文档库 最新最全的文档下载
当前位置:文档库 › 光子晶体几何结构设计对LED出光效率影响的研究

光子晶体几何结构设计对LED出光效率影响的研究

光子晶体几何结构设计对LED出光效率影响的研究
光子晶体几何结构设计对LED出光效率影响的研究

塑胶产品结构设计常识

塑胶产品结构设计常识 1.胶厚(胶位):塑胶产品的胶厚(整体外壳)通常在0.80-3.00左右,太厚容易缩水和产生汽泡,太薄难走满胶,大型的产品胶厚取厚一点, 小的产品取薄一点,一般产品取1.0-2.0为多。而且胶位要尽可能的均匀,在不得已的情况下,局部地方可适当的厚一点或薄一点, 但需渐变不可突变,要以不缩水和能走满胶为原则,一般塑料胶厚小于0.3时就很难走胶,但软胶类和橡胶在0.2-0.3的胶厚时也能走满胶。 2.加强筋(骨位):塑胶产品大部分都有加强筋,因加强筋在不增加产品整体胶厚的情况下可以大大增加其整体强度,对大型和受力的产品 尤其有用,同时还能防止产品变形。加强筋的厚度通常取整体胶厚的0.5-0.7倍,如大于0.7倍则容易缩水。加强筋的高度较大时则要做0.5-15的斜度(因其出模阻力大),高度较矮时可不做斜度。 3.脱模斜度:塑料产品都要做脱模斜度,但高度较浅的(如一块平板)和有特殊要求的除外(但当侧壁较大而又没出模斜度时需做行位)。 出模斜度通常为1-5度,常取2度左右,具体要根据产品大小、高度、形状而定,以能顺利脱模和不影响使用功能为原则。产品的前模斜度通常 要比后模的斜度大0.5度为宜,以便产品开模事时能留在后模。通常枕位、插穿、碰穿等地方均需做斜度,其上下断差(即大端尺寸与小端尺寸之差)单边要大于0.1以上。 4.圆角(R角):塑胶产品除特殊要求指定要锐边的地方外,在棱边处通常都要做圆角,以便减小应力集中、利于塑胶的流动和容易脱模。 最小R通常大于0.3,因太小的R模具上很难做到。 5.孔:从利于模具加工方面的角度考虑,孔最好做成形状规则简单的圆孔,尽可能不要做成复杂的异型孔,孔径不宜太小,孔深与孔径比不宜太大,因细而长的模具型心容易断、变形。孔与产品外边缘的距离最好要大于1.5倍孔径,孔与孔之间的距离最好要大于2倍的孔径,以便产品有必要的强度。与模具开模方向平行的孔在模具上通常上是用型心(可镶、可延伸留)或碰穿、插穿成型,与模具开模方向不平行的孔通常要做行位或斜顶,在不影响产品使用和装配的前提下,产品侧壁的孔在可能的情况下也应尽量做成能用碰穿、插穿成型的孔。6.凸台(BOSS):凸台通常用于两个塑胶产品的轴-孔形式的配合,或自攻螺丝的装配。当BOSS不是很高而在模具上又是用司筒顶出时,其可不用做斜度。当BOSS很高时,通常在其外侧加做十字肋(筋),该十字肋通常要做1-2度的斜度,BOSS看情况也要做斜度。当BOSS和柱子(或另一BOSS)配合时,其配合间隙通常取单边0.05-0.10的装配间隙,以便适合各BOSS加工时产生的位置误差。当BOSS用于自攻螺丝的装配时,其内孔要比自攻螺丝的螺径单边小0.1-0.2,以便螺钉能锁紧。如用M3.0的自攻螺丝装配时,BOSS的内孔通常做Ф2.60-2.80。 7.嵌件:把已经存在的金属件或塑胶件放在模具内再次成型时,该已经存在的部件叫嵌件。当塑胶产品设计有嵌件时,要考虑嵌件在模具内 必须能完全、准确、可靠的定位,还要考虑嵌件必须与成型部分连接牢固,当包胶太薄时则不容易牢固。还要考虑不能漏胶。 8.产品表面纹面:塑料产品的表面可以是光滑面(模具表面省光)、火花纹(模具型腔用铜工放电加工形成)、各种图案的蚀纹面(晒纹面)和雕刻面。当纹面的深度深、数量多时,其出模阻力大,要相应的加大脱模斜度。 9.文字:塑料产品表面的文字可以是凸字也可以是凹字,凸字在模具上做相应的凹腔容易做到,凹字在模具上要做凸型心较困难。 10.螺纹:塑胶件上的螺纹通常精度都不很高,还需做专门的脱螺纹机构,对于精度要求不

光子晶体的应用及其发展前景

光子晶体的应用及其发展前景 摘要:光子晶体是一种介电常数不同的,是人工设计的由两种或两种以上介质材料排列的一维·二维或三维周期结构的晶体。一维光子晶体已得到实际应用,三维光子晶体仍处于实验室实验阶段。由于光子晶体有带隙和慢光等优良特性,所以具有广泛的应用前景。 关键字:光子晶体物理基础材料制备应用 1、物理基础 (1)1987年,E.Y allonovitch 和S.John在研究抑制自发辐射和光子局域时提出光子这概念。概念提出后,其研究经历了一个从一维、二维到三维的过程,并将带隙不断向短波方向推进。微波波段的逞隙常称为电磁带隙(ElectromagneticBand-Gap,简称为EBG),光子晶体的引入为微波领域提供了新的研究方向。光子晶体完全依靠自身结构就可实现带阻滤波,且结构比较简单,在微波电路、微波天线等方面均具有广阔的应用前景。国外在这一方面的研究已经取得了很多成果,而国内的研究才刚刚起步,所以从事光子晶体的研究具有重要的意义。光子晶体是指具有光子带隙(Photonic Band-Gap,简称为PBG)特性的人造周期性电介质结构,有时也称为PBG结构。所谓的光子带隙是指某一频率范围的波不能在此周期性结构中传播,即这种结构本身存在“禁带”。这一概念最初是在光学领域提出的,现在它的研究范围已扩展到微波与声波波段。由于这种结构的周期尺寸与“禁带”的中心频率对应的波长可比拟,所以这种结构在微波波段比在光波波段更容易实现。相比一维二维光子晶体只能产生方向禁带,三维光子晶体能产生全方向的禁带,具有更普遍的实用性。 2、光子晶体的原理 (1)什么是光子晶体 光子晶体是指具有光子带隙的周期性介电结构材料,所谓光子带隙是由于介电常数不同的材料在空间周期性排列导致介电常数的空间周期性,使得光折射率产生周期性分布,光在其中传播时产生能带结构,在带隙中的光子频率被禁止传播,因此称光子禁带,具有光子禁带特征的材料称光子晶体。 (2)光子晶体的特性 根据固体物理的理论知识,在电子晶体中,由原子排布的晶格结构产生的周期性势场会对其中的运动电子形成调制。类似于电子晶体的一些特性,光子晶体中由于介电常数的空间周期分布带来的调制作用,所以也会形成光波的的带状分布,出现不连续的光子能带,能带的间隙称为光子禁带。禁带中对应频率的光波不能被传播。 光子禁带是光子晶体的两个重要特征之一,它的另一重要特征是光子局域。按照形成光子晶体结构的介电材料的空间周期性,可将其分为一维、二维和三维光子晶体。对于一维的光子晶体来说,由于介电材料只在一个空间方向上周期排列,所以只能在这一方向上产生光子禁带。对于二维光子晶体来说,由于介电常数在两个空间方向上均具有周期分布,所以产生的光子禁带位于这两个方向或这两个波矢交面上。三维光子晶体具有全方位的周期结构,可在所有方向上产生光子禁带。产生的光子禁带又分完全带隙和不完全带隙。在具有完全带隙的光子晶体中,落在光子禁带中的光在任何方向都不能传播,而在具有不完全带隙的光子晶体中,光波只是在某些方向上被禁止。

支架零件图设计

1.设计的目的 设计是培养机械工程类专业学生应职应岗能力的重要实践性教学环节,它要求学生能全面综合地运用所学的理论和实践知识,进行零件机械加工工艺规程和工艺装备的设计。其基本目的是: (1)培养工程意识。 (2)训练基本技能。 (3)培养质量意识。 (4)培养规范意识。 2设计的基本任务与要求 2、1、设计任务 (1)设计一个中等复杂的零件的加工工艺规程; (2)设计一个专用夹具; (3)编写设计说明书。 2、2、设计基本要求 (1)内容完整,步骤齐全。 (2)设计内容与说明书的数据和结论应一致,内容表达清楚,图纸准确规范,简图应简洁明了,正确易懂。 (3)正确处理继承与创新的关系。 (4)正确使用标准和规范。 (5)尽量采用先进设计手段。 3设计说明书的编写 说明书要求系统性好、条理清楚、语言简练、文字通顺、字迹工整、图例清晰、图文并茂,充分表达自己的见解,力求避免抄书。

第一章工艺设计与工装设计 1.基本任务: (1)绘制零件工件图一张; (2)绘制毛坯—零件合图一张; (3)编制机械加工工艺规程卡片一套; (4)编写设计说明书一份; (5)收集和研究原始资料,为夹具结构设计做好技术准备。 (6)初步拟定夹具结构方案,绘制夹具结构草图,进行必要的理论计算和分析。选择最佳的夹具结构方案,确定夹具精度和夹具总图尺寸、公差配合与技术要求。 (7)绘制夹具总图和主要非标准件零件图,编写设计说明书。 (8)编制夹具特殊使用维护、操作、制造方面的说明或技术要求。 2.设计要求: (1)应保证零件的加工质量,达到设计图纸的技术要求; (2)在保证加工质量的前提下,尽可能提高生产效率; (3)要尽量减轻工人劳动强度,必须考虑生产安全、工业卫生等措施; (4)在立足本企业的生产条件基础上,尽可能采用国内外新技术、新工艺、新装备; (5)工艺规程应正确、完整、简洁、清晰; (6)工艺规程应满足规范化、标准化要求; (7)夹具设计保证工件的加工精度; (8)提高生产效率; (9)工艺性好; (10)使用性好; (11)经济性好。 3.方法和步骤: 3.1生产纲领的计算与生产类型的确定 生产类型生产纲领(件/年) 大批生产小型零件(4KG)2800

塑胶产品结构设计常识

塑胶产品结构设计小常识目录: 第一章塑胶结构设计规范 1、材料及厚度 1.1、材料选择 1.2、壳体厚度 1.3、零件厚度设计实例 2、脱模斜度 2.1、脱模斜度要点 3、加强筋 3.1、加强筋及壁厚的关系 3.2、加强筋设计实例 4、柱和孔的问题 4.1、柱子的问题 4.2、孔的问题 4.3、“减胶”的问题 5、螺丝柱的设计 6、止口的设计 6.1、止口的作用 6.2、壳体止口的设计需要注意的事项

6.3、面壳及底壳断差的要求 7、卡扣的设计 7.1、卡扣设计的关键点 7.2、常见卡扣设计 8、装饰件的设计 8.1、装饰件的设计注意事项 8.2、电镀件装饰斜边角度的选取 8.3、电镀塑胶件的设计 9、按键的设计 9.1 按键(Button)大小及相对距离要求 10、旋钮的设计 10.1 旋钮(Knob)大小尺寸要求 10.2 两旋钮(Knob)之间的距离 10.3 旋钮(Knob)及对应装配件的设计间隙 11、胶塞的设计 12、镜片的设计 12.1 镜片(LENS)的通用材料 12.2 镜片(LENS)及面壳的设计间隙 13、触摸屏及塑胶面壳配合位置的设计 13.1、触摸屏相对应位置塑胶面壳的设计注意事项

第一章塑胶结构设计规范 1、材料及厚度 1.1、材料的选取 a. ABS:高流动性,便宜,适用于对强度要求不太高的部件(不直接受冲 击,不承受可靠性测试中结构耐久性的部件),如内部支撑架(键板支 架、LCD支架)等。还有就是普遍用在电镀的部件上(如按钮、侧键、 导航键、电镀装饰件等)。目前常用奇美PA-757、PA-777D等。 b. PC+ABS:流动性好,强度不错,价格适中。适用于作高刚性、高冲击 韧性的制件,如框架、壳体等。常用材料代号:拜尔T85、T65。 c. PC:高强度,价格贵,流动性不好。适用于对强度要求较高的外壳、 按键、传动机架、镜片等。常用材料代号如:帝人L1250Y、PC2405、 PC2605。 d. POM具有高的刚度和硬度、极佳的耐疲劳性和耐磨性、较小的蠕变性和吸 水性、较好的尺寸稳定性和化学稳定性、良好的绝缘性等。常用于滑轮、 传动齿轮、蜗轮、蜗杆、传动机构件等,常用材料代号如:M90-44。 e. PA坚韧、吸水、但当水份完全挥发后会变得脆弱。常用于齿轮、滑轮等。 受冲击力较大的关键齿轮,需添加填充物。材料代号如:CM3003G-30。 f. PMMA有极好的透光性,在光的加速老化240小时后仍可透过92%的太阳 光,室外十年仍有89%,紫外线达78.5% 。机械强度较高,有一定的耐 寒性、耐腐蚀,绝缘性能良好,尺寸稳定,易于成型,质较脆,常用于有 一定强度要求的透明结构件,如镜片、遥控窗、导光件等。常用材料代号 如:三菱VH001。

光子晶体及其器件的研究进展

深圳大学研究生课程论文题目光子晶体及其器件的研究进展成绩 专业 课程名称、代码 年级姓名 学号时间2016年12月 任课教师

子晶体及其器件的研究进展 摘要:光子晶体是一种具有光子带隙的新型材料,通过设计可以人为调控经典波的传输。由 于光子晶体具有很多新颖的特性,使其成为微纳光子学和量子光学的重要研究领域。随着微加工技术的进步和理论的深入研究,光子晶体在信息光学以及多功能传感器等多个学科中也得到了广泛应用。本文介绍了光子晶体及其特征,概述了光子晶体器件的设计方法和加工制作流程,论述现阶段发展的几种光子晶体器件,并对光子晶体器件的发展趋势做了展望。 关键词:光子晶体;光子晶体的应用;发展趋势 Research progress of photonic crystals and devices Abstract:Photonic crystal is a new material with photonic band gap, which can regulate the transmission of classical wave artificially. Because it has many novel properties of photonic crystal, which is becoming an important research field of micro nano Photonics and quantum optics. With the progress of micro machining technology and theoretical research, photonic crystals have been widely used in many fields such as information optics and multifunction sensors. This paper introduces the photonic crystals and its characteristics, summarizes the design method and process of the photonic crystal devices in the production process, discusses several kinds of photonic crystal devices at this stage of development, and the development trend of photonic crystal devices is prospected. Key words:Photonic crystal; application of photonic crystal; development trend 1引言 在过去的半个世纪里,随着人们对电子在物质尤其是半导体中运动规律的研究,使得对电子控制能力的增加,从而产生了各种微电子器件以及大规模的集成电路,推动了电子工业和现代信息产业的迅猛发展,半导体技术在人们生活中扮演着越来越重要的角色。目前半导体技术正向着高速化和高集成化方向的发展,不可避免地引发了一系列问题。当信息处理的频率和信号带宽越来越高时,通过金属线传输电子会带来难以克服的发热问题和带宽限制;而线宽减小到深纳米尺度时,相邻导线的量子隧穿效应成为电子器件发展的重要瓶颈。这迫使人们越来越关注光信息处理技术,并尝试用光器件来替代部分传统电子器件,以突破上述瓶颈限制。实现这一目标的关键在于如何将光子器件尺寸降低至微纳米量级,并能与微电子电路集成在同一芯片上。 目前比较有效的方法有三种:纳米线波导,表面等离子体和光子晶体。其中,光子晶体具有体积小、损耗低和功能丰富等多种优点,被认为是最有前途的光子集成材料,称为光子半导体[1],它是1987年才提出的新概念和新材料。这种材料有一个显著的特点是它可以如人所愿地控制光子的运动。由于其独特的特性,光子晶体可以制作全新原理或以前所不能制作的高性能光学器件,在光通讯上也有重要的用途,如用光子晶体器件来替代传统的电子器件,信息通讯的速度快得

成型零部件结构设计

成型零部件结构设计 成型零部件的结构设计包括凹模结构设计、凸模结构设计以及螺纹型芯和螺纹型环的结构设计等。 1 .凹模结构设计 凹模用于成型塑件的外表面,又称为阴模、型腔。按其结构的不同可分为整体式、整体嵌人式、局部镶嵌式、大面积镶嵌式和因壁镶嵌式五种。总体来说,整体式强度、刚度好,但不适用于复杂的型腔。镶嵌式采用组合的模具结构,使复杂的型腔加工相对容易,可避免采用同一材料,可利用拼接间隙排气,但易在塑件表面留下镶嵌块的拼接痕迹。 对凹模的各种结构类型分别介绍如下。 ( 1 )整体式。由整块金属材料直接加工而成,如图4 一55 所示,用于形状简单的中小模具。特点是强度高、刚性好。 ( 2 )整体嵌人式。将整体式凹模作为一种凹模块直接嵌人到固定板中,或嵌人模框中,模框再嵌人到固定板中。适用于塑件尺寸不大的多腔模。特点是加工方便,易损件便于更换,凹模可用冷挤压或其他方法单独加工,型腔形状与尺寸一致性好。图4 一56 ( a ) 所示为凹模从凹模固定板下部嵌人,用支承板、螺钉将其固定;图4 一56 ( b )所示为凹模从凹模固定板上部嵌人。

( 3 )局部镶嵌式。当凹模局部形状复杂,或某一部分容易损坏需要经常更换,常采用局部镶嵌式结构。如图4 一57 所示,其中,图4 一57 ( a )所示为嵌入圆销成型塑件表面直纹;图4 一57 ( b )所示为镶件成型塑件的沟槽;图4 一57 (。)所示为镶件构成塑件圆环形筋槽;图4 一57 ( d )所示为镶件成型塑件底部复杂的构形。 ( 4 )大面积镶嵌式。对于底部或侧壁形状复杂的凹模,为了便于加工,保证精度,将凹模做成通孔式的,再镶上底,或将凹模壁做成镶嵌块。适用于深腔或底部、侧壁难于加工的组合型模具型腔,但各个结合面的研磨、抛光增加了工时.图4 一58 ( a )所示为侧壁和底部大面积镶拼的凹模结构;图4 一58 ( b )所示为底部大面积镶嵌的结构,采用圆柱面配合。

塑胶产品结构设计常识

塑胶产品结构设计小 常识 第一章塑胶结构设计规范 1、材料及厚度 1.1 、材料选择 1.2 、壳体厚度 1.3 、零件厚度设计实例 2、脱模斜度 2.1 、脱模斜度要点 3、加强筋 3.1 、加强筋与壁厚的关系 3.2 、加强筋设计实例 4、柱和孔的问题 4.1 、柱子的问题 4.2 、孔的问题 4.3 、“减胶”的问题 5、螺丝柱的设计 6、止口的设计

6.1 、止口的作用 6.2 、壳体止口的设计需要注意的事项

6.3 、面壳与底壳断差的要求 7、卡扣的设计 7.1 、卡扣设计的关键点 7.2 、常见卡扣设计 8、装饰件的设计 8.1 、装饰件的设计注意事项 8.2 、电镀件装饰斜边角度的选取 8.3 、电镀塑胶件的设计 9、按键的设计 9.1 按键() 大小及相对距离要求 10、旋钮的设计 10.1 旋钮() 大小尺寸要求 10.2 两旋钮() 之间的距离 10.3 旋钮() 与对应装配件的设计间隙 11、胶塞的设计 12、镜片的设计 12.1 镜片()的通用材料 12.2 镜片()与面壳的设计间隙 13、触摸屏与塑胶面壳配合位置的设计 13.1 、触摸屏相对应位置塑胶面壳的设计注意事项

第一章塑胶结构设计规范 1、材料及厚度 1.1 、材料的选取 a. :高流动性,便宜,适用于对强度要求不太高的部件(不直接受冲击,不承受 可靠性测试中结构耐久性的部件),如内部支撑架(键板支架、支架)等。还 有就是普遍用在电镀的部件上(如按钮、侧键、导航键、电镀装饰件等)。目 前常用奇美757、777D 等。 b. :流动性好,强度不错,价格适中。适用于作高刚性、高冲击韧性的制件, 如框架、壳体等。常用材料代号:拜尔T85 、T65 。 c. :高强度,价格贵,流动性不好。适用于对强度要求较高的外壳、按键、传 动机架、镜片等。常用材料代号如:帝人L1250Y 、2405、2605 。 d. 具有高的刚度和硬度、极佳的耐疲劳性和耐磨性、较小的蠕变性和吸水性、 较好的尺寸稳定性和化学稳定性、良好的绝缘性等。常用于滑轮、传动齿轮、 蜗轮、蜗杆、传动机构件等,常用材料代号如:M90-44 。 e. 坚韧、吸水、但当水份完全挥发后会变得脆弱。常用于齿轮、滑轮等。受冲击 力较大的关键齿轮,需添加填充物。材料代号如:3003G30 。 f. 有极好的透光性,在光的加速老化240 小时后仍可透过92% 的太阳光,室 外十年仍有89% ,紫外线达78.5% 。机械强度较高,有一定的耐寒性、耐 腐蚀,绝缘性能良好,尺寸稳定,易于成型,质较脆,常用于有一定强度要求 的透明结构件,如镜片、遥控窗、导光件等。常用材料代号如:三菱001。 1.2 壳体的厚度 a. 壁厚要均匀,厚薄差别尽量控制在基本壁厚的25%以内,整个部件的最小

综述光子晶体的研究进展

光子晶体的最新研究进展 (学号:SA12231016 姓名:陈飞虎) 摘要:光子晶体(Photonic Crystal)是在1987年由S.john[1]和E.Yablonovitch[2]分别独立提出,是由不同折射率的介质周期性排列而成的人工微结构。在这二十多年的发展当中,光子晶体已在光通信技术、材料科学和激光与光电子学等方面都取得了相应的进展。本文阐述了光子晶体在各方面所取得的相应进展,并探讨光子晶体在各个领域的最新研究状况。 关键词:光子晶体研究进展 1 引言 自光子晶体这一概念提出以来,它就成为各个学科领域的科学家们关注的热点。光子晶体(Photonic crystals)材料又称为光子带隙(Photonic band gap,PBG)材料,指介电常数(折射率)周期性变化的材料。电子在固态晶体的周期性势垒下能形成电子带隙,光子晶体的周期性晶格对光的布拉格散射可以形成光子带隙, 频率处在光子带隙中的光被禁止进入光子晶体。若光子晶体中某个地方不满足周期性,即引入了缺陷,禁带中就会出现缺陷态,缺陷态具有很高的光子态密度。采用各种材料,设计不同的光子晶体结构和引入不同的缺陷类型以及缺陷组合,可以制作出功能和特性各异的微纳光子器件。因光子晶体具有光子带隙和光子局域两大优越特点,所以它在发光二极管、多功能传感器、光通讯、光开关、光子晶体激光器等现代高新技术领

域[3-4]有着广泛应用。当前所制备的光子晶体大多不可调,但对于可调制光子晶体的带隙可以调控,电介质的折射率和光子晶体的晶格常数决定了光子带隙的宽度和位置,故改变外部环境,如加电场、磁场、压力或温度等,均能对光子禁带进行调制。因此可调控的光子晶体成为各个应用领域的研究热点和方向。 2 光通信技术方向的研究进展 传统波导利用的是全内反射原理,当波导弯曲较大时,电磁波在其中的传播不再符合全反射原理,以至于弯曲损耗较大。而光子晶体波导采用的是不同方向缺陷模共振匹配原理,因而光子晶体波导不受转角限制,有着极小的弯曲损耗。理论上,当波导弯曲 90°时,传统波导会有 30%的损失,而光子晶体波导的损耗只有 2%[5]。另外,光子晶体波导的尺度可以做得很小,达到波长量级;因此,光子晶体波导不仅在光通信中有着十分重要的应用,在未来大规模光电集成、光子集成中也将具有极其重要的地位。 光子晶体光纤(PCF) 由于它的包层中二维光子晶体结构能够以从前没有的特殊方式控制纤芯中的光波,使其具有诸多优异的光学特性,如无截止单模传输特性、可调节的色散特性、高双折射特性、大模面积和高非线性特性等,因此PCF的研究一直是光通信和光电子领域科学家们关注的热点。目前,世界各国对PCF的研究如火如荼,在PCF的色散、带隙、非线性特性及应用方面均有了长足进展。PCF的

光子晶体应用于化学及生物传感器的研究进展

光子晶体应用于化学及生物传感器的研究进展 段廷蕊 李海华 孟子晖3 刘烽 都明君 (北京理工大学化工环境学院 北京 100081) 摘 要 光子晶体是由两种以上具有不同折光指数的材料在空间按照一定的周期顺序排列所形成的有序结构材料,它具有尺度为光波长量级的重复结构单元,通过对这些结构单元的合理设计,可以调控光子晶体 的光学性质。近年来,光子晶体不仅在药物释放、光学开关、金属探针领域取得了广泛的应用,也为化学及生 物传感器领域提供了新的检测原理和手段。本文概述了光子晶体的制备方法及近年来该技术在化学及生物 传感器领域中的应用研究。 关键词 光子晶体 水凝胶 化学传感器 生物传感器 分子识别 Application of Photonic Crystals in Chemical and Bio2sensors Duan T ingrui,Li Haihua,Meng Z ihui3,Liu Feng,Du Mingjun (School of Chemical&Environmental Engineering,Beijing Institute of T echnology,Beijing100081) Abstract Photonic crystals are periodical materials which are made by periodically arrangement of m ore than tw o materials with different reflective index.Photonic crystals have periodical and repeated unit structure with nanometer scale, and its optical properties can be tuned by reas onably designing of the structure units.Photonic crystals have been applied not only in clinical diagnosis,drug delivery,optical s witches,ion probe,but als o in biosens ors and chemical sens ors.Here the preparation methods and applications in sens ors field of photonic crystals are summarized. K eyw ords Photonic crystals,Hydrogel,Chemical sens or,Biosens ors,M olecular recognition 1 光子晶体的概念及其结构特性 光子晶体(photonic crystals)是1987年Y ablonovitch和John等在研究自辐射和光子局域化时分别提出的。光子晶体是由两种以上具有不同折光指数的材料在空间按照一定的周期顺序排列所形成的有序结构材料。电磁波在这种具有周期性结构的材料中传播时会受到由电介质构成的周期势场的调制,从而形成类似于半导体能带结构的光子能带(photonic band)。光子能带之间可能会出现带隙,即光子带隙(photonic bandgap,简称P BG)。具有P BG的周期性介电结构即光子晶体,或称作光子带隙材料,也有人把它叫做电磁晶体。 光子晶体中,周期性排列的重复结构单元的尺度是光波长量级,根据重复结构循环的维数,可分为一维、二维和三维光子晶体(图1)。就像半导体中原子点阵可以控制电子传播一样,光子晶体中不同折光指数的周期性排列结构可以控制一定频率的光的传播。光子带隙或禁带是指一个频率范围,频率在此范围的电磁波不能在光子晶体里传播,而频率位于导带的电磁波则能在光子晶体里几乎无损地传播。带隙的宽度和位置与光子晶体的折光指数、周期排列的结构尺寸及排列规则都有关系。但与电子相比,光子具有更多的信息容量、更高的效率、更快的响应速度以及更低的能量损耗。光子晶体作为一种新型的信息传导材料,已成为学术界的一个研究热点[1~5],王玉莲、顾忠泽等[6~8]发表过相关的综述和文章,宋延林等[9,10]近年来报道的具有荧光特性的光子晶体在光学器件领域显示了良好的应用前景。 国家自然科学基金项目(20775007)和863计划项目(2007AA10Z433)资助 2008206230收稿,2008209229接受

反蛋白石光子晶体的研究进展_韩国志

反蛋白石光子晶体的研究进展 韩国志1 孙立国2 (1南京工业大学应用化学系 南京 210009; 2黑龙江大学化学化工与材料学院 哈尔滨 150080) 2008-07-02收稿,2008-09-24接受摘 要 反蛋白石晶体是一类重要的光子晶体,由于其制备材料的广泛性以及容易实现对光子禁带的 多重调制而受到广泛关注。本文介绍了目前反蛋白石晶体结构的主要制备技术和方法,详细阐述了反蛋白石 晶体结构的最新研究进展。 关键词 反蛋白石 光子晶体 胶体晶体 应用 Advance in Inverse Opal Photonic Structure Han Guozhi 1 Sun Liguo 2(1Department of Applied Chemistry ,Nanjing Universit y of Technology ,Nanjing 210009;2School of Chemistry and Materials ,Heilongjian g Univers ity ,Harbin 150080) A bstract Inverse opal crystals are an important structure for photonic crystal .Comparing with opal crystals ,it is advantageous in universality of materials for fabricating and easy to realize multi -tunablity of stop -band and structure function .In this paper ,current preparation and advance in application of inverse opal structures are reviewed . Keywords Inverse opal ,Photon ic crystal ,Colloidal crystal ,Application 图1 反蛋白石晶体的结构Fig .1 SEM image of invers e opal 蛋白石(opal )是一种存在于自然界中的、在数百nm 尺度 上有规整排列的含水非晶质二氧化硅。它拥有色彩缤纷的外 观,电子显微镜下观察表明,结晶蛋白石具有周期排列的六方 晶格,为面心立方结构。广义而言,蛋白石是一种三维光子晶 体,具备选择性布拉格反射,所以在不同的角度,显示不同的 颜色[1~4]。目前人工蛋白石主要采用胶体晶体自组装方法制 备。将表面带同种电荷的胶体颗粒(如非晶二氧化硅微球、聚 苯乙烯微球等)按一定的浓度分散于溶剂中,由于颗粒表面之 间的电荷相互作用,随着溶剂的蒸发,胶体粒子自动排列成六 方密堆积的胶体晶体,当胶体晶体中微球的直径与光波长相 当时,该晶体即可产生带隙,具有与蛋白石相似的光学特性。 反蛋白石晶体就是在蛋白石晶体的空隙中填充某种介 质,然后通过焙烧、溶解或化学腐蚀等方法除去蛋白石晶体的原材料后所形成的多孔结构,即空气小球以面心立方的形式分布于介质中,每个空气小球在之前胶体粒子接触点以小的圆柱形通道连接(图1)。如果介质折射率与空气不同,就产生布拉格反射,反射波长可由下式计算: λ=2(2 3)1 2d (n 2a -sin 2θ)1 2其中,λ表示反射波长,d 表示晶面间距,n a 表示材料平均折射率,θ表示入射光线与晶面的夹角。这种结构只要填充材料的折射率跟周边的介质(空气)的比值达到一定的数值(>2.8)时,就会出现完全光子带隙。 与蛋白石晶体相比,反蛋白石晶体最大的优势在于制备材料的选择性广泛、材料折射率的差异容易

零件结构设计的基本要求和内容

零件结构设计的基本要 求和内容 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

零件结构设计的基本要求摘要:本文介绍零件结构设计的基本要求,限于篇幅,主要介绍零件设计的功能使用要求和为了实现这些要求而采取的一些措施。 关键词:零件结构设计要求措施 正文: 一、功能使用要求 设计机械或零件必须首先满足其功能和使用要求。机械的功能要求,如运动范围和形式要求、速度大小和载荷传递都是由具体的零件来实现的。除传动要求外,机械零件还需要有承载、固定、链接等功能;零件结构设计应满足强度、刚度、精度、耐磨性及防腐等使用要求。 1、提高强度和刚度的结构设计 为了使机械零件能正常工作,在设计的整个过程中都要保证零件的强度和刚度能满足要求。对于重要的零件要进行强度和刚度计算。静强度的计算指危险截面拉压、剪切、弯曲和扭剪应力的计算;静刚度的计算指相对载荷或应力下的变形计算。两者均与零件的材料、受力和结构尺寸密切相关。 通过合理选择机械的总体方案使零件的受力合理,特别是通过正确的结构设计使它所受的应力和产生的变形较小可以提高零件的强度和刚度,满足其工作能力的要求。合理的计算有助于选择最佳方案,但同时也要考虑零件在加工、装拆过程中保证足够的强度和刚度要求。

(1)通过结构设计提高静强度和刚度的措施 1)改变受力 a)改变受力情况,降低零件的最大应力 b)载荷分担将一个零件所受的载荷分给几个零件承受,以减少每个零件的受力。 c)载荷均布:通过改变零件的形状,改善零件的受力;采用挠性均载元件;提高加工精度。 d)其他的载荷抵消或转化措施,采取措施使外载荷全部或部分地相互抵消,有化外力为内力、用拉伸代替弯曲等。 2)改变截面 a)采用合理的断面形状,在零件材料和受力一定的条件下,只能通过结构设计,如增大截面积,增大抗弯、抗扭截面系数来提高其强度。 b)用肋或隔板,采用加强肋或隔板科提高零件、特别是机架零件的刚度 3)利用附加结构措施改变材料内应力状态,通过加强附加结构措施使受力零件产生弹性强化或塑性强化来提高强度。塑性强化又称过载强化,采用塑性强化的结构都是受不均匀应力的零件。其塑性变形产生在零件受最大应力的区域内,并与工作应力方向相反,因而具有降低最大应力、使应力分布均匀化的效果。 (2)提高疲劳强度的结构设计

塑胶产品结构设计注意事项

塑胶产品结构设计注意事项 目录 第一章塑胶结构设计规范 1、材料及厚度 1.1、材料选择 1.2、壳体厚度 1.3、零件厚度设计实例 2、脱模斜度 2.1、脱模斜度要点 3、加强筋 3.1、加强筋及壁厚的关系 3.2、加强筋设计实例 4、柱和孔的问题 4.1、柱子的问题 4.2、孔的问题 4.3、“减胶”的问题 5、螺丝柱的设计 6、止口的设计 6.1、止口的作用 6.2、壳体止口的设计需要注意的事项 6.3、面壳及底壳断差的要求 7、卡扣的设计 7.1、卡扣设计的关键点 7.2、常见卡扣设计 7.3、

第一章塑胶结构设计规范 1、材料及厚度 1.1、材料的选取 a. ABS:高流动性,便宜,适用于对强度要求不太高的部件(不直接受冲 击,不承受可靠性测试中结构耐久性的部件),如内部支撑架(键板支 架、LCD支架)等。还有就是普遍用在电镀的部件上(如按钮、侧键、 导航键、电镀装饰件等)。目前常用奇美PA-757、PA-777D等。 b. PC+ABS:流动性好,强度不错,价格适中。适用于作高刚性、高冲击 韧性的制件,如框架、壳体等。常用材料代号:拜尔T85、T65。 c. PC:高强度,价格贵,流动性不好。适用于对强度要求较高的外壳、 按键、传动机架、镜片等。常用材料代号如:帝人L1250Y、PC2405、 PC2605。 d. POM具有高的刚度和硬度、极佳的耐疲劳性和耐磨性、较小的蠕变性和 吸水性、较好的尺寸稳定性和化学稳定性、良好的绝缘性等。常用于滑轮、 传动齿轮、蜗轮、蜗杆、传动机构件等,常用材料代号如:M90-44。 e. PA坚韧、吸水、但当水份完全挥发后会变得脆弱。常用于齿轮、滑轮等。 受冲击力较大的关键齿轮,需添加填充物。材料代号如:CM3003G-30。 f. PMMA有极好的透光性,在光的加速老化240小时后仍可透过92%的太阳 光,室外十年仍有89%,紫外线达78.5% 。机械强度较高,有一定的耐

近两年光子晶体研究的进展

近两年光子晶体研究的进展 许文贞 vincent.xu.chn@https://www.wendangku.net/doc/b918761067.html, 光子晶体以及光子能带结构等概念早在1987年分别由E. Yablonovitch和S. John分别独立地提出,并且在随后的1990年和1991年分别实现了理论预言和成功实验制备第一个有完整光子带隙的光子三维晶体,发展至今光子晶体在理论、实验和应用研究方面取得了很大的进展。光子晶体(Photonic Crystals)是一种介电常数(或折射率)周期性排列的有序结构物质,也即一种在高折射率材料的某些位置周期性出现低折射率的材料。其最根本的特征是正由于那些周期性的折射率结构产生了光子禁带,因此频率处于禁带内的光子将无法传播,就像半导体材料中的电子在周期性势场作用下形成能带结构,因此光子晶体实现了对光子的控制。 光子晶体的应用主要是基于它的两个基本特性:抑制自发辐射和光子局域态。正由于光子晶体的这两个优势,而且光子与电子相比具有更多的信息容量、更高的效率、更快的响应速度、更强的互连能力和并行能力、更大的存储量、更低的能量损耗,所以,在半导体器件的进一步小型化和在减小能耗下提高运行速度成为难题后,人们提出了用光子作为信息载体替代电子的设想。因此当今有关光子晶体的研究得到了广泛的关注,它在零阈值激光器、光波导、发光二极管、偏振片、滤波器等方面显示了巨大的应用价值。发展至今,光子晶体这研究领域中比较热门的方向有三维光子晶体及薄膜的制备技术、可调光子晶体、光子晶体光纤、纳米光子晶体、磁性光子晶体等。本文主要集中在对三维光子晶体、光子晶体光纤两方面近两年来进展的介绍。 1. 三维光子晶体 光子晶体根据能隙空间分布的特点可分为一维(1D)光子晶体、二维(2D) 光子晶体和三维(3D) 光子晶体。光子晶体是一种人造晶体,自然界里几乎不存在。蛋白石是迄今为止发现的唯一的天然光子晶体,它是属于三维光子晶体。而且三维光子晶体能产生全方向的完全禁带,相比一维、二维光子晶体仅能产生方向禁带,因此三维光子晶体具有更普遍的实用性,占据了光子晶体研究中很大的份额。 由于天然光子晶体的稀缺,因此在光子晶体的研究中光子晶体的制备是主要的,而且是最难的一方面。因为对于光子晶体来说,光在晶体中的传输就要求晶体的周期性晶格尺寸达到亚微米量级,因此这给了晶体制备带来了很大的难题,尤其是近红外到可见光波段的三维光子晶体的制备。目前,一般三维光子晶体的制备的一种简单切实可行的方法是利用单分散的胶体颗粒悬浮液的自组装特性来制备胶体晶体。这种方法的制备可通过以下几种途径组装制备(4):重力场下的组装、垂直沉降法、离心力场下的组装、电场下的组装、模板法等。但是这种晶体生成方法主要还是生成简单媒质简单周期的光子晶体。经过多年的研究,光子晶体制备技术上以器件化为指导,逐步由简单媒质简单周期向复杂媒质复合周期结构方向发展,由胶体模板自组装等纯化学制备手段向物理化学方法相融合的多元技术扩展,而且应用领域也不断扩宽,由光电子器件、集成光路进一步拓展到光电对抗、光学探测、传感等。

塑胶件结构设计基础知识

塑胶件结构设计基础知识 一、塑胶件 塑胶件设计时尽可能做到一次成功,对某些难以保证的地方,考虑到修模时 给模具加料难、去料易,可预先给塑料件保留一定的间隙。 常用塑料介绍 常用的塑料主要有ABS、AS、PC、PMMA、PS、HIPS、PP、POM 等,其 中常用的透明塑料有PC、PMMA、PS、AS。高档电子产品的外壳通常采用 ABS+PC;显示屏采用PC,如采用PMMA则需进行表面硬化处理。日常生活中 使用的中低档电子产品大多使用HIPS 和ABS 做外壳,HIPS因其有较好的抗老化性能,逐步有取代ABS 的趋势。 常见表面处理介绍 表面处理有电镀、喷涂、丝印、移印。ABS、HIPS、PC 料都有较好的表面 处理效果。而PP料的表面处理性能较差,通常要做预处理工艺。近几年发展起来的模内转印技术(IMD)、注塑成型表面装饰技术(IML)、魔术镜(HALF MIRROR)制造技术。 IMD与IML的区别及优势: 1. IMD膜片的基材多数为剥离性强的PET,而IML的膜片多数为PC. 2. IMD注塑时只是膜片上的油墨跟树脂接合,而IML是整个膜片履在树脂上 3. IMD是通过送膜机自动输送定位,IML是通过人工操作手工挂 1.1外形设计 对于塑胶件,如外形设计错误,很可能造成模具报废,所以要特别小心。外

形设计要求产品外观美观、流畅,曲面过渡圆滑、自然,符合人体工程。 现实生活中使用的大多数电子产品,外壳主要都是由上、下壳组成,理论上 上下壳的外形可以重合,但实际上由于模具的制造精度、注塑参数等因素影响, 造成上、下外形尺寸大小不一致,即面刮(面壳大于底壳)或底刮(底壳大于面壳)。可接受面刮<0.15mm,可接受底刮<0.1mm。所以在无法保证零段差时,尽量 使产品:面壳>底壳。 一般来说,上壳因有较多的按键孔,成型缩水较大,所以缩水率选择较大, 一般选0.5%。 底壳成型缩水较小,所以缩水率选择较小,一般选0.4%。 即面壳缩水率一般比底壳大0.1% 1.2装配设计 指有装配关系的!#_5$____零部件之间的装配尺寸设计。主要注意间隙配合和公差的控制。 1.2.1止口 指的是上壳与下壳之间的嵌合。设计的名义尺寸应留0.05~0.1mm 的间隙, 嵌合面应有1.5~2°的斜度。端部设倒角或圆角以利装入。 上壳与下壳圆角的止口配合。应使配合内角的R 角偏大,以增大圆角之间 的间隙,预防圆角处的干涉。 1.2.2扣位 主要是指上壳与下壳的扣位配合。在考虑扣位数量位置时,应从产品的总体 外形尺寸考虑,要求数量平均,位置均衡,设在转角处的扣位应尽量靠近转角, 确保转角处能更好的嵌合,从设计上预防转角处容易出现的离缝问题。

光子晶体研究进展(资剑)

光子晶体研究进展 资剑 复旦大学表面物理国家重点实验室,上海200433 Jzi@https://www.wendangku.net/doc/b918761067.html, 摘要 光子晶体是八十年代末提出的新概念和新材料,迄今取得异常迅猛的发展,是一门正在蓬勃发展的有前途的新学科。光子晶体不仅具有理论价值,更具有非常广阔的应用前景,这个领域已经成为国际学术界的研究热点。本文回顾光子晶体的发展历史,介绍光子晶体的特性、制作方法、理论研究以及应用前景。 关键词:光子晶体,光子能带,光子带隙,光子局域态,自发辐射,Maxwell方程组 我们所处的时代从某种意义上来说是半导体时代。半导体的出现带来了从日常生活到高科技革命性的影响。大规模集成电路、计算机、信息高速公路等等这些甚至连小学生都耳熟能详的东西是由半导体带来的。几乎所有的半导体器件都是围绕如何利用和控制电子的运动,电子在其中起到决定作用。半导体器件到如今可以说到了登峰造极的地步。集成的极限在可以看到的将来出现。这是由电子的特性所决定的。而光子有着电子所没有的优势:速度快,没有相互作用。因此,下一代器件扮演主角的将是光子。 光子晶体是1987年才提出的新概念和新材料[1,2]。这种材料有一个显著的特点是它可以如人所愿地控制光子的运动[3-5]。由于其独特的特性,光子晶体可以制作全新原理或以前所不能制作的高性能光学器件,在光通讯上也有重要的用途,如用光子晶体器件来替代传统的电子器件,信息通讯的速度快得无法想象。 1. 2. 光子晶体简介 3. 众所周知,电子在周期势场中传播时,由于电子波会受到周期势场的布拉格散射,会形成能带结构,带与带之间可能存在带隙。电子波的能量如果落在带隙中,传播是禁止的。其实,不管任何波,只要受到周期性调制,都有能带结构,也都有可能出现带隙。能量落在带隙中的波是不能传播的。电磁波或者光波也不会例外。不过人们真正清楚其物理含义已经是八十年代末了。 1987年Yabnolovitch [1]在讨论如何抑制自发辐射时提出了光子晶体这一新概念。几乎同时,John [2]在讨论光子局域时也独立提出。如果将不同介电常数的介电材料构成周期结构,电磁波在其中传播时由于布拉格散射,电磁波会受到调制而形成能带结构,这种能带结构叫

相关文档