文档库 最新最全的文档下载
当前位置:文档库 › 5-灯泵YAG激光器综合实验

5-灯泵YAG激光器综合实验

5-灯泵YAG激光器综合实验
5-灯泵YAG激光器综合实验

灯泵YAG 激光器综合实验

引言

本实验装置采用具有连续光谱的闪光灯照射Nd 3+:YAG 晶体,Nd 离子就从基态E 1跃迁至

激发态E 4的一系列能级,其中最低的两个能级为4F 5/2和4F 7/2,相应于中心波长为0.81μm 和

0.75μm 的两个光谱吸收带。由于E 4的寿命仅约为1ns,所以受激的Nd 3+离子绝大部分都经

过无辐射跃迁转移到了E 3态。E 3是一个亚稳态,寿命长达250—500μs,很容易获得粒子数积累。E 2态的寿命为50ns,即使有粒子处在E 2,也会很快地弛豫到E 1。因此,相对E 3而言,E 2态上几乎没有粒子。这样,就在E 3和E 2之间造成了粒子数反转。正是E 3—E 2的受激辐射

在激光谐振腔中得到增益而形成了激光,其波长为1.064μm。只要泵浦光存在,Nd 3+离子的

能态就总是处在E 1—E 4一E 3一E 2一E 1的循环之中,这是一个典型的四能级系统。

一、实验目的

1、掌握电光Q 开关的原理及调试方法。

2、学会电光Q 开关装置的调试及主要参数的测试。

二、实验原理

调Q 技术的发展和应用,是激光发展史上的一个重要突破。一般的固体脉冲激光器输出的光脉冲,其脉宽持续在几us 甚至几ms,其峰值功率也只有kw 级水平,因此,压缩脉宽,增大峰值功率一直是激光技术所需解决的重要课题。调Q 技术就是为了适应这种要求而发展起来的。

调Q 基本概念 :用品质因数Q 值来衡量激光器光学谐振腔的质量优劣,是对腔内损耗的一个量度。

调Q 技术中,品质因数Q 定义为腔内贮存的能量与每秒钟损耗的能量之比,可表达为:

每秒钟损耗的激光能量

腔内贮存的激光能量0

2πν=Q 式中v 0为激光的中心频率。 如用E 表示腔内贮存的激光能量,γ为光在腔内走一个单程能量的损耗率.那么光在这一单程中对应的损耗能量为γE。用L 表示腔长;n 为折射率;c 为光速。则光在腔内走一个单程所用时间为nL/c。由此,光在腔内每秒钟损耗的能量为γEc/nL.这样Q 值可表示为

02/2γλπγπνnL nL Ec E Q ==

式中λ为真空中激光波长。可见Q值与损耗率总是成反比变化的,即损耗大Q值就低;损耗小Q值就高。

固体激光器由于存在弛豫振荡现象,产生了功率在阈值附近起伏的尖蜂脉冲序列,从而阻碍了激光脉冲峰值功率的提高。如果我们设法在泵浦开始时使谐振腔内的损耗增大,即提高振荡阈值,振荡不能形成,使激光工作物质上能级的粒子数大量积累。当积累到最大值(饱和值时),突然使腔内损耗变小,Q值突增。这时,腔内会像雪崩一样以飞快的速度建立起极强的振荡,在短时间内反转粒子数大量被消耗,转变为腔内的光能量,并在透反镜端面耦合输出一个极强的激光脉冲。通常把这种光脉冲称为巨脉冲。调节腔内的损耗实际上是调节Q值,调Q技术即由此而得名。也称为Q突变技术或Q开关技术。

用不同的方法去控制不同的损耗,就形成了不同的调Q技术。 有转镜调Q技术,电光调Q技术、可饱和染料调Q技术、声光调Q技术、透射式调Q技术。

本实验以电光Q开关激光器的原理、调整、特性测试为主要内容。利用晶体的电光效应制成的Q开关,具有开关速度快;所获得激光脉冲峰值功率高,可达几Mw至Gw,脉冲宽度窄,一般可达ns至几十ns,器件的效率高,可达动态效率1%,器件输出功率稳定性较好,产生激光时间控制程度度高,便于与其它仪器联动,器件可以在高重复频率下工作等优点.所以这是一种已获广泛应用的Q开关。

YAG棒在闪光灯的激励下产生无规则偏振光,通过偏振器后成为线偏振光,若起偏方向与KD*P晶体的晶袖x(或y)方向一致,并在KD*P上施加一个V1/4的外加电场。由于电光效应产生的电感应主轴X′和y′与入射偏振光的偏振方向成450角,这时调制器起到了一个1/4波片的作用,显然,线偏振光通过晶体后产生了π/2的位相差,可见往返一次产生的总相差为π,线偏振光经这一次往返后偏振面旋转了90°,不能通过偏振器。这样,在调制晶体上加有I/4波长电压的情况下,由介质偏振器和KD*P调制晶体组成的电光开关处于关闭状态,谐振腔的Q值很低,不能形成激光振荡。

虽然这时整个器件处在低Q值状态,但由于闪光灯一直在对YAG棒进行抽运,工作物质中亚稳态粒子数便得到足够多的积累,当粒子反转数达到最大时,突然去掉调制品体上的l /4波长电压,即电光开关迅速被打开,沿谐振腔轴线方向传播的激光可自由通过调制晶体,而其偏振状态不发生任何变比,达时谐振腔处于高Q值状态,形成雪崩式激光发射。

三、实验装置

图2-1 实验装置图

KDP: 倍频晶体(或KTP)

M1:输出镜(输出透过率T=80%)

YAG:闪光灯、聚光腔和YAG棒组件

B:布氏角偏振片

Q:调Q晶体(布氏角偏振片与调Q晶体组成调Q单元)

M2:全反射镜(M1和M2组成激光谐振腔)

四、实验内容与步骤

1、用He-Ne激光束或自准直平行光管,调整激光器各光学元件的高低水平位置,使各光学元件的对称中心基本位于同一直线上。再调整各光学元件的俯仰方位,使介质膜反射镜、偏振器、电光晶体的通光面与激光工作物质端面相互平行,不平行度小于一弧分。

2、启动电源,在不加λ/4晶体电压情况下,工作电压取550V,反复调整两块谐振腔片,使静态激光输出最强,记下输出激光能量。一般称不加调Q元件的激光输出为静态激光,而加调Q元件的激光输出为动态激光或巨脉冲激光。

3、关门试验,加上偏振片及调Q晶体,给电光晶体加上恒定的λ/4电压(Vλ/4),绕光轴转动KD*P晶体,充电并打激光,反复微调电光晶体,直至其x、y轴有偏振器的起偏方向平行。同时适当微调电压Vλ/4,直到激光器几乎不能振荡为止(出光明显比静态激光能量低)。此即说明电光Q开关已处于关闭状态(低Q值状态)。

4、接通电光晶体的退压电路,打动态激光,微调闪光灯开始泵浦至退去 Vλ/4电压之间的延迟时间电位器,一面观察激光强弱,一面微调延迟电位器旋钮,直到激光输出最强。记下巨脉冲能量值。

5、改变脉冲泵浦能量,每增加工作电压50V测量一次,用能量计分别测出几组静、动态输出能量。一直测到800V,计6组数据。

表1 激光器静态和动态输出

输入电压(V)静态输出(mJ)动态输出(mJ)500

550

600

650

700

750

6、在激光输出镜的外面插入KTP静态,仔细调节KTP倍频晶体的上下左右位置,使He-Ne激光束通过节KTP倍频晶体的中心。仔细调节KTP倍频晶体的俯仰方位,使其发射光点与激光晶体的反射光点重合。在激光电压是600~700V的情况下,可看到激光器输出532nm的绿色激光。绕光轴旋转KTP晶体,使激光器输出532nm的绿色激光最强。

五、实验报告要求

利用公式分别计算出在同一泵浦能量下的动态与静态激光输出能量之比η,η称为动静比。

η=动态激光输出能量/静态激光输出能量

六、思考题

试述改变退压延迟时间t0和加在晶体上的电压值为什么会影响调Q激光器的输出?

半导体泵浦激光原理实验

半导体泵浦激光原理实验 理工学院光信息2班贺扬10329064 合作人:余传祥 【实验目的】 1、了解与掌握半导体泵浦激光原理及调节光路方法。 2、掌握腔内倍频技术,并了解倍频技术的意义。 3、掌握测量阈值、相位匹配等基本参数的方法。 【实验仪器】 808nm半导体激光器、半导体激光器可调电源、晶体、KTP倍频晶体、输出镜(前腔片)、光功率指示仪 【实验原理】 激光的产生主要依赖受激辐射过程。 处于激发态的原子,在外的光子的影响下,从高能态向低能态跃迁,并在两个状态的能量差以辐射光子的形式发出去。只有外来光子的能量正好为激发态与基态的能级差时,才能引起受激辐射,且受激辐射发出的光子与外来光子的频率、发射方向、偏振态和相位完全相同。 激光器主要有:工作物质、谐振腔、泵浦源组成。工作物质主要提供粒子数反转。 泵浦过程使粒子从基态抽运到激发态,上的粒子通过无辐射跃迁,迅速转移到亚稳态。是一个寿命较长的能级,这样处于的粒子不断累积,上的粒子又由于抽运过程而减少,从而实现与能级间的粒子数反转。 激光产生必须有能提供光学正反馈的谐振腔。处于激发态的粒子由于不稳定性而自发辐射到基态,自发辐射产生的光子各个方向都有,只有沿轴向的光子,部分通过输出镜输出,

部分被反射回工作物质,在两个反射镜间往返多次被放大,形成受激辐射的光放大即产生激光。 激光倍频是将频率为的光,通过晶体中的非线性作用,产生频率为的光。 当外界光场的电场强度足够大时(如激光),物质对光场的响应与场强具有非线性关系: 式中均为与物质有关的系数,且逐次减小。 当E很大时,电场的平方项不能忽略。 ,直流项称为光学整流,当激光以一定角度入射到倍频晶体时,在晶体产生倍频光,产生倍频光的入射角称为匹配角。 倍频光的转换效率为倍频光与基频光的光强比,通过非线性光学理论可以得到: 式中L为晶体长度,、分别为入射的基频光、输出的倍频光光强。 在正常色散情况下,倍频光的折射率总是大于基频光的折射率,所以相位失配,双折射晶体中的o光和e光折射率不同,且e光的折射率随着其传播方向与光轴间夹角的变化而改变,可以利用双折射晶体中o光、e光间的折射率差来补偿介质对不同波长光的正常色散,实现相位匹配。 【实验装置】 图2 实验装置示意图

实验2 离心泵性能特性曲线测定实验

1.2离心泵性能特性曲线测定实验 1. 2.1实验目的 1).了解离心泵结构与特性,学会离心泵的操作。 2).测定恒定转速条件下离心泵的有效扬程(H)、轴功率(N)、以及总效率(η)与有效流量(V)之间的曲线关系。 3).测定改变转速条件下离心泵的有效扬程(H)、轴功率(N)、以及总效率(η)与有效流量(V)之间的曲线关系。 4).测定串联、并联条件下离心泵的有效扬程(H)、轴功率(N)、以及总效率(η)与有效流量(V)之间的曲线关系。 5).掌握离心泵流量调节的方法(阀门、转速和泵组合方式)和涡轮流量传感器及智能流量积算仪的工作原理和使用方法。 6).学会轴功率的两种测量方法:马达天平法和扭矩法。 7).了解电动调节阀、压力传感器和变频器的工作原理和使用方法。 8).学会化工原理实验软件库(组态软件MCGS 和VB 实验数据处理软件系统)的使用。 1.2.2基本原理 离心泵的特性曲线是选择和使用离心泵的重要依据之一,其特性曲线是在恒定转速下扬程H 、轴功率N 及效率η与流量V 之间的关系曲线,它是流体在泵内流动规律的外部表现形式。由于泵内部流动情况复杂,不能用数学方法计算这一特性曲线,只能依靠实验测定。 1 ) 流量V 的测定与计算 采用涡轮流量计测量流量,智能流量积算仪显示流量值V m 3/h 。 2) 扬程H 的测定与计算 在泵进、出口取截面列柏努利方程: g u u Z Z g p p H 22122121 2-+ -+-=ρ (1—9) p 1,p 2:分别为泵进、出口的压强 N/m 2 ρ:液体密度 kg/m 3 u 1,u 2:分别为泵进、出口的流量m/s g :重力加速度 m/s 2 当泵进、出口管径一样,且压力表和真空表安装在同一高度,上式简化为: g p p H ρ1 2-= (1—10) 由式(1-10)可知:只要直接读出真空表和压力表上的数值,就可以计算出泵的扬程。 本实验中,还采用压力传感器来测量泵进口、出口的真空度和压力,由16路巡检仪显示真空度和压力值。 3) 轴功率N 的测量与计算 轴功率可按下式计算: N=M ω=M 60 281.9602n PL n ππ.. = (1—11)

光的偏振 实验报告.doc

光的偏振 实验仪器: 光具座、半导体激光器、偏振片、1/4波片、激光功率计。 实验原理: 自然光经过偏振器后会变成线偏振光。偏振片既可作为起偏器使用,亦可作为检偏器使用。 马吕斯定律:马吕斯指出:强度为I0的线偏振光,透过检偏片后,透射光的强度(不考虑吸收)为I=I0cos2。(是入射线偏振光的光振动方向和偏振片偏振化方向之间的夹角。) 当光法向入射透过1/4波片时,寻常光(o光)和非常光(e光)之间的位相差等于π/2或其奇数倍。当线偏振光垂直入射1/4波片,并且光的偏振和云母的光轴面成θ角,出射后成椭圆偏振光。特别当θ=45°时,出射光为圆偏振光。 实验1、2光路图: 实验5光路图: 实验步骤: 1.半导体激光器的偏振特性: 转动起偏器,观察其后的接受白屏,记录器功率最大值和最小值,以及对应的角度,求出半导体激光的偏振度。 2。光的偏振特性——验证马吕斯定律: 利用现有仪器,记录角度变化与对应功率值,做出角度与功率关系曲线,并与理论值进行比较。 5.波片的性质及利用: 将1/4波片至于已消光的起偏器与检偏器间,转动1/4波片观察已消光位置,确定1/4波片光轴方向,改变1/4波片的光轴方向与起偏器的偏振方向的夹角,对应每个夹角检偏器转动一周,观察输出光的光强变化并加以解释。

实验数据: 实验一: 实验二: 实验五: 数据处理: 实验一: 计算得半导体激光的偏振度约为 故半导体激光器产生的激光接近于全偏振光。实验二: 绘得实际与理论功率值如下:

进行重叠发现二者的图线几乎完全重合,马吕斯定律得到验证。实验五:见“实验数据”中的表格

总结与讨论: 本次实验所用仪器精度较高,所得数据误差也较小。 当光法向入射透过1/4波片时,寻常光(o光)和非常光(e光)之间的位相差等于π/2或其奇数倍。当线偏振光垂直入射1/4波片,并且光的偏振和云母的光轴面成θ角,出射后成椭圆偏振光。特别当θ=45°时,出射光为圆偏振光,这就是实验五中透过1/4波片的线 偏光成为不同偏振光的原因。XX大学生实习报告总结 3000字 社会实践只是一种磨练的过程。对于结果,我们应该有这样的胸襟:不以成败论英雄,不一定非要用成功来作为自己的目标和要求。人生需要设计,但是这种设计不是凭空出来的,是需要成本的,失败就是一种成本,有了成本的投入,就预示着的人生的收获即将开始。 小草用绿色证明自己,鸟儿用歌声证明自己,我们要用行动证明自己。打一份工,为以后的成功奠基吧! 在现今社会,招聘会上的大字板都总写着“有经验者优先”,可是还在校园里面的我们这班学子社会经验又会拥有多少呢?为了拓展自身的知识面,扩大与社会的接触面,增加个人在社会竞争中的经验,锻炼和提高自己的能力,以便在以后毕业后能真正的走向社会,并且能够在生活和工作中很好地处理各方面的问题记得老师曾说过学校是一个小社会,但我总觉得校园里总少不了那份纯真,那份真诚,尽管是大学高校,学生还终归保持着学生身份。而走进企业,接触各种各样的客户、同事、上司等等,关系复杂,但你得去面对你从没面对过的一切。记得在我校举行的招聘会上所反映出来的其中一个问题是,学生的实际操作能力与在校的理

离心泵性能测定实验报告

离心泵性能测定 一、实验目的: 1、了解离心泵的构造与特性,掌握离心泵的操作方法; 2、测定并绘制离心泵在恒定转速下的特性曲线。 二、实验原理: 离心泵的压头H、轴功率N及功率η与流量Q之间的对应关系,若以曲线H~Q、N~Q、η~Q表示,则称为离心泵的特性曲线,可由实验测定。 实验时,在泵出口阀全关至全开的范围内,调节其开度,测得一组流量及对应的压头、轴功率和效率,即可测定并绘制离心泵的特性曲线。 泵的扬程He有下式计算: 而泵的有效功率Ne与泵效率η的计算式为:Ne=Qheηg;η=Ne/N 测定时,流量Q可用涡轮流量计或孔板流量计来计量。轴功率N可用马达-天平式测功器或功率来表测量。 离心泵的性能与其转速有关。其特性曲线是某一恒定的给定转速(一般nl=2900PRM)下的性能曲线。因此,如果实验中的转速n与给定转速nl有差异,应将实验结果换算成给定转速下的数值,并以此数值绘制离心泵的特性曲线。换算公式如下: 时, 三、装置与流程: 水由水箱1,经泵进口 阀2、离心泵4、出口阀8 9

涡轮流量计9,最后 流 10 8 6 回水 箱 7 3 5 4 2 1 四、操作步骤: 1、熟悉实验装置及仪器仪表等设备,做好启动泵前的准备工作;将泵盘车 数转,关闭泵进口阀,打开泵出口阀并给泵灌水,待泵内排尽气体并充满水后,再关闭泵出口阀。 2、启动离心泵,全开泵进口阀,并逐渐打开离心泵出口阀以调节流量。在 操作过程稳定条件下,在流量为零和最大值之间,进行8次测定。 3、在每次测定流量时,应同时记录流量计、转速表、真空计、压力表、功 率测定器示值。 数据取全后,先关闭泵出口阀,再停泵。 五、实验数据记录和数据处理:

实验报告-半导体泵浦激光原理

激光器主要有:工作物质、谐振腔、泵浦源组成。工作物质主要提供粒子数反转。 泵浦过程使粒子从基态E1抽运到激发态E3,E3上的粒子通过无辐射跃迁(该过程粒子从高能级跃迁到低能级时能量转变为热能或晶格振动能,但不辐射光子),迅速转移到亚稳态E2。E2是一个寿命较长的能级,这样处于E2的粒子不断累积,E1上的粒子又由于抽运过程而减少,从而实现E2与E1能级间的粒子数反转。 激光产生必须有能提供光学正反馈的谐振腔。处于激发态的粒子由于不稳定性而自发辐射到基态,自发辐射产生的光子各个方向都有,偏

离轴向的光子很快逸出腔外,只有沿轴向的光子,部分通过输出镜输出,部分被反射回工作物质,在两个反射镜间往返多次被放大,形成受激辐射的光放大即产生激光。 光的倍频是一种最常用的扩展波段的非线性光学方法。激光倍频是将频率为ω的光,通过晶体中的非线性作用,产生频率为2ω的光。 当光与物质相互作用时,物质中的原子会因感应而产生电偶极矩。单位体积内的感应电偶极矩叠加起来,形成电极化强度矢量。电极化强度产生的极化场发射出次级电磁辐射。当外加光场的电场强度比物质原子的内场强小得多时,物质感生的电极化强度与外界电场强度成正比。 P=ε0χE 在激光没有出现前,当有几种不同频率的光波同时与该物质作用时,各种频率的光都线性独立地反射、折射和散射,满足波的叠加原理,不会产生新的频率。 当外界光场的电场强度足够大时(如激光),物质对光场的响应与场强具有非线性关系: P=αE+βE2+γE3+?

式中α,β,γ,…均为与物质有关的系数,且逐次减小。 考虑电场的平方项 E=E0cosωt P(2)=βE2=βE02cos2ωt=βE02 (1+cos2ωt) 出现直流项和二倍频项cos2ωt,直流项称为光学整流,当激光以一定角度入射到倍频晶体时,在晶体产生倍频光,产生倍频光的入射角称为匹配角。 倍频光的转换效率为倍频光与基频光的光强比,通过非线性光学理论可以得到: η=I2ω ω ∝βL2Iω sin2(Δkl/2) 式中L为晶体长度,Iω、I2ω分别为入射的基频光、输出的倍频光光强。 在正常色散情况下,倍频光的折射率n2ω总是大于基频光的折射率,所以相位失配,双折射晶体中的o光和e光折射率不同,且e光的折射率随着其传播方向与光轴间夹角的变化而改变,可以利用双折射晶体中o光、e光间的折射率差来补偿介质对不同波长光的正常色散,实现相位

激光原理实验

激光技术及应用实验 Lasers Experiments 一、实验课简介 本课程是面向应用物理学专业学生开设的一门学科基础课程,在第五学期开设。本实验是在本科生接受了大学物理等系统实验方法和实验技能训练的基础上开设的,主要与理论课程《激光技术与应用》同步,训练学生的自主设计能力。该课程具有丰富的实验思想、方法、手段,同时能提供综合性很强的基本实验技能训练,是培养学生科学实验能力、提高科学素质的重要基础。它在培养学生严谨的治学态度、活跃的创新意识、理论联系实际和适应科技发展的综合应用能力等方面具有其他实践类课程不可替代的作用。 二、实验课目标 进一步加强学生的基本科学实验技能的培养,提高学生的科学实验基本素质,并与理论课程的教学融汇贯通,加深对理论课程学习的理解。通过本课程的学习,要使学生熟悉激光器的基本工作原理、激光振荡及放大的条件、高斯光束的变换,熟练使用几种常用激光器,如氦氖激光器、半导体激光器、脉冲激光器和可调谐燃料激光器。使学生通过实际动手操作,掌握激光器的一般构造,加深对激光特性的理解,了解激光在精密测量中的使用。 培养学生的科学思维和创新意识,使学生掌握实验研究的基本方法,提高学生的分析能力和创新能力。提高学生的科学素养,培养学生积极主动的探索精神,遵守纪律,团结协作的优良品德。 三、实验课内容 实验项目一:气体激光器(3学时) 1. 实验属性:综合性实验。 2. 开设要求:必开。 3. 教学目标: (1)掌握气体激光器的主要结构和原理; (2)掌握气体激光器的调节方法; (2)了解激光输出的特性及其测量; (3)了解高斯光束的传播规律,掌握光束基本特性的测量。 4. 主要实验仪器设备:游标卡尺、开放式He-Ne激光器等。 5. 实验内容(至少做两个子项目): (1)调节He-Ne激光器的谐振腔镜,获得激光稳定输出; (2)测量激光光束的发散角和束腰半径(选作); (3)测量激光激励电压与激光输出功率之间的相互关系(选作); (4)进行简单的高斯光束变换(选作)。 实验项目二:固体连续激光器(3学时) 1. 实验属性:综合性实验。 2. 开设要求:必开。 3. 教学目标:

离心泵性能测定实验

离心泵性能测定实验

离心泵性能测定实验 一、实验目的: 1、 了解离心泵的构造,掌握其操作和调节方法; 2、 测量离心泵在恒定转数下的特性曲线,并确定其最佳工作范围; 3、 测量管路特性曲线及双泵并联时特性曲线; 4、 了解工作点的含义及确定方法; 5、 测定孔板流量计孔流系数C 0与雷诺数Re 的关系(选做)。 二、基本原理: 1、离心泵特性曲线测定 离心泵的特征方程是从理论上对离心泵中液体质点的运动情况进行分析研究后,得出的离心泵压头与流量的关系。离心泵的性能受到泵的内部结构、叶轮形式和转数的影响,故在实际工作中,其内部流动的规律比较复杂,实际压头要小于理论压头。因此,离心泵的扬程尚不能从理论上作出精确的计算,需要实验测定。 在一定转数下,泵的扬程、功率、效率与其流量之间的关系,即为特性曲线。泵的扬程可由进、出口间的能量衡算求得: He = H 压力表 + H 真空表 + H 0 [ m ] 其中:H 真空表,H 压力表分别为离心泵进出口的压力 [ m ]; H 0为两测压口间的垂直距离,H 0= 0.3m 。 N 轴 = N 电机?η电机?η传动 [ kw ] 其中:η电机—电机效率,取0.9; η传动—传动装置的效率,取1.0; 102 ρ ??=He Q N [ kw ] 因此,泵的总效率为: 轴 N Ne = η 2、孔板流量计孔流系数的测定 孔板流量计孔板孔径处的流速u 0可以简化为: u 0=C 0(2gh )1/2 根据u 0和S 0,即可算出流体的体积流量Vs 为: Vs=u 0S 0=C 0S 0(2gh )1/2 或: Vs= C 0S 0(2△p/ρ)1/2 式中Vs ——流体的体积流量,m 3/s ; △ p ——孔板压差,Pa ; S 0——孔口面积,m 2; ρ——流体的密度,kg/m 3; C 0——孔流系数。

实验报告——半导体激光器输出光谱测量

实验报告——半导体激光器输出光谱测量 实验时间:2017.03.04 一、实验目的 1、了解半导体激光器的基本原理及基本参数; 2、测量半导体激光器的输出特性和光谱特性; 3、了解外腔选模的机理,熟悉光栅外腔选模技术; 4、熟悉压窄谱线宽度的方法。 二、实验原理 1.半导体激光器 激光(LASER)的全称 light amplification by stimulated emission of radiation 意为通过受激发射实现光放大。 激光器的基本组成如下图: 必要组成部分无外乎:谐振腔、增益介质、泵浦源。 在此基础上,激光产生的条件有二: 1)粒子数反转 通过外界向工作物质输入能量,使粒子大部分处于高能态,而非基态。 2)跃迁选择定则 粒子能够从基态跃迁到高能态,需要两个能级之间满足跃迁选择定则,电子相差 的奇数倍角动量差。 世界上第一台激光器是1960年7月8日,美国科学家梅曼发明的红宝石激光器。 1962年世界上第一台半导体激光器发明问世。 2.半导体激光器的基本原理 半导体激光器工作原理是激励方式,利用半导体物质(既利用电子)在能带间跃迁发光,用半导体晶体的解理面形成两个平行反射镜面作为反射镜,组成谐振腔,使光振荡、反馈、产生光的辐射放大,输出激光。 没有杂质的纯净半导体,称为本征半导体。 如果在本征半导体中掺入杂质原子,则在导带之下和价带之上形成了杂质能级,分别称为施主能级和受主能级。 有施主能级的半导体称为n型半导体;有受主能级的半导体称这p型半导体。在常温下,热能使n型半导体的大部分施主原子被离化,其中电子被激发到导带上,成为自由电子。而p型半导体的大部分受主原子则俘获了价带中的电子,在价带中形成空穴。因此,n 型半导体主要由导带中的电子导电;p型半导体主要由价带中的空穴导电。 若在形成了p-n结的半导体材料上加上正向偏压,p区接正极,n区接负极。正向电压的电场与p-n结的自建电场方向相反,它削弱了自建电场对晶体中电子扩散运动的阻碍

实验四 连续半导体泵浦固体激光器静态输出特性和声光调Q实验

实验四连续半导体泵浦固体激光器静态输出特性 和声光调Q实验 实验目的 1.了解固体激光器的输出特性和阈值特性,掌握激光器输出特性斜率效率的计 算; 2.掌握激光器设计中最佳透过率的概念,巩固最佳透过率选取原则; 3.掌握声光调Q的基本原理和布拉格衍射的特征及布拉格衍射角的概念,了解 激光器在连续和调Q脉冲工作状态下的激光功率输出特性, 4.了解不同调Q频率下,激光功率变化的原因,巩固最佳调Q频率选取的原则。 实验原理 1. 固体Nd:YAG激光器工作原理 固体激光器通常由三个基本部分组成,即固体激光工作物质、泵浦源和光学谐振腔。 激光工作物质是激光器的心脏,产生激光的是激活离子,激光器的输出特性在很大程度上由激活离子的能级结构决定。目前,常用的固体激光工作物质有红宝石晶体、钕玻璃和掺钕钇铝石榴石(即Nd3+:YAG)晶体。由于Nd3+:YAG晶体具有荧光谱线窄、量子效率高等特点,它的增益高、阈值低、激光输出效率高,故在中小功率的脉冲器件中,以及在高重复率的脉冲激光器中得到广泛应用。本实验中即采用Nd3+:YAG作为激光工作物质,该工作物质的激活离子为Nd3+,属四能级系统,发射激光波长为1.06μm,工作于连续方式。Nd3+:YAG产生受激辐射的能级如图4-1所示。激活粒子(Nd3+:离子)在这些能级之间的跃迁特性为:在光泵浦作用下,处于基态能级E1上的粒子被激发到高能级E4上,由于E4能级寿命很短,处在该能级上的粒子很快以无辐射跃迁方式迅速转移到较低的激发态能级E3上,E3为亚稳态,在E3能级上的粒子有较长的寿命(10-3~10-4s),因而易于实现粒子数积累。当粒子数由E3向E2跃迁时,产生激光辐射,粒子到达能级E2后,再以无辐射跃迁迅速地返回到基态E1。基于这种状态以及由于热平衡情况,使得粒子不易在E2能级上积聚,因此,在外界激励下,E3和E2之间较易形成粒子数反转,从而实现受激辐射。

北京化工大学离心泵性能实验报告

报告题目:离心泵性能试验 实验时间:2015年12月16日 报告人: 同组人: 报告摘要 本实验以水为工作流体,使用了额定扬程He为20m,转速为2900 r/min IS 型号的离心泵实验装置。实验通过调节阀门改变流量,测得不同流量下离心泵的各项性能参数,流量通过计量槽和秒表测量。实验中直接测量量有P真空表、P 压力表、电机功率N电、孔板压差ΔP、计量槽水位上升高度ΔL、时间t,根据上述测量量来计算泵的扬程He、泵的有效功率Ne、轴功率 N轴及效率η,从而绘制He-Q、Ne-Q和η-Q三条曲线即泵的特性曲线图,并根据此图求出泵的最佳操作范围;又由P、Q求出孔流系数C0、Re,从而绘制C0-Re曲线图,求出孔板孔流系数C0;最后绘制管路特性曲线H-Q曲线图。 本实验数据由EXCEL处理,所有图形的绘制由ORIGIN来完成 实验目的及任务 ①了解离心泵的构造,掌握其操作和调节方法。 ②测定离心泵在恒定转速下的特性曲线,并确定泵的最佳工作范围。 ③熟悉孔板流量计的构造、性能及安装方法。 ④测定孔板流量计的孔流系数。 ⑤测定管路特性曲线。 基本理论 1.离心泵特性曲线测定 离心泵的性能参数取决于泵的内部结构、叶轮形式及转速。其中理论压头与流量的关系,可通过对泵内液体质点运动的理论分析得到,如图4-3中的曲线。由于流体流经泵时,不可避免地会遇到各种阻力,产生能量损失,诸如摩擦损失、环流损失等,因此,实际压头比理论压头小,且难以通过计算求得,因此通常采用实验方法,直接测定其参数间的关系,并将测出的He-Q、N-Q和η-Q三条曲线称为离心泵的特性曲线。另外,根据此曲线也可以求出泵的最佳操作范围,作为选泵的依据。

半导体激光器pi特性测试实验

太原理工大学现代科技学院 课程实验报告 专业班级 学号 姓名 指导教师

实验名称 半导体激光器P-I 特性测试实验 同组人 专业班级 学号 姓名 成绩 一、 实验目的 1. 学习半导体激光器发光原理和光纤通信中激光光源工作原理 2. 了解半导体激光器平均输出光功率与注入驱动电流的关系 3. 掌握半导体激光器P (平均发送光功率)-I (注入电流)曲线的测试方法 二、 实验仪器 1. ZY12OFCom13BG 型光纤通信原理实验箱 1台 2. 光功率计 1台 3. FC/PC-FC/PC 单模光跳线 1根 4. 万用表 1台 5. 连接导线 20根 三、 实验原理 半导体激光二极管(LD )或简称半导体激光器,它通过受激辐射发光,(处于高能级E 2的电子在光场的感应下发射一个和感应光子一模一样的光子,而跃迁到低能级E 1,这个过程称为光的受激辐射。所谓一模一样,是指发射光子和感应光子不仅频率相同,而且相位、偏振方向和传播方向都相同,它和感应光子是相干的。)是一种阈值器件。由于受激辐射与自发辐射的本质不同,导致了半导体激光器不仅能产生高功率(≥10mW )辐射,而且输出光发散角窄(垂直发散角为30~50°,水平发散角为0~30°),与单模光纤的耦合效率高(约30%~50%),辐射光谱线窄(Δλ=0.1~1.0nm ),适用于高比特工作,载流子复合寿命短,能进行高速信号(>20GHz )直接调制,非常适合于作高速长距离光纤通信系统的光源。 P-I 特性是选择半导体激光器的重要依据。在选择时,应选阈值电流I th 尽可能小,I th 对应P 值小,而且没有扭折点的半导体激光器,这样的激光器工作电流小,工作稳定性高,消光比(测试方法见实验四)大, ……………………………………装………………………………………订…………………………………………线………………………………………

实验一-半导体激光器系列实验

实验一-半导体激光器系列实验

实验一半导体激光器系列 实验

一、实验设备介绍 2.配套仪器的使用 WGD-6光学多道分析器的使用参考WGD-6光学多道分析器的使用说明书。 3.激光器概述 光电子器件和技术是当今和未来高技术的基础,引起世界各国的极大关注。其中半导体激光器的生产和应用发展特别迅猛,它已经成功地用于光通讯和光学唱片系统;还可以作为红外高分辨率光谱仪光源,用于大气测污和同位素分离等;同时半导体激光器可以成为雷达,测距,全息照相和再现、射击模拟器、红外夜视仪、报警器等的光源。半导体激光器,调频器,放大器集成在一起的集成光路将进一步促进光通 - 1 -

讯,光计算机的发展。 激光器一般包括三个部分: (1)激光工作介质 激光的产生必须选择合适的工作介质,可以是气体、液体、固体或半导体。在这种介质中可以实现粒子数反转,以制造获得激光的必要条件。显然亚稳态能级的存在,对实现粒子数反转是非常有利的。现有工作介质近千种,可产生的激光波长包括从真空紫外到远红外,非常广泛。 (2)激励源 为了使工作介质中出现粒子数反转,必须用一定的方法去激励原子体系,使处于上能级的粒子数增加。一般可以用气体放电的办法来利用具有动能的电子去激发介质原子,称为电激励;也可用脉冲光源来照射工作介质,称为光激励;还有热激励、化学激励等。各种激励方式被形象化地称为泵浦或抽运。为了不断得到激光输出,必须不断地“泵浦”以维持处于上能级的粒子数比下能级多。 (3)谐振腔 有了合适的工作物质和激励源后,可实现粒子数反转,但这样产生的受激辐射强度很弱,无法实际应用。于是人们就想到了用光学谐振腔进行放大。所谓光学谐振腔,实际是在激光器两端,面对面装上两块反射率很高的镜。一块几乎全反射,一块大部分反射、 - 2 -

氦氖激光器实验论文

共焦球面扫描干涉仪调整及高斯光束变换与测量实验 刘岩1, 贾艳1 (1.东北师范大学,吉林长春 130000) 摘要:本文介绍了氦氖激光器的原理及其相关的基本结构,并系统的做了氦氖激光器系列实验中的共焦球面扫描干涉仪调整实验和高斯光束变换与测量实验。 关键词:氦氖激光器;共焦球面扫描;高斯光束;干涉仪 中图分类号:G3 文献标识码:A 引言 虽然在1917年爱因斯坦就预言了受激辐射的存在,但在一般热平衡情况下,物质的受激辐射总是被收激吸收所掩盖,未能在实验中观察到。直到1960年,第一台红宝石激光器才面世,他标志了激光技术的诞生。激光器由光学谐振腔、工作物质、激励系统构成,相对一般光源,激光有良好的方向性,也就是说,光能量在空间的分布高度集中在光的传播方向上,但它也有一定的发散度。在激光的横截面上,光强是以高斯函数型分布的,故称作高斯光束。同时激光还具有单色性好的特点,也就是说,它可以具有非常窄的谱线宽度。受激辐射后经过谐振腔等多种机制的作用和相互干涉,最后形成一个或者多个离散的、稳定的谱线,这些谱线就是激光的模。在激光生产与应用中,如定向、制导、精密测量、焊接、光通讯等,我们常常需要先知道激光器的构造,同时还要了解激光器的各种参数指标。因此,激光原理与技术综合实验是光电专业学生的必修课程。 1 实验原理 1.1氦氖激光器原理与结构 氦氖激光器(简称He-Ne激光器)由光学谐振腔(输出镜与全反镜)、工作物质(密封在玻璃管里的氦气、氖气)、激励系统(激光电源)构成。对He-Ne 激光器而言增益介质就是在毛细管内按一定的气压充以适当比例的氦氖气体,当氦氖混合气体被电流激励时,与某些谱线对应的上下能级的粒子数发生反转,使介质具有增益。介质增益与毛细管长度、内径粗细、两种气体的比例、总气压以及放电电流等因素有关。对谐振腔而言,腔长要满足频率的驻波条件,谐振腔镜的曲率半径要满足腔的稳定条件。总之腔的损耗必须小于介质的增益,才能建立激光振荡。内腔式He-Ne激光器的腔镜封装在激光管两端,而外腔式He-Ne激光器的激光管、输出镜及全反镜是安装在调节支架上的。调节支架能调节输出镜与全反镜之间平行度,使激光器工作时处于输出镜与全反镜相互平行且与放电管垂直的状态。在激光管的阴极、阳极上串接着镇流电阻,防止激光管在放电时出现闪烁现象。氦氖激光器激励系统采用开关电路的直流电源,体积小,份量轻,可靠性高,可长时间运行。 图1 氦氖激光器原理图 1.2 高斯光束的基本性质 众所周知,电磁场运动的普遍规律可用Maxwell方程组来描述。对于稳态传输光频电磁场可以归结为对光现象起主要作用的电矢量所满足的波动方程。在标量场近似条件下,可以简化为赫姆霍兹方程,高斯光束是赫姆霍兹方程在缓变振幅近似下的一个特解,它可以足够好地描述激光光束的性质。使用高斯光束的复参数表示和ABCD定律能够统一而简洁的处理高斯光束在腔内、外的传输变换问题。在缓变振幅近似下求解赫姆霍兹方程,可以得到高斯光束的一般表达式: () 2 2 2() [] 2() 00 , () r z kr i R z A A r z e e z ω ψ ω ω --- =?(1) 式中,A0为振幅常数;ω(z)定义为场振幅减小到最大值的e-1的r值称为腰斑,它是高斯光束光斑半径的最小值;ω(z)、R(z)、Ψ分别表示了高斯光束的光斑半径、等相面曲率半径、相位因子,是描述高斯光束的三个重要参数,其具体表达式分别为:

离心泵特性实验报告

离心泵特性测定实验报告 一、实验目的 1.了解离心泵结构与特性,熟悉离心泵的使用; 2.测定离心泵在恒定转速下的操作特性,做出特性曲线; 3.了解电动调节阀、流量计的工作原理和使用方法。 二、基本原理 离心泵的特性曲线是选择和使用离心泵的重要依据之一,其特性曲线是在恒定转速下泵的扬程H 、轴功率N 及效率η与泵的流量Q 之间的关系曲线,它是流体在泵内流动规律的宏观表现形式。由于泵内部流动情况复杂,不能用理论方法推导出泵的特性关系曲线,只能依靠实验测定。 1.扬程H 的测定与计算 取离心泵进口真空表和出口压力表处为1、2两截面,列机械能衡算方程: f h g u g p z H g u g p z ∑+++=+++222 2222111ρρ (1) 由于两截面间的管长较短,通常可忽略阻力项f h ∑,速度平方差也很小故可忽略,则有 (=H g p p z z ρ1 212)-+ - 210(H H H ++=表值) (2) 式中: 120z z H -=,表示泵出口和进口间的位差,m ; ρ——流体密度,kg/m 3 ; g ——重力加速度 m/s 2; p 1、p 2——分别为泵进、出口的真空度和表压,Pa ; H 1、H 2——分别为泵进、出口的真空度和表压对应的压头,m ; u 1、u 2——分别为泵进、出口的流速,m/s ; z 1、z 2——分别为真空表、压力表的安装高度,m 。 由上式可知,只要直接读出真空表和压力表上的数值,及两表的安装高度差,就可计算出泵的扬程。 2.轴功率N 的测量与计算 k N N ?=电 (3) 其中,N 电为电功率表显示值,k 代表电机传动效率,可取95.0=k 。

实验1NdYAG固体激光器实验

hv 2 1 (a) 2 1 (b) 2 E 1 (c) 图1、光与物质作用的吸收过程 Nd :YAG 固体激光器实验 一、 实验内容与器件 1、了解半导体激光器的工作原理和光电特性 2、掌握半导体泵浦固体激光器的工作原理和调试方法 二、 实验原理概述 1. 激光产生原理 光与物质的相互作用可以归结为光与原子的相互作用,有三种过程:吸收、自发辐射和受激辐射。 如果一个原子,开始处于基态,在没有外来光子,它将保持不变,如果一个能量为hv 21的光子接近,则它吸收这个光子,处于激发态E 2。在此过程中不是所有的光子都能被原子吸收,只有当光子的能量正好等于原子的能级间隔 E 1-E 2时才能被吸收。 激发态寿命很短,在不受外界影响时,它们会自发地返回到基态,并放出光子。自发辐射过程与外界作用无关,由于各个原子的辐射都是自发的、独立进行的,因而不同原子发出来的光子的发射方向和初相位是不相同的。 处于激发态的原子, 在外的光子的影响下,会从高能态向低能态跃迁,并两个状态间的能量差以辐射光子的形式发射出去。只有外来光子的能量正好为激发态与基态的能级差时,才能引起受激辐射,且受激辐射发出的光子与外来光子的频率、发射方向、偏振态和相位完 全相同。激光的产生主要依赖受激辐射过程。激光器主要有:工作物质、谐振腔、泵浦源组成。工作物质主要提供粒子数反转。 hv 21 2 E 1 (a) E 2 E 1 (b) hv 21 hv 21 图2、光与物质作用的受激辐射过程

泵浦过程使粒子从基态E 1抽运到激发态E 3,E 3上的粒子通过无辐射跃迁(该过程粒子从高能级跃迁到低能级时能量转变为热能或晶格振动能,但不辐射光子),迅速转移到亚稳态E 2。E 2是一个寿命较长的能级,这样处于E 2上的粒子不断积累,E 1上的粒子 又由于抽运过程而减少,从而实现E 2与E 1能级间的粒子数反转。激光产生必须有能提供光学正反馈的谐振腔。处于激发态的粒子由于不稳定性而自发辐射到基态,自发辐射产生的光子各个方向都有,偏离轴向的光子很快逸出腔外,只有沿轴向的光子,部分通过输出镜输出,部分被反射回工作物质,在两个反射镜间往返多次被放大,形成受激辐射的光放大即产生激光。 2 YAG 固体激光器 固体激光器基本都是由工作物质、泵浦系统、谐振腔和冷却、滤光系统构成。固体激光器工作物质是固体激光器的核心。影响固体激光器工作特性的关键是固体激光工作物质的物理和光谱性质,这主要是指吸收带、荧光谱线、热导率等。实验中,我们采用掺钕钇铝石 榴石(Nd:YAG)作为工作物质,它的激活离子是钕离子(Nd 3+),其吸收谱线如图4所示,在可 见光和红外区域有几个较强的吸收带,我们关注的是808nm 附近的吸收谱线。在本实验中,半导体激光器是用来做固体激光器的泵浦光源。我们采用了输出波长为808nm, InGaAlAs/GaAs 量子阱结构设计、光斑预整形、输出功率大于2W 的多模半导体激光器,工作电流可调,采用半导体制冷片对其进行温度控制。 图4 3:Nd YAG +晶体的吸收光谱(300K ) YAG 中3Nd +与激光产生有关系的能级结构如图5所示。它属于四能级系统。其激光上 能级3E 为33/2F ,激光下能级2E 为43/2I I ,43/2II I ,其荧光谱线波长分别为1.35m μ和1.06m μ,49/2 I 相应于1E 。由于1.06m μ比1.35m μ波长的荧光强约4 倍,在本实验中,我们通过腔镜镀膜,E 1 E 3 E 2 图3、三能级系统示意图

半导体激光器实验报告

半导体激光器实验报告 课程:_____光电子实验_____ 学号: 姓名: 专业:信息工程 南京大学工程管理学院

半导体激光器 一.实验目的 (1)通过实验熟悉半导体激光器的光学特性 (2)掌握半导体激光器耦合、准直等光路的调节 (3)根据半导体激光器的光学特性考察其在光电技术方面的应用 二.实验原理 1.半导体激光器的基本结构 半导体激光器大多数用的是GaAs或Gal-xAlxAs材料。P-n结通常在n 型衬底上生长p型层而形成,在p区和n区都要制作欧姆接触,使激励 电流能够通过,电流使结区附近的有源区产生粒子数反转。 2.半导体激光器的阈值条件 当半导体激光器加正向偏置并导通时,器件不会立刻出现激光震荡,小电流时发射光大都来自自发辐射,随着激励电流的增大,结区大量粒 子数反转,发射更多的光子,当电流超过阈值时,会出现从非受激发射 到受激发射的突变。这是由于激光作用过程的本身具有较高量子效率的 缘故,激光的阈值对应于:由受激发射所增加的激光模光子数(每秒) 正好等于平面散射,吸收激光器的发射所损耗的光子数(每秒)。 3.横模和偏振态 半导体激光器的共振腔具有介质波导的结构,所以在共振腔中传播光以模的形式存在。每个模都由固有的传播常数和横向电场分布,这些 模就构成了激光器中的横模。横模经端面射出后形成辐射场,辐射场的 角分布沿平行于结面方向和垂直于结面方向分别成为侧横场和正横场。 共振腔横向尺寸越小,辐射场发射角越大,由于共振腔平行于结面方向 的宽度大于垂直于结面方向的厚度,所以侧横场小于正横场的发散角。 激光器的GaAs晶面对TE模的反射率大于对TM模的反射率,因而TE模需要的阈值增益低,TE模首先产生受激发射,反过来又抑制了TM 模,另一方面形成半导体激光器共振腔的波导层一般都很薄,这一层越

离心泵性能实验

实验名称:离心泵性能试验 一、实验目的及任务: 1.了解离心泵的构造,掌握其操作和调节方法。 2.测定离心泵在恒定转速下的特性曲线,并确定泵的最佳工作范围。 3.测定管路的特性曲线。 4.熟悉个孔板流量计的构造、性能和安装方法。 5.测定孔板流量计的孔流系数。 二、实验原理: 1. 离心泵特性曲线的测定 离心泵的性能参数取决于泵的内部结构、叶轮形式及转速。其中理论压头与流量的关系可以通过对泵内液体质点运动的理论分析得到。由于流体流经泵时,不可不免的会产生阻力损失,如摩擦损失、环流损失等,实际压头小于理论压头,且难以计算。因此,通常采用实验方法,直接测定其参数间的关系,并将测出的He-Q、N-Q、η-Q三条曲线称为离心泵的特性曲线。根据曲线可以找到最佳操作范围,作为选择泵的依据。 (1)泵的扬程 由伯努利方程,泵的实际压头He如下: 其中,动能项相比于压头项数量级很小,可以忽略;损失项由于管路较短,损失较小,可以忽略,因此得到:

式中——泵出口处的压力,mH2O ——泵入口处的压力,mH2O ——出口压力表和入口压力表的垂直距离,m (2)泵的有效功率和效率 泵在运转过程中存在能量损失,因此泵的实际和流量较理论低,而输入功率又比理论值高,有泵的总效率: 轴 轴电电转 式中——泵的有效功率,kW ——流量,m3/s ——扬程,m ——流体密度,kg/ m3 N轴——泵轴输入离心泵的功率,kW N电——电机的输入功率,Kw η电——电机效率,取0.9 η转——传动装置的效率,取1.0 2. 孔板流量计孔流系书的测定 孔板流量计的结构如图1所示。

图1 孔板流量计构造原理 在水平管路上装有一块孔板,其两侧接测压管,分别与压力传感器的两端连接。孔板流量计是根据流通通过锐孔的节流作用,使流速增大,压强减小,造成孔板前后压差作为测量依据。若管路的直径为d 1,锐孔的直径为d 0,流体流经孔板后所形成缩脉的直径为d 2,流体的密度为ρ,孔板前测压导管截面处与缩脉截面处的速度和压强分别为u 1、u 2和p 1、p 2,根据伯努利方程,不考虑能量损失可得: 或 由于缩脉的位置随流速的变化而变化,缩脉处的截面积S 2难以知道,而孔口的面积已知,且测压口的位置不变,因此可以用孔口处的u 0代替u 2,考虑流体因局部阻力造成的能量损失,用校正系数C 校正后,有: 对不可压缩流体,根据连续性方程有: 整理得: 令 ,则可简化为: u d d

1-实验四 半导体泵浦固体激光器综合实验

实验四半导体泵浦固体激光器综合实验半导体泵浦固体激光器(Diode-Pumped solid-state Laser,DPL),是以激光二极管(LD)代替闪光灯泵浦固体激光介质的固体激光器,具有效率高、体积小、寿命长等一系列优点,在光通信、激光雷达、激光医学、激光加工等方面有巨大应用前景,是未来固体激光器的发展方向。本实验的目的是熟悉半导体泵浦固体激光器的基本原理和调试技术,以及倍频的原理和技术。 一、实验目的 1.掌握半导体泵浦固体激光器的工作原理和调试方法; 2.了解固体激光器倍频的基本原理; 3.掌握固体激光器被动调Q的工作原理,进行调Q脉冲的测量。(选做) 二、实验原理 1.半导体激光泵浦固体激光器工作原理: 上世纪80年代起,生长半导体激光器(LD)技术得到了蓬勃发展,使得LD的功率和效率有了极大的提高,也极大地促进了DPSL技术的发展。与闪光灯泵浦的固体激光器相比,DPSL 的效率大大提高,体积大大减小。在使用中,由于泵浦源LD的光束发散角较大,为使其聚焦在增益介质上,必须对泵浦光束进行光束变换(耦合)。泵浦耦合方式主要有端面泵浦和侧面泵浦两种,其中端面泵浦方式适用于中小功率固体激光器,具有体积小、结构简单、空间模式匹配好等优点。侧面泵浦方式主要应用于大功率激光器。本实验采用端面泵浦方式。端面泵浦耦合通常有直接耦合和间接耦合两种方式。 直接耦合:将半导体激光器的发光面紧贴增益介质,使泵浦光束在尚未发散开之前便被增益介质吸收,泵浦源和增益介质之间无光学系统,这种耦合方式称为直接耦合方式。 直接耦合方式结构紧凑,但是在实际应用中较难实现,并且容易对LD造成损伤。 间接耦合:指先将LD输出的光束进行准直、整形,再进行端面泵浦。常见的方法有:组合透镜系统聚光:用球面透镜组合或者柱面透镜组合进行耦合。 自聚焦透镜耦合:由自聚焦透镜取代组合透镜进行耦合,优点是结构简单,准直光斑的大小取决于自聚焦透镜的数值孔径。 光纤耦合:指用带尾纤输出的LD进行泵浦耦合。优点是结构灵活。 本实验先用光纤柱透镜对半导体激光器进行快轴准直,压缩发散角,然后采用组合透镜对泵浦光束进行整形变换,各透镜表面均镀对泵浦光的增透膜,耦合效率高。本实验的压缩和耦合如图 2所示。

离心泵实验

一、 实验题目 离心泵性能实验 二、 实验摘要 本实验使用转速为2900 r/min ,WB70/055型号的离心泵实验装置,以水为工作流体,通过调节阀门改变流量,测得不同流量下离心泵的性能参数,并画出特性曲线同时标定孔板流量计的孔流系数C 0,测定管路的特性曲线。实验中直接测量量有q v 、P 出、P 入、电机输入功率N 电、孔板压差ΔP 、水温T 、频率f ,根据上述测量量来计算泵的扬程He 、泵的有效功率Ne 、轴功率N 轴及效率η,从而绘制泵的特性曲线图;又由P 、q v 求出孔流系数C 0、Re ,从而绘制C 0-Re 曲线图,求出孔板孔流系数C 0;最后绘制管路特性曲线图。 关键词: 特性曲线图、孔流系数、He 、N 轴、η、q v 三、 实验目的及内容 1、解离心泵的构造,掌握其操作和调节方法。 2、定离心泵在恒定转速下的特性曲线,并确定泵的最佳工作范围。 3、熟悉孔板流量计的构造、性能及安装方法。 4、测定孔板流量计的孔流系数。 5、测定管路特性曲线。 四、实验原理 1、离心泵特性曲线测定 离心泵的性能参数取决于泵的内部结构、叶轮形式及转速。其中理论压头与流量的关系,可通过对泵内液体质点运动的理论分析得到,如下图的曲线。由于流体流经泵时,不可避免地会遇到各种阻力,产生能量损失,诸如摩擦损失、环流损失等,因此,实际压头比理论压头笑,且难以通过计算求得,因此通常采用实验方法,直接测定其参数间的关系,并将测出的He-Q 、N-Q 和η-Q 三条曲线称为离心泵的特性曲线。另外,曲线也可以求出泵的最佳操作范围,作为选泵的依据。 (1)泵的扬程He 式中: ——泵出口处的压力,mH 2O ; ——泵出口处的压力, mH 2O ; ——出口压力表与入口压力表的垂直距离, =0.2m 。 (2)泵的有效功率和效率 由于泵在运转过程中存在种种能量损失,使泵的实际压头和流量较理论值为低,而输入泵的功率又比理论值高,所以泵的总效率为 轴 N Ne = η 102 e ρ QHe N = 式中 Ne ——泵的有效效率,kW ;

半导体激光器P-I特性测试

实验一 半导体激光器P-I 特性测试实验 一、 实验目的 1. 学习半导体激光器发光原理和光纤通信中激光光源工作原理 2. 了解半导体激光器平均输出光功率与注入驱动电流的关系 3. 掌握半导体激光器P (平均发送光功率)-I (注入电流)曲线的测试方法 二、 实验仪器 1. ZY12OFCom13BG 型光纤通信原理实验箱 1台 2. 光功率计 1台 3. FC/PC-FC/PC 单模光跳线 1根 4. 万用表 1台 5. 连接导线 20根 三、 实验原理 半导体激光二极管(LD )或简称半导体激光器,它通过受激辐射发光,(处于高 能级E 2的电子在光场的感应下发射一个和感应光子一模一样的光子,而跃迁到低能级E 1,这个过程称为光的受激辐射,所谓一模一样,是指发射光子和感应光子不仅频率相同,而且相位、偏振方向和传播方向都相同,它和感应光子是相干的。)是一种阈值器件。由于受激辐射与自发辐射的本质不同,导致了半导体激光器不仅能产生高功率(≥10mW )辐射,而且输出光发散角窄(垂直发散角为30~50°,水平发散角为0~30°),与单模光纤的耦合效率高(约30%~50%),辐射光谱线窄(Δλ=0.1~1.0nm ),适用于高比特工作,载流子复合寿命短,能进行高速信号(>20GHz )直接调制,非常适合于作高速长距离光纤通信系统的光源。 对于线性度良好的半导体激光器,其输出功率可以表示为 P e =)(2th D I I q -ηω (1-1) 其中int int a a a mir mir D +=ηη,这里的量子效率η int ,表征注入电子通过受激辐射转化为光 子的比例。在高于阈值区域,大多数半导体激光器的ηint 接近于1。 1-1式表明,激光输出功率决定于内量子效率和光腔损耗,并随着电流而增大, 当注入电流I>I th 时,输出功率与I 成线性关系。其增大的速率即P-I 曲线的斜率,称为斜率效率 D e q dI dP ηω2 = (1-2) P-I 特性是选择半导体激光器的重要依据。在选择时,应选阈值电流I th 尽可能小, I th 对应P 值小,而且没有扭折点的半导体激光器,这样的激光器工作电流小,工作稳定性高,消光比(测试方法见实验四)大,而且不易产生光信号失真。并且要求P-I 曲线的斜率适当。斜率太小,则要求驱动信号太大,给驱动电路带来麻烦;斜率太大,则会出现光反射噪声及使自动光功率控制环路调整困难。半导体激光器具有高功率密度和极高量子效率的特点,微小的电流变化会导致光功率输出变化,是光纤通信中最重要的一种光源,半导体激光器可以看作为一种光学振荡器,要形成光的振荡,就必须要有光放大机制,也即激活介质处于粒子数反转分布,而且产生的增益足以抵消所

相关文档
相关文档 最新文档