文档库 最新最全的文档下载
当前位置:文档库 › 【核电站】反应堆换料水池和乏燃料水池的冷却及处理系统(PTR)

【核电站】反应堆换料水池和乏燃料水池的冷却及处理系统(PTR)

【核电站】反应堆换料水池和乏燃料水池的冷却及处理系统(PTR)
【核电站】反应堆换料水池和乏燃料水池的冷却及处理系统(PTR)

§1.2.4反应堆换料水池和乏燃料水池的

冷却及处理系统(PTR)

反应堆换料水池和乏燃料水池的冷却和处理系统(PTR)的作用主要就是保证乏燃料元件贮存池的持久冷却,和反应堆换料水池的注水、排水和净化。

一.系统功能

PTR系统为核燃料厂房的乏燃料水池和反应堆厂房的反应堆换料水池服务。

1)冷却功能:

?冷却乏燃料贮存水池,排出乏燃料水池燃料组件的剩余热功率。

?在压力容器开盖以后,RRA不能投入运行时,可作为RRA的备用。

2)净化功能:

?采用过滤和除盐方法去处腐蚀产物、裂变产物及悬浮物,净化乏燃料水池和反应堆换料水池

3)充水和排水

?保持乏燃料水池中贮存隔室的水位,当水池贮存有乏燃料组件时,不能把隔室的水排空。

?乏燃料转运舱和乏燃料容器装载井的充水和排水。

?在停堆换料或停堆检查时,对反应堆换料水池进行充水和排水。

?安装水阀门后,对反应堆换料腔内的“压力容器”隔离和“堆内构件”隔室进行充水和排水。

4)安全功能:

?保持乏燃料水池内乏燃料组件处于次临界。

?事故情况下,通过RCV向RCP紧急提供1380m3的1.025%的硼酸浓液(2200±100PPm。)

?水屏蔽,对操作人员提供辐射防护。

113

二.功能的实现

1.乏燃料水池冷却的功能实现:

乏燃料水池的水通过浸入水下的管道,开阀门001 VB进入泵001 PO或002 PO的吸入口,经热交换器001 RF或002 RF冷却,过024 VB 010 VB返回水池,正常运行时,都是经泵001 PO,交换器001 RF这个系列,流量360M3/h,(60 M3/h给于除盐正常过滤回路)。另一系列的泵002 PO,交换器002 RF备用。两系列都投入为水池冷却时,001 DI,005 DI,006 DI都投入工作。本系统可与RRA系统并联,作为RRA的备用。贮存有乏燃料组件时冷却回路连续运行。

水池设计基本原则:正常运行工况,水池内乏燃料组件剩余热功率达最大值,一个冷却系列冷却,水温<60℃。正常换料工况,水池内乏燃料组件剩余热功率达最大值,水池已贮存16/4个堆芯组件,停堆14天后,又将一个整堆芯全部载入,设冷水流量515 M3/h,35℃,水池水温<52.16℃

事故工况,水池内乏燃料组件剩余热功率达最大值,已贮存17/4个,又因压力壳检修而卸入一个整堆芯(或因LOCA,而强迫卸入)。用一个冷却系列冷却乏燃料水池,水池水温<80℃,两个系列,<60℃。

乏燃料水池的净化是利用跨接在冷却水泵(001PO或002PO)进出口两端的净化回路进行的。净化回路由过滤器和除盐器组成。进口过滤器去除水中的颗粒状杂质(>5μm),出口过滤器防止碎树脂进入系统。由除盐器去除离子状态的腐蚀杂质和裂变产物。

此外,乏燃料水池去浮渣回路,由水泵(003PO)和过滤器组成。除去水表面浮渣,保持水的清洁度和透明度。

1)反应堆换料水池冷却的实现:

正常情况,RRA完成冷却,主回路开启。RRA不可用时通过022 VB/140 VB应急冷却。

反应堆换料水池净化:

反应堆压力壳开盖及水池过程中要通过RRA将水池水经RCV净化回路和TEP来去除反应堆水池放射性腐蚀产物,裂变气体和浓解氢。

过滤回路,水池满水后,就处于连续运行经水池底部两个管子,通过阀门143 VB/144 VB进入循环泵005 PO,过滤回路设计流量100 M3/h,003 FI/004 FI为2×50%,过滤器两机共用。

水池撇沫回路,撇沫操作是不连续只在需要提高水的纯度和透明度时才启动运行。

114

6m3/h水箱002 BA使输送泵004 PO有足够吸入压头,此时借助于005 PO来进行过滤。通过002 BA排除004 PO撇沫回路气体。开始阶段004 PO手动控制启动。当水沿过滤回路充满水到达循环泵005 PO吸入口时,004 PO即可停止运行,启动前要用SED纯水向撇沫回路充水。

(1)换料水箱PTR 001 BA:

换料水箱主要接管及功能:

I)REA系统入口接管:通过RIS系统管线向换料水箱灌注含硼水。

II)RIS和EAS系统入口接管:用于将来自安全壳喷淋泵(EAS 01,02 PO)和安全注入泵(EAS 01,02 PO)的水送回换料水箱

III)两根与安全壳喷淋泵进水端相接的出口接管(PTK 1602 VB,163 VB)。

IV)与低压安注泵和高压安注泵进口端及与RIS试验泵RIS 011 PO,REA 03,04 PO 进水端连接的出口接管。

V)装有球阀159 VB和育板的水箱路水口。

备注:

I)乏燃料水池不能进行排水,但允许临时接管和一台潜水泵将水排至燃料转运舱,进行检修。装有虹吸破坏管放止水池因池外管破裂、意外排空。表面撇沫器,虹吸破坏管水下10cm外,不会扰动水面和影响能见度。

II)热交换器、泵:2×100%。

PTR侧热交换器是并连

RRI侧热交换器是串连;也能有另一组RRI提供RRI水。

III)乏燃料水池过滤和除盐:设计流量60最大不超过65M3/h。回路长期运行的,设备压降由手动调节阀12/VB调节

IV)燃料容器装载井水取自转运舱

V)水面撇沫:需要改进乏燃料水池水的线度和透明度时,就启动撇沫和过滤系统回路。003 PO泵流量5 M3/h,因在715 VB关闭状态下才启动。

水泵入口设有压力控制器009 SP,当水泵压力过低时,009 SP自动控制水泵停运。过滤器05 FI的赃污情况通过就地压差计005 CP来测量,在助力增大时,可通过调节阀716 VB使流量保持5 M3/h,压差达0.15MPa时说明过滤器需要清除积聚的杂质。

115

三.设备说明

1.乏燃料水池位于燃料厂房:池面标高+20M,池低标高+7.5M,分隔成四个小区:

(1)燃料转运舱:与壳内堆内构件存放区间有传递通道,通道在转运舱侧有闸阀728 VB

(2)堆内构件存放区侧有育板法兰隔离。正常运行时隔离,换料时才打开。

(3)乏燃料水池:紧靠燃料转运舱,池低标高+7.49M,可存放17/4个活性区燃料组件。

(4)乏燃料容器装载井:紧靠乏燃料水池另一侧,池低标高+7.26M,乏燃料在此被装入运输用的铅罐。井底部加有垫层,已吸收容器跌落时的撞击能量。乏燃料水池池壁均以不锈钢件覆面,并设有7个引漏管,监测覆面是否渗漏。水池只要贮有乏燃料,不能被排空,所有池低无任何可排水管道且在浸入池中管道上设有虹吸破坏管。一旦发生管道泄漏必须用燃料厂房+20M处消防拴向乏燃料水池补水。

(5)以上三个区域彼此相通,用器密的手动操作的水闸门加以隔离,水闸门由SAR系统提供密封垫充气用空气,密封性由密封垫片来保证。乏燃料容器冲洗井与装载相邻不相通,池低标高+14.25M。

1)反应堆换料水池的设施:

位于安全壳内,池面标高+20M,两部分组成

I)换料腔:位于压力壳正上方,池低标高+10.862M。

II)堆内构件存放区:与换料腔相通, 池低标高+7.5M.。两池之间用器密的手动操作的水闸门隔离,以便堆传递通道进行维修,水闸门由SAR系统提供密封垫充气用的空气。

反应堆正常运行时,水泵005 PO的两根吸水管开口,一旦发生失水事故时,能将安全壳喷淋水沿开口的吸水管线排到安全壳地壳。堆坑充水时,吸入口用法兰育板封住。

2)换料水箱(003 BA)

水箱总容积:1756m3,有效容积:1600m3。

正常运行,贮水至少为1600m3,以满足设计基准事故时安注和安喷(1380 m3),及换料时换料水池注满水的需要。水箱内硼浓度至少2000PPm,换料水箱设有6个12KW电加热器,保持水温7℃以上,放止硼结晶。

116

四、运行

(1)PTR作为RRA备用:

奇数管线要用于乏燃料水池的冷却,应急情况下只能用偶数管线作为RRA备用,流程回路见图(1)。流量300M3/h。作为RRA备用系统,达到冷停堆工况后,PTR必须由奇数管线实现乏燃料水池的冷却。

作为RRA备用系统需要满足的条件:

?反应堆主回路必须处于打开状态。

?反应堆主回路水温低于70℃.

?反应堆主回路水位应超过主管道接管中心线。RRA失效时,必须用代容系统补偿因蒸发失去的水量,使水位达到上述要求,以便能启动本系统PTR 002 PO有足够吸入压头。

?反应堆主回路<0.3Mpa,温度<100℃.,本系统已处于与RRA连接状态,一旦需要即可很快隔离RRA并开启021/041 VB,投入使用。

要进行的操作:

——管气动阀RRA 013 VP,024 VP,025 VP和手动阀002 VP,003 VP。

——开启安全壳外手动隔离阀PTR 021 VB,141 VP。

——启动泵PTR 002 PO。

004 ST监测温度:

?海水温度越低,PTR带出热量越大,作为备用投入也就越早。

I)充排水操作:

a)换料水箱PTR 001 BA:

有REA系统罐注含硼水,额定流量27m3/h

由一个高水位整定值(03 SN)测定充水量是否完成,整定容积1692M3/标高+16.62m 用肓板和球阀159 VB隔离,需要时将水箱排空。

b)乏燃料水池:

水池按工艺需求充水,充水时关闭021 VB且再循环停止,035 SN用于监测高水位(+19.5m),水位低于+19.30m,发出警报。

补水操作:

?SED来的线水利用+20m标高处的,用于运输容器清洗的出水口直接向乏燃料

117

水池补水。

?自PTR 001 BA通过PTR 001 PO或002 PO补水(水箱随后由REA补水)。由于池水位高于水箱,可在隔离水池内正常吸入口后用冷却泵保证补水。因为在改变回路配置方式前必须先把使用中的泵停下来,这种操作比较费时。

c)燃料转运舱和乏燃料容器装载井:

不能用ITR 001 BA充水,要防LOCA:不能用乏燃料水池水充水,会使水池水位下降1.60m,危及乏燃料组件,影响生物防护。通常将燃料转运舱充水而装载井则无水。当乏燃料容器装载井为运输容器的装料,或装料前维修,或试验运输机械而必须充水时,可将燃料转运舱的水用PTR 001 PO或002 PO送至乏燃料容器装载井,转运舱中剩余的(15M3)水重力排至RPE。

?反应堆机组处于冷停堆换料:反应堆换料水池充水后,换料水箱剩余的水可用以给燃料转运舱或乏燃料容器装载井充水。补水可由REA系统提供。

隔室的疏水:

只要隔室中水位高于低水位(039 SN和041 SN),就少用泵01 PO或02 PO将水疏排至换料水箱001 BA,传感器有防止泵气蚀的专门功能,在低于这一水位就不可能再用泵来继续排水。

d)反应堆换料水池:

充水:只有在换料或反应堆压力容器作检查时,才需要向水池充水。

——将池低两条排水管用育板法兰封住。育板法兰进行特殊行政管理,正常运行期间必须拆除,并存放在专用架子上。有一专用钥匙将它们锁在存放位置,钥匙平常在控制室。

——PTR 002 PO经127/131/142 VB将PTR 001 BA中硼酸浓液注入水池,360M3/h,004 DI限制流量,充水约1小时,水位至容器底部约30cm处避免浸湿容器顶盖。

——开始提升压力壳顶盖,同时进一步充水,可继续PTR 002 PO,也可结合高压安注泵和低压安注泵的定期试验进行。过程分为三个阶段:

I).第一阶段:先用一台低压安注泵RIS 001或002 PO送水,流量800M3/h,水位+14.5M.,此水位下,可将顶盖移到贮存加上。

II).第二阶段:由两高压安注泵充水,总流量150M3/h,水位+15.180M.,此水位下控制棒驱动杆恰好在水面以下,将驱动杆和控制棒闭锁解开,并使驱动杆伸出水面约30mm。

118

使人可一眼看出控制棒驱动杆是否正确脱钩。

III).完成后由另一台低压安注泵将水充至标高+19.5M为第三阶段。水池侧面标高+19.65M处装有两根溢流管,水位达到溢流管之前,操作员有一分钟时间来停止低压安注泵。当堆腔充水结束时,监视容器顶盖提升的操作员要通知控制室。

并非经常四个阶段都有,只有作相关定期实验时才有某些阶段。

排水:

——两台RRA系统001/002 PO大流量泵(2×610M3/h)将水输送到换料水箱内,阀门016 VB开启。

——水池水位降到+16m,由PTR 00 5PO将水位降至+15.18m,155/016 VB开启,排水流量100M3/h,此时检查控制棒安装是否正确。

——随后用一台RRA泵或PTR 002 PO以300M3/h继续排水至接近顶盖结合面,标高+11.16m,这一阶段里压力壳顶盖随水位同时下降。

——改用PTR 005 PO以将水排完。

013SP使泵在吸入口压力低时停运PTR005PO。排水操作可由手动停止,也可由堆内构件贮存池水位低043NS信号自动停止(标高+7.57±0.05m),剩余水重力排出。

——拆卸盲板法兰,并存放回专用架子,钥匙返回主控室控制台孔内,池底排水口重新装上滤网。

II)失水事故(LOCA)工况下水箱的使用

它为RIS和REA系统贮存硼水。

事故后30秒钟,高压安全注入泵及低压安全注入泵开始向反应堆一回路及喷淋泵提供流量,喷淋泵向喷淋管道供水。

被使用的水是从PTR001BA水箱抽取的阶段被称为直接注入和喷淋阶段,当水箱水位到达低3阈值时,低压安全注入泵及喷淋泵被直接转换到安全壳地坑,此阶段被称为再循环阶段。

119

图(1) PTR系统简图

120

核燃料后处理厂建(构)筑物、系统和部件的分级准则(EJ T 9391995)

F 49 EJ/T 939—1995 核燃料后处理厂 建(构)筑物、系统和部件的分级准则 1995-07-05发布 1995-11-01实施 中国核工业总公司发布 附加说明: 本标准由中国核工业总公司科技局提出。 本标准由核工业第二研究设计院负责起草。 本主要起草人:李守成、易著贵、李光鸿、林懋贞、杨鑫荣。 1主题内容与适用范围 本标准规定了核燃料后处理厂(简称后处理厂)建(构)筑物、系统和部件的安全分级方法以及安全分级、抗震分类、质量保证分级的准则及其设计要求。 本标准适用于后处理厂及其附属的乏燃料湿法贮存及各类放射性废物管理设施的设计、采购、制造、建造、安装、检验、调试和运行。 2引用标准 GBJ 11 建筑抗震设计规范 GB/T 19000 质量管理和质量保证标准——选择和使用指南 GB/T 19001 质量体系——设计/开发、生产、安装和服务的质量保证模式GB/T 19002 质量体系——生产和安装的质量保证模式 GB/T 19003 质量体系——最终检验和试验的质量保证模式 HAF 0101 核电厂厂址选择中的地震问题 HAF 0102 核电厂的地震分析及试验 HAF 0201 用于沸水堆、压水堆和压力管式反应堆的安全功能和部件分级HAF 0400 核电厂质量保证安全规定 EJ 313 压水堆核电厂系统部件安全等级的划分 EJ 877 核燃料后处理厂安全设计准则

3 术语 3.1物项 包括建(构)筑物、系统、部件、零件或材料的概括性术语。 3.2 运行安全地震动(简称SL1) 运行安全地震动是在分析后处理厂所在区域的地震和地质情况、分析当地地表下地层特性的基础上,按年超越概率为2×10-3的地震动值所确定的一种地震,其加速度峰值不得小于对应于极限安全地震动的一半。当发生这种地震时,与核安全有关的设施应能继续运行并维持其核安全功能。 3.3 极限安全地震动(简称SL2) 极限安全地震动是在考虑后处理厂所在区域的地震和地质情况、分析当地地表下地层特性的基础上,按年超越概率为10-4的地震动值所确定的最大地震。当发生这种地震时,与核安全有关的建(构)筑物、系统和部件仍需保持其核安全功能。 3.4 核安全功能(简称安全功能) 为安全着想必须完成的某一特定目的。后处理厂的核安全功能必须确保; a.在事故工况期间及事故工况后后处理厂能安全停车并保持其安全停车状态; b.防止运行工况和事故工况下放射性物质在厂区内外的释放量超过相应规定值; c.防止事故工况下造成的对厂区工作人员和公众的辐照剂量超过规定值。 4 安全分级方法 4.1概述 划分后处理厂各物项安全等级之目的是为制订不同等级物项的设计要求提供基准。不同安全等级物项的设计要求必须通过与其相应的抗震和质量保证要求给予保证,以确保它们执行的安全功能和其可靠性相一致。安全分级、抗震分类和质量保证分级的关系见下表。

第四代核反应堆系统简介

第四代核反应堆系统简介 绪言 第四代核反应堆系统(Gen IV)是当前正在被研究的一组理论上的核反应堆,其概念最先是在1999年6月召开的美国核学会年会上提出的。美国、法国、日本、英国等核电发达国家在2000年组建了Gen-IV国际论坛(GIF),并完成制定Gen IV研发目标计划。预期在2030年之前,这些设计方案一般不可能投入商业运行。核工业界普遍认同将,目前世界上在运行中的反应堆为第二代或第三代反应堆系统,以区别已于不久前退役的第一代反应堆系统。在八项技术指标上,第四代核能系统国际论坛已开始正式研究这些反应堆类型。这项计划主要目标是改善核能安全,加强防止核扩散问题,减少核燃料浪费和自然资源的利用,并降低建造和运行这些核电站的成本。并在2030年左右,向商业市场提供能够很好解决核能经济性、安全性、废物处理和防止核扩散问题的第四代核反应堆。 图1 从第一代到第四代核能系统的时间跨越 第一代核反应堆产生于上个世纪70 年代前,其主要目的是生产用于军事目的的铀;第二代核反应堆出现于70 年代,是目前大部分核电站使用的堆型,其目的是降低对石油国家的能源供应依赖;第三代核反应堆是在1979 年美国长岛和1986 年乌克兰切尔诺贝利核电站事故后出现的,主要是增加了安全性,但它并不能很好地解决核废料问题;第四代核反应堆则可以同时很好地解决安全和废料问题。对于第四代核能系统标准且可靠的经济评价,一个完整的核能模式显得十分重要。对于采用新型核能系统的第四代核电站的经济评估,人们需要采用新的评价手段,因为它们的特性大大不同于目前的第二代和第三代核电站。目前的经济模式不适合于比较不同的核技术或核电站,而是用于比较核能和化石能源。 第四代核反应堆的堆型 最初,人们设想过多种反应堆类型。但是经过筛选后,重点选定了几个技术上很有前途且最有可能符合Gen IV的初衷目标的反应堆。它们为几个热中子核反应堆和三种快中子反应

核反应堆及发展

核反应堆的类型 核电站中的反应堆设计具有多样性,也就是说,核反应堆具 有不同类型,相应形成不同的核电站。可以利用下列三个特点表征不同类型的反应堆。第一,所用的核燃料可以是天然铀或浓缩铀、钚或钍;第二,使用不同类型的冷却剂,可以是水、二氧化碳、氦气或钠;第三,用于控制链式反应中释放的中子能量的慢化剂,可以是石墨、重水或轻水(即普通水)。 下面就是迄今国际上核电站常用的4种核反应堆型。 压水堆是以加压轻水作为慢化剂和冷却剂,且水在堆内不沸 腾的核反应堆。目前以压水堆为热源的核电站,在核电站机组数量和装机容量方面都处于领先地位。 沸水堆是以沸腾轻水为慢化剂和冷却剂并在反应堆压力容 器内直接产生饱和蒸汽的核反应堆。沸水堆与压水堆同属轻水堆,都具有结构紧凑、安全可靠、建造费用低和负荷跟随能力强等优点。它们都需使用低富集铀作燃料。以沸水堆为热源的核电站在未来市场中仍将占有显著的地位。 重水堆是以重水作为慢化剂,轻水或重水作为冷却剂的核反应堆,可以直接利用天然铀作为核燃料。重水堆分压力容器式和压力管式两类。重水堆核电站是发展较早的核电站,但已实现工业规模的只有加拿大发展起来的坎杜型压力管式重水堆核电站。

快堆是由快中子引起链式裂变反应的核反应堆。快堆在运行中既消耗裂变材料,又生产新裂变材料,而且所产可多于所耗,能实现核裂变材料的增殖。专家预计,快堆未来的发展将会加快起来。 前景看好的快堆 现在世界上所运行的绝大多数反应堆是热中子堆,或者说是非增殖堆型,利用的只是铀-235,而天然铀将近99.3%是难裂变的铀-238,所以这些堆型对铀资源的利用率只有1%~2%。但在快堆中,铀-238原则上都能通过核反应转变成易裂变的钚-239而得以使用。即使考虑到各种损耗,快堆总体上可将铀资源的利用率提高到60%~70%,也可使核废料产生量得到最大程度的降低,实现放射性废物最小化。 具体点说,在堆芯燃料钚-239的外围再生区里放置铀-238,通过钚-239产生的裂变反应时放出来的快中子,使铀-238吸收一个中子后,发生连续两次β衰变后,铀-238很快被转变成钚-239,同时产生了能量,如此核反应下去,能够源源不断地将铀-238转变成可用的燃料钚-239。因为快堆再生速度高于消耗速度,即所生成的钚-239比消耗的铀-235来得多,如此核燃料越烧越多,快速迅速增殖起来,因此这种反应堆又称“快中子增殖堆”。除了现行的钠冷快堆外,还在发展气冷快堆、铅冷快堆等。 早在1951年,美国就建造了实验快中子堆。现阶段,基本掌握快中子堆技术的国家有美国、法国、日本、俄罗斯、印度和中国等。中国核工业集团公司2010年7月21宣布:由中核集团中国原子能

反应堆结构与核燃料

第四章反应堆结构与核燃料 反应堆是核电站中的热源,其内部装有可以进行可控链式核反应的核燃料,源源不断地释放出能量。核反应产生的热能通过载热剂传给汽轮机作功,汽轮机带动发电机,产生的电能被输送到电网。 反应堆由堆芯、压力容器、上部堆内构件和下部堆内构件等几部分组成。反应堆安置在反应堆厂房(也称为安全壳)的正中,它的六条进出口接管管嘴支撑在作为一次屏蔽的混凝土坑(即堆坑)内,而堆坑位于一个大约10米深的反应堆换料水池的底部。参见图4.1。 图4.1 反应堆位置 - 35 -

- 36 - 图4.2 反应堆剖面图

- 37 - 图4.2是压水堆的结构简图,它可分为以下四部分: ● 反应堆堆芯 ● 堆内构件 ● 反应堆压力容器和顶盖 ● 控制棒驱动机构 4.1 反应堆堆芯 4.1.1 堆芯布置 核反应堆的堆芯位于压力容器中心,由157个几何形状及机械结构完全相同的燃料组件构成,核反应区高3.65m ,等效直径3.04m 。燃料核裂变释放出来的核能立即转变成热能,并由冷却剂导出。 在典型的燃料管理方案中,初始堆芯按燃料组件浓缩度分成三个区。所谓燃料浓缩度也称富集度或丰度,是指燃料中235U 同位素在铀的总量中所占比例。在堆芯外区放置浓缩度高的燃料组件,浓缩度较低的燃料组件则以棋盘状排列在堆芯的内区,如图4.3所示。 通常每年进行一次换料,更换约三分之一燃料组件,称为一个燃料循环。换料原则是将燃耗最深的燃料组件取走,在外区加入新燃料组件,而其余组件在堆芯中央重新布置,使功率分布尽可能均匀。在第六循环之前新加入燃料的浓缩度均为3.25%。为满足不断增长的发电需求,从第七循环开始新换燃料的富集度改为3.7% 。按照规划,今后还将采用长燃耗循环,即18个月换料方式,届时新换燃料的富集度将提高到4.45% 。 图4.3 堆芯分区布置(第一循环)

反应堆原理

核反应堆是核电站的心脏,它的工作原理是这样的: 原子由原子核与核外电子组成。原子核由质子与中子组成。当铀235的原子核受到外来中子轰击时,一个原子核会吸收一个中子分裂成两个质量较小的原子核,同时放出2—3个中子。这裂变产生的中子又去轰击另外的铀235原子核,引起新的裂变。如此持续进行就是裂变的链式反应。链式反应产生大量热能。用循环水(或其他物质)带走热量才能避免反应堆因过热烧毁。导出的热量可以使水变成水蒸气,推动气轮机发电。由此可知,核反应堆最基本的组成是裂变原子核+热载体。但是只有这两项是不能工作的。因为,高速中子会大量飞散,这就需要使中子减速增加与原子核碰撞的机会;核反应堆要依人的意愿决定工作状态,这就要有控制设施;铀及裂变产物都有强放射性,会对人造成伤害,因此必须有可靠的防护措施。综上所述,核反应堆的合理结构应该是:核燃料+慢化剂+热载体+控制设施+防护装置。 还需要说明的是,铀矿石不能直接做核燃料。铀矿石要经过精选、碾碎、酸浸、浓缩等程序,制成有一定铀含量、一定几何形状的铀棒才能参与反应堆工作。 热堆的概念:中子打入铀-235的原于核以后,原子核就变得不稳定,会分裂成两个较小质量的新原子核,这是核的裂变反应,放出的能量叫裂变能;产生巨大能量的同时,还会放出2~3个中子和其它射线。这些中子再打入别的铀-235核,引起新的核裂变,新的裂变又产生新的中子和裂变能,如此不断持续下去,就形成了链式反应利用原子核反应原理建造的反应堆需将裂变时释放出的中子减速后,再引起新的核裂变,由于中子的运动速度与分子的热运动达到平衡状态,这种中子被称为热中子。堆内主要由热中子引起裂变的反应堆叫做热中子反应堆(简称热堆)。热中子反应堆,它是用慢化剂把快中子速度降低,使之成为热中子(或称慢中子),再利用热中子来进行链式反应的一种装置。由于热中子更容易引起铀-235等裂变,这样,用少量裂变物质就可获得链式裂变反应。慢化剂是一些含轻元素而又吸收中子少的物质,如重水、铍、石墨、水等。热中子堆一般都是把燃料元件有规则地排列在慢化剂中,组成堆芯。链式反应就是在堆芯中进行的。反应堆必须用冷却剂把裂变能带出堆芯。冷却剂也是吸收中子很少的物质。热中子堆最常用的冷却剂是轻水(普通水)、重水、二氧化碳和氦气。核电站的内部它通常由一回路系统和二回路系统组成。反应堆是核电站的核心。反应堆工作时放出的热能,由一回路系统的冷却剂带出,用以产生蒸汽。因此,整个一回路系统被称为“核供汽系统”,它相当于火电厂的锅炉系统。为了确保安全,整个一回路系统装在一个被称为安全壳的密闭厂房内,这样,无论在正常运行或发生事故时都不会影响安全。由蒸汽驱动汽轮发电机组进行发电的二回路系统,与火电厂的汽轮发电机系统基本相同。 轻水堆――压水堆电站自从核电站问世以来,在工业上成熟的发电堆主要有以下三种:轻水堆、重水堆和石墨汽冷堆。它们相应地被用到三种不同的核电站中,形成了现代核发电的主体。目前,热中子堆中的大多数是用轻水慢化和冷却的所谓轻水堆。轻水堆又分为压水堆和沸水堆。压水堆核电站压水堆核电站的一回路系统与二回路系统完全隔开,它是一个密闭的循环系统。该核电站的原理流程为:主泵将高压冷却剂送入反应堆,一般冷却剂保持在120~160个大气压。在高压情况下,冷却剂的温度即使300℃多也不会汽化。冷却剂把核燃料放出的热能带出反应堆,并进入蒸汽发生器,通过数以千计的传热管,把热量传给管外的二回路水,使水沸腾产生蒸汽;冷却剂流经蒸汽发生器后,再由主泵送入反应堆,这样来回循环,不断地把反应堆中的热量带出并转换产生蒸汽。从蒸汽发生器出来的高温高压蒸汽,推动汽轮发电机组发电。做过功的废汽在冷凝器中凝结成水,再由凝结给水泵送入加热器,重新加热后送回蒸汽发生器。这就是二回路循环系统。压水堆由压力容器和堆芯两部分组成。压力容器是一个密 封的、又厚又重的、高达数十米的圆筒形大钢壳,所用的钢材耐高温高压、耐腐蚀,用来推

核电站的结构

核电站的结构 核电站是怎样发电的呢?简而言之,它是以核反应堆来代替火电站的锅炉,以核燃料在核反应堆中发生特殊形式的燃烧产生热量,来加热水使之变成蒸汽。蒸汽通过管路进入汽轮机,推动汽轮发电机发电。一般说来,核电站的汽轮发电机及电器设备与普通火电站大同小异,其奥妙主要在于核反应堆。 核电站除了关键设备核反应堆外,还有许多与之配合的重要设备。以压水堆核电站为例,它们是主泵,稳压器,蒸汽发生器,安全壳,汽轮发电机和危急冷却系统等。它们在核电站中有各自的特殊功能。 主泵如果把反应堆中的冷却剂比做人体血液的话,那主泵则是心脏。它的功用是把冷却剂送进堆内,然后流过蒸汽发生器,以保证裂变反应产生的热量及时传递出来。 稳压器又称压力平衡器,是用来控制反应堆系统压力变化的设备。在正常运行时,起保持压力的作用;在发生事故时,提供超压保护。稳压器里设有加热器和喷淋系统,当反应堆里压力过高时,喷洒冷水降压;当堆内压力太低时,加热器自动通电加热使水蒸发以增加压力。 蒸汽发生器它的作用是把通过反应堆的冷却剂的热量传给二次回路水,并使之变成蒸汽,再通入汽轮发电机的汽缸作功。 安全壳用来控制和限制放射性物质从反应堆扩散出去,以保护公众免遭放射性物质的伤害。万一发生罕见的反应堆一回路水外逸的失水事故时,安全壳是防止裂变产物释放到周围的最后一道屏障。安全壳一

般是内衬钢板的预应力混凝土厚壁容器。 汽轮机核电站用的汽轮发电机在构造上与常规火电站用的大同小异,所不同的是由于蒸汽压力和温度都较低,所以同等功率机组的汽轮机体积比常规火电站的大。 危急冷却系统为了应付核电站一回路主管道破裂的极端失水事故的发生,近代核电站都设有危急冷却系统。它是由注射系统和安全壳喷淋系统组成。一旦接到极端失水事故的信号后,安全注射系统向反应堆内注射高压含硼水,喷淋系统向安全壳喷水和化学药剂。便可缓解事故后果,限制事故蔓延。 注: 核裂变是一个原子核分裂成几个原子核的变化。只有一些质量非常大的原子核像铀(yóu)、钍(tǔ)等才能发生核裂变。这些原子的原子核在吸收一个中子以后会分裂成两个或更多个质量较小的原子核,同时放出二个到三个中子和很大的能量,又能使别的原子核接着发生核裂变,使过程持续进行下去,这种过程称作链式反应。原子核在发生核裂变时,释放出巨大的能量称为原子核能,俗称原子能。1克铀-235完全发生核裂变后放出的能量相当于燃烧2.5吨煤所产生的能量。

压水堆核电站反应堆压力容器金属材料概述

压水堆核电站反应堆压力容器金属材料概述压水堆核电站反应堆压力容器是在高温、高压流体冲刷和腐蚀,以及强烈的中子辐照等恶劣条件下运行的,因此ASME规范第Ⅺ卷要求,反应堆压力容器应采用优质材料、严格制造工艺、完善的试验和检查技术,且在服役期间必须定期进行检查。 1.反应堆压力容器结构和作用 功率在1000MW及以上的普通压水堆核电站反应堆压力容器设计压力高达17MPa,设计温度在350℃左右,直径近5m,厚度超过20cm,有的单件铸锭毛重达500多吨,设计寿命至少要求40年。因为其体积庞大,不可更换,所以压力容器的寿命决定了核电站的服役年限。压水堆压力容器是由反应堆容器和顶盖组成,前者由下法兰(含接管段)、简体和半球形下封头组焊而成,顶盖由半球形上封头和上法兰焊接组成(或者为一体化顶盖)。上下法兰面之间用两道自紧式空心金属(高镍耐蚀合金Im718或18—8钢)“0”形环密封。为了避免容器内表面和密封面腐蚀,在压力容器内壁堆焊有大于5mm厚的不锈钢衬里。为防止外表面腐蚀,压力容器外表面通常涂漆保护。 2.反应堆压力容器材料的发展史 压水堆反应堆压力容器材料一般都是在工程上成熟的材料基础上改进而成的。美国第一代压水堆核电站反应堆压力容器材料用的是具有优良工艺稳定性、焊接性和强度较好的锅炉钢A212B(法兰锻件为A350LFs),由于A212B钢淬透性和高温性能较差,第二代改用Mn-Mo 钢A302B (锻材为A336),该钢中的Mn是强化基体和提高淬透性的元素,它能提高钢的高温性能及降低回火脆性。随着核电站向大型化发展,压力容器也随之增大和增厚,A302B钢缺口韧性差的不足就逐渐显露出来,为保证厚截面钢的淬透性,使强度与韧性有良好的配合,20世纪60年代中期又对A302B钢添加Ni,改用淬透性和韧性比较好的Mn-M-Ni钢A533B (锻材为A508一Ⅱ钢)。并以钢包精炼、真空浇铸等先进炼钢技术提高钢的纯净度、减少杂质偏析,同时将热处理由正火+回火处理改为淬火+回火的调质处理,使组织细化,以获得强度、塑性和韧性配合良好的综合性能。与此同时,由于壁厚增加和面对活性区的纵向焊缝辐照性能差,所以将压力容器由板焊接结构改为环锻容器,材料采用A508一Ⅱ钢。它曾盛行一时,但自1970年西欧发现A508一Ⅱ钢堆焊层下有再热裂纹之后,又发展了A508一Ⅲ钢。 A508一Ⅲ钢是在A508一Ⅱ钢基础上,通过减少碳化物元素C、Cr、Mo、V的含量,以减少再热裂纹敏感性,使基体堆焊不锈钢衬里后,降低产生再热裂纹的倾向。为弥补因减少淬透性元素而降低的强度和淬透性,特增加了A508一Ⅲ钢中的Mn含量。因锰易增大钢中偏析,故又降低了磷、硫含量。硅在上述钢中是非合金化元素。有增加偏析、降低钢的塑、韧性的倾向,其残存量以偏低为好。厚截面的A508-Ⅲ钢淬火后,基体组织是贝氏体,当冷却速度不足时,将出现铁素体和珠光体,这种组织较贝氏体粗大,对提高强度和韧性不利,所以反应堆压力容器用钢要求采用优化的调制热处理工艺。 俄罗斯的反应堆应力容器用的材料不是Mn-Mo-Ni钢而是Cr-M0-V以及Cr-Ni-Mo-V钢。该钢已分别用在俄罗斯及东欧的VVER-440和VVER-l000压水堆上以及我国的田湾核电站

《核反应堆物理分析》名词解释及重要概念整理

第一章—核反应堆的核物理基础 直接相互作用:入射中子直接与靶核内的某个核子碰撞,使其从核里发射出来,而中子却留在了靶核内的核反应。 中子的散射:散射是使中于慢化(即使中子的动能减小)的主要核反应过程。 非弹性散射:中子首先被靶核吸收而形成处于激发态的复合核,然后靶核通过放出中子并发射γ射线而返回基态。 弹性散射:分为共振弹性散射和势散射。 111001 100[]A A A Z Z Z A A Z Z X n X X n X n X n +*+→→++→+ 微观截面:一个粒子入射到单位面积内只含一个靶核的靶子上所发生的反应概率,或表示一个入射粒子同单位面积靶上一个靶核发生反应的概率。 宏观截面:表征一个中子与单位体积内原子核发生核反应的平均概率大小的一种度量。也是一个中子穿行单位距离与核发生相互作用的概率大小的一种度量。 平均自由程:中子在介质中运动时,与原子核连续两次相互作用之间穿行的平均距离叫作平均自由程。 核反应率:每秒每单位体积内的中子与介质原子核发生作用的总次数(统计平均值)。 中子通量密度:某点处中子密度与相应的中子速度的乘积,表示单位体积内所有中子在单位时间内穿行距离的总和。 多普勒效应:由于靶核的热运动随温度的增加而增加,所以这时共振峰的宽度将随着温度的上升而增加,同时峰值也逐渐减小,这种现象称为多普勒效应或多普勒展宽。 瞬发中子和缓发中子:裂变中,99%以上的中子是在裂变的瞬间(约10-14s)发射出来的,把这些中子叫瞬发中子;裂变中子中,还有小于1%的中子是在裂变碎片衰变过程中发射出来的,把这些中子叫缓发中子。 第二章—中子慢化和慢化能谱 慢化时间:裂变中子能量由裂变能慢化到热能所需要的平均时间。 扩散时间:无限介质内热中子在自产生至被俘获以前所经过的平均时间。 平均寿命:在反应堆动力学计算中往往需要用到快中子自裂变产生到慢化成为热中子,直至最后被俘获的平均时间,称为中子的平均寿命。 慢化密度:在r 处每秒每单位体积内慢化到能量E 以下的中子数。 分界能或缝合能:通常把某个分界能量E c 以下的中子称为热中子, E c 称为分界能或缝合能。 第三章—中子扩散理论 中子角密度:在r 处单位体积内和能量为E 的单位能量间隔内,运动方向为Ω的单位立体角内的中子数目。 慢化长度:中子从慢化成为热中子处到被吸收为止在介质中运动所穿行的直线距离。 徙动长度:快中子从源点产生到变为热中子而被吸收时所穿行的直线距离为r M 。 第四章—均匀反应堆的临界理论 反射层的作用: 减少芯部中子泄漏,从而使得芯部的临界尺寸要比无反射层时的小,节省一部分燃料; 提高反应堆的平均输出功率。

反应堆结构与材料重点

1反应堆分类:按中子能量分:快中子堆中能中子堆慢中子堆按形势分:非均匀堆均匀堆按燃料分:钍堆浓缩铀堆天然铀堆按冷却剂慢化剂分:熔盐堆有机堆沸水堆(轻水堆)压水堆重水堆石墨气冷堆石墨冷水堆按用途分:研究堆生产堆动力堆生产动力堆 2压水堆的组成:压水堆主要由核反应堆,一回路系统,二回路系统,其他辅助系统组成 3 PWR堆堆芯设计要求:堆芯功率分布应尽量均匀,以便使堆芯有最大的功率输出;尽量减小堆芯内不必要的中子吸收材料,以提高中子经济性;有最佳的冷却剂流量分配和最小的流量阻力;有较长的堆芯寿命,以适当减少换料操作次数;堆芯结构紧凑,换料操作简单便。 4 1,2回路厂房中设备系统一回路厂房也就是反应堆安全壳,为一个立式圆柱状半球型顶盖或球型建筑物内径约30-40米,高约为60-70米,内有反应堆,主循环泵,稳压器,汽发生器和相应的管道阀门以及其他辅助设备组成的一回路系统。二回路厂房与普通火电厂的汽轮机发电机组厂房相似,内有汽轮机发电机,凝汽器,凝结水泵,低压回水加热器,高压回水加热器,除氧器,给水泵,汽水分离再热器,主蒸汽管道有关的辅助设备组成的二 5 压水堆本体结构:堆芯,压力容器,堆内构件,堆芯组件和控制棒驱动机构组成 6 PWR堆芯结构:核燃料组件,控制棒组件,固体可燃毒物,固体中子源和阻力塞组件等。 7 可燃毒物组件的结构和作用:只用于第一燃料循环的全新堆芯,用于控制堆芯的初始反应性,功能是降低冷却剂水中的硼浓度,保持慢化剂负温度系数,可燃毒物棒为装在304 型不锈钢包壳管内的一根硼玻璃管(B2O3+SiO2)硼玻璃管在内径全长还用薄壁304型不锈钢管状内衬支撑,包壳管两端堵塞并施密封焊,内外包壳之间留有足够气隙空间,以容纳放出的氦气,限制其内压小于反应堆运行压力,将可燃毒物棒固定在压紧组件上就构成可燃毒物组件 8 压力容器原材原则:材料具备高度的完整性;具有适当的强度足够的韧性;导热性能好;便于加工制造,成本低廉;具有低的辐照敏感性 9 压力容器本体结构:上法兰,密封台肩,一节接管段,二节堆芯包容环段,一节过渡段,一只半球形下封头组成组成。 10 反应堆容器顶盖结构:由顶盖法兰和顶盖本体焊接而成,顶盖本体为板材热锻成型,上面焊有3只吊耳,一根排气管,一块金属支撑板,控制棒驱动机构管座,热电偶管座 11 压力容器失效形成:延性断裂:机械应力超过材料的屈服应力,承载段就开始塑性变形而后断裂;;;脆性断裂:压力容器加工过程会产生微裂纹和材质不均匀性,承载后裂纹端部应力增大并可能导致裂纹扩展,在适当条件下,裂纹会无限扩展形成断裂 12 堆内结构的定义结构功能:堆内构件是指装在反应堆容器内,除了以下结构之外的所有其他构件:燃料组件,棒束控制组件,及其传动轴,可燃毒物组件,中子源组件,阻力塞组件和堆内测量仪表。由下部支撑结构(包括热中子屏蔽),堆芯上部支撑结构(包括控制棒束导向管)和压紧弹簧组成。;;;;;;;;;;;;主要功能:为冷却剂提供流道;为压内容器提供屏蔽,使其免受或少受堆芯中子辐射影响;为燃料组件提供支撑和压紧;固定监督用的辐照样品;为棒束控制棒组件和传动轴以及上下堆内测量装置提供堆内向导;平衡机械载荷和水力载荷;确保堆容器顶盖内的冷却水循环,以便顶盖保持一定温度 13 下部支撑结构的组成:堆芯吊篮组件(含堆芯支撑板);热中子屏蔽;流量分配孔板;堆芯下栅格板;堆芯围板组件;堆芯二次支撑和测量通道。 14 热屏蔽的原因方法改进:在辐照最大区域加强中子辐照防护,热屏蔽由4块不锈钢板组成不连续的圆筒形,在反应堆中心铀的4个象限位置上(0° 90° 180° 270°)用螺钉连接在堆芯吊篮外壁上,热屏还支撑辐照样品监督管。 15上部支撑结构的作用和组成作用:将堆芯组件定位、压紧、防止因冷却剂流动的水力作用使堆芯组件上移;组成控制棒驱动线的重要构件,保证控制棒对中,起导向作用,使控制棒

核电站系统三个回路

核电站系统三个回路 一回路:反应堆冷却剂(硼水)在主泵的驱动下进入反应堆,流经堆芯后从反应堆容器的出口管流出,进入蒸汽发生器,然后回到主泵,这就是反应堆冷却剂的循环流程(亦称一回路流程)。 二回路:在循环流动过程中,反应堆冷却剂从堆芯带走核反应产生的热量,并且在蒸汽发生器中,在实体隔离的条件下将热量传递给二回路的水。二回路水被加热,生成蒸汽,蒸汽再去驱动汽轮机,带动与汽轮机同轴的发电机发电。 三回路:作功后的乏蒸汽在冷凝器中被海水或河水、湖水冷却水(三回路水)冷凝为水,再补充到蒸汽发生器中。以海水为介质的三回路的作用是把乏蒸汽冷凝为水,同时带走电站的弃热。 核电站主要设备:核反应堆、蒸汽发生器、稳压器、主冷却剂泵、汽轮发电机机组。

1、压水堆核电站 以压水堆为热源的核电站。它主要由核岛和常规岛组成。压水堆核电站核岛中的四大部件是蒸汽发生器、稳压器、主泵和堆芯。 在核岛中的系统设备主要有压水堆本体,一回路系统,以及为支持一回路系统正常运行和保证反应堆安全而设置的辅助系统。常规岛主要包括汽轮机组及二回等系统,其形式与常规火电厂类似。 2、沸水堆核电站 以沸水堆为热源的核电站。沸水堆是以沸腾轻水为慢化剂和冷却剂并在反应堆压力容器内直接产生饱和蒸汽的动力堆。 沸水堆与压水堆同属轻水堆,都具有结构紧凑、安全可靠、建造费用低和负荷跟随能力强等优点。它们都需使用低富集铀作燃料。 沸水堆核电站系统有:主系统(包括反应堆);蒸汽-给水系统;反应堆辅助系统等。 3、重水堆核电站 以重水堆为热源的核电站。重水堆是以重水作慢化剂的反应堆,可以直接利用天然铀作为核燃料。重水堆可用轻水或重水作冷却剂,重水堆分压力容器式和压力管式两类。 重水堆核电站是发展较早的核电站,有各种类别,但已实现工业规模推广的只有加拿大发展起来的坎杜型压力管式重水堆核电站。 4、快堆核电站 由快中子引起链式裂变反应所释放出来的热能转换为电能的核电站。快堆在运行中既消耗裂变材料,又生产新裂变材料,而且所产可多于所耗,能实现核裂变材料的增殖。 目前,世界上已商业运行的核电站堆型,如压水堆、沸水堆、重水堆、石墨气冷堆等都是非增殖堆型,主要利用核裂变燃料,即使再利用转换出来的钚-239等易裂变材料,它对铀资源的利用率也只有1%—2%,但在快堆中,铀-238原则上都能转换成钚-239而得以使用,但考虑到各种损耗,快堆可将铀资源的利用率提高到60%—70%。

核燃料化学及工艺学考试重点

界面污物:溶解产品液含有少量二氧化硅和其他胶体沉淀。进入萃取设备后,含Si 微粒容易积累在两相界面附近,吸附Zr-Nb 裂片,与溶剂降解产物结合形成界面污物沉淀,大大降低去污效率和铀、钚收率,破坏萃取器的稳定操作。 超临界状态(反应堆启动和提升功率的状态):当反应堆系统的K 有效>1时,裂变中子一代比一代多,链式反应发散。 核燃料:含有易裂变核素或可转换物质,放在反应堆内能使自持核裂变链式反应得以实现的材料 铀饱和度:已与硝酸铀酰络合的TBP 摩尔数在TBP 总摩尔数中所占的份额。以ξ(%)表示为ξU =2Y u /Y T(0)×100%,Y u 为有机相中铀浓度(mol/L );Y T(0)为有机相中初始TBP 浓度(mol/L ) 随着ξU 的提高,铀、鎿、钚的分配系数均下降。 分离系数β:某两种元素的分离系数,指这两种元素在分离前含量的比值与分离后含量的比值的比值。 ε:快中子增值因子(由各种能量中子引起的裂变而产生的快中子总数与仅由热中子裂变而产生的快中子数之比。 f :热中子利用因子(核燃料所吸收的热中子数与被吸收的热中子总数之比。 与核燃料在慢化剂中的浓度紧密相关)。f=0活性区完全由慢化剂组成,f=1活性区完全有核燃料组成。 核燃料后处理:从乏燃料中除去裂变产物,分离并回收易裂变核素及可转换核素的的处理过程。 (建议理解)分配系数:用来描述在萃取和反萃取过程中物质分配状况的一个参数,表示在萃取过程中,某物质被萃取的能力,α=C 0/C a ,)('1'3)(M y P T n P n M M M M r r r T NO K X Y +±-==α 核燃料后处理的任务: 1)提取和纯化新生成的可裂变物质; 2)回收和纯化没有用完的可裂变物质和尚未转化的转化材料; 3)提取有用的裂变产物和超铀元素; 4)对放射性废物进行妥善处理和安全处置。 铀钚共去污-分离循环的安全运行是核燃料后处理的关键环节之一,因为: (1)后处理厂稳定运行的持续时间、生产负荷由1A 槽(柱)控制; (2)后处理流程中的铀线和钚线需要几个净化循环,在很大程度上取决于1A 槽(柱)的净化效果; (3)有机溶剂的质量、再生效果及其对萃取过程的影响主要体现在1A 槽(柱); (4)运行过程中,由于1A 槽界面污物的产生及其放射性积累所导致的开停车期间放射性后移问题最突出; (5)237Np 回收率的高低在很大程度上取决于1AP 中铀饱和度的控制; (6)在1AW 中铀、钚金属的流失量,占整个工艺流程中的铀钚总流失量的30%左右。 酸浸影响浸取过程的主要因素: 1)、矿石粒度-根据矿石特性和浸取工艺条件来定

核电站反应堆冷却剂系统_讲义

核电站反应堆冷却剂系统 核电站 反应堆冷却剂系统讲义

本讲义是针对一回路及相关辅助系统的学习。所包含的内容主要分三个方面:一回路主回路系统(RCP),一回路辅助系统(RCV、REA 、RRA、PTR),核安全系统(RIS、EAS、ASG)等。故我们的学习应该从这三方面入手分系统的掌握。本教材在详细介绍OJT206所涉及的系统的基础上结合现场有关操作使大家对OJT206的知识有一个全面的了解。 第一章、反应堆冷却剂系统(RCP) 反应堆冷却剂系统是核电站的重要关键系统。它集中了核岛部分除堆本体外对安全运行至关紧要的主要设备。反应堆冷却剂系统与压力壳一起组成一回路压力边界,成为防止放射性物质外泄的第二道安全屏障。核电站通常把核反应堆、反应堆冷却剂系统及相关辅助系统合称为核蒸汽供应系统。大亚湾压水堆电站一回路冷却剂系统由对称并联到压力壳进出口接管上的三条密封环路构成。每条环路由一台冷却剂主泵、一台蒸汽发生器以及相应的管道、阀门组成。整个一回路共用一台稳压器以及与其相当的卸压箱。反应堆冷却剂系统的压力依靠稳压器的电加热元件和喷雾器自动调节保持稳定。 一、RCP系统的主要安全功能和要求 RCP系统的主要功能是利用主泵驱使一回路冷却剂强迫循环流动,将堆芯核燃料裂变产生的热量带出堆外,通过蒸汽发生器传给二回路给水产生蒸汽,冷却剂在导出堆芯热量的过程中冷却堆芯,防止燃料元件棒烧毁。压力壳内冷却剂还兼作堆芯核燃料裂变产生的快中子的慢化剂和堆芯外围的中子反射层。冷却剂水中溶有硼酸,因此堆内含硼冷却剂又可作为中子吸收剂。根据工况需要调节冷却剂中含硼浓度,可配合控制棒组件用以控制、补偿堆芯反应性的变化。系统内的稳压器用于控制一回路冷却剂系统压力,以防止堆芯产生偏离泡核沸腾。当一回路冷却剂系统压力过高时,稳压器安全阀则能实现超压保护。当发生作为第一道安全屏障的燃料元件棒包壳破损、烧毁事故时,RCP系统的压力边界可作为防止放射性物质泄漏的第二道安全屏障。 为此,对RCP系统安全功能和设计的要求是: 1.系统应提供足够的传递热量的能力,能将堆芯产生的热量带出并传给二回路介质。 2.在正常运行及预期瞬态工况下能对堆芯提供适当的冷却,并保证足够的烧毁余量,防止发生燃料包壳损伤。在事故工况下,为保证反应堆具有冷源,系统的布置要能够使冷却剂淹没堆芯并形成充分的自然循环,以导出堆芯余热,避免燃料超过温度极限。 3.系统应做到冷却剂中含硼浓度均匀;能限制冷却剂温度变化的速率,以保证不出现由这些因素而引起的反应性变化失控。 4.RCP压力边界应能适应与运行瞬态工况相应的温度、压力,并留有余度。 5.任一冷却剂环路管道断裂,不会导致其他管道的损坏,并仍能确保堆芯的冷却。 6.主泵应能提供足够的流量以满足热量转移和堆芯冷却要求。系统和主泵在事故状态下应具有足够的惯性流量;即使在一台主泵转子卡死时也不影响堆芯冷却。 7.蒸汽发生器是系统中唯一与二回路存在交界面的设备,因此要求蒸汽发生器的管子、管板的边界面尽可能避免将堆芯产生的放射性物质泄漏到二回路系统。 8.应能对系统进行泄漏检测。对预料的泄漏,如压力壳密封、主泵及某些阀杆的密封,应通过引漏系统进行收集,防止一回路冷却剂释放到安全壳空间。 9.稳压器应能维持系统正常运行压力,在电站负荷变化和冷却剂温度、体积变化时,压力能被限制在规定的范围内。在电站满功率下甩负荷而反应堆功率未能及时跟踪情况下,反应堆与汽轮机功率失配而引起系统压力上升时,稳压器超压保护应能及时动作。安全阀的排放能力应能使压力波动限制在规定范围内。

核反应堆及其工作原理

核反应堆及其工作原理 日本地震引发的核泄漏危机使得人心惶惶,网上各种瞎扯的消息铺天盖地,与其在假消息中挣扎,倒不如来普及一下科学知识。核反应堆究竟是什么东西?它的工作原理是怎样的?今天我们就来图解福岛核电站故障。 核反应堆相关词汇表: core 核心 control rod s 控制棒 reactor vessel反应堆 suppression pool 抑压池 primary containment vessel 第一层安全壳(反应堆外壳) secondary containment building 第二层安全壳 turbine涡轮 condenser冷凝器 backup steam generator备用蒸汽发电机 Normal operation 正常状态 In operation since the early 1970s, Japan's Fukushima Daiichi nuclear plant uses six boiling water reactors, which rely on uranium nuclear fission to generate heat. Water surrounding the core boils into steam that drives turbines to generate electricity.

The reactor vessel is surrounded by a thick steel-and-concrete primary containment vessel, equipped with a water reservoir designed to suppress overheating of the vessel. 反应堆由一个钢与混凝土构成的厚实外壳(第一层安全壳)保护着,另外还配有一个蓄水库,防止反应堆过热。The suppression pool is designed to protect the primary vessel if the core gets too hot. Valves release steam into the pool, where it condenses, relieving dangerous pressure. 当核心过热时,抑压池可以起到保护第一层安全壳的作用。这时阀门会打开,水蒸气就能进入抑压池内冷凝,减缓压力过大造成的危险。 Earthquake damage 地震时 The earthquake initiated a rapid shutdown of the reactors, but the disaster cut power to controls and pumps, and the tsunami disabled backup generators. New diesel generators were delivered after batteries used to control the operation of the reactor were exhausted. 周五的地震切断了各种控制系统和水泵的电力供应,而海啸又使备用发电机组无法工作。在控制反应堆运作的电池报废后,不得不启用第二套柴油发电机。 Since the quake hit, fuel rods in the cores of reactor 1, 2 and 3 have overheated because of a lack of cooling water. 自地震以来,由于冷却用水的缺少,1、2、3号反应堆核心中的燃料棒一直处于过热状态。 Control rods were inserted into the cores to stop fission, but cores need several days to cool down. 控制棒已经插入,但是核心需要好几天时间来冷却。

核燃料后处理工程课后习题

第一章 1-1.核燃料的内涵是什么,核燃料循环这一概念是如何形成的? 1-2.核燃料后处理的任务及其产品形式是什么? 1-3.简述核燃料后处理厂的特点. 1-4.核燃料后处理工艺的发展简史给你什么启发? 1-5.简述轻水堆铀燃料循环的主要工艺过程. 第二章 2-1.理解、记忆铀、钚、次锕系元素的重要化学性质。 2-2.理解、记忆裂变碎片元素的重要化学性质。 2-3.理解并会应用描述磷酸三丁酯萃取铀钚效果的三个概念:分配系数、分离系数、净化系数。 2-4.理解、记忆影响磷酸三丁酯萃取铀、钚的因素。 2-5.了解磷酸三丁酯对裂片元素的萃取性能。 2-6.理解磷酸三丁酯及稀释剂化学分解和辐射降解的过程,降解产物的种类及其对Purex工艺的影响。 2-7.理解多级逆流萃取-洗涤过程及其定量描述方法。 第三章 3-1.简述不同类型反应堆乏燃料元件对后处理工艺的影响。 3-2.理解并记忆核燃料后处理工艺原理流程框图。 3-3.简述世界各国应用Purex工艺流程概况。 3-4.乏燃料元件运输过程中要考虑哪些问题? 3-5.简述快中子增殖堆乏燃料后处理的基本步骤。 3-6.乏燃料组件放置(冷却)贮存的目的是什么? 第四章 4-1.水法核燃料后处理工艺的首段处理包括哪些步骤? 4-2.乏燃料元件的脱壳方法有哪几种?简述各种脱壳方法的优缺点及其实用性。 4-3.理解、掌握乏燃料芯体溶解反应、溶解过程及操作要点。 4-4. 1AF料液制备中要考虑哪些问题? 4-5.试比较生产堆、动力堆和其他堆型乏燃料首段处理的特点和工艺要求。

4-6.可以采取哪些措施来降低溶芯过程的酸耗? 第五章 5-1.为什么说,确保共去污-分离循环的安全稳定运行是后处理厂的关键环节之一? 5-2.理解、记忆铀钚共去污-分离工艺过程; 5-3.简述几种还原钚(Ⅳ)实现铀钚分离的方法,针对这些方法的优缺点,你能提出什么新创意? 5-4.你能对1A槽(柱)和1B槽(柱)的运行提出什么建议吗? 5-5.循环经济在铀钚共去污-分离循环流程中有哪些体现? 第六章 6-1.理解、记忆制定钚的萃取净化循环流程时各参数的依据。 6-2.钚的尾端处理涵盖哪些内容? 6-3.为什么说,可将核燃料后处理厂与动力堆铀钚氧化物混合燃料元件制造厂合并? 6-4.后处理厂的产品与燃料元件制造厂、铀同位素分离厂有什么关联? 第七章 7-1.理解、记忆铀的萃取净化循环流程及工艺参数的选择依据。 7-2.在什么情况下需用三个萃取循环净化铀?在什么情况下只需用两个萃取循环加硅胶柱吸附净化铀? 7-3.为什么要进行硝酸铀酰的脱硝与还原? 7-4.硝酸铀酰的脱水、脱硝有哪些方法,各自有哪些优缺点? 7-5.理解、记忆一步脱硝-还原二氧化铀的原理、工艺流程和主要设备。 第九章 9-1.理解、分析后处理厂放射性三废的来源,废物处理、处置的基本原则,提出你的减量设想。 9-2.理解、记忆并能灵活应用放射性废水的处理技术。 9-3.理解、分析高放废液的综合利用与最终处置途径。 9-4.根据可持续发展原理、核燃料闭式循环及循环经济概念,发表你对核燃料后处理厂产生的三废的处理、处置的创新设想。 9-5.设计某后处理厂高放废液的贮存设备。

核电站反应堆冷却剂系统讲义参考模板

核电站 反应堆冷却剂系统讲义

本讲义是针对一回路及相关辅助系统的学习。所包含的内容主要分三个方面:一回路主回路系统(RCP),一回路辅助系统(RCV、REA 、RRA、PTR),核安全系统(RIS、EAS、ASG)等。故我们的学习应该从这三方面入手分系统的掌握。本教材在详细介绍OJT206所涉及的系统的基础上结合现场有关操作使大家对OJT206的知识有一个全面的了解。 第一章、反应堆冷却剂系统(RCP) 反应堆冷却剂系统是核电站的重要关键系统。它集中了核岛部分除堆本体外对安全运行至关紧要的主要设备。反应堆冷却剂系统与压力壳一起组成一回路压力边界,成为防止放射性物质外泄的第二道安全屏障。核电站通常把核反应堆、反应堆冷却剂系统及相关辅助系统合称为核蒸汽供应系统。大亚湾压水堆电站一回路冷却剂系统由对称并联到压力壳进出口接管上的三条密封环路构成。每条环路由一台冷却剂主泵、一台蒸汽发生器以及相应的管道、阀门组成。整个一回路共用一台稳压器以及与其相当的卸压箱。反应堆冷却剂系统的压力依靠稳压器的电加热元件和喷雾器自动调节保持稳定。 一、RCP系统的主要安全功能和要求 RCP系统的主要功能是利用主泵驱使一回路冷却剂强迫循环流动,将堆芯核燃料裂变产生的热量带出堆外,通过蒸汽发生器传给二回路给水产生蒸汽,冷却剂在导出堆芯热量的过程中冷却堆芯,防止燃料元件棒烧毁。压力壳内冷却剂还兼作堆芯核燃料裂变产生的快中子的慢化剂和堆芯外围的中子反射层。冷却剂水中溶有硼酸,因此堆内含硼冷却剂又可作为中子吸收剂。根据工况需要调节冷却剂中含硼浓度,可配合控制棒组件用以控制、补偿堆芯反应性的变化。系统内的稳压器用于控制一回路冷却剂系统压力,以防止堆芯产生偏离泡核沸腾。当一回路冷却剂系统压力过高时,稳压器安全阀则能实现超压保护。当发生作为第一道安全屏障的燃料元件棒包壳破损、烧毁事故时,RCP系统的压力边界可作为防止放射性物质泄漏的第二道安全屏障。 为此,对RCP系统安全功能和设计的要求是: 1.系统应提供足够的传递热量的能力,能将堆芯产生的热量带出并传给二回路介质。 2.在正常运行及预期瞬态工况下能对堆芯提供适当的冷却,并保证足够的烧毁余量,防止发生燃料包壳损伤。在事故工况下,为保证反应堆具有冷源,系统的布置要能够使冷却剂淹没堆芯并形成充分的自然循环,以导出堆芯余热,避免燃料超过温度极限。 3.系统应做到冷却剂中含硼浓度均匀;能限制冷却剂温度变化的速率,以保证不出现由这些因素而引起的反应性变化失控。 4.RCP压力边界应能适应与运行瞬态工况相应的温度、压力,并留有余度。 5.任一冷却剂环路管道断裂,不会导致其他管道的损坏,并仍能确保堆芯的冷却。 6.主泵应能提供足够的流量以满足热量转移和堆芯冷却要求。系统和主泵在事故状态下应具有足够的惯性流量;即使在一台主泵转子卡死时也不影响堆芯冷却。 7.蒸汽发生器是系统中唯一与二回路存在交界面的设备,因此要求蒸汽发生器的管子、管板的边界面尽可能避免将堆芯产生的放射性物质泄漏到二回路系统。 8.应能对系统进行泄漏检测。对预料的泄漏,如压力壳密封、主泵及某些阀杆的密封,应通过引漏系统进行收集,防止一回路冷却剂释放到安全壳空间。 9.稳压器应能维持系统正常运行压力,在电站负荷变化和冷却剂温度、体积变化时,压力能被限制在规定的范围内。在电站满功率下甩负荷而反应堆功率未能及时跟踪情况下,反应堆与汽轮机功率失配而引起系统压力上升时,稳压器超压保护应能及时动作。安全阀的排放能力应能使压力波动限制在规定范围内。

相关文档
相关文档 最新文档