文档库 最新最全的文档下载
当前位置:文档库 › 复合成核剂改性PA+6的力学性能和结晶行为

复合成核剂改性PA+6的力学性能和结晶行为

复合成核剂改性PA+6的力学性能和结晶行为
复合成核剂改性PA+6的力学性能和结晶行为

CHINA SYNTHETIC RESIN AND PLASTICS

研究与开发

合?成?树?脂?及?塑?料?,?2014,?31(1):?1

复合成核剂改性PA 6的力学性能和结晶行为

郭?敏1,2,刘轶群2,李晋庆1,3,张?杨2,张德鹏2,潘国元2,严?昊2,罗运军1*

(1.?北京理工大学材料科学与工程学院,北京市?100081;2.?中国石油化工股份有限公司北京化工研究院,北京市?100013;

3.?中国兵器科学研究院,北京市?100089)

摘 要:?以苯甲酸钠和海泡石为成核剂改性聚酰胺(PA)6,研究了成核剂种类和含量对PA?6力学性能、负荷变形温度和结晶行为等的影响。结果表明:当加入0.20?phr成核剂时,海泡石和苯甲酸钠分别使PA?6的弯曲应力提高13.3%,1.9%,而海泡石和苯甲酸钠复配使用可使PA?6的弯曲应力提高15.9%;加入0.20?phr的海泡石/苯甲酸钠复合成核剂,PA?6的负荷变形温度达到185?℃,高于单独加海泡石的PA?6(181?℃)和单独加苯甲酸钠的PA?6(171?℃);海泡石/苯甲酸钠复合成核剂使PA?6获得更好的结晶性能。

关键词: 聚酰胺?6?苯甲酸钠?复合成核剂?力学性能?结晶

中图分类号: TQ?327.1 文献标识码: B 文章编号: 1002-1396(2014)01-0001-04

收稿日期: 2013-07-27。修回日期: 2013-10-26。

作者简介: 郭敏,1981年生,在读博士研究生,现主要从事高聚物共混改性研究。联系电话:(010)59202169;E-mail:guom.bjhy@https://www.wendangku.net/doc/b918692553.html,。

通讯联系人。联系电话:(010)68913698;

E-mail:?yjluo@https://www.wendangku.net/doc/b918692553.html,。

*

有机成核剂改性聚酰胺(PA)的成核效果明显,但是价格较高,而且当其添加量达到一定值后基本不会改变PA的刚性。无机成核剂对PA制品的透明性和表面光泽度有影响,在透明材料方面的应用受到限制

[1-3]

。添加无机成核剂不但影响

晶体尺寸和结晶速率进而影响其力学性能和成型周期,而且有时还影响PA的结晶类型等其他性能[4-6]。Illers等[7]指出,熔融的PA?6经骤冷后,在低于130?℃热处理时只生成γ晶,在130~210?℃热处理同时产生γ晶和α晶,在高于210?℃的条件下结晶时只有α晶。如果PA?6中添加滑石粉等无机成核剂,则α晶占支配地位。于海美等[8]将无机成核剂海泡石酸活化后经熔融共混制备了PA?6/海泡石复合材料,发现海泡石对PA?6有较好的增强作用。本工作将有机成核剂苯甲酸钠和无机成核剂海泡石复配使用,研究了复合成核剂对PA?6性能的影响。1 实验部分1.1 原料

PA?6,中国石油化工股份有限公司巴陵分公司生产;苯甲酸钠,工业品,武汉有机实业股份有限公司生产;海泡石,灵寿县敏诚海泡石厂生产;抗氧剂,1098,168,市售。?

1.2 试样制备

先将PA?6在90?℃条件下干燥8?h,然后按配方称取PA?6、成核剂、抗氧剂[m (1098)/m (168)

为1∶1],混合均匀后加入到德国W&P公司生产的ZSK-25型双螺杆挤出机中熔融共混挤出造粒,温度设定为220,230,235,235,235,230?℃(口模),螺杆转速350?r/min。粒料在90?℃条件下干燥后,用宁波海天机械制造有限公司制造的HTF 110X/1J 型注塑机注塑成标准样条。注塑温度分别为220,

240,240,240,230?℃,螺杆转速400?r/min,注塑压力4.5?MPa,模具温度50?℃,注塑时间3?s。1.3 性能测试

拉伸性能按ISO?527-2:2012测试,弯曲性能按ISO?178:2001测试,悬臂梁冲击强度按ISO?180:2001测试,负荷变形温度按ISO?75-2:2004测

试。差示扫描量热法(DSC )采用美国PE公司生产的Diamond?DSC型差示扫描量热仪分析,氮气气氛,升、降温速率均为10?℃/min。广角X射线衍射?

(WAXD )采用荷兰Philips公司生产的X '

Pert?MPD

型高功率转靶X射线衍射仪测试,管电压40?kV,管电流300?mA,扫描速率1.2(°)/min,扫描范围5°~35°。

合 成 树 脂 及 塑 料

2014?年第?31?卷

.?2?.2 结果与讨论

2.1 成核剂对PA 6性能的影响

本工作采用海泡石、苯甲酸钠单独作成核剂,或者海泡石/苯甲酸钠复合(质量比为1∶1)成核剂加入PA?6中,配方见表1。

纯PA?6的弯曲应力为61.7?MPa,从图1a看出:当成核剂用量为0.05?phr时,海泡石、苯甲酸钠、海泡石/苯甲酸钠复合成核剂分别使PA?6的弯曲应力提高了10.7%,11.5%,10.7%。随海泡石用量增加,PA?6的弯曲应力逐渐提高,海泡石用量为0.20?phr时,PA?6的弯曲应力提高了13.3%。而随苯

甲酸钠用量增加,PA?6弯曲应力的增幅反而下降,苯甲酸钠用量为0.10?phr时,PA?6弯曲应力的增幅下降到5.5%,苯甲酸钠用量为0.20?phr时,只比纯PA?6提高1.9%。复合成核剂用量为0.05,0.10,0.20?phr时,PA?6的弯曲应力分别比纯PA?6提高10.7%,14.7%,15.9%,说明海泡石与苯甲酸钠复配后产

生协同效应,使PA?6的弯曲应力更优。

表1 成核剂改性PA 6的配方

Tab.1 Formulae of PA 6 modified with the nucleating agents 试?样成核剂成核剂用量/phr

10

2海泡石0.053

海泡石

0.104海泡石0.205苯甲酸钠

0.056苯甲酸钠0.10

7苯甲酸钠

0.208苯甲酸钠0.409海泡石/苯甲酸钠0.0510海泡石/苯甲酸钠0.1011海泡石/苯甲酸钠0.2012

海泡石/苯甲酸钠

0.40

注:?PA?6用量均为100?phr,抗氧剂用量均为0.40?phr。

图1?成核剂种类和用量对PA?6性能的影响

Fig.1?Effects?of?kinds?and?content?of?the?nucleating?agents?on?the?properties?of?PA?6

■?PA?6/海泡石;■?PA?6/苯甲酸钠;■?PA?6/海泡石/苯甲酸钠

55

60

65

7075

/M P a

??/phr

1.8

2.0

2.22.4

??/G P a

??/phr

?? ? /?

??/phr

a?弯曲应力b?弯曲模量

c?负荷变形温度

纯PA?6的弯曲模量为1.99?GPa,从图1b看出:加入不同种类成核剂后,PA?6弯曲模量的提高趋势与弯曲应力相同。苯甲酸钠用量较低时能够充分发挥有机成核剂的优势,即在用量非常少的情况下就可以在PA?6中起到较好的成核作用,但其用量继续增加后,由于苯甲酸钠在PA?6基体中分散不均匀,形成应力集中点,最终导致PA?6力学性能变差。海泡石作为无机成核剂,本身具有增强作用,较大的用量仍可使PA?6的弯曲性能继续提高,且0.20?phr的用量对无机成核剂来说并不多[8]。使用复合成核剂的PA?6,在加入量相同的情况下,弯曲模量较单独加入苯甲酸钠和海泡石的PA?6均提高,说明海泡石与苯甲酸钠复配后产生协同效应。这是由于海泡石的存在,苯甲酸钠在PA?6基体中不会过分集中,团聚现象减少,使成核不会过

于集中,有利于提高PA?6的力学性能;而苯甲酸钠的存在,又使海泡石在起增强作用的同时,PA?6可在成核剂的存在下更快结晶,获得比单独加入海泡石更加优异的力学性能。

从图1c看出:成核剂用量分别为0.05,0.10,

0.20?phr时,单独加入海泡石使负荷变形温度均从

纯PA?6的176?℃提至181?℃;而单独加入苯甲酸钠,负荷变形温度分别为181,178,171?℃;采用复合成核剂,PA?6的负荷变形温度分别为184,184,185?℃,不仅比任何使用单独成核剂的PA?6提高得多,而且呈上升趋势。因此,从弯曲性能和负荷变形温度分析,海泡石和苯甲酸钠复配后(质量比为1∶1)产生协同效应,能使PA?6获得更优异的性能。

2.2 成核剂改性PA 6的DSC 分析从图2可以看出:加入成核剂后,PA?6的结晶

第?1?期.?3?.

温度(t c )有不同程度的提高。其中,只加入海泡石也可提高PA?6的t c ,且海泡石加入量为0.05?phr时,

t c 的提升最明显,提高4?

℃;但是继续增加海泡石用量,t c 反而呈下降趋势。

这说明海泡石使PA?6在较高温度下结晶。但是海泡石含量太高,结晶峰的半峰宽明显变宽,表明PA?6的结晶速率降低,这是因为海泡石限制了PA?6分子链的运动从而造成其结晶速率降低。于海美等[8]使用海泡石与PA?6制备复合材料得到了同样的结果,并且通过结晶度验证了海泡石含量增加,PA?6的结晶速率降低,出现结晶不完善的现象。

基团处在同一平面内,分子间由氢键相连,成为平面片层。γ晶是不太稳定的晶型,分子链间的氢键接近垂直碳架平面,相应的链形成打褶的片层。研究表明,采用KI溶液处理或者快速纺丝可使PA?6的α晶转变为γ晶[9],PA?6从熔体快速冷却的过程也可以产生γ晶[10]。在WAXD谱图上,α晶的特征

衍射峰对应衍射角(2?θ)为21.0°和24.0°,而γ晶

的特征衍射峰对应2?θ为22.0°和23.0°?[11]。

从图3看出:PA?6在21.0°附近的峰为α晶的衍射峰,在23.0°附近的峰为典型的γ晶衍射峰;使用海泡石改性PA?6时,γ晶衍射峰的峰面积明显比纯PA?6的大。Kojima等[12]认为,添加海泡石后,海泡石微粒阻碍了PA?6的大分子链段运动,使PA?6更易形成γ晶。

图2?成核剂改性PA?6的DSC降温曲线 Fig.2?DSC?cooling?curves?of?PA?6?modified?with?the nucleating?agents

1?海泡石/苯甲酸钠用量为0.40?phr;2?海泡石/苯甲酸钠用 量为0.20?phr;3?海泡石/苯甲酸钠用量为0.10?phr;4?海泡 石/苯甲酸钠用量为0.05?phr;5?苯甲酸钠用量为0.40?phr; 6?苯甲酸钠用量为0.20?phr;7?苯甲酸钠用量为0.10?phr; 8?苯甲酸钠用量为0.05?phr;9?海泡石用量为0.20?phr; 10?海泡石用量为0.10?phr;11?海泡石用量为0.05?phr; 12?纯PA?6

? ?

从图2还可以看出:只加入苯甲酸钠,PA?6的t c 也有所提高,且结晶峰半峰宽较窄,峰比较尖锐,说明加入苯甲酸钠后提高了PA?6的结晶速率。苯甲酸钠含量较低的情况下就可以明显改善PA?6的结晶性能,但是随着苯甲酸钠含量的增加,PA?6的t c 并未进一步提高。这是因为较高含量的有机成核剂容易在PA?6基体中团聚,从而影响PA?6性能的进一步提高。苯甲酸钠和海泡石复配后,结晶峰的尖锐程度有所下降,表明PA?6的结晶速率降低,但是,随着复合成核剂用量的增加,PA?6的t c 也持续上升,这与图1结果一致,说明复合成核剂能有效克服高含量苯甲酸钠容易在PA?6基体中团聚的缺点。

2.3 成核剂改性PA 6的WAXD 分析

室温条件下,PA?6通常以稳定的α晶存在,其晶区中分子链是完全伸展的,亚甲基链段和酞胺

图3?不同成核剂改性PA?6的WAXD谱图Fig.3?WAXD?patterns?of?PA?6?modified?with?different nucleating?agents?

1?海泡石/苯甲酸钠用量为0.10?phr;2?苯甲酸钠用量为0.20 phr;3?苯甲酸钠用量为0.10?phr;4?海泡石用量为0.10?phr; 5?纯PA?6

15

20

25

30

5

43

21

2 θ/(°)

?当PA?6球晶出现γ晶时,由于γ晶的平行链结构,使得PA?6晶体内分子间排列的紧密堆砌程度有所下降,分子链间的空隙增大,当受到外力冲击时分子链的滑移增大,在一定程度上,这些能滑移的分子链起到了引发裂纹和剪切韧带的作用,便于材料受到外力作用时传递能量,因而PA?6的力学性能随γ晶含量的增大而提高[13]。而加入苯甲酸钠使PA?6更易形成α晶,图3中苯甲酸钠改性PA?6的α晶衍射峰较明显,说明苯甲酸钠更易使PA?6形成较稳定的α晶。从图3还可以看出:海泡石和苯甲酸钠复配后,α晶的衍射峰消失,原因有待进一步研究。3 结论

a)海泡石和苯甲酸钠复配使用(质量比为

1∶1)对PA?6的弯曲应力、弯曲模量和负荷变形

郭?敏等.?复合成核剂改性PA?6的力学性能和结晶行为

合 成 树 脂 及 塑 料2014?年第?31?卷.?4?.

温度的改进比单独加入其中任何一种成核剂好。

b)在用量较低的情况下,苯甲酸钠成核剂可以明显地改善PA?6的性能,但是随着用量的提高,苯甲酸钠容易在PA?6基体中团聚,阻碍PA?6性能的进一步提高。当海泡石与苯甲酸钠复配后,可使苯甲酸钠很好地分散到PA?6中,使其性能得到进一步提高。

c)单独使用苯甲酸钠或者海泡石,均能提高PA?6的t c;当苯甲酸钠和海泡石复配使用后,PA?6的t c随着复合成核剂含量的提高而进一步提高。

d)海泡石的加入阻碍了PA?6大分子的链段运动,使PA?6更易形成γ晶;苯甲酸钠的加入使PA?6更易形成较稳定的α晶,也更有利于力学性能的提高;海泡石和苯甲酸钠复配后,PA?6的α晶衍射峰消失,其原因待进一步研究。

4 参考文献

[1]?Zheng?Junrong,Siegel?R?W,Toney?C?G.?Polymer?crystal-

line?structure?and?morphology?changes?in?nylon-6/ZnO?nanocom-posites[J].?Journal?of?Polymer?Science?Part?B:?Polymer?Physics,2003,41(10):1033-1050.

[2]?Li?Ying,Yu?Jian,Guo?Zhaoxia.The?influence?of?interphase?on?

nylon-6/nano-SiO2?composite?materials?obtained?from?in?situ?polymerization[J].Polymer?International,?2003,52(6):981-986.

[3]?van?Zyl?W?E,?Garcia?M,?Schrauwen?B?A?G,et?al.?Hybrid polyamide/silica?nanocomposites:?synthesis?and?mechanical?testing[J].Macromol?Mater?Eng,2002,287(2):106-110.

?[4]?吕励耘,朱诚身,何素芹.成核剂对PA结构与性能影响的研究进展[J].工程塑料应用,2003,32(5):69-71.

?[5]?Liu?Xiaohui,Wu?Qiuju.?Non-isothermal?crystallization?beha-viors?of?polyamide?6/clay?nanocomposites[J].Euro?Polym?J,2002,?38(7):1383-1389.

?[6]?Fornes?T?D,?Paul?D?R.?Crystallization?behavior?of?nylon?6?nanocomposites[J].Polymer,?2003,?44(14):3945-3961.

?[7]?Illers?K?H,Haberkorn?H.Spezifisches?volumen,schmelzw?rme?und?kristallinit?t?von?6.6-und?8-polyamid[J].Die?Makro?Chem,1971,146(1):267-270.

?[8]?于海美,戴文利.PA?6/海泡石复配材料的制备及性能研究[J].工程塑料应用,2010,38(7):19-21.

?[9]?Arimoto?H,Ishibashi?M,Hirai?M,et?al.Crystal?structure?of?the γ-form?of?nylon?6[J].?Journal?of?Polymer?Science?Part?A: General?Papers,1965,?3(1):317-326.

[10]?Ramesh?C,Bhoje?Gowd?E.High-temperature?X-ray?diffraction?

studies?on?the?crystalline?transitions?in?the?α-and?γ-forms?of?nylon-6[J].Macromolecules,2001,?34(10):3308-3313. [11]?张艺.聚酰胺嵌段共聚物的设计合成及其与PA?6共混体

系的研究[D].广州:中山大学,2002.

[12]?Kojima?Y,Usuki?A,Kawasumi?M,et?al.Mechanical?properties?of?

nylon?6-clay?hybrid[J].?Journal?of?Materials?Research,?1993,?8(5):1185-1189.

[13]?高建国,陈雨萍,王有槐,等.改性MCPA的α/γ球晶与力学

性能的关系[J].?中国塑料,2000,14(10):33-37.?

(编辑:陈文淑)

Mechanical and crystallization properties of polyamide 6 modified with

composite nucleating agents

Guo Min1,2, Liu Yiqun2, Li Jinqing1,3, Zhang Yang2, Zhang Depeng2, Pan Guoyuan2, Yan Hao2, Luo Yunjun1

(1.?School?of?Material?Science?and?Engineering,?Beijing?Institute?of?Technology,?Beijing?100081,?China;

2.?Beijing?Research?Institute?of?Chemical?Industry,?SINOPEC,?Beijing?100013,?China;

3.?Academy?of?Ordnance?Science,?Beijing?100089,?China)

Abstract: Polyamide(PA)?6?was?modified?by?sodium?benzoate?and?sepiolite?as?nucleating?agents.?The?effects?of?the?kinds?and?content?of?the?nucleating?agents?on?the?mechanical?properties,?deflection?temperature?under?load?and?crystallization?behavior?of?PA?6?were?studied.?The?results?show?that?the?flexural?stress?of?PA?6?increases?by?13.3%?or?1.9%?with?0.20?phr?of?sepiolite?or?sodium?benzoate,?respectively,?while?the?value?increases?by?15.9%?when?0.20?phr?of?the?composite?nucleating?agent?is?introduced.?Meanwhile,?PA?6?modified?with?0.20?phr?of?the?composite?nucleating?agent?exhibits?the?highest?deflec-tion?temperature?under?load?of?185?℃,?while?the?deflection?temperature?under?load?of?181?℃?and?171?℃?are?obtained?for?PA?6?with?0.20?phr?of?sepiolite?or?sodium?benzoate.?The?composite?nucleating?agent?based?on?sodium?benzoate?and?sepiolite?endows?PA?6?with?better?crystallization?properties.

Key words:?polyamide?6;?sodium?benzoate;?composite?nucleating?agent;?mechanical?property;?crystallization

材料力学行为及性能

绪论§0.1 工程材料 工程材料分类(按其应用分) ?结构材料 依靠其力学性能得以发展和应用的材料。 ?功能材料 利用物质的声、光、电、磁、化学乃至生物性能得以发展和应用的材料。 (本课程所研究和讲述的重点在第一种,尤其是结构材料中的金属材料) §0.2 力学性能 材料抵抗外加载荷(不仅指外力和能量的作用,而且还包括环境因素例如温度、介质、加载速率等的影响)所引起的变形和断裂的能力。 §0.3 研究内容 研究材料在外力作用下的变形、断裂和寿命。 ?弹性 材料在外力作用下保持固有形状和尺寸的能力;以及在外力去除后恢复固有形状和尺寸的能力。 ?塑性 材料在外力作用下发生永久不可逆变形的能力。 ?强度 材料对塑性变形和断裂的抗力。 ?寿命 材料在外力的长期和重复作用下,或在外力和环境因素的复合作用下,抵抗失效的能力(时间长短)。 (以上只是定性地说明这些力学性能,如果要定量地说明它就必须用一些力学参量(应力、应变、应力场强度因子等)来表示这些力学性能。 如果我们说某材料的力学性能好,就是指这些力学参量的值高或低,所以人们通常将力学参量的临界值或规定值称为材料的力学性能指标。声学材料:隔音层光学材料:玻璃,镜片 电学材料:金属导线,电子元器件 磁学材料:磁头、磁卡 化学材料:高分子材料催化剂 生物材料:人工关节、人工骨骼 生活中常指后者

如:强度指标、塑性指标、韧性指标) 具体研究涉及的内容: ?材料(包括金属材料和非金属材料)在不同形式外力作用下,或者外力、温度、环境等因素的共同作用下,发生变 形、损伤和断裂的过程、机理和力学模型; ?评定力学性能的各项指标的意义(物理意义和工程实用意义)、各指标间的相互关系以及具体的测试技术; ?研究力学性能指标机理、影响因素以及改善或提高这些力学性能指标的方法和途径。 (注:材料力学性能的影响因素 内因:化学成分、组织结构、冶金质量、残余应力、表面和内部缺陷。 外因:载荷性质、载荷谱、应力状态、温度、环境介质等。) §0.4学习和研究材料力学性能的目的和意义 机械和工程结构的设计,应当达到所要求的性能,并且在规定的服役期内安全可靠地运行,同时也要具有经济性,即低的设计、制造和维修费用。 ①达到使用要求;②安全性;③经济性 然而,各种机械和结构零部件的使用条件各不相同,因而要选用不同的的材料制成零件,也需要采用不同的工艺手段来完成零件的实际制作。而材料的力学性能及其评定指标,是结构设计时选用材料、制订加工工艺的主要依据,也是评价结构质量的主要依据。 ?在零部件使用中,要求材料具有高的变形和断裂抗力,使零部件在受外力作用时能保持设计所要求的外形和尺寸, 并保证在服役期内安全地运行; ?在零部件的生产过程中,则要求材料具有优良的可加工性。 (例如,在金属的塑性成形中,要求材料具有优良的塑性和低的塑性变形抗力) 对于学生,必须具有材料力学性能方面的知识,以便在研究新材料和改善材料的过程中,能根据材料的使用要求,选用合适的现有材料或研制新材料,制订合适的加工工艺。 §0.5研究方法 ?理论分析 ?试验测定

材料力学性能考试答案

《工程材料力学性能》课后答案 机械工业出版社 2008第2版 第一章 单向静拉伸力学性能 1、 试述退火低碳钢、中碳钢和高碳钢的屈服现象在拉伸力-伸长曲线图上的区别?为什么? 2、 决定金属屈服强度的因素有哪些?【P12】 答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。 外在因素:温度、应变速率和应力状态。 3、 试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险?【P21】 答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。 4、 剪切断裂与解理断裂都是穿晶断裂,为什么断裂性质完全不同?【P23】 答:剪切断裂是在切应力作用下沿滑移面分离而造成的滑移面分离,一般是韧性断裂,而解理断裂是在正应力作用以极快的速率沿一定晶体学平面产生的穿晶断裂,解理断裂通常是脆性断裂。 5、 何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些? 答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。 6、 论述格雷菲斯裂纹理论分析问题的思路,推导格雷菲斯方程,并指出该理论的局限性。 【P32】 答: 212?? ? ??=a E s c πγσ,只适用于脆性固体,也就是只适用于那些裂纹尖端塑性变形可以忽略的情况。 第二章 金属在其他静载荷下的力学性能 一、解释下列名词: (1)应力状态软性系数—— 材料或工件所承受的最大切应力τ max 和最大正应力σmax 比值,即: () 32131max max 5.02σσσσσστα+--== 【新书P39 旧书P46】 (2)缺口效应—— 绝大多数机件的横截面都不是均匀而无变化的光滑体,往往存在截面的急剧变化,如键槽、油孔、轴肩、螺纹、退刀槽及焊缝等,这种截面变化的部分可视为“缺口”,由于缺口的存在,在载荷作用下缺口截面上的应力状态将发生变化,产生所谓的缺口效应。【P44 P53】 (3)缺口敏感度——缺口试样的抗拉强度σbn 的与等截面尺寸光滑试样的抗拉强度σ b 的比值,称为缺口敏感度,即: 【P47 P55 】 (4)布氏硬度——用钢球或硬质合金球作为压头,采用单位面积所承受的试验力计算而得的硬度。【P49 P58】 (5)洛氏硬度——采用金刚石圆锥体或小淬火钢球作压头,以测量压痕深度所表示的硬度 【P51 P60】。 (6)维氏硬度——以两相对面夹角为136。的金刚石四棱锥作压头,采用单位面积所承受

聚甲醛学名聚氧亚甲基(简称POM)

聚甲醛 求助编辑 聚甲醛结构式 聚甲醛(英文:polyformaldehyde)热塑性结晶聚合物。被誉为“超钢”或者“赛钢”,又称聚氧亚甲基。结构为,英文缩写为POM。通常甲醛聚合所得之聚合物,聚合度不高,且易受热解聚。 目录 编辑本段

性能数值 聚甲醛制品1 比重 1.43 熔点175°C 伸强度(屈服) 70MPa 伸长率(屈服) 15% (断裂) 15% 冲击强度(无缺口) 108KJ/m2 (带缺口) 7.6KJ/m2 均聚甲醛的合成一般以甲醛的水溶液在酸的存在下缩合聚合。得到聚合度为100以上的a-聚甲醛,然后将其加热分解成甲醛气体,经精制和脱水后,通常利用部分预聚合的方法纯化单体,然后通入含少量引发剂的干燥溶剂中进行聚合。因为水的存在,使分子量显著降低。引发剂可用路易斯酸或碱等。但大多用叔胺进行负离子加成聚合,反应如下:聚甲醛的端基为半缩醛(—CH2OH),当温度高于100℃ 时,端基易断裂,一般需经端基处理使之稳定化。稳定化处理后可耐热到230 ℃。多聚甲醛可在 170~200 ℃的温度下加工,如注射、挤出、吹塑等。主要用作工程塑料,用于汽车、机械部件等。 典型应用范围 POM具有很低的摩擦系数和很好的几何稳定性,特别适合于制作齿轮和轴承。由于它还具有耐高温特性,因此还用于管道器件(管道阀门、泵壳体),草坪设备等。 注塑模工艺条件: 干燥处理:如果材料储存在干燥环境中,通常不需要干燥处理。

熔化温度:均聚物材料为190~230℃;共聚物材料为190~210℃。 模具温度:80~105℃。为了减小成型后收缩率可选用高一些的模具温度。 注射压力:700~1200bar。 注射速度:中等或偏高的注射速度。 流道和浇口:可以使用任何类型的浇口。如果使用隧道形浇口,则最好使用较短的类型。对于均聚物材料建议使用热注嘴流道。对于共聚物材料既可使用内部的热流道也可使用外部热流道。 化学和物理特性 POM是一种坚韧有弹性的材料,即使在低温下仍有很好的抗蠕变特性、几何稳定性和抗冲击特性。POM既有均聚物材料也有共聚物材料。均聚物材料具有很好的延展强度、抗疲劳强度,但不易于加工。共聚物材料有很好的热稳定性、化学稳定性并且易于加工。无论均聚物材料还是共聚物材料,都是结晶性材料并且不易吸收水分。POM的高结晶程度导致它有相当高的收缩率,可高达到2%~3.5%。对于各种不同的增强型材料有不同的收缩率。 编辑本段主要用途 聚甲醛(pom)是一种性能优良的工程塑料,在国外有“夺钢”、“ 聚甲醛制品2 超钢”之称。pom具有类似金属的硬度、强度和钢性,在很宽的温度和湿度范围内都具有很好的自润滑性、良好的耐疲劳性,并富于弹性,此外它还有较好的耐化学品性。pom以低于其他许多工程塑料的成本,正在替代一些传统上被金属所占领的市场,如替代锌、黄铜、铝和钢制作许多部件,自问世以来,pom已经广泛应用于电子电气、机械、仪表、日用轻工、汽车、建材、农业等领域。在很多新领域的应用,如医疗技术、运动器械等方面,pom也表现出较好的增长态势。 应用消费持续增长 pom用在那些对润滑性、耐磨损性、刚性和尺寸稳定性要求比较严格的滑动和滚动的机械部件上,性能尤为优越,因此主要用于工业机械、汽车、电子电气、管件和灌溉用品等方面。近年我国pom市场增长迅速,2002年

POM聚甲醛知识大全

POM聚甲醛知识大全 1 POM(聚甲醛) 聚甲醛学名聚氧化聚甲醛(简称POM),又称赛钢、特钢。它是以甲醛等为原料聚合所得。POM-H(聚甲醛均聚物),POM-C(聚甲醛共聚物)是高密度、高结晶度的热塑性工程塑料。具有良好的物理、机械和化学性能,尤其是有优异的耐摩擦性能。聚甲醛是一种无侧链高密度结晶性聚合物,具有优异的综合性能。 聚甲醛是一种表面光滑,有光泽的硬而致密的材料,淡黄或白色,可在-40- 100°C温度范围内长期使用。它的耐磨性和自润滑性也比绝大多数工程塑料优越,又有良好的耐油,耐过氧化物性能。很不耐酸,不耐强碱和不耐紫外线的辐射。(加入UV剂,能大大提高其耐紫外线等级) 1物理性质 POM塑胶 聚甲醛塑料是继尼龙之后发展的又一优良树脂品种,具有优良的综合性能。 聚甲醛有着良好的耐溶剂、耐油类、耐弱酸、弱碱等性能。聚甲醛有着很高的硬度和钢性,具有高度抗蠕变和应力松弛能力,优良的耐磨性,自润滑性,耐疲劳性 聚甲醛是一种没有侧链、高密度、高结晶性的线型聚合物,具有优异的综合性能。聚甲醛的拉伸强度可达70MPa,可在104℃下长期使用,脆化温度为-40℃,吸水性较小。但聚甲醛的热稳定性较差,耐候性较差,长期在大气中曝晒会老化。 聚甲醛的力学性能相当好,它具有较高的强度的弹性模量,摩擦系数小,耐磨性能好。聚甲醛还具有高度抗蠕变和应力松弛的能力。 聚甲醛尺寸稳定性好,吸水率很小,所以吸水率对其力学性能的影响可以不予考虑。聚甲醛有较好的介电性能,在很宽的频率和温度范围内,它的介电常数和介质损耗角正切值变化很小。 聚甲醛的耐热性较差,在成型温度下易降解放出皿醛,一般在造粒时加入稳定剂。若不受力,聚甲醛可在140℃下短期使用,其长期使用温度为85℃。 聚甲醛耐气候性较差,经大气老化后,一般性能均有所下降。但它的化学稳定性非常优越,特别是对有机溶剂,其尺寸变化和力学性能的降低都很少。但对强酸和强氧化剂如硝酸、硫酸等耐蚀性很差。 聚甲醛的拉伸强度达70MPa,吸水性小,尺寸稳定,有光泽,这些性能都比尼龙好,聚甲醛为高度结晶的树脂,在热塑性树脂中是最坚韧的。具抗热强度,弯曲强度,耐疲劳性强度均高,耐磨性和电性能优良。 POM具有很低的摩擦系数和很好的几何稳定性,特别适合于制作齿轮和轴承。由于它还具有耐高温特性,因此还用于管道器件(管道阀门、泵壳体),草坪设备等。 POM物性表:密度 1.39g/cm3,吸水率1.2%,连续使用温度20-110℃,屈服抗拉强度63MPa,缺口冲击韧度6Kj/㎡,洛氏硬度135MPa,邵氏硬度85MPa,弹性模量2600MPa,软化温度150℃,热变形温度HDT155℃,热线膨胀系数1.1,热导率W/(m×K)031,摩擦系数1.35 2优点 1、具高机械强度和刚性; 2、最高的疲劳强度; 3、环境抵抗性、耐有机溶剂性佳; 4、耐反覆冲击性强; 5、广泛的使用温度范围(-40℃~120℃); 6、良好的电气性质; 7、复原性良好; 8、具自已润滑性、耐磨性良好; 9、尺寸安定性优。用途:电子电器:洗衣机,果汁机定时器等组件; 汽车:车把,电动窗等零件;机械零件,齿轮,把手,螺杆,玩具等; 分类:玻纤/碳纤增强POM,防火POM,抗紫外线耐候POM,加铁氟龙POM,防静电/导电

常见塑料物性的检测及标准

常见塑料物性的检测及标准 流动系数 (1)测试的标准:ASTMD1238 (2)常用的测试标准的量测仪器是溶液指数计(Melt In deGer ). (3)流动系数检测方法:是一种表示塑胶材料加工时的流动性的数值。它是美 国量测标准协会(ASTM)根据美国杜邦公司(DuPont)惯用的鉴定塑料特性的方法制定而成,其测试方法是先让塑料粒在一定时间(10分钟)内、一定温度及压力(各种材料标准不同)下,融化成塑料流体,然后通过一直径为 2.1mm圆 管所流出的克(g)数。其值越大,表示该塑胶材料的加工流动性越佳,反之则越差。(4)测试的具体操作过程是:将待测高分子(塑料)原料置入小槽中,槽末接 有细管,细管直径为2.095mm,管长为8mm。加热至某温度后,原料上端藉由活塞施加某一定重量向下压挤,量测该原料在10分钟内所被挤出的重量,即 为该塑料的流动指数。有时您会看到这样的表示法?MI25g/10min ,它表示在 10分钟内该塑料被挤出25克。一般常用塑料的MI值大约介于1~25之间。MI愈大,代表该塑料原料粘度愈小及分子重量愈小,反之则代表该塑料粘度愈大及分子重量愈大。收缩率 测试的标准:ASTMD955 塑胶制品经冷却、固化并脱模成形后,其尺寸与原模具尺寸之差的百分比。 (3)因结构不同的关系,结晶性塑料与非结晶性塑料的收缩率存在明显的差异。一般地,结晶性塑料的收缩率比非结晶性塑料的收缩率大上好几倍(如下表所示)。同时有添加玻璃纤维或其它强化剂的塑胶材料,其收缩率可降低好几倍。

影响成型收缩的因素有热收缩、结晶度(热塑性)或硬化度(热固性) 、弹性回 复、分子配向、与成型条件等因素。 <1>热塑性塑料 <2>热固性塑料 塑料名称 成形收缩率(%) 塑料名称 成形收缩率(%) EP 0.1~0.5 SP 0.0~0.5 MF 0.5~1.5 UF 0.6~1.4 塑料名称 成形收缩率 (%) ABS 0.3~0.8 AS 0.2~0.7 CA 0.3~0.8 CAB 0.4~0.5 CAP 1 CP 0.4~0.5 EC 0.4~0.5 EPS 0.4 FEP 3.0~4.0 FRP 0.1~0.4 EVA 0.5~1.5 HDPE 1.2~2.2 HIPS 0.2~1.0 LCP 0.1~1.0 LDPE 1.5~3.0 塑料名称 成形收缩率 (%) PA 0.6~2.5 PA-6 0.5~2.2 PA-66 0.5~2.5 PA-610 1.2 PA-612 1.1 PA-11 1.2 PA-12 0.3~1.5 PAR 0.8~1.0 PBT 1.3~2.4 PC 0.4~0.7 PCTFE 0.2~2.5 PE 0.5~2.5 PET 2.0~2.5 PES 0.5~1.0 PMMA 0.2~0.8 塑料名称 成形收缩率 (%) POM 0.8~3.5 PP 1.0~2.5 PPO 0.5~0.7 PPS 0.6~1.4 PS 0.2~1.0 PVA 0.5~1.5 PVAC 0.5~1.5 PVB 0.5~1.5 硬质PVC 0.1~0.5 软质PVC 1.0~5.0 PVCA 1.0~5.0 PVDC 0.5~ 2.5 PVFM 0.5~1.5 SAN 0.2~0.6 SB 0.2~1.0

POM材料特性 聚甲醛POM

POM材料特性聚甲醛POM-概述: POM(聚甲醛树脂)定义:聚甲醛是一种没有侧链、高密度、高结晶性的线型聚合物。按其分子链中化学结构的不同,可分为均聚甲醛和共聚甲醛两种。两者的重要区别是:均聚甲醛密度、结晶度、熔点都高,但热稳定性差,加工温度范围窄(约10℃),对酸碱稳定性略低;而共聚甲醛密度、结晶度、熔点、强度都较低,但热稳定性好,不易分解,加工温度范围宽(约50℃),对酸碱稳定性较好。是具有优异的综合性能的工程塑料。有良好的物理、机械和化学性能,尤其是有优异的耐摩擦性能。俗称赛钢或夺钢,为第三大通用塑料。适于制作减磨耐磨零件,传动零件,以及化工,仪表等零件。 POM材料特性聚甲醛POM-一般性能: 聚甲醛是一种表面光滑、有光泽的硬而致密的材料,淡黄或白色,薄壁部分呈半透明。燃烧特性为容易燃烧,离火后继续燃烧,火焰上端呈黄色,下端呈蓝色,发生熔融滴落,有强烈的刺激性甲醛味、鱼腥臭。聚甲醛为白色粉末,一般不透明,着色性好,比重1.41-1.43克/立方厘米,成型收缩率1.2-3.0%,成型温度170-200℃,干燥条件80-90℃2小时。POM 的长期耐热性能不高,但短期可达到160℃,其中均聚POM短期耐热比共聚POM高10℃以上,但长期耐热共聚POM反而比均聚POM高10℃左右。可在-40℃~100℃温度范围内长期使用。POM极易分解,分解温度为240度。分解时有刺激性和腐蚀性气体发生。故模具钢材宜选用耐腐蚀性的材料制作。 POM材料特性聚甲醛POM-力学性能: POM强度、刚度高,弹性好,减磨耐磨性好。其力学性能优异,比强度可达50.5MPa,比刚度可达2650MPa,与金属十分接近。POM的力学性能随温度变化小,共聚POM比均聚POM的变化稍大一点。POM的冲击强度较高,但常规冲击不及ABS和PC;POM对缺口敏感,有缺口可使冲击强度下降90%之多。POM的疲劳强度十分突出,10交变载荷作用后,疲劳强度可达35MPa,而PA和PC仅为28MPa。POM的蠕变性与PA相似,在20℃、21MPa、3000h时仅为 2.3%,而且受温度的影响很小。POM的摩擦因数小,耐磨性好(POM>PA66>PA6>ABS>HPVC>PS>PC),极限PV值很大,自润滑性好。POM制品对磨时,高载荷作用时易产生类似尖叫的噪声。 POM材料特性聚甲醛POM-改性: ⒈增强POM 主要增强材料为玻璃纤维、玻璃球或碳纤维等,并且玻璃纤维最常用,增强后的力学性能可提高2~3倍,热变形温度提高50℃以上。⒉高润滑POM 在POM中加入石墨、F4、二硫化钼、润滑油及低分子量PE等,可提高其润滑性能。例如,在POM中加入5份F4,可降低摩擦因数60%,耐磨性提高1~2倍。再如,在POM中加入液体润滑油,可大幅度提高耐磨性和极限PV值。为提高由油的分散效果,需加入炭黑、氢氧化铝硫酸钡、乙丙橡胶等吸油载体。加入5%油POM的摩擦性提高72%,极限PV值可达3.9MPa•m/s (纯POM为0.213MPa•m/s),为其他工程塑料的3~20倍。 以上

聚甲醛简介

聚甲醛 一、简介 聚甲醛(POM)是一种新兴的具有广泛用途和广阔发展前景的一种材料。外观是半透明或不透明粉料或粒料,与象牙相似。POM是5大通用工程塑料之一,广泛用于电子电气、汽车、轻工、机械、化工、建材以及军事等领域,由于它在各方面所表现出来的优良性能,它的应用已几乎涉及各种行业领域,特别是对许多新兴产业它是一种十分适用的材料 二、性能 聚甲醛树脂在较大的温度范围内具有较高的弹性模数、硬度、刚性和机械性能,可在104℃以下长期使用,脆化温度-40℃,吸水性极小。摩擦系数低,动磨擦系数与静磨擦系数相同,自润滑耐磨损性能优异。机械性能与金属类似,且比重小,广泛应用于替代钢铁、铜、锌、铝等金属材料和其它塑料,有“塑料中的金属”之称。 三、聚甲醛的应用 1、电子器械:录像带转轴,彩电频道预选器,照相机零件,洗衣机定时器,各类仪器仪表的传动齿轮等。 2、汽车工业:汽车板弹簧销套、千斤顶螺母、摇窗机、刮水板、空调控制器、油箱盖、指示器开关、齿轮、数字轮等。 3、机械工业:纺织机械零件、采煤机械、推土机轴瓦、火车轴瓦头、食品和饮料传送链片、电动工具零件。 4、轻工业:拉链、圆珠笔、活动笔零件、打火机、化妆品气压喷嘴、煤气减压阀、箱包搭扣、剃须刀电机、饼干模具等 5、其他领域:各种类型喷雾器筒、螺母等 四、市场前景 从政策方面看,在十一五规划中明确指出重点发展特种功能材料、高性能结构材料、复合材料、环保节能材料等产业群,建立和完善新材料创新体系。聚甲醛属于一种新型材料,耗能小,节能环保,正符合目前发展潮流,国家政策给予积极鼓励的政策,将会促进我国聚甲醛行业的发展。十二五期间国家对工程塑料市场发展提出明确发展方向,通过科技创新,提高工程塑料技术水平,增强竞争力,促使由塑料大国向塑料强国转变成为工程塑料市场发展的目标。 五、存在问题 1、我国聚甲醛工业发展与国外先进水平相差甚远,聚甲醛属于高技术产品,目前国内所需聚甲醛尚需大量进口。虽然我国很早就开始研制聚甲醛,但是经过几十年的发展,技术水平没有重大突破。与国外公司相比,规模太小。2010年,我国聚甲醛的表观需求量为31.4万吨,其中进口量达到22.3万吨进口依存度高达70%以上。

PP为非极性的结晶塑料

PP为非极性的结晶塑料,吸水率很低,约为0.03%~0.04%,注塑时一般不需进行干燥(必要时,可在80~100℃下干燥1~2h即可)。 PP的熔点为165~170℃,分解温度为350℃,最大结晶速率温度为120~130℃,成型温度范围较宽(205~315℃)。注塑用PP的适宜MFR范围为2~15 g/10min,熔体的流动性较好,料筒温度控制在210~280℃,喷嘴温度比料筒最高温度低10~30℃。当制品壁薄、形状复杂时,料筒温度可提高至280~300℃:而当制品壁厚大或树脂的MFR高时,料筒温度可降低至200~230℃。 PP熔体的粘度对剪切速率的依赖性大于对温度的依赖性,因此,在注塑时,通过提高注射压力或注射速率来增大熔体流动性比提高料筒温度更有效(注射压力通常为70~120 MPa)。此外,注射压力的提高还有利于提高制品的拉伸强度和断裂伸长率,对制品的冲击强度无不利影响,特别是大大降低了收缩率,但过高的注射压力易造成制品溢料,并增加了制品的内应力。 注塑PP时的模具温度为40~90℃。提高模温,PP的结晶度提高,制品的刚性、硬度增加,表面光洁度较好,但易产生溢料、凹痕、收缩等缺陷;而模温过低,结晶度下降.制品的韧性增加,收缩率减小,但制品表面光洁度差,面积较大、壁厚较厚的制品还容易产生翘曲。 在PP的成型周期中,保压时间的选择比较重要。一般,保压时间长,制品的收缩率低,但由于凝封压力增加,制品会产生内应力,故保压时间不能太长。 与其它塑料不同,PP制品在较高的温度下脱模不产生变形或变形很小,实际往往采用较低的模温,因此,PP的成型周期是较短的 物化性能 1在低温时耐冲击性较差 2困难被涂装或被黏著剂黏著 3用玻璃纤维补强的成型表面不光滑 聚丙烯提供了大部份热塑性塑胶所无法达到的特性与价位的平衡性。 聚丙烯容易成型且有很好的耐化学性和机械特性。 玻璃纤维补强的聚丙烯能改善尺寸稳定性,抗翘曲,刚性和强度。40%玻璃纤维补强的聚丙烯在264 psi下之热变形温度可提升到149°C。聚丙烯用40%玻璃纤维补强之热膨胀系数降至原来的一半。 当加入化学偶合剂时,玻璃纤维补强聚丙烯会有意义地改善其抗拉强度和抗弯强度而超越一般玻璃纤维补强的聚丙烯。

结晶性和非结晶性塑料的注塑成型

非结晶型塑料的注射成型 (1)苯乙烯系树脂 所谓苯乙烯系树脂是包括聚苯乙烯、AS树脂、ABS树脂等。这类树脂的成型温度宽、易于成型。严谨地讲,通用聚苯乙烯(GPPS)的流动性最好,高抗冲聚苯乙烯(HIPS)中所含橡胶成分愈多,流动性就愈差。ABS 树脂也有类似特点。 一般须注意到通用聚苯乙烯质地脆,在脱模时,易出现开裂现象。对于AS树脂、ABS树脂由于其组成中的丙烯腈成分而加热后容易变色。 (2)聚甲基丙烯酸甲酯(丙烯酸系树脂) 聚甲基丙烯酸甲酯(PMMA)比聚苯乙烯熔体粘度高,其成型性一般比聚苯乙烯差。在丙烯酸系树脂中虽然也有流动性比较好的树脂,但是,在此类树脂中,比较好的耐热性与抗冲击性牌号的树脂比通用牌号的树脂成型性差,需要比通用树脂更高的加工温度与注射压力。然而,过度提高树脂温度会导致热降解,应予以注意。 另外,需加大模具的流道与浇口,从而改善树脂的流动状态。 (3)聚碳酸酯 聚碳酸酯(PC)熔体粘度高,加工时需要比聚乙烯、聚苯乙烯等通用树脂更高的温度与注射压力。但过度提高料筒温度和物料在料筒内停留时间过长,会产生热降解,使制品色泽改变及物理-机械性能下降,故需予以注意。 模具温度一般为85~120℃。虽然在模温较低时也能成型。但当模温过低时,则由于制品的形状与壁厚不同,会不同程度地导致成型困难以及增大制品的残余应力,日后易成为应力开裂的原因。同时,在使用脱模剂时,为避免由于残余应力而产生开裂,宜采用粉末状硅树脂脱模剂,尽量避免采用液体脱模剂。 (4)改性PPO(mPPO) mPPO的很多物理性能特点类似聚碳酸酯,其成型性也颇相似。 mPPO成型时树脂温度按其不同牌号而定,一般为245~300℃。然而,在成型周期特别短时,温度则应稍高一些。 当模具温度达某温度以上时,几乎已不再影响树脂的流动性。但因考虑到制品的形状与壁厚等,为使残余应力降低到最低限度,改善制品的外观及提高熔接线处的强度,一般模温为80~100℃较为理想。

塑料结晶取向应力分析

塑料结晶取向应力分析 第一节结晶效应 1、结晶概念 聚合物的超分子结构对注塑条件及制品性能的影响非常明显。聚合物按其超分子结构可分为结晶型和非结晶型,结晶型聚合物的分子链呈有规则的排列,而非结晶态聚合物的分子链呈不规则的无定型的排列。不同形态表现出不同的工艺性质误物理—机械性质。一般结晶型聚合物具有耐热性和较高的机械强度,而非结晶型则相反。分子结构简单,对称性高的聚合物都能生成结晶,如PE等,分子链节虽然大,但分子间的作用力很强也能生成结晶,如POM,PA等。分子链刚性大的聚合物不易生成结晶,如PC,PSU,PPO等。 评定聚合物结晶形态的标准是晶体形状,大小及结晶度。 2 、聚合物结晶度对制品性能的影响 (1)密度. 结晶度高说明多数分子链已排列成有序而紧密的结构,分子间作用力强,所以密度随结晶度提高而加大,如70%结晶度的PP,其密度为0.896,当结晶度增至95%时则密度增至o.903。 (2)拉伸强度结晶度高,拉伸强度高。如结晶度70%的聚丙烯其拉伸强度为27.5mpa,当结晶度增至95%时,则拉伸强度可提高到42mpa。 (3)冲击强度冲击强度随结晶度提高而减小,如70%结晶度的聚丙烯,其缺口冲击强度15.2kgf-cm/cm2,当结晶度95%时,冲击强度减小到4.86kgf-cm/cm2。 (4)热性能结晶度增加有助于提高软化温度和热变形温度。如结晶度为70%的聚丙烯,载荷下的热变形温度为125度,而结晶度95%时侧为151度。刚度是注塑制品脱模条件之一,较高的结晶度会减少制品在模内的冷却周期。结晶度会给低温带来脆弱性,如结晶度分别为55%,85%,95%的等规聚丙烯其脆化温度分别为0度,10度,20度。 (5)翘曲结晶度提高会使体积减小,收缩加大,结晶型材料比非结晶型材料更易翘曲,这是因为制品在模内冷却时,由于温度上的差异引起结晶度的差异,使密度不均,收缩不等,导致产生较高的内应力而引起翘曲,并使耐应力龟裂能力降低。 (6)光泽度结晶度提高会增加制品的致密性。使制品表面光泽度提高,但由于球晶的存在会引起光波的散射,而使透明度降低。 3、影响结晶度的因素 (1)温度及冷却速度结晶有一个热历程,必然与温度有关,当聚合物熔体温度高于熔融温度时大分子链的热运动显著增加,到大于分子的内聚力时,分子就难以形成有序排列而不易结晶;当温度过低时,分子链段动能很低,甚至处于冻结状态,也不易结晶。所以结晶的温度范围是在玻璃化温度和熔融温度之间。在高温区(接近熔融温度),晶核不稳定,单位时间成核数量少,而在低温区(接近玻璃化温度)自由能低,结晶时间长,结晶速度慢,不能为成核创造条件。这样在熔融温度和玻璃化温度之间存在一个最高的结晶速度和相应的结晶温度。 温度是聚合物结晶过程最敏感性因素,温度相差1度,则结晶速度可能相差很多倍。聚合物从熔点温度以上降到玻璃化温度以下,这一过程的速度称冷却速度,它是决定晶核存在或生长的条件。注塑时,冷却速度决定于熔体温度和模具温度之差,称过冷度。根据过冷度可分以下三区。 ①等温冷却区,当模具温度接近于最大结晶速度温度时,这时过冷度小,冷却速度慢,结晶几乎在静态等温条件下进行,这时分子链自由能大,晶核不易生成,结晶缓慢,冷却周期加长,形成较大的球晶。 ②快速冷却区,当模具温度低于结晶温度时过冷度增大,冷却速度很快结晶在非等温

材料力学性能习题及解答库

第一章习题答案 一、解释下列名词 1、弹性比功:又称为弹性比能、应变比能,表示金属材料吸收弹性变形功的能力。 2、滞弹性:在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象。 3、循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力,称为金属的循环韧性。 4、包申格效应:先加载致少量塑变,卸载,然后在再次加载时,出现ζ e 升高或降低的现 象。 5、解理刻面:大致以晶粒大小为单位的解理面称为解理刻面。 6、塑性、脆性和韧性:塑性是指材料在断裂前发生不可逆永久(塑性)变形的能力。韧性:指材料断裂前吸收塑性变形功和断裂功的能力,或指材料抵抗裂纹扩展的能力 7、解理台阶:高度不同的相互平行的解理平面之间出现的台阶叫解理台阶; 8、河流花样:当一些小的台阶汇聚为在的台阶时,其表现为河流状花样。 9、解理面:晶体在外力作用下严格沿着一定晶体学平面破裂,这些平面称为解理面。 10、穿晶断裂和沿晶断裂:沿晶断裂:裂纹沿晶界扩展,一定是脆断,且较为严重,为最低级。穿晶断裂裂纹穿过晶内,可以是韧性断裂,也可能是脆性断裂。 11、韧脆转变:指金属材料的脆性和韧性是金属材料在不同条件下表现的力学行为或力学状态,在一定条件下,它们是可以互相转化的,这样的转化称为韧脆转变。 二、说明下列力学指标的意义 1、E(G): E(G)分别为拉伸杨氏模量和切变模量,统称为弹性模量,表示产生100%弹性变形所需的应力。 2、Z r 、Z 0.2、Z s: Z r :表示规定残余伸长应力,试样卸除拉伸力后,其标距部分的 残余伸长达到规定的原始标距百分比时的应力。ζ 0.2:表示规定残余伸长率为0.2%时的应力。 Z S:表征材料的屈服点。 3、Z b韧性金属试样在拉断过程中最大试验力所对应的应力称为抗拉强度。 4、n:应变硬化指数,它反映了金属材料抵抗继续塑性变形的能力,是表征金属材料应变硬 化行为的性能指标。 5、3、δ gt、ψ : δ是断后伸长率,它表征试样拉断后标距的伸长与原始标距的百分比。 Δgt 是最大试验力的总伸长率,指试样拉伸至最大试验力时标距的总伸长与原始标距的百

填料填充改性聚甲醛复合材料研究进展_张广发汇总

工程塑料应用 ENGINEERING PLASTICS APPLICATION 第41卷,第2期2013年2月 V ol.41,No.2Feb. 2013 116 doi:10.3969/j.issn.1001-3539.2013.02.025 填料填充改性聚甲醛复合材料研究进展 张广发,赵利军,苏军,段宝松,赵志阳 (开封龙宇化工有限公司,河南开封475200 摘要:综述了近年来不同无机纤维、无机粒子、有机填料与无机填料混合物及金属及其氧化物对聚甲醛(POM 复合材料改性的研究进展。介绍了填料在POM 复合材料改性中的作用,对填料填充改性POM 复合材料的发展趋势进行了展望。 关键词:聚甲醛;改性;填料;研究进展 中图分类号:TQ326.51 文献标识码:A 文章编号:1001-3539(201302-0116-04 Research Development of Polyoxymethylene Composites Modi ? ed by Adding Filler Zhang Guangfa ,Zhao Lijun ,Su Jun ,Duan Baosong ,Zhao Zhiyang (Kaifeng Longyu Chemical Co.Ltd.,Kaifeng 475200,China Abstract :Research development of polyoxymethylene(POM composites modified by adding inorganic fiber ,inorganic particle ,organic /inorganic filler mixture ,metal and

国内外聚甲醛技术特点比较

国内外聚甲醛技术特点比较 一、聚甲醛产品用途概述 聚酰胺(PA)、聚碳酸酯(PC)、聚甲醛(POM)、聚酯(PBT)和聚苯醚(PPO)被合称为五大工程塑料。工程塑料和通用塑料相比,在机械性能、耐热性、耐久性、耐腐蚀性等方面能达到更高的要求,而且加工更为方便,可替代金属等材料,因而在汽车、通讯设备、建筑材料、家用电器乃至航空航天等方面有着广阔的用途,受国家一系列拉动内需政策和下游汽车、家电等销售不断攀升影响,PC、PBT、PA、POM、PPO工程塑料已成为塑料工业中最为活跃的领域。工程塑料已占轿车总重量的20%。 1.聚甲醛是以上五大工程塑料中仅次于PA和PC居第三位,聚甲醛具有较高的弹性模量、刚性和硬度,且摩擦系数小,耐磨耗,尺寸稳定性好。POM常用来代替铜、锌、锡、铅等有色金属,有“夺钢”、“超钢”之称。 与聚甲醛同其他工程塑料(PA、PC、PBT)相比,它具有优良的耐疲劳性能和耐磨耗性,较小的蠕变性能被广泛地应用于汽车、军工、电器、建材和日用行业。 2. 电器行业 由于聚甲醛介电强度和绝缘电阻较高,具有耐电弧性等性能,使之被广泛的应用于电子电器领域。聚甲醛在办公设备用于电话、无线电、录音机、录像机、电视机、计算机和传真机的零部件、计时器零件,录音机磁带座。在家用电器行业用来制造电源插头、电源开关、按钮、继电器、洗衣机滑轮、空调曲柄轴、微波炉门摇杆、电饭锅开关安装板、电冰箱、电扳手外壳、电动羊毛剪外壳、煤钻外壳和开关手柄等。 3.汽车行业 聚甲醛在汽车工业中的应用量较大,用来制造汽车泵、汽化器、输油管、动力阀、万向节轴承、刹车衬套、车窗升降器、安全带扣、门把手、门锁、滑块、负荷指示器外齿轮、钢板弹簧减震衬套、推力杆球座、散热器水管阀门、散热器箱盖、冷却液的备用箱、水阀体、燃料油箱盖、水本叶轮、气化器壳体、油门踏板等零件。 4.国防军工 用来制造自行式迫击炮、坦克装甲车辆中聚甲醛用于制造水散热器、排水管、散热风扇、坦克操纵转动开关、转动轴轴套等。5.建材和日用行业水龙头、窗框、洗漱盆、水箱、门帘滑轮、水表、壳体和水管接头等。聚甲醛还可用于消防水龙头、滑雪板、溜旱冰鞋、渔具滑轮、木梳、衣服拉链、密封圈等。 6.聚甲醛的改性 聚甲醛改性技术近几年有很大发展,聚甲醛改性可以使聚甲醛性能大幅度提高,进一步拓宽聚甲醛的应用领域,提高了聚甲醛的应用价值

材料的力学行为要点

郑州铁路局电大教师教案第2-1 页 2 材料的力学行为 金属材料的性能包括:使用性能、工艺性能、经济性能。 使用性能包括:物理性能、化学性能、力学性能(或称机械性能)。 力学性能:指金属材料在外力作用下所表现出来的性能,是机械设计的重要依据,包括强度、塑性、硬度、冲击韧度、疲劳极限和断裂韧度等。 2.1.1 强度和塑性 1、强度 概念:金属材料抵抗朔性变形和断裂的能力。 分类:抗拉、抗压、抗弯、抗扭、抗剪强度 (1)拉伸试验 试验方法:拉伸试验 标准拉伸试样:长试样L0=10d0 短试样L0=10d0 拉伸曲线:力——伸长曲线 四个变形阶段: 1)oe弹性变形阶段 2)es屈服阶段 3)sb强化阶段 4)bk缩颈阶段 ⑵强度指标 屈服强度σs(又称屈服点): 概念:在拉伸过程中力不增加(保持恒定),试样仍能继续伸长时的应力。 σs=F s/S0 规定残余伸长应力(σr0。2称条件屈服极限): σr=F r/S0 抗拉强度σb 概念:在拉伸条件下所能承受的最大应力值。 σb=F b/S0 2、塑性 概念:断裂前材料发生不可逆永久变形的能力。 表达方式:断后伸长率和断面收缩率。

郑州铁路局电大教师教案 第 2-2 页 断后伸长率 δ=ΔL /L 0 断面收缩率 ψ=ΔS /S 0 δ、ψ数值越大,材料的塑性越好。 2.1.2 硬度 硬度的概念:金属材料表面抵抗其它更硬物体压入的能力。 硬度的测试方法:压入法(布、洛、维氏及显微硬度)。 划痕法(莫氏硬度)。 回跳法(肖氏硬度) 一、布氏硬度: 1、测试原理 (GB231-84) HBS (HBW )=0.102F πDh =0.102×2F πD(D-22d D -) 2、实验条件 压头,载荷,载荷保持时间 压头:材料——淬火钢球,硬质合金球 直径 D ——10mm ,5 mm ,2.5 mm ,1 mm 载荷:F /D 2=30(钢铁30,铜10,铅5) 载荷保持时间 t :12秒,30秒,60秒 3、标注方法 淬火钢球 225HBS 10/1000/30 硬质合金球 500HBW 5/750/10 4、适用范围 测量原材料、退火和正火钢、铸铁、非铁金属的硬度 二、洛氏硬度 1、测试原理 测量压痕深度,确定硬度值。 压头 顶角1200金钢石圆锥体或直径为Φ1.588(1/16吋)的淬火钢球。 HR= 002 .0h K - 2、实验条件 标尺,压头,载荷

聚甲醛参数

POM-聚甲醛的加工特性和工艺参数 ?POM熔体的流变性呈非牛顿型,其熔体的粘度对温度不敏感;对注塑而言,要增加流动性能,可以从增加注塑速率减小喷嘴尺寸等方面入手。 ?POM的结晶度大,熔程窄,成型收缩大(可达3.5%)。对注塑厚制品而言,要注意保压和补料,以免造成收缩孔太大而报废。 ?POM的热稳定性差,温度过高或时间过长,均会引起分解;特别是温度超过250℃,分解速度会加快,并溢出强烈刺激眼睛的甲醛气体,严重时制 品会产生气泡或变色,严重者会引起爆炸。因此,必须严格控制温度和停 留时间;另外,还需加入抗氧化剂和双氰胺甲醛吸收剂。 ?POM的冷凝速度快,制品易产生表面缺陷如折皱、斑纹及熔接痕等,为此应用提高注塑速度和提高模具温度等方法解决。 ?POM制品易产生内应力,后收缩也较大,应进行后处理。后处理的条件为:厚度6mm以下,温度100℃,时间0.25~1h;厚度6mm以上,温度120~130℃,时间4~6h。 ?POM的吸水率不高,但干燥处理可提高制品的表面光泽度。干燥条件为:温度110~120℃,时间3~5h。 POM-聚甲醛的成型加工方法 聚甲醛(POM)分为共聚POM和均聚POM两种。两者在耐热性、结晶性等方面存在明显的差异,因此各自的成型条件对其性能的影响也有较大的不同。 均聚POM,成型条件对性能的影响是: ?模具温度的影响较大,主要表现为随模具温度的提高,POM的结晶更趋于完整,使其拉伸强度和冲击强度提高,而断裂伸长率下降。 ?料筒温度设置在适当范围时,一般对性能影响不大,但如果料筒温度过高或在料筒中滞留时间过长时,会使POM热分解而引起其断裂伸长率的降 低。 ?注塑压力、注射时间及冷却时间对POM的冲击强度有一定的影响,但与其它性能无关。 共聚POM,成型条件对性能的影响是: ?模具温度的影响较大,也表现为随模具温度的提高,其拉伸强度和冲击强度提高。 ?注塑压力、注射时间及冷却时间对所有性能均无影响。

结晶性塑料和非结晶塑料有什么区别

一、什么是结晶性塑料? 结晶性塑料有明显的熔点,固体时分子呈规则排列。规则排列区域称为晶区,无序排列区域称为非晶区,晶区所占的百分比称为结晶度,通常结晶度在80%以上的聚合物称为结晶性塑料。常见的结晶性塑料有:聚乙烯PE、聚丙烯PP、聚甲醛POM、聚酰胺PA6、聚酰胺PA66、PET、PBT等。 二、结晶对塑料性能的影响 1)力学性能 结晶使塑料变脆(耐冲击强度下降),韧性较强,延展性较差。 2)光学性能 结晶使塑料不透明,因为晶区与非晶区的界面会发生光散射。减小球晶尺寸到一定程式度,不仅提高了塑料的强度(减小了晶间缺陷)而且提高了透明度,(当球晶尺寸小于光波长时不会产生散射)。 3)热性能 结晶性塑料在温度升高时不出现高弹态,温度升高至熔融温度TM 时,呈现粘流态。因此结晶性塑料的使用温度从Tg (玻璃化温度)提高到TM(熔融温度)。 4)耐溶剂性,渗透性等得到提高,因为结晶分排列更加紧密。 三、影响结晶的因素有哪些? 1)高分子链结构,对称性好、无支链或支链很少或侧基体积小的、大分子间作用力大的高分子容易相互靠紧,容易发生结晶。 2)温度,高分子从无序的卷团移动到正在生长的晶体的表面,模温较高时提高了高分子的活动性从而加快了结晶。 3)压力,在冷却过程中如果有外力作用,也能促进聚合物的结晶,故生产中可调高射出压力和保压压力来控制结晶性塑料的结晶度。 4)形核剂,由于低温有利于快速形核,但却减慢了晶粒的成长,因此为了消除这一矛盾,在成型材料中加入形核剂,这样使得塑料能在高模温下快速结晶。 四、结晶性塑料对注塑机和模具有什么要求 1)结晶性塑料熔解时需要较多的能量来摧毁晶格,所以由固体转化为熔融的熔体时需要输入较多的热量,所以注塑机的塑化能力要大,最大注射量也要相

材料的力学行为及性能

第二章 材料在其他静载荷下的力学性能 研究材料在常温静载荷下的力学性能时,除采用单向静拉伸试验方法外,有时还选用压缩、弯曲、扭转等试验方法,目的是: ①很多机件在服役过程中常承受弯矩、扭矩或轴向压力的作用,有必要测定试样在相应承载条件下的力学性能指标,做为设计和选材的依据;(实际中存在) ②不同的加载方式产生不同的应力状态,材料在不同应力状态中表现的力学性能不完全相同,因此,应选用不同应力状态的试验方法。(和单向拉伸应力状态不同) 本章介绍压缩、弯曲、扭转和剪切等试验方法及测定的力学性能指标 §2.1 应力状态柔度因数(软性系数) 一、柔度因数 塑性变形和断裂是金属材料在静载荷下失效的两种主要形式,它们是金属所能承受的应力达到其相应的强度极限而产生的。当金属所受的最大切应力τmax 达到屈服强度τs 时,产生屈服;当τmax 达到切断强度τk 时,产生剪切型断裂;当最大正应力S max 达到正断强度S k 时,产生正断型断裂。但同一种金属材料,在一定承载条件下产生何种失效方式,除与自身的强度大小有关以外,还与承载条件下的应力状态有关。不同的应力状态,其最大正应力与最大切应力的相对大小是不一样的。 考虑到三向应力状态下另外两向应力的贡献,因此材料的最大正应力的计算采用第二强度理论给出: 即:不再采用S max =σ1 而采用(第二强度理论): ()max 123S σνσσ=-+ 称为最大当量正应力 最大切应力由第三强度理论给出: 13 max 2 σστ-=

观塑性变形,属正断型脆性断裂; ②单向拉伸(α=0.5)时,先与τs线相交,发生塑性变形(屈服),然后与S k线相交,发生正断,属正断型的韧性断裂; ③扭转(α=0.8)时,先与τs线相交,发生塑性变形(屈服),然后与τk线相交,发生切断,属于切断型的韧性断裂。 即:相同的材料在不同应力状态下表现出不同的断裂模式,也可称为在不同应力状态条件下的韧脆转变。(材料在其他外界因素下也会发生韧脆转变,因涉及到具体的试验测试手段,因此后面讲。) §2.2 材料在轴向压缩载荷下的力学行为(单向压缩试验)一、试样型式 常用的压缩试样为圆柱体(也可采用立方体或棱柱体), 为防止压缩时试件失稳,试件的高度与直径之比h0/d0=1.5~2.0,同时h0/d0越大,抗压强度越低,因此对于几何形状的试件,需要保证h0/d0为定值。(GB7314-87)二、试验过程 ①为保证两端面的自由变形,试件的两端面必须光滑平整(涂润滑油、石墨);或者将试样的端面加工成圆锥凹面,使锥面的倾角等于摩擦角,即tanα=f,f为摩擦因数,也要将压头改成相应的锥体; ②压缩可以看作是反向拉伸,因此,拉伸试验中所定义的各个力学性能指标和相应的计算公式,在压缩试验中基本可以应用; 1-高塑性材料;2-低塑性材料1-拉伸;2-压缩

相关文档