边形数量比它少、但是看起来却跟原模型很相像的低面模型。这篇文章解释了一种实现自动减面的方法,并且附带的讨论了多边形减面的有用之处。在我们开始之前,我建议你去下载我的一个程序:BUNNYLOD.EXE ,它展示了我将要阐述的这项技术。你可以在Game Develop 网站上找到它。 问题的由来 在深入这个很厉害的3D 算法之前,你可能会问你自己真的有必要关注它吗?要知道,已经有一些商业的插件和工具来为你减少多边形数量了。 然而,下面的几条理由会告诉你为什么需要实现自己的减面算法: 学院 信息与电气工程学院 专业 信息工程 班级 信息1301班 本 学号 20132213652 20132213664 姓名 李惠梁 吴海峰

石油工程专业英语词汇复习课程

石油工程专业英语词 汇

石油工程专业英语单词 A abnormal pressure 异常高压 absolute open flow potential 绝对敞喷流量 absolute permeability 绝对渗透率 acetic acids 乙酸 acid-fracturing treatment 酸化压裂处理 acidize 酸化 acidizing 酸化 additives 添加剂 Alkali/Surfactant/Polymer(ASP)tertiary combination flooding 三元复合驱anhydrite 无水石膏 annular space 环形空间 appraisal well 估计井,评价井 aquifer 含水层 areal sweep efficiency 面积波及系数 artificial lift methods 人工举升方法 B beam pumps 游梁式抽油机 bitumen 沥青 blast joint 耐磨钻头 block and tackle 滑轮组 blowout preventes 防喷器 blowout 井喷 bone strength 胶结强度 borehole 井筒,井眼 bottomhole/wellhead pressure 井底/井口压力 bottorm water 底水 breakthrough 突破,穿透 bubble point 泡点 bubble point pressure 泡点压力 C cable tool drilling 顿钻钻井 capillary action 毛细管作用 carbonate reservoirs 碳酸盐储层 casing hanger 套管悬挂器 casing head 套管头 casing collapse 套管损坏 casing corrosion 套管腐蚀 casing leak 套管漏失 casing pressure 套管压力

通信与信息工程专业英语教程词汇翻译 陈杰美

analog 模拟 digital 数字的 binary-coded number 二进制编码数electromagnetic induction 电磁感应 telegraph 电报 triode vacuum tube 三级真空管 broadcasting 广播 amplitude modulation (AM)幅度调制 frequency modulation (FM)频率调制 phase modulation (PM) 相位调制 transistor 晶体管 linear integrated circuit 线性集成电路microwave 微波 satellite 卫星 optical fiber 光纤 shortwave 短波 negative-feedback amplifier 负反馈放大器 PCM(Pulse-Code Modulation)脉冲编码调制time-division multiplexing (TDM)时分多路 stereo FM 立体声调频 error-correction code 纠错编码 adaptive equalization 自适应均衡 random access memory (RAM)随机存取存储器VLSI(very large scale integration)超大规模集成FAX (facsimile) 传真 cellular telephone 蜂窝电话移动电话oscilloscope 示波器 spread spectrum system 扩频系统 ISDN(integrated services digital network)综合业务数字网 HDTV(high definition television)高清晰度电视transmitter 发射机 channel 信道频道通道 receiver 接收机 baseband 基带 bandwidth (BW)频带宽度带宽 ADC(analog-digital converter)模数变换器 carrier 载波载流子 bandpass signal 带通信号 signal sideband (SSB)单边带 phase-shift keying(PSK)相移键控 ITU(international telecommunications union)国际电信联盟 PTN(public telecommunications network)公用电信网络 LOS propagation 视线传播ionospheric reflection 电离层反射 high fidelity (Hi-Fi)高保真度 signal-to-noise 信噪比 interference 干扰 mapping 映射 dimension 维数量纲 frequency selectivity 频率选择性 photocathode 光电阴极 raster scanning 光栅扫描 blanking pulse 消隐脉冲 multiplexer 多路转换器 encoder 编码器 decoder 译码器 pixel 像素 vocal tract filter 声道滤波器 melodic structure 韵律结构 harmonic structure 谐波结构 interlaced fields 交替的场 horizontal retrace 水平行回程 primary colors 基色 interactive video 交互式视频 ASCII 美国标准信息交换码 DCT (discrete cosine transform)离散余弦变换JPEG (joint photographic experts group)联合图像专家组 MPEG(motion photographic experts group)) 活动图像专家组 synchronous transmission 同步传输asynchronous transmission 异步传输 frame 帧 frame-packing 成帧 modeling 建模 Fourier series(FS) 傅里叶级数 transmission medium 传输介质 coaxial cable 同轴电缆 instantaneous power 瞬时功率 decibel 分贝dB RF(radio frequency)射频 commutator 换向器转接器 ripple 波纹起伏 ionosphere 电离层 potential difference 电位差 shot noise 散弹噪声 flicker noise 闪变噪声 noise figure 噪声系数 mathematic model 数学模型

通信与信息工程专业英语教程

-------------------------------------- 14课----------------------------------------------------------------------------- 1、configuration 配置Topologies 拓扑结构 2、multidrop插头式ring or loop 环状或回路型the mesh 网状 3、simultaneously 同时intelligence 情报 4、perpheral equipment 外围终端 5、essentially /in nature 本质上 6、vary considerable 在很大程度上 7、hotel reservation systems 宾馆预订系统 8、telecommunications network 电信网络 9、plural 复数mass media 大众媒体 10、ATM = automatic teller machine 11、simplex 单工,duplex 双工,HDX = half duplex, FDX= full duplex, F/FDX= full/full duplex 12、unidirectional 单向的,two-way alternate or either-way lines 双向交替或任一方向电路 13、citizens band 民用波段 14、postal system 邮政系统 15、indefinitely 不确定的 16、vice verse反之亦然 17、error control 差错控制,error detection 检错,error correction 纠错,echoplex回送 18、Trade-off 平衡,折中考虑,serial-parallel transmission串行和并行传输 19、between the source and destination 在源地和目的地之间 20、short-distance communications 近距离通信 21、and serial transmission is used for long-distance communications 远距离通信 22、To insure an ordly flow of data between the line control unit and the modem,a serial interface is placed between them . 23、in data communications,there are four types of synchronization(同步)that must be achieved:bit or clock synchronization,modem or carrier synchronization,characteraynchronization,and message synchronization. 1、Innovation 进步 2、optical feeder links 光馈链接,digital compression techniques 数字压缩技术 3、service integration 综合服务 4、频分复用frequency-division multiplexing 5、utilize 利用 6、in this implementation 在这种实现方式中 7、fiber-to-the-curb(FTTC)光纤到路边 8、视频点播video on demand(VOD) 9、telephony 电话,industry 行业 10、the CATV industry is deploying bidirectional networks —CATV 行业有必要拓展双向网络 11、noted above 前面提到的 12、atenuates衰减 13、nonadjacent 不毗连的,turn over 移交,subscribers 订户 14、packet-switched wireless network 分组交换无线网络 15、with the sponsorship 在---的资助下 16、hub 中心 17、on the order of 大约,在---数量级 18、penetration 渗透

石油工程专业英语下重点翻译完整版

All petroleum reservoirs experience pressure declines, and most wells require artificial lift at some point, most commonly where reservoir pressure is insufficient for natural flow. Artificial lift systems may also be used to enhance production from flowing wells with a reservoir pressure that is insufficient to produce a require amount of fluid. 所有的油气储层都要经历压力降低的过程,大多数井在某些阶段需要人工举升,通常是在储层的压力不足以自流自喷。人工举升系统也可以用于自喷井和储层压力不足以生产所需量时的增产。 Extensive research and field studies have been conducted on a range of artificial-lift systems that have been developed and applied extensively to meet industry needs. These systems include beam pumping, gas lift, electrical submersible pumps, progressive cavity pumps, and hydraulic.为满足行业的需求,广泛的研究和实地调查已经进行了,人工举升系统得到了广泛的发展和应用。这些系统包括游梁抽油机,气举,电潜泵(ESP),螺杆泵(PCP的),和液压泵。

石油专业英语(常用)

石油专业英语(常用) 油井(oil well)指任何钻透地球表面(Earth's surface)的钻孔(boring),目的是发现(find)或生产(produce)石油(petroleum/oil/hydrocarbons)。专门生产天然气的叫气井(gas well)。 油井一般经历五个阶段:计划(planning)、钻井(drilling)、完井(completion)、生产(production)与报废(abandonment)。 首先用钻机(drilling rig)通过钻具(drill string)上的钻头(drill bit)在地上钻出127-914.4毫米的孔(hole),然后在钻孔(borehole)中下钢制油管(steel tubing)与套管(casing)。套管与钻孔之间还可能需要用水泥(cement)来固定。套管为井孔(wellbore)提供结构上的整体性(structural integrity),同时隔离(isolate)危险的高压区(high pressure zone)。随着井深加大,钻头和套管尺寸会变小。现在的油井通常都有2-5个逐渐变小的井口尺寸。钻头通过与之连接的钻铤(drill collar)来钻进岩层。钻井液(drilling fluid/mud)通过钻杆(drill pipe)内部泵入钻头,作用包括冷却(cooling)钻头、提升钻屑(drill cuttings)、避免井壁(wellbore wall)不稳定以及避免岩层液体由于压力进入井眼。使用过的钻井液用振动筛(shaker)去掉钻屑后返回泥浆池(pit)循环利用。通过在地面的顶部驱动装置(topdrive/kelly

通信与信息工程专业英语教程参考答案(Communication English)

参考答案( Communication English ) 第一章电子通信导论 1.将表1-1译成中文。 表1-1 通信大事纪 年代事件 公元前3000年埃及人发明象形文字 公元800年借鉴印度, 阿拉伯人使用我们的现行数制 1440年约翰.戈登贝尔发明可移动的金属记录带 1752年贝莱明.富兰克林的风筝证明了雷闪是电 1827年欧姆发表欧姆定律( I = E / R) 1834年 C.F.高斯和E.H.韦伯发明电磁电报 1838年W.F.库克和C.维特斯通发明电报 1844年S.F.B.莫尔斯演示巴尔的摩和华盛顿的电报线路 1850年G.R.基尔赫夫发表基尔赫夫电路定律 1858年铺设第一条越洋电缆, 并于26天后举办博览会 1864年J.C.麦克斯威尔预言电磁辐射 1871年电报工程师协会在伦敦成立 1876年 A.G.贝尔发明电话并获专利 1883年 A.爱迪生发现真空管中的电子流 1884年美国电气工程师协会(AIEE)成立 1887年H.赫兹证明麦克斯威的理论 1900年G.马可尼传送第一个越洋无线电信号 1905年R.芬森登利用无线电传送语音和音乐 1906年L.弗雷斯特真空三极管放大器 1915年贝尔系统完成美国大陆电话线路 1918年 E.H.阿尔莫斯通发明超外差接收机电路 1920年第一个定时无线广播 J.R.卡尔松将取样用于广播 1926年美国演示电视 1927年H.布兰克在贝尔实验室发明负反馈放大器 1931年电传打字机投入运营 1933年 E.H.阿尔莫斯通发明调频 1935年R.A.沃特森-瓦特发明第一个实用雷达 1936年英国广播公司(BBC)开办第一个电视广播 1937年 A.雷弗斯提出脉冲编码调制(PCM) 1941年J.V.阿当拉索夫在依俄华州立大学发明计算机 1945年ENIAC电子数字计算机研发于宾夕伐尼亚大学 1947年布雷登、巴登和肖克利在贝尔实验室研制晶体管 S.O.莱斯在贝尔实验室研究噪声的统计表征1948年 C.E.香农发表他的信息理论

电子信息工程专业英语

一个新的测试数模转换器静态参数与内建自测试方法 Incheol Kim, Jaewon Jang, HyeonUk Son and Sungho Kang 电气与电子工程系延世大学首尔,韩国 摘要——种新的内建自测试(内置自检)方法测试数模转换器静态参数的建议在本文中提出。该技术采用一个斜坡发生器和双参考电压计算数模转换器静态参数:偏移,增益,积分非线性误差和微分非线性误差。优化计算静态参数和元素分享会降低内建自测试电路。仿真结果验 I、引言 数据转换器如模数转换器和数模转换器模块的设计是必不可少的最抑制因为他们之间提供了接口的模拟与数字系统。其性能影响的整体系统验证其可靠性,因此,非常重要的[ 1 ]。然而,他们已经成为一个困难的测试因为深深嵌入IP在单芯片上有穷人可观测性和可控性。一个内建自测试方法已上升作为一个解决方案,提高他们。提供高质量的内建自我测试和低成本的测试因为它可以增加可测性和提供现场验证。 测试ADC和/或数模转换器,这是常见的衡量静态和动态参数。然而,在生产试验中,测试策略是确定的最终使用的模数转换器和/或数模转换器[ 2 ]。在本文中,我们侧重于静态试验研究数模转换器内建自测试环境是因为动态测试要求微处理器或处理单元,是不适合内建自测试结构。在静态测试中,静态参数像增益,内核层和微分非线性误差都被计算。

测试静态参数的数模转换器[ 7 ] 的几种方法已经被提出了。在[ 3 ]中,一个线性测试方法提出了利用ddem(确定性动态元素匹配),但其具有抖动。这种方法可以测试高决议高速数模转换器,但是很难实现内建自测试结构,因为太多的电阻和开关要求。[ 4 ]提出了一种内建自测试结构与校准电路。精度的自我提高的校准电路,但这种方法需要一些复杂的模块,如阿尔哈诺夫(算术逻辑单元),电荷泵和一个施密特触发器。但需要大量的控制信号和计算,需要一个沉重的硬件架空。[ 7 ]可以测试模数转换器使用一个坡道信号。这种方法还需要一个复杂的模块等代码/索引的内存,和硬件结构为计算静态参数是不提供。 在本文中,一个新的静态测试方法测试中的一个简单的方法是建议。静态参数测试在第二节,和结构的建议自解释第三节。第四部分,仿真结果表明,第五节的结论文件。 II、静态参数 如上所述,静态测试计算偏移,增益,公司和软件。每个参数的确定,测试通过不能根据输出的数模转换器。一般来说,它是认为可接受的范围内的错误的数模转换器输出±我2。这意味着,如果两者之间的区别实际输出与期望输出大于理想+ 112或小于- 112,数模转换器是错误的。 偏移误差在试验开始。当测试输入的它是所有操作系统,输出电压将过压,但它不可能在实际情况。输出必须在范围—112 + 112通过偏移测试。(一)介绍可接受的范围内偏移测试。

石油工程专业英语【课文翻译】(1)

Unit 2 Geology and reservoir traps P24 在石油工程中,工程师必须知道油藏是怎样的,石油是如何形成的,流涕在油藏中是如何流动的。地质在石油勘探中扮演者主要的角色。石油工程专业的学生应该学会辨认不同的圈闭类型,这些圈闭是油气储集的地方。 P26世界上被发现的大多数石油都是在相对低渗的多孔岩石中被圈闭起来的。这些油藏通常离生成地都有很远的距离。当碳氢化合物运移到地面的时候,就形成了油苗。长此以往,就有大量的碳氢化合物逃逸到大气中。流动水也可能冲刷掉碳氢化合物。有时候只有较轻、易挥发的组分运移了,剩下的就是较重的原油。 P37 Unit 4 Properties of reservoir rock P60 Unit 6 Well completion P99 当一口完成了钻井,做完产层的经济评价之后就开始下套管,准备油气井的生产了。完井的设备和

方法是很多的,这个取决于具体井的油气储集类型、井具体阶段的开发要求,还有施工时候的经济状况。低压套管,有时候还是二手的,可以用于产量是边际产量的井,并且其他的投资也要相应减少。如果油井可能是高压,井的寿命预期较长,就会使用最好质量的油管。 Unit 7 Production of oil and gas P120气举是一种很灵活的方法,在海洋上可以用于斜井,并且可以迅速的适应于产量变化的需要以及产液种类变化的需要。在多数井中,随着时间推移,井筒中产水量的增加会对压力系统有很显著的影响。影响气举效率的一个重要因素就是气体与原油之间的滑脱效应。 Unit 11 Enhanced oil recovery P193表面活性剂驱和碱驱的驱油机理是建立在形成极低的界面张力的基础上的,其中聚合物驱或者表面活性剂/聚合物驱是利用控制流度来提高采收率。注入的碱与油藏中的石油衍生物脂肪酸发生化学反应,就地生成脂肪酸钠盐。生成的这种表面活性剂就可以形成极低的界面张力。

电子信息工程专业英语课文翻译(第3版)

电子信息工程专业英语教程第三版 译者:唐亦林 p32 In 1945 H. W. Bode presented a system for analyzing the stability of feedback systems by using graphical methods. Until this time, feedback analysis was done by multiplication and division, so calculation of transfer functions was a time consuming and laborious task. Remember, engineers did not have calculators or computers until the '70s. Bode presented a log technique that transformed the intensely mathematical process of calculating a feedback system's stability into graphical analysis that was simple and perceptive. Feedback system design was still complicated, but it no longer was an art dominated by a few electrical engineers kept in a small dark room. Any electrical engineer could use Bode's methods find the stability of a feedback circuit, so the application of feedback to machines began to grow. There really wasn't much call for electronic feedback design until computers and transducers become of age. 1945年HW伯德提出了一套系统方法,用图形化方法来分析反馈系统的稳定性。在此之前,反馈分析是通过乘法和除法完成的,所以传递函数的计算是一项费时和费力的任务。请记得工程师们在上个世纪70年代之前是没有计算机或者计算器的。伯德提出了一种日志技术,这种技术将计算反馈系统稳定性这种复杂的数学过程转换为简单和直观的图像分析。反馈系统的设计虽然还是很复杂,

石油工程专业英语

第一章石油钻井工程英语基础 第1节石油钻井工程基础词汇 1.钻探,钻井:drill————拓展记忆 钻井:drilling 定向斜井directional drilling 欠平衡钻井under-balance 海上钻井off-shore 陆地钻井on-land drilling 钻头:drill bit 刮刀钻头:drag bit 牙轮钻头rock bit 金刚石钻头diamond bit 喷射钻头jet bit 钻铤drill collar 衣领collar 钻杆:drill pipe 钻井队drilling crew 钻机 drill rig 钻井泥浆drilling mud 钻井液 drilling fluid 2.油,石油:oil————拓展记忆 原有 crude oil 石油 petroleum 中国石油 Petro-China 采油 oil production 采油设备 oil production equipment 采油平台 oil production platform 油泵 oil pump 3.地质:geology————拓展记忆 地质专业人员 geologist 物理 physics 地球物理勘探 geo-physical probe,geo-physical exploration 测井 logging 测井作业 logging operations 测井记录 logging record 4.油井:well————拓展记忆 井眼 hole 油井 oil well 试井,油井测试 well test 井下 down-hole 井下作业 down-hole operation 第2节石油钻井方法基础词汇 原油 crude oil 天然气 natural gas 煤层气 coal-bed gas 一体化设计 integral design 钻井 drilling 钻井原理 the principles of drilling 顿钻钻井 percussion drilling,cable-tool drilling 旋转钻井 rotary drilling 液体冲击 fluid percussion 大位移 big deviation 侧钻井 sidetracking drilling technology lateraldrilling 水平井 horizontal well 探井 wildcat,wildcat drilling 深井 deep well 浅井 shallow well 老井 maturing well 欠平衡钻井 under-balanced drilling 丛式钻井 cluster drilling technology 煤层气井 coal-bed gas well 生产井 production wells 报废井 abandon wells three-dimensional wells 绕障井、三维井 non-production wells 停产井. 常温井 normal temperature well 注采井 injection and production well 稠油井 heavy oil well 热洗井 hot washing pipe 井况 well condition 石油钻井技术基础词汇 技术规范,技术指标,技术性能:specification 拉伸 tension 拉伸强度 tension strength 应力 stress 压力 pressure 应力点 stress point 压力等级 pressure grade 压力降 pressure drop 压力梯度 pressure gradient 回压 back pressure 大气压 atmosphere 压差 differential pressure 静液柱压力 static fluid column pressure 特征 characteristic,feature 定性讨论 qualitative argiment 定量使用quantitative use 液体 liquid 固体 solid 气体 gas,air 正的positive 负的 negative 虚线 dashed line,broken line 实线 full line 递减率 decline rate 正比于 be proportional to 水平的 horizontal 垂直的vertical 油层静压 the formation static pressure 石油钻井参数基础词汇

相关文档
相关文档 最新文档