文档库 最新最全的文档下载
当前位置:文档库 › 最新八个有趣模型——搞定空间几何体的外接球与内切球(学生版)资料

最新八个有趣模型——搞定空间几何体的外接球与内切球(学生版)资料

最新八个有趣模型——搞定空间几何体的外接球与内切球(学生版)资料
最新八个有趣模型——搞定空间几何体的外接球与内切球(学生版)资料

八个有趣模型——搞定空间几何体的外接球与内切球

类型一、墙角模型(三条线两个垂直,不找球心的位置即可求出球半径,三棱锥与长方体的外接球相同)

图2

图3

方法:找三条两两垂直的线段,直接用公式2

2

2

2

)2(c b a R ++=,即2222c b a R ++=,求出R 例1 (1)已知各顶点都在同一球面上的正四棱柱的高为4,体积为16,则这个球的表面积是( ) A .π16 B

.π20 C .π24 D .π32 (2)若三棱锥的三个侧面两两垂直,且侧棱长均为3,则其外接球的表面积是 (3)在正三棱锥S ABC -中,M N 、分别是棱SC BC 、的中点,且MN AM ⊥,若侧棱SA =,则正三棱锥ABC S -外接球的表面积是 。 解:引理:正三棱锥的对棱互垂直,证明如下:

如图(3)-1,取BC AB ,的中点E D ,,连接CD AE ,,CD AE ,交于H ,连

接SH ,则H 是底面正三角形ABC 的中心,∴⊥SH 平面ABC ,∴AB SH ⊥, BC AC =,BD AD =,∴AB CD ⊥,∴⊥AB 平面SCD ,∴SC AB ⊥,

同理:SA BC ⊥,SB AC ⊥,即正三棱锥的对棱互垂直, 本题图如图(3)-2, MN AM ⊥,MN SB //,

∴SB AM ⊥, SB AC ⊥,∴⊥SB 平面SAC , ∴SA SB ⊥,SC SB ⊥, SA SB ⊥,SA BC ⊥,

∴⊥SA 平面S B C ,∴SC SA ⊥,故三棱锥ABC S -的三棱条侧棱两两互垂直

36)32()32()32()2(2222=+

+=R ,即3642=R ,∴外接球的表面积是π36

(3)题-1

A

(3)题-2

A

(4)在四面体S ABC -中,ABC SA 平面⊥,,1,2,120====∠?

AB AC SA BAC 则该四面体的外接

球的表面积为( )

π11.A π7.B π310.

C π3

40

.D (5)如果三棱锥的三个侧面两两垂直,它们的面积分别为6、4、3,那么它的外接球的表面积是

(6)已知某几何体的三视图如图上右所示,三视图是腰长为1的等腰直角三角形和边长为1的正方形,

则该几何体外接球的体积为

类型二、垂面模型(一条直线垂直于一个平面) 1.题设:如图5,⊥PA 平面ABC 解题步骤:

第一步:将ABC ?画在小圆面上,A 为小圆直径的一个端点,作小圆的直

径AD ,连接PD ,则PD 必过球心O ;

第二步:1O 为ABC ?的外心,所以⊥1OO 平面ABC ,算出小圆1O 的半

径r D O =1(三角形的外接圆直径算法:利用正弦定理,得

r C c B b A a 2sin sin sin ===),PA OO 2

1

1=; 第三步:利用勾股定理求三棱锥的外接球半径:①2

22)2()2(r PA R +=?22)2(2r PA R +=

②2

12

2OO r R +=?2

12OO r R +=

图5

2.题设:如图6,7,8,P 的射影是ABC ?的外心?三棱锥ABC P -的三条侧棱相等? 三棱锥ABC P -的底面ABC ?在圆锥的底上,顶点P 点也是圆锥的顶点

图6

图7-1

图7-2

图8

图8-1

8-2

图8-3

解题步骤:第一步:确定球心O 的位置,取ABC ?的外心1O ,则1,,O O P 三点共线; 第二步:先算出小圆1O 的半径r AO =1,再算出棱锥的高h PO =1(也是圆锥的高); 第三步:勾股定理:2

12

12

O O A O OA +=?2

2

2

)(r R h R +-=,解出R . 方法二:小圆直径参与构造大圆。

例2 一个几何体的三视图如右图所示,则该几何体外接球的表面积为 A .π3 B .π2 C .

3

16π

D .以上都不对

类型三、切瓜模型(两个平面互相垂直)

图9-1

图9-2

图9-3

图9-4

1.题设:如图9-1,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径)

第一步:易知球心O 必是PAC ?的外心,即PAC ?的外接圆是大圆,先求出小圆的直径r AC 2=;

第二步:在PAC ?中,可根据正弦定理R C

c

B b A a 2sin sin sin ===,求出R 。

2.如图9-2,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径) 21212O O C O OC +=?2

122O O r R +=?2122O O R AC -=

3.如图9-3,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径),且P 的射影是ABC ?的外心?三棱锥ABC P -的三条侧棱相等?三棱ABC P -的底面ABC ?在圆锥的底上,顶点P 点也是圆锥的顶点 解题步骤:

第一步:确定球心O 的位置,取ABC ?的外心1O ,则1,,O O P 三点共线;

第二步:先算出小圆1O 的半径r AO =1,再算出棱锥的高h PO =1(也是圆锥的高); 第三步:勾股定理:21212O O A O OA +=?2

22)(r R h R +-=,解出R

4.如图9-3,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径),且AC PA ⊥,则 利用勾股定理求三棱锥的外接球半径:①2

22)2()2(r PA R +=?22)2(2r PA R +=

②2

12

2OO r R +=?2

12OO r R +=

例3 (1)正四棱锥的顶点都在同一球面上,若该棱锥的高为1,底面边长为32,则该球的表面积为 。

(2)正四棱锥ABCD S -的底面边长和各侧棱长都为2,各顶点都在同一个球面上,则此球的体积为

(3)在三棱锥ABC P -中,3===PC PB PA ,侧棱PA 与底面ABC 所成的角为

60,则该三棱锥外

接球的体积为( )

A .π B.3π C. 4π D.43

π (4)已知三棱锥S ABC -的所有顶点都在球O 的求面上,ABC ?是边长为1的正三角形,SC 为球O 的直

径,且2SC =;则此棱锥的体积为( )

A B C D

类型四、汉堡模型(直棱柱的外接球、圆柱的外接球)

图10-2

题设:如图10-1,图10-2,图10-3,直三棱柱内接于球(同时直棱柱也内接于圆柱,棱柱的上下底面可以是任意三角形)

第一步:确定球心O 的位置,1O 是ABC ?的外心,则⊥1OO 平面ABC ; 第二步:算出小圆1O 的半径r AO =1,h AA OO 2

1

2111==

(h AA =1也是圆柱的高)

; 第三步:勾股定理:21212O O A O OA +=?2

22)2

(r h

R +=?22)2

(h

r R +=

,解出R

例4 (1)一个正六棱柱的底面上正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为

8

9

,底面周长为3,则这个球的体积为 (2)直三棱柱111ABC A B C -的各顶点都在同一球面上,若12AB AC AA ===,120BAC ∠=?,则此球的表面积等于 。

(3)已知EAB ?所在的平面与矩形ABCD 所在的平面互相垂直,?

=∠===60,2,3AEB AD EB EA ,则多面体ABCD E -的外接球的表面积为 。 (4)在直三棱柱111C B A ABC -中,4,3

,6,41====AA A AC AB π

则直三棱柱111C B A ABC -的外接球

的表面积为 。

类型五、折叠模型

题设:两个全等三角形或等腰三角形拼在一起,或菱形折叠(如图11)

第一步:先画出如图所示的图形,将BCD ?画在小圆上,找出BCD ?和BD A '?的外心1H 和2H ; 第二步:过1H 和2H 分别作平面BCD 和平面BD A '的垂线,两垂线的交点即为球心O ,连接OC OE ,; 第三步:解1OEH ?,算出1OH ,在1OCH Rt ?中,勾股定理:2

2

12

1OC CH OH =+

例5 三棱锥ABC P -中,平面⊥PAC 平面ABC ,△PAC 和△ABC 均为边长为2的正三角形,则三棱锥ABC P -外接球的半径为 .

类型六、对棱相等模型(补形为长方体) 题设:三棱锥(即四面体)中,已知三组对棱分别相等,求外接球半径(CD AB =,BC AD =,BD AC =) 第一步:画出一个长方体,标出三组互为异面直线的对棱;

第二步:设出长方体的长宽高分别为c b a ,,,x BC AD ==,y CD AB ==,z BD AC ==,列方程组,

??

???=+=+=+2

222

22222z a c y c b x b a ?2)2(2222222z y x c b a R ++=

++=, 补充:abc abc abc V BCD A 3

1

461=?-=-

第三步:根据墙角模型,2

22

222

22z y x c b a R ++=

++=

8

2

222z y x R ++=,8

2

22z y x R ++=

,求出R ,

例如,正四面体的外接球半径可用此法。

例6(1)棱长为2的正四面体的四个顶点都在同一个球面上,若过该球球心的一个 截面如图,则图中三角形(正四面体的截面)的面积是 .

图12

图11

(1)题

(2)一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正

三棱锥的体积是( ) A .

4

33 B .33 C .43 D .123

(3)在三棱锥BCD A -中,若,4,3,2======BD AC BC AD CD AB 则三棱锥BCD A -外接球的表面积为 。

(4)在三棱锥A BCD -中,5,6,7,AB CD AC BD AD BC ======则该三棱锥外接球的表面积

为 . (5)正四面体的各条棱长都为2,则该正面体外接球的体积为

类型七、两直角三角形拼接在一起(斜边相同,也可看作矩形沿对角线折起所得三棱锥)模型

图13

题设:

90=∠=∠ACB APB ,求三棱锥ABC P -外接球半径(分析:取公共的斜边的中点O ,连接

OC OP ,,则AB OP OC OB OA 2

1

=

===,∴O 为三棱锥ABC P -外接球球心,然后在OCP 中求出半径)

例7(1)在矩形ABCD 中,4=AB ,3=BC ,沿AC 将矩形ABCD 折成一个直二面角D AC B --,则四面体ABCD 的外接球的体积为( )

A .

π12125 B .π9125 C .π6125 D .π3

125

(2)在矩形ABCD 中,2=AB ,3=BC ,沿BD 将矩形ABCD 折叠,连接AC ,所得三棱锥BCD

A -的外接球的表面积为 .

类型八、锥体的内切球问题

1.题设:如图14,三棱锥ABC P -上正三棱锥,求其外接球的半径。 第一步:先现出内切球的截面图,H E ,分别是两个三角形的外心;

第二步:求BD DH 3

1

=,r PH PO -=,PD 是侧面ABP ?的高;

第三步:由POE ?相似于PDH ?,建立等式:PD

PO

DH OE =

,解出r 2.题设:如图15,四棱锥ABC P -上正四棱锥,求其外接球的半径

第一步:先现出内切球的截面图,H O P ,,三点共线;

第二步:求BC FH 2

1

=

,r PH PO -=,PF 是侧面PCD ?的高; 第三步:由POG ?相似于PFH ?,建立等式:PF

PO

HF OG =

,解出 3.题设:三棱锥ABC P -是任意三棱锥,求其的内切球半径

方法:等体积法,即内切球球心与四个面构成的四个三棱锥的体积之和相等 第一步:先画出四个表面的面积和整个锥体体积;

第二步:设内切球的半径为r ,建立等式:PBC O PAC O PAB O ABC O ABC P V V V V V -----+++=?

r

S S S S r S r S r S r S V PBC PAC PAB ABC PBC PAC PAB ABC ABC P ?+++=?+?+?+?=????-)(31

31313131

第三步:解出PBC

O PAC O PAB O ABC O ABC

P S S S S V r -----+++=

3

习题: 1.若三棱锥ABC S -的三条侧棱两两垂直,且2=SA ,4==SC SB ,则该三棱锥的外接球半径为( ) A.3 B.6 C.36 D.9 2.

3. 三棱锥ABC S -中,侧棱⊥SA 平面ABC ,底面ABC 是边长为3的正三角形,32=SA ,则该三

棱锥的外接球体积等于 .

3.正三棱锥ABC S -中,底面ABC 是边长为3的正三角形,侧棱长为2,则该三棱锥的外接球体积等于 .

4.三棱锥ABC P -中,平面⊥PAC 平面ABC ,△PAC 边长为2的正三角形,BC AB ⊥,则三棱锥

ABC P -外接球的半径为 . 5.

6. 三棱锥ABC P -中,平面⊥PAC 平面ABC ,2=AC ,3==PC PA ,BC AB ⊥,则三棱锥

ABC P -外接球的半径为图14

A

C

图15

7. 三棱锥ABC P -中,平面⊥PAC 平面ABC ,2=AC ,PC PA ⊥,BC AB ⊥,则三棱锥ABC P -外接球的半径为 .

2013届高考空间几何体的外接球与内切球问题专项突破复习

2013届高考球体问题专项突破复习 例 1 球面上有三点A 、B 、C 组成这个球的一个截面的内接三角形三个顶点,其中 18=AB ,24=BC 、30=AC ,球心到这个截面的距离为球半径的一半,求球的表面积. 分析:求球的表面积的关键是求球的半径,本题的条件涉及球的截面,ABC ?是截面的内接三角形,由此可利用三角形求截面圆的半径,球心到截面的距离为球半径的一半,从而可由关系式2 22d R r -=求出球半径R . 解:∵18=AB ,24=BC ,30=AC , ∴2 22AC BC AB =+,ABC ?是以AC 为斜边的直角三角形. ∴ABC ?的外接圆的半径为15,即截面圆的半径15=r , 又球心到截面的距离为R d 21= ,∴22215)2 1 (=-R R ,得310=R . ∴球的表面积为πππ1200)310(442 2 ===R S . 说明:涉及到球的截面的问题,总是使用关系式22d R r -= 解题,我们可以通过两 个量求第三个量,也可能是抓三个量之间的其它关系,求三个量. 例2.自半径为R 的球面上一点M ,引球的三条两两垂直的弦MC MB MA ,,,求 222MC MB MA ++的值. 分析:此题欲计算所求值,应首先把它们放在一个封闭的图形内进行计算,所以应引导 学生构造熟悉的几何体并与球有密切的关系,便于将球的条件与之相联. 解:以MC MB MA ,,为从一个顶点出发的三条棱,将三棱锥ABC M -补成一个长方体,则另外四个顶点必在球面上,故长方体是球的内接长方体,则长方体的对角线长是球的直径. ∴222MC MB MA ++=224)2(R R =. 说明:此题突出构造法的使用,以及渗透利用分割补形的方法解决立体几何中体积计算. 1、一个四棱柱的底面是正方形,侧棱与底面垂直,其长度为4,棱柱的体积为16,棱柱的各顶 点在一个球面上,则这个球的表面积是 ( ) A .16π B .20π C .24π D .32π 答案:C 解:由题意知,该棱柱是一个长方体,其长、宽、高分别为2,2,4.所以其外接球的半径 R .所以球的表面积是S =4πR 2 =24π. 2四个顶点在同一个球面上,则此球的表面积为( ) A.3π B.4π

七个无敌模型——全搞定空间几何的外接球

七个有趣模型——搞定空间几何体的外接球 类型一、墙角模型(三条线两个垂直,不找球心的位置即可求出球半径) 图2 图3 方法:找三条两两垂直的线段,直接用公式2 2 2 2 )2(c b a R ++=,即2222c b a R ++=,求出R 例1 (1)已知各顶点都在同一球面上的正四棱柱的高为4,体积为16,则这个球的表面积是( ) A .π16 B .π20 C .π24 D .π32 (2)若三棱锥的三个侧面两垂直,且侧棱长均为3,则其外接球的表面积是 (3)在正三棱锥S ABC -中,M N 、分别是棱SC BC 、的中点,且MN AM ⊥,若侧棱SA =则正三棱锥ABC S -外接球的表面积是 。 (4)在四面体S ABC -中,ABC SA 平面⊥,,1,2,120====∠? AB AC SA BAC 则该四面体的外接 球的表面积为( )π11.A π7.B π310. C π3 40.D (5)如果三棱锥的三个侧面两两垂直,它们的面积分别为6、4、3,那么它的外接球的表面积是 (6)已知某几何体的三视图如图所示,三视图是腰长为1的等腰直角三角形和边长为1的正方形,则该几 何体外接球的体积为 类型二、垂面模型(一条直线垂直于一个平面) 1.题设:如图5,⊥PA 平面ABC 解题步骤: 第一步:将ABC ?画在小圆面上,A 为小圆直径的一个端点,作小圆的直 径AD ,连接PD ,则PD 必过球心O ; 第二步:1O 为ABC ?的外心,所以⊥1OO 平面ABC ,算出小圆1O 的半 径r D O =1(三角形的外接圆直径算法:利用正弦定理,得 r C c B b A a 2sin sin sin ===),PA OO 211=; 第三步:利用勾股定理求三棱锥的外接球半径:①2 2 2 )2()2(r PA R +=?22)2(2r PA R += ; 图5

难点突破:立体图形的外接球与内切球问题

2019届高三数学第一轮复习教学案18:难点突破:立体图形的外接球与切球问题 一、基础知识与概念: 1.球的截面:用一个平面去截球,截面是圆面;用一个平面去截球面,截面是圆. 大圆:截面过球心,半径等于球半径(截面圆中最大);小圆:截面不过球心. 2.球心和截面圆心的连线垂直于截面. 3.球心到截面的距离d 与球半径R 及截面圆半径r 的关系:222R d r =+. 4.几何体的外接球:几何体的顶点都在球面上;几何体的切球:球与几何体的各个面都相切. 二、多面体的外接球(球包体) 模型1:球包直柱(直锥):有垂直于底面的侧棱(有垂底侧边棱) 球包 直 柱 球径公式:2 2 2h R r ??=+ ??? , (r 为底面外接圆半径) 球包正方体 球包长方体 球包四棱柱 球包三棱柱 球 包直锥 三棱锥 四棱锥 r 速算 模型2:“顶点连心”锥:锥体的顶点及球心在底面的投影都是底面多边形外接圆的圆心(两心一顶连成线) 实例:正棱锥 球径计算方程:()2 2 2 h R r R -+=22 22 202h r h hR r R h +?-+=?=, (h 为棱锥的高,r 为底面外接圆半径) 特别地, (1)边长为a 正四面体的外接球半径:R =______________. (2)底面边长为a ,高为h 的正三棱锥的外接球半径:R =__________. (3)底面边长为a ,高为h 的正四棱锥的外接球半径:R =__________. 例:1.(2017年全国卷III 第8题)已知圆柱的高为,它的两个底面的圆周在直径为的同一个球的球面上,则该圆柱的体积为

高考数学中的内切球和外接球问题

高考数学中的内切球和 外接球问题 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

高考数学中的内切球和外接球问题 一、有关外接球的问题 如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点.考查学生的空间想象能力以及化归能力.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用. 一、直接法(公式法) 1、求正方体的外接球的有关问题 例1若棱长为3的正方体的顶点都在同一球面上,则该球的表面积为______________ . 例2一个正方体的各顶点均在同一球的球面上,若该正方体的表面积为24,则该球的体积为______________. 2、求长方体的外接球的有关问题 例3一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱长分别为1,2,3,则此球的表面积为 . 例4已知各顶点都在一个球面上的正四棱柱高为4, 体积为16,则这个球的表面积为(). A. 16π B. 20π C. 24π D. 32π 3.求多面体的外接球的有关问题

例5一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为8 9,底面周长为3,则这个球的体积为 . 解 设正六棱柱的底面边长为x ,高为h ,则有 ∴正六棱柱的底面圆的半径2 1=r ,球心到底面的距离2 3 =d .∴外接球的半径22d r R +=. 体积:3 3 4R V π= . 小结 本题是运用公式222d r R +=求球的半径的,该公式是求球的半径的常用公式. 二、构造法(补形法) 1、构造正方体 例5 若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是_______________. 例3 若三棱锥的三个侧面两两垂直,且侧棱长均为3,则其外接球的表面积是 . 故其外接球的表面积ππ942==r S . 小结:一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为c b a ,,,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R ,则有 2222c b a R ++=. 出现“墙角”结构利用补形知识,联系长方体。

八个有趣模型搞定外接球内切球问题(学生版))解析

八个有趣模型——搞定空间几何体的外接球与内切球 类型一、墙角模型(三条线两个垂直,不找球心的位置即可求出球半径) 方法:找三条两两垂直的线段,直接用公式2 2 2 2 )2(c b a R ++=,即2222c b a R ++=,求出R 例1 (1)已知各顶点都在同一球面上的正四棱柱的高为4,体积为16,则这个球的表面积是( ) A .π16 B .π20 C .π24 D .π32 (2)若三棱锥的三个侧面两垂直,且侧棱长均为3,则其外接球的表面积是 (3)在正三棱锥中,分别是棱的中点,且MN AM ⊥,若侧棱,则正三棱锥ABC S -外接球的表面积是 (4)在四面体中,ABC SA 平面⊥,,1,2,120====∠? AB AC SA BAC 则该四面体的外接 球的表面积为( ) π11.A π7.B π310. C π3 40.D (5)如果三棱锥的三个侧面两两垂直,它们的面积分别为6、4、3,那么它的外接球的表面积是 图2 图3 S ABC -M N 、SC BC 、SA =S ABC -

(6)已知某几何体的三视图如图所示,三视图是腰长为1的等腰直角三角形和边长为 1的正方形,则该几何体外接球的体积为 类型二、垂面模型(一条直线垂直于一个平面) 1.题设:如图5,⊥PA 平面ABC 解题步骤: 第一步:将ABC ?画在小圆面上,A 为小圆直径的一个端点,作小圆的直 径AD ,连接PD ,则PD 必过球心O ; 第二步:1O 为ABC ?的外心,所以⊥1OO 平面ABC ,算出小圆1O 的半 径r D O =1(三角形的外接圆直径算法:利用正弦定理,得 r C c B b A a 2sin sin sin ===),PA OO 2 1 1=; 第三步:利用勾股定理求三棱锥的外接球半径:①2 2 2 )2()2(r PA R +=?22)2(2r PA R +=; ②2 12 2 OO r R +=?2 12OO r R += 2.题设:如图6,7,8,P 的射影是ABC ?的外心?三棱锥ABC P -的三条侧棱相等? 三棱锥ABC P -的底面ABC ?在圆锥的底上,顶点P 点也是圆锥的顶点 图6 P A D O 1 O C B 图7-1 P A O 1 O C B 图7-2 P A O 1 O C B 图8 P A O 1 O C B 图5 A D P O 1O C B

高中数学空间几何体的内切球与外接球问题

空间几何体的内切球与外接球问题 1.[2016·全国卷Ⅱ] 体积为8的正方体的顶点都在同一球面上,则该球的表面积为( ) A .12π B.32 3 π C .8π D .4π [解析]A 因为正方体的体积为8,所以正方体的体对角线长为23,所以正方体的外接球的半径为3,所以球的表面积为4π·(3)2=12π. 2.[2016·全国卷Ⅲ] 在封闭的直三棱柱ABC - A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( ) A .4π B.9π2 C .6π D.32π 3 [解析]B 当球与三侧面相切时,设球的半径为r 1,∵AB ⊥BC ,AB =6,BC =8,∴8-r 1+6-r 1=10,解得r 1=2,不合题意;当球与直三棱柱的上、下底面相切时,设球的半径为r 2, 则2r 2=3,即r 2=32.∴球的最大半径为32,故V 的最大值为43π×????323=92 π. 3.[2016·郑州模拟] 在平行四边形ABCD 中,∠CBA =120°,AD =4,对角线BD =23,将其沿对角线BD 折起,使平面ABD ⊥平面BCD ,若四面体ABCD 的顶点在同一球面上,则该球的体积为________. 答案:2053 π;解析:因为∠CBA =120°,所以∠DAB =60°,在三角形ABD 中,由余弦 定理得(23)2=42+AB 2-2×4·AB ·cos 60°,解得AB =2,所以AB ⊥BD .折起后平面ABD ⊥平面BCD ,即有AB ⊥平面BCD ,如图所示,可知A ,B ,C ,D 可看作一个长方体中的四个顶点,长方体的体对角线AC 就是四面体ABCD 外接球的直径,易知AC =22+42=25, 所以球的体积为205 3 π. 4.[2016·山西右玉一中模拟] 球O 的球面上有四点S ,A ,B ,C ,其中O ,A ,B ,C 四点共面,△ABC 是边长为2的正三角形,平面SAB ⊥平面ABC ,则棱锥S-ABC 的体积的最大 值为( ) A . 3 3 B . 3 C .2 3 D .4 选A ;[解析] (1)由于平面SAB ⊥平面ABC ,所以点S 在平面ABC 上的射影H 落在AB 上,根据球的对称性可知,当S 在“最高点”,即H 为AB 的中点时,SH 最大,此时棱锥S -ABC 的体积最大. 因为△ABC 是边长为2的正三角形,所以球的半径r =OC =23CH =23×32×2=23 3 . 在Rt △SHO 中,OH =12OC =3 3 ,

立体几何之外接球问题含答案

立体几何之外接球问题一 讲评课1课时总第课时月日1、已知如图所示的三棱锥的四个顶点均在球的球面上,和所在的平面互 相垂直,,,,则球的表面积为( ) A. B. C. D. 2、设三棱柱的侧棱垂直于底面,所有棱的长都为,顶点都在一个球面上,则该球的表面积为() A. B. C. D. 3、已知是球的球面上两点,,为该球面上的动点,若三棱锥体积的最大值为,则球的表面积为( ) A. B. C. D. 4、如图是某几何体的三视图,正视图是等边三角形,侧视图和俯视图为直角三角形,则该几何体外接球的表面积为() A.B. C. D. 5、已知都在半径为的球面上,且,,球心到平面的距离为1,点是线段的中点,过点作球的截面,则截面面积的最小值为() A. B. C. D.

6、某几何体的三视图如图所示,这个几何体的内切球的体积为() A.B. C. D. 7、四棱锥的所有顶点都在同一个球面上,底面是正方形且和球心在同一平面内,当此四棱锥的体积取得最大值时,它的表面积等于,则球的体积等于() A. B. C. D. 8、一个三条侧棱两两互相垂直并且侧棱长都为的三棱锥的四个顶点全部在同一个球面上,则该球的表面积为( ) A.B. C. D. 9、一个棱长都为的直三棱柱的六个顶点全部在同一个球面上,则该球的表面积为( ) A.B. C. D. 10、一个几何体的三视图如图所示,其中正视图是正三角形,则几何体的外接球的表面积为( ) A. B. C. D.

立体几何之外接球问题二 讲评课1课时总第课时月日 11、若圆锥的内切球与外接球的球心重合,且内切球的半径为,则圆锥的体积为__________. 12、底面为正三角形且侧棱与底面垂直的三棱柱称为正三棱柱,则半径为的球的内接正三棱柱的体积的最大值为__________. 13、底面为正三角形且侧棱与底面垂直的三棱柱称为正三棱柱,则棱长均为的正三棱柱外接球的表面积为__________. 14、若一个正四面体的表面积为,其内切球的表面积为,则__________. 15、若一个正方体的表面积为,其外接球的表面积为,则__________.

空间几何体的外接球和内切球问题说课材料

空间几何体的外接球和内切球问题

空间几何体的外接球和内切球问题 类型1 外接球的问题 1.必备知识: (1)简单多面体外接球的球心的结论. 结论1:正方体或长方体的外接球的球心是其体对角线的中点. 结论2:正棱柱的外接球的球心是上下底面中心的连线的中点. 结论3:直三棱柱的外接球的球心是上下底面三角形外心的连线的中点. (2)构造正方体或长方体确定球心. (3)利用球心O 与截面圆圆心O 1的连线垂直于截面圆及球心O 与弦中点的连线垂直于弦的性质,确定球心. 2.方法技巧:(1)几何体补成正方体或长方体.(2)轴截面法(3)空间向量法 1AB DC AD BC BD AC ======例1-1、正四面体的棱长都为,求此四面体外接球和内切球的半径 例1-2、四面体中,, 求此四面体外接球的表面积 例1-3.若三棱锥ABC S -的三条侧棱两两垂直,且2=SA ,4==SC SB ,则该三棱锥的外接球半径为( ) A.3 B.6 C.36 D.9 训练1(创新110页) 某几何体的三视图如图所示,则该几何体的外接球的表面积为( ) A.25π B.26π C.32π D.36π 训练2(创新110页)已知边长为2的等边三角形ABC ,D 为BC 的中点,沿AD 进行折叠,使折叠后的∠BDC =π2 ,则过A ,B ,C ,D 四点的球的表面积为( ) A.3π B.4π C.5π D.6π 例2-1(创新110页)体积为3的三棱锥P -ABC 的顶点都在球O 的球面上,P A ⊥平面ABC ,P A =2,∠ABC =120°,则球O 的体积的最小值为( ) A.773 π B.2873π C.19193π D.76193 π 例2-1(创新109页)三棱锥P -ABC 中,平面P AC ⊥平面ABC ,AB ⊥AC ,P A =PC =AC =2,AB =4,则三棱锥P -ABC 的外接球的表面积为( ) A.23π B.234π C.64π D.643π 类型2 内切球问题 1.必备知识: (1)内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等. (2)正多面体的内切球和外接球的球心重合. (3)正棱锥的内切球和外接球球心都在高线上,但不一定重合. 2.方法技巧:体积分割是求内切球半径的通用做法.

数学复习:空间几何体的外接球与内切球

数学复习:空间几何体的外接球与内切球 一、有关定义 1.球的定义:空间中到定点的距离等于定长的点的集合(轨迹)叫球面,简称球. 2.外接球的定义:若一个多面体的各个顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球. 3.内切球的定义:若一个多面体的各面都与一个球的球面相切,则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球. 二、外接球的有关知识与方法 1.性质: 性质1:过球心的平面截球面所得圆是大圆,大圆的半径与球的半径相等; 性质2:经过小圆的直径与小圆面垂直的平面必过球心,该平面截球所得圆是大圆; 性质3:过球心与小圆圆心的直线垂直于小圆所在的平面(类比:圆的垂径定理); 性质4:球心在大圆面和小圆面上的射影是相应圆的圆心; 性质5:在同一球中,过两相交圆的圆心垂直于相应的圆面的直线相交,交点是球心(类比:在同圆中,两相交弦的中垂线交点是圆心). 初图1 初图2 2.结论: 结论1:长方体的外接球的球心在体对角线的交点处,即长方体的体对角线的中点是球心; 结论2:若由长方体切得的多面体的所有顶点是原长方体的顶点,则所得多面体与原长方体的外接球相同;结论3:长方体的外接球直径就是面对角线及与此面垂直的棱构成的直角三角形的外接圆圆心,换言之,就是:底面的一条对角线与一条高(棱)构成的直角三角形的外接圆是大圆; 结论4:圆柱体的外接球球心在上下两底面圆的圆心连一段中点处; 结论5:圆柱体轴截面矩形的外接圆是大圆,该矩形的对角线(外接圆直径)是球的直径; 结论6:直棱柱的外接球与该棱柱外接圆柱体有相同的外接球; 结论7:圆锥体的外接球球心在圆锥的高所在的直线上; 结论8:圆锥体轴截面等腰三角形的外接圆是大圆,该三角形的外接圆直径是球的直径; 结论9:侧棱相等的棱锥的外接球与该棱锥外接圆锥有相同的外接球. 3.终极利器:勾股定理、正定理及余弦定理(解三角形求线段长度); 三、内切球的有关知识与方法 1.若球与平面相切,则切点与球心连线与切面垂直.(与直线切圆的结论有一致性). 2.内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等.(类比:与多边形的内切圆). 3.正多面体的内切球和外接球的球心重合. 4.正棱锥的内切球和外接球球心都在高线上,但不一定重合. 5.基本方法: (1)构造三角形利用相似比和勾股定理; (2)体积分割是求内切球半径的通用做法(等体积法). 四、与台体相关的,此略.

【精品】2019年高考数学中的内切球和外接球问题

【精品】2019年高考数学中的内切球和外接球问题 一、 有关外接球的问题 一、直接法(公式法) 1、求正方体的外接球的有关问题 例1若棱长为3的正方体的顶点都在同一球面上,则该球的表面积为______________ . 例2一个正方体的各顶点均在同一球的球面上,若该正方体的表面积为24,则该球的体积为______________. 2、求长方体的外接球的有关问题 例3一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱长分别为1,2,3,则此球的表面积为 . 例4已知各顶点都在一个球面上的正四棱柱高为4, 体积为16,则这个球的表面积为( ). A. 16π B. 20π C. 24π D. 32π 3.求多面体的外接球的有关问题 例5一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为8 9,底面周长为3,则这个球的体积为 . 解 设正六棱柱的底面边长为x ,高为h ,则有 ??????==h x x 2436893 6 ?????==213x h

∴正六棱柱的底面圆的半径21=r ,球心到底面的距离2 3= d .∴外接球的半径22d r R +=. 体积:334R V π=. 小结 本题是运用公式222d r R +=求球的半径的,该公式是求球的半径的常用公式. 二、构造法(补形法) 1、构造正方体 例5 若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是_______________. 例3 若三棱锥的三个侧面两两垂直,且侧棱长均为3,则其外接球的表面积是 . 故其外接球的表面积ππ942==r S . 小结:一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为c b a ,,,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R ,则有2222c b a R ++=. 出现“墙角”结构利用补形知识,联系长方体。 【原理】:长方体中从一个顶点出发的三条棱长分别为c b a ,,,则体对角线长为222c b a l ++=,几何体的外接球直径为R 2体对角线长l 即2 222c b a R ++=

数学研究课题---空间几何体的外接球与内切球问题.

高中数学课题研究 几何体与球切、接的问题 纵观近几年高考对于组合体的考查,与球相关的外接与内切问题是高考命题的热点之一.高考命题小题综合化倾向尤为明显,要求学生有较强的空间想象能力和准确的计算能力,才能顺利解答.从实际教学来看,这部分知识学生掌握较为薄弱、认识较为模糊,看到就头疼的题目.分析原因,除了这类题目的入手确实不易之外,主要是学生没有形成解题的模式和套路,以至于遇到类似的题目便产生畏惧心理. 下面结合近几年高考题对球与几何体的切接问题作深入的探究,以便更好地把握高考命题的趋势和高考的命题思路,力争在这部分内容不失分.从近几年全国高考命题来看,这部分内容以选择题、填空题为主,大题很少见. 首先明确定义1:若一个多面体的各顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球。 定义2:若一个多面体的各面都与一个球的球面相切, 则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球. 1 球与柱体的切接 规则的柱体,如正方体、长方体、正棱柱等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱柱的棱产生联系,然后考查几何体的体积或者表面积等相关问题. 1.1 球与正方体 如图所示,正方体1111ABCD A B C D -,设正方体的棱长为a ,,,,E F H G 为棱的中点,O 为球的球心.常见组合方式有三类:一是球为正方体的内切球,截面图为正方形EFGH 和其内切圆,则2a OJ r ==;二 是与正方体各棱相切的球,截面图为正方形EFGH 和其外接圆,则GO R a ==;三是球为正方体的 外接球,截面图为长方形11ACA C 和其外接圆,则12 A O R a '==.通过这三种类型可以发现,解决正方体与球的组合问题,常用工具是截面图,即根据组合的形式找到两个几何体的轴截面,通过两个截面图的位置关系,确定好正方体的棱与球的半径的关系,进而将空间问题转化为平面问题.

几何体外接球精美讲义

第二讲 几何体的外接球和内切球问题 ※ 基础知识: 1.常见平面图形:正方形,长方形,正三角形的外接圆和内切圆 长方形(正方形)的外接圆半径为对角线长的一半,正方形的内切圆半径为边长的一半; 正三角形的内切圆半径:6a 外接圆半径:3a 三角形面积:24a 正三角形三心合一,三线合一,心把高分为2:1两部分。 2.球的概念: 概念1:与定点距离等于或小于定长的点的集合,叫做球体,简称球.,定长叫球的半径; 与定点距离等于定长的点的集合叫做球面.一个球或球面用表示它的球心的字母表示,例如球O 或O . 概念2:半圆以它的直径为旋转轴,旋转所成的曲面叫做球面,球面所围成的几何体叫做球体,简称球。 3.球的截面: 用一平面α去截一个球O ,设OO '是平面 α的垂线段,O '为垂足,且OO d '=,所得的截面是以球心在截面内的射影为圆心,以r 径的一个圆,截面是一个圆面. 球面被经过球心的平面截得的圆叫做大圆,被不经过球心的平面截得的圆叫做小圆. 4.空间几何体外接球、内切球的概念: 定义1:若一个多面体的各顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球。 定义2:若一个多面体的各面都与一个球的球面相切, 则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球。 长方体的外接球 正方体的内切球

5.外接球和内切球性质: (1)内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等。 (2)正多面体的内切球和外接球的球心重合。 (3)正棱锥的内切球和外接球球心都在高线上,但不重合。 (4)基本方法:构造三角形利用相似比和勾股定理。 (5)体积分割是求内切球半径的通用做法。 长方体的外接球半径公式:22 22 c b a R ++=,其中,,a b c 分别为长方体共顶点的3条棱长 正棱锥的外接球半径公式:2 ,2a R h = 2侧棱=2R h ?外正棱锥,其中a 为侧棱长,h 为正棱锥 的高 正棱柱的外接球球心在两底面中心连线的中点处。 ※典型例题: 题型一:球的概念 例1. (1)已知球的直径为8cm ,那么它的表面积为__________,体积为___________ (2)已知球的表面积为144π2cm ,那么它的体积为___________ (3)已知球的体积为36π,那么它的表面积为__________ (4)如果两个球的体积之比为8:27,那么两个球的表面积之比为__________ 例2.(1)(2012年新课标文科)平面α截球O 的球面所得圆的半径为1,球心O 到平面α ) A B . C . D . (2)已知过球面上,,A B C 三点的截面和球心的距离为球半径的一半,且2AB BC CA ===,求球的表面积. (3)(2013年高考课标Ⅰ卷(文))已知H 是球O 的直径AB 上一点,:1:2AH HB =,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为_______.

空间几何体外接球和内切球

3 D.32 3 π 方法技巧专题 3 空间几何体外接球和内切球 【一】高过外心 空间几何体(以P -ABCD 为例)的高过底面的外心(即顶点的投影在底面外心上): (1)先求底面ABCD 的外接圆半径r ,确定底面ABCD 外接圆圆心位置O'; (2)把O'垂直上移到点O ,使得点O 到顶点P 的距离等于到A、B、C、D 的距离相等,此时点O 是几何体外 接球球心; (3)连接OA ,那么R =OA , 由勾股定理得:R2 =r 2 +OO'2 . 1、已知正四棱锥P -ABCD 的所有顶点都在球O 的球面上,PA =AB = 2,则球O 的表面积为() A.2πB.4πC.8πD.16π 2、在三棱锥P -ABC 中. PA =PB =PC = 2. AB =AC =1,BC =,则该三棱锥的外接球的表面积为() A.8πB.16π C. 4π 3 【二】高不过外心 3 27 高不过心—顶点的投影不在底面外心上,以侧棱垂直于底面为例:题 设:已知四棱锥P -ABCD ,PA ⊥底面ABCD (1)先求底面ABCD 的外接圆半径r ,确定底面ABCD 外接圆圆心位置O'; (2)把O'垂直上移到点O ,使得OO'=1 PA ,此时点O 是几何体外接球球心;2 (3)连接OA,那么R=OA,由勾股定理得:R2=r2+OO'2=r2+(PA )2. 2

1、长方体 A ??? ? A 1?1?1?1的 8 个顶点在同一个球面上,且 A ? = ?,A ? = 3,A A 1 = 1,则球的表面积为 . 2、已知正三棱柱 ABC - A 1B 1C 1 的底面边长为 3,外接球表面积为16π,则正三棱柱 ABC - A 1B 1C 1 的体积为( ) A. 3 3 4 B. 3 3 2 D. 9 3 4 2 3、已知 P , A , B ,C , D 是球O 的球面上的五个点,四边形 ABCD 为梯形, AD / /BC , AB = DC = AD = 2 , BC = PA = 4 , PA ⊥ 面 ABCD ,则球O 的体积为( ) A . 64 2π B . 16 2π C .16 2π D .16π 3 3 4、已知三棱柱 ABC - A B C 的侧棱与底面垂直, AA = BC = 2, ∠BAC = π ,则三棱柱 ABC - A B C 外接球的 体积为( ) 1 1 1 1 4 1 1 1 A .12 3π B . 8 3π C . 6 3π D . 4 3π 5、四棱锥 P - ABCD 的底面为正方形 ABCD , PA ⊥ 底面 ABCD , AB = 2 ,若该四棱锥的所有顶点都在体积为 9π 2 的同一球面上,则 PA 的长为( ) 1 A .3 B .2 C .1 D . 2 6、四棱锥 A - BCDE 的各顶点都在同一球面上, AB ⊥ 底面 BCDE ,底面 BCDE 为梯形, ∠BCD = 60 ,且 AB =CB =BE =ED =2,则此球的表面积等于( ) A . 25π B . 24π C . 20π D .16π 【三】长(正)方体外接球 1、长方体或正方体的外接球的球心:体对角线的中点; 2、正方体的外接球半径: R = 3 a ( a 为正方体棱长); 2 3、长方体的同一顶点的三条棱长分别为a , b , c ,外接球的半径: R = 2 1、若一个长、宽、高分别为 4,3,2 的长方体的每个顶点都在球O 的表面上,则此球的表面积为 2、已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为 18,则这个球的体积为 3、如图是一个空间几何体的三视图,则该几何体的外接球的表面积是 . C. 9 3 a 2 + b 2 + c 2

内切球和外接球问题专题复习

内切球和外接球问题 一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点.考查学生的空间想象能力以及化归能力.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用. 一、直接法(公式法) 1、求正方体的外接球的有关问题 例1 (2006年广东高考题)若棱长为3的正方体的顶点都在同一球面上,则该球的表面积为______________ . 解析:要求球的表面积,只要知道球的半径即可.因为正方体内接于球,所以它的体对角线正好为球的直径,因此,求球的半径可转化为先求正方体的体对角线长,再计算半径. 故表面积为27π. 例2 一个正方体的各顶点均在同一球的球面上,若该正方体的表面积为24,则该球的体积为______________. 解析:要求球的体积,还是先得求出球的半径,而球的直径正好是正方体的体对角线, 23所以球的半径为3.因此,由正方体表面积可求出棱长,从而求出正方体的体对角线是 43π. 故该球的体积为 2、求长方体的外接球的有关问题 例3 (2007年天津高考题)一个长方体的各顶点均在同一球面上,且一个顶点上的三 1,2,3,则此球的表面积为. 条棱长分别为 解析:关键是求出球的半径,因为长方体内接于球,所以它的体对角线正好为球的直径。长方体体对角线长为14,故球的表面积为14π. 例4、(2006年全国卷I)已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积为(). A. 16π B. 20π C. 24π D. 32π 解析:正四棱柱也是长方体。由长方体的体积16及 高4可以求出长方体的底面边长为2,因此,长方体的长、 宽、高分别为2,2,4,于是等同于例3,故选C. 3.求多面体的外接球的有关问题 例5. 一个六棱柱的底面是正六边形,其侧棱垂直于 底面,已知该六棱柱的顶点都在同一个球面上,且该六棱

(完整版)高考数学中的内切球和外接球问题.

高考数学中的内切球和外接球问题 一、有关外接球的问题 如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点.考查学生的空间想象能力以及化归能力.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用. 一、直接法(公式法) 1、求正方体的外接球的有关问题 例1若棱长为3的正方体的顶点都在同一球面上,则该球的表面积为______________ . 例2一个正方体的各顶点均在同一球的球面上,若该正方体的表面积为24,则该球的体积为______________. 2、求长方体的外接球的有关问题 例3一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱长分别为1,2,3,则此球的表面积为. 例4已知各顶点都在一个球面上的正四棱柱高为4, 体积为16,则这个球的表面积为(). A. 16π B. 20π C. 24π D. 32π

3.求多面体的外接球的有关问题 例5一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为8 9,底面周长为3,则这个球的体积为 . 解 设正六棱柱的底面边长为x ,高为h ,则有 ?? ???? ==h x x 24368936 ?? ???= =213 x h ∴正六棱柱的底面圆的半径2 1 =r ,球心到底面的距离2 3 =d .∴外接球的半径22d r R +=. 体积:3 3 4R V π= . 小结 本题是运用公式222d r R +=求球的半径的,该公式是求球的半径的常用公式. 二、构造法(补形法) 1、构造正方体 例5 若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是_______________. 例3 若三棱锥的三个侧面两两垂直,且侧棱长均为3,则其外接球的表面积是 . 故其外接球的表面积ππ942==r S . 小结:一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为c b a ,,,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R ,则有2222c b a R ++=. 出现“墙角”结构利用补形知识,联系长方体。

空间几何体的外接球

空间几何体的外接球 类型一: 长方体模型一(三条线两两垂直,不找球心的位置即可求出球半径) c a b C P A B a b c 图2 P C B A a b c 图3 C B P A a b c P C O 2 B A 方法:找三条两两垂直的线段,直接用公式2 2 2 2 )2(c b a R ++=,即2222c b a R ++=,求出R 例1 (1)已知各顶点都在同一球面上的正四棱柱的高为4,体积为16,则这个球的表面积是( ) A .π16 B .π20 C .π24 D .π32 (2)若三棱锥ABC S -的三条侧棱两两垂直,且2=SA ,4==SC SB ,则该三棱锥的外接球半径为( ) A.3 B.6 C.36 D.9 (3)若三棱锥的三个侧面两垂直,且侧棱长均为3,则其外接球的表面积是 (4)在正三棱锥S ABC -中,M N 、分别是棱SC BC 、的中点,且MN AM ⊥,若侧棱23SA =,则正三棱锥ABC S -外接球的表面积是 (5)如果三棱锥的三个侧面两两垂直,它们的面积分别为6、4、3,那么它的外接球的表面积是 (6)已知某几何体的三视图如图所示,三视图是腰长为1的等腰直角三角形和边长为 1的正方形,则该几何体外接球的体积为 长方体模型二:(一条直线垂直于一个平面) 1.题设:如图5,⊥PA 平面ABC 解题步骤: 第一步:将ABC ?画在小圆面上,A 为小圆直径的一个端点,作小圆的直 径AD ,连接PD ,则PD 必过球心O ; 第二步:1O 为ABC ?的外心,所以⊥1OO 平面ABC ,算出小圆1O 的半 径r D O =1(三角形的外接圆直径算法:利用正弦定理,得 r C c B b A a 2sin sin sin ===),PA OO 211=; 第三步:利用勾股定理求三棱锥的外接球半径:①2 22)2()2(r PA R +=?22)2(2r PA R += ; ②2 12 2OO r R +=?2 12OO r R += 图5 A D P O 1O C B

立体几何之外接球问题含问题详解

标准文案 立体几何之外接球问题一 讲评课 1课时 总第 课时 月 日 1、 已知如图所示的三棱锥的四个顶点均在球 的球面上, 和 所在的平面互 相垂直, , , ,则球 的表面积为( ) A. B. C. D. 2 、设三棱柱的侧棱垂直于底面,所有棱的长都为,顶点都在一个球面上,则该球的表面积为( ) A. B. C. D. 3、已知是球的球面上两点,,为该球面上的动点,若三棱锥 体积的 最大值为,则球的表面积为( ) A. B. C. D. 4、如图是某几何体的三视图,正视图是等边三角形,侧视图和俯视图为直角三角形,则该几何体外接球的表面积为( ) A. B. C. D. 5、已知都在半径为的球面上,且 , ,球心 到平面 的距 离为1,点是线段 的中点,过点 作球 的截面,则截面面积的最小值为( ) A. B. C. D.

6、某几何体的三视图如图所示,这个几何体的内切球的体积为() A.B. C. D. 7、四棱锥的所有顶点都在同一个球面上,底面是正方形且和球心在同一平面内,当此四棱锥的体积取得最大值时,它的表面积等于,则球的体积等于() A. B. C. D. 8、一个三条侧棱两两互相垂直并且侧棱长都为的三棱锥的四个顶点全部在同一个球面上,则该球的表面积为( ) A.B. C. D. 9、一个棱长都为的直三棱柱的六个顶点全部在同一个球面上,则该球的表面积为( ) A.B. C. D. 10、一个几何体的三视图如图所示,其中正视图是正三角形,则几何体的外接球的表面积为( ) A. B. C. D.

立体几何之外接球问题二 讲评课1课时总第课时月日 11、若圆锥的内切球与外接球的球心重合,且内切球的半径为,则圆锥的体积为__________. 12、底面为正三角形且侧棱与底面垂直的三棱柱称为正三棱柱,则半径为的球的内接正三棱柱的体积的最大值为__________. 13、底面为正三角形且侧棱与底面垂直的三棱柱称为正三棱柱,则棱长均为的正三棱柱外接球的表面积为__________. 14、若一个正四面体的表面积为,其内切球的表面积为,则__________. 15、若一个正方体的表面积为,其外接球的表面积为,则__________. 标准文案

空间几何的外接球和内切球 优质专题

空间几何体的外接球与内切球 专题 类型一、墙角模型(三条线两个垂直,不找球心的位置即可求出球半径) 图2 图3 图4 方法:找三条两两垂直的线段,直接用公式2222)2(c b a R ++=,即2222c b a R ++=,求出R 例1 (1)已知各顶点都在同一球面上的正四棱柱的高为4,体积为16,则这个球的表面积是( C ) A .π16 B .π20 C .π24 D .π32 (2)若三棱锥的三个侧面两垂直,且侧棱长均为3,则其外接球的表面积是 π9 解:(1)162==h a V ,2=a ,24164442222=++=++=h a a R ,π24=S ,选C ; ( 2)933342=++=R ,ππ942==R S (3)在正三棱锥S ABC -中,M N 、分别是棱SC BC 、的中点,且MN AM ⊥,若侧棱SA =,则正三棱锥ABC S -外接球的表面积是 。π36 解:引理:正三棱锥的对棱互垂直。证明如下: 如图(3)-1,取BC AB ,的中点E D ,,连接CD AE ,,CD AE ,交于H ,连接SH ,则H 是底面正三角形ABC 的中心, ∴⊥SH 平面ABC ,∴AB SH ⊥,

BC AC =,BD AD =,∴AB CD ⊥,∴⊥AB 平面SCD , ∴SC AB ⊥,同理:SA BC ⊥,SB AC ⊥,即正三棱锥的对棱互垂直, 本题图如图(3)-2, MN AM ⊥,MN SB //, ∴SB AM ⊥, SB AC ⊥,∴⊥SB 平面SAC , ∴SA SB ⊥,SC SB ⊥, SA SB ⊥,SA BC ⊥, ∴⊥SA 平面SBC ,∴SC SA ⊥, 故三棱锥ABC S -的三棱条侧棱两两互相垂直, ∴36)32()32()32()2(2222=++=R ,即3642=R , ∴正三棱锥ABC S -外接球的表面积是π36 (4)在四面体S ABC -中,ABC SA 平面⊥,,1,2,120====∠?AB AC SA BAC 则该四面 体的外接球的表面积为( D )π11.A π7.B π3 10 . C π3 40.D (5)如果三棱锥的三个侧面两两垂直,它们的面积分别为6、4、3,那么它的外接球的表面积是 (6)已知某几何体的三视图如图所示,三视图是腰长为1的等腰直角三角形和 边长为1的正方形,则该几何体外接球的体积为 解析:(4)在ABC ?中,7120cos 2222=??-+= BC AB AB AC BC , 7=BC ,ABC ?的外接球直径为3 7 22 37sin 2= =∠= BAC BC r , ∴340 4)3 72( )2()2(2222= +=+=SA r R ,340π=S ,选D (5)三条侧棱两两生直,设三条侧棱长分别为c b a ,,(+∈R c b a ,,),则 (3)题-2 A

相关文档
相关文档 最新文档