文档库 最新最全的文档下载
当前位置:文档库 › 血栓素A_2受体基因多态性与哮喘相关性研究

血栓素A_2受体基因多态性与哮喘相关性研究

血栓素A_2受体基因多态性与哮喘相关性研究
血栓素A_2受体基因多态性与哮喘相关性研究

基因多态性与铁代谢

E DITORIALS&P ERSPECTIVES I ron homeostasis, like other physiological processes, relies on precise and timely interactions between key proteins involved in either its uptake or release. At the core of this is hepcidin, a small acute phase antimi-crobial peptide that now also appears to synchronously orchestrate the response of iron transporter and regula-tory genes to ensure proper balance between how much dietary iron is absorbed by the small intestine or released into the circulation by macrophages.1Several studies suggest that there are strong genetic compo-nents that underlie hepcidin regulation beyond the usual suspects(i.e. infection, inflammation, erythropoiesis, hypoxia and iron), in a manner that could impinge on phenotypic differences in susceptibility to iron-over-load or anemia. Based on variation in hepcidin expres-sion phenotypes, new emerging data suggest that there are heritable regulatory polymorphisms within the pro-moter that are linked to diseases of iron metabolism. Here we provide a perspective of what factors could determine such variability, giving some insight into how gene-gene, gene-environment, gene-nutrient inter-actions and even circadian rhythms may contribute to hepcidin ex pression variation and diseases associated with such variation. Role of human genetics in hepcidin expression variation Susceptibility to diseases of iron metabolism is often due to inappropriate levels of hepcidin expression or fer-roportin resistance to its effects.2Evidence suggests that these diseases cannot be fully explained by mutations in susceptibility genes alone i.e. those intimately linked to iron metabolism since most of these genes may have no mutations at all. This is particularly true for hepcidin because only a few mutations have been identified in the human hepcidin gene yet there are large variations in iron and hepcidin levels between individuals.3-5In other words, there are heritable differences in hepcidin expression that may determine phenotypic variation in iron metabolism between individuals. This is because like most other genes, hepcidin does not express at the same levels or in the same temporal order in every indi-vidual, a phenomenon known as the genomics of gene expression or expression level polymorphisms.6 Hepcidin regulation: the story so far For a whole host of reasons, gene expression is invari-ably stochastic. Thus, a random population-sampling would reveal wide variations in gene expression profiles and in hepcidin levels. Variation in hepcidin expression may be sex ually dimorphic or it may depend on age, iron levels, and infection/inflammation or simply on time of day.For example, estradiol has been shown to repress hepcidin transcription in fish7suggesting that dif-ferences in the complement of sex hormones could induce some variation in hepcidin expression within and between the sexes; this may underlie variation in hep-cidin ex pression and liver iron loading between males and females.3-5, 7-9 Regulatory variation in hepcidin ex pression may be determined by polymorphic cis-acting, non-coding regions of the gene. Thus these regions are just as crucial to quantitative differences in its ex pression as point mutations within its open-reading frame (ORF) because some of these regions contain transcription factor-bind-ing sites. Trans-acting factors also determine hepcidin expression variation; these include transcription factors and iron regulatory or modifier proteins.2Structural vari-ation in the hepcidin gene i.e. gene dosage or copy num-ber polymorphism, inversions and insertions,10may also determine variability in its ex pression. We conjecture that where certain individuals inherit different copy numbers or structural variants of the hepcidin gene, there may be consequential variation in hepcidin expres-sion and iron absorption. Although conceptually possi-ble, this type of variation has not yet been identified. Cis-acting regulatory polymorphisms in hepcidin expression level variation A CCAAT-enhancer-binding protein (C/EBP) recogni-tion site within the hepcidin promoter provided the first evidence for cis-acting regulation of its ex pression by C/EBPα.11Subsequently, we showed that hepcidin expression was also regulated by Upstream Stimulatory Factor (USF) and c-Myc/Max through several E-box es with the consensus sequence CAnnTG (n is any other nucleotide); these are binding sites for the basic helix-loophelix leucine zipper family of transcription factors.12 Genes that are regulated through E-boxes including the Clock genes period,timeless and clock tend to be under cir-cadian rhythmic transcriptional control,13suggesting that hepcidin may also be transcribed in pulses. This may account for the wide diurnal variations in hepcidin expression5which may cause cyclical changes in iron levels. We also showed that single nucleotide polymor-phisms (SNPs) within the cognate promoters of the genes in different mouse strains could contribute to vari-ability in mouse hepcidin gene ex pression as some of these SNPs constituted USF binding sites.14Similarly hepcidin ex pression by STAT3 (Signal Transducer and Activator of Transcription 3) is thought to be mediated by the STAT response element (also referred to as inter-feron-γactivation sequence, GAS), TTCTTGGAA.15In support of the contribution of regulatory SNPs in hep-cidin expression variation and iron metabolism, Island et al.found a C>T polymorphism (underlined) in one of Genetic variation in hepcidin expression and its implications for phenotypic differences in iron metabolism Henry K. Bayele, and Surjit Kaila S. Srai Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK. E-mail: kaila@https://www.wendangku.net/doc/b418784628.html,. doi:10.3324/haematol.2009.010793

药物代谢酶基因多态性简介

药物代谢酶基因多态性简介 代谢酶基因多态性是指由于编码代谢酶的DNA序列的单核苷酸多态性等可遗传变异,导致的不同种群之间代谢酶的底物特异性无变化,但是代谢酶的活性存在显著的差别的现象。由此可能造成个体间PK和药物反应的差异,进而造成不必要的治疗失败和毒副作用。单核苷酸多态性(SNPs)存在于Ⅰ相代谢酶、Ⅱ代谢酶和转运体等多个方面,其中临床影响较大的为CYP450酶的基因多态性,因此了解不同人群代谢酶活性的差异有助于理解种群间PK差异和实现个性化治疗。SNPs存在于许多亚型的代谢酶中,Sarah等人的研究结果显示如下图,其中高加索人种中CYP2D6多态性的频率最高,其次为CYP2A6和2B6。但是并非所有的CYPs均参与药物代谢,既存在较高频率的多态性,又与药物代谢相关的为CYP1A2, 2D6, 2C9和2C19,其中CYP2D6与多数药物的代谢相关,下文将以CYP2D6为代表阐述其进化特征、功能多样性和临床影响等相关内容。 CYP2D6是由497个氨基酸组成的多肽,其对生物碱类物质具有较高的亲和力,该酶不可被环境因素调控且不能被诱导。最早CYP2D6的多态性是由

于个体间PK差异引起人们注意的,而后随着生物技术手段的提升才逐渐揭开其遗传基础。CYP2D6位于染色体22q13.1上,其邻近包含两个假基因CYP2D7和CYP2D8。至今发现了几十种CYP2D6的等位基因,大多数编码有缺陷的基因产物,最常见的突变型等位基因分布于不同种群中,如CYP2D6*2, CYP2D6*4, CYP2D6*5, CYP2D6*10和CYP2D6*17等,详细见下图,其可分为彻底失活、活性降低、正常、活性增加和活性本质上的改变五大类,在不同种群中分布特点有明显的差异。亚洲人群最常见的CYP2D6*10,其发生了P34S的有害突变导致了P450折叠功能的丧失而造成不稳定性,且降低了底物的亲和力。非洲人群中常见突变体为CYP2D6*17发生的错义突变导致其活性位点结构发生改变,由此造成底物特异性发生改变,且其活性低于野生型。 如下图演示了CYP2D的演变规律,啮齿动物与人的活性CYP2D基因的数量存在巨大的差异,小鼠有9个不同的活性基因,而人只有1个,且7%的高加索人群缺失该活性基因。由于CYP2D6对于生物碱类的生物毒素具有高亲和力,进化角度可以认为小鼠需要保留较多的活性基因来维持解毒能力,而人类的饮食结构更为严谨进而逐渐不需要更多的活性基因。 不同人群中的CYP2D6的代谢活性可分为超快代谢(ultrarapid metabolizers, UMs)、快代谢(extensive metabolizers, EMs)、中等代谢(intermediate metabolizers, IMs)和慢代谢(poormetabolizers, PMs)四种类型。一般而言,白人种PMs的频率较高约为10%左右,而亚洲人群中

基因多态性

基因多态性 多态性(polymorphism)是指在一个生物群体中,同时和经常存在两种或多种不连续的变异型或基因型(genotype)或等位基因(allele),亦称遗传多态性(genetic polymorphism)或基因多态性。从本质上来讲,多态性的产生在于基因水平上的变异,一般发生在基因序列中不编码蛋白的区域和没有重要调节功能的区域。对于一个体而言,基因多态性碱基顺序终生不变,并按孟德尔规律世代相传。 基因多态性分类生物群体基因多态性现象十分普遍,其中,人类基因的结构、表达和功能,研究比较深入。人类基因多态性既来源于基因组中重复序列拷贝数的不同,也来源于单拷贝序列的变异,以及双等位基因的转换或替换。按引起关注和研究的先后,通常分为3大类:DNA片段长度多态性、DNA重复序列多态性、单核苷酸多态性。 DNA片段长度多态性DNA片段长度多态性(FLP),即由于单个碱基的缺失、重复和插入所引起限制性内切酶位点的变化,而导致DNA片段长度的变化。又称限制性片段长度多态性,这是一类比较普遍的多态性。 DNA重复序列多态性DNA重复序列的多态性(RSP),特别是短串联重复序列,如小卫星DNA和微卫星DNA,主要表现于重复序列拷贝数的变异。小卫星(minisatellite)DNA由15~65bp的基本单位串联而成,总长通常不超过20kb,重复次数在人群中是高度变异的。这种可变数目串联重复序列(VNTR)决定了小卫星DNA长度的多态性。微卫星(microsatellite)DNA 的基本序列只有1~8bp,而且通常只重复10~60次。 单核苷酸多态性单核苷酸多态性(SNP),即散在的单个碱基的不同,包括单个碱基的缺失和插入,但更多的是单个碱基的置换,在CG序列上频繁出现。这是目前倍受关注的一类多态性。 SNP通常是一种双等位基因的(biallelic),或二态的变异。SNP大多数为转换,作为一种碱基的替换,在基因组中数量巨大,分布频密,而且其检测易于自动化和批量化,因而被认为是新一代的遗传标记。 遗传背景知识遗传和变异各种生物都能通过生殖产生子代,子代和亲代之间,不论在形态构造或生理功能的特点上都很相似,这种现象称为遗传(heredity)。但是,亲代和子代之间,子代的各个体之间不会完全相同,总会有所差异,这种现象叫变异(variation)。遗传和变异是生命的特征。遗传和变异的现象是多样而复杂的,正因为如此,才导致生物界的多种多样性。

麻醉药物基因组学进展

麻醉药物基因组学进展 本文对药物基因组学的基本概念和常用麻醉药的药物基因组学研究进 展实行综述。 药物基因组学是伴随人类基因组学研究的迅猛发展而开辟的药物遗传 学研究的新领域,主要阐明药物代谢、药物转运和药物靶分子的基因 多态性及药物作用包括疗效和毒副作用之间关系的学科。 基因多态性是药物基因组学的研究基础。药物效应基因所编码的酶、 受体、离子通道作为药物作用的靶,是药物基因组学研究的关键所在。基因多态性可通过药物代谢动力学和药物效应动力学改变来影响麻醉 药物的作用。 基因多态性对药代动力学的影响主要是通过相对应编码的药物代谢酶 及药物转运蛋白等的改变而影响药物的吸收、分布、转运、代谢和生 物转化等方面。与麻醉药物代谢相关的酶有很多,其中对细胞色素- P450家族与丁酰胆碱酯酶的研究较多。基因多态性对药效动力学的影 响主要是受体蛋白编码基因的多态性使个体对药物敏感性发生差异。 苯二氮卓类药与基因多态性:咪唑安定由CYP3A代谢,不同个体对咪 唑安定的清除率可有五倍的差异。地西泮是由CYP2C19和CYP2D6代谢,基因的差异在临床上可表现为用药后镇静时间的延长。 吸入麻醉药与基因多态性:RYR1基因变异与MH密切相关,现在已知 至少有23种不同的RYR1基因多态性与MH相关。氟烷性肝炎可能源于 机体对在CYP2E1作用下产生的氟烷代谢产物的一种免疫反应。 神经肌肉阻滞药与基因多态性:丁酰胆碱酯酶是水解琥珀酰胆碱和美 维库铵的酶,已发现该酶超过40种的基因多态性,其中最常见的是被 称为非典型的(A)变异体,与用药后长时间窒息相关。 镇痛药物与基因多态性:μ-阿片受体是阿片类药的主要作用部位, 常见的基因多态性是A118G和G2172T。可待因和曲马多通过CYP2D6代

基因多态性分析

. 人基因多态性分析 一、实验目的 1. 了解基因多态性在阐明人体对疾病、毒物的易感性与耐受性、疾病临床表现的多样性以及对药物治疗的反应性中的重要作用。 2. 了解分析基因多态性的基本原理和研究方法。 二、实验原理 基因多态性(gene polymorphism)是指在一个生物群体中,同时存在两种及以上的变异型或基因型或等位基因,也称为遗传多态性(genetic polymorphism)。人类基因多态性对于阐明人体对疾病的易感性、毒物的耐受性、药物代谢差异及遗传性疾病的分子机制有重大意义;与致病基因连锁的多态性位点可作为遗传病的诊断标记,并为分离克隆致病基因提供依据;病因未知的疾病与候选基因多态性的相关性分析,可用于辅助筛选致病易感基因。 聚合酶链反应-限制性片段长度多态性(polymerase chain reaction—Restriction Fragment Length Polymorphism,PCR-RFLP)分析是一种常用的DNA分子标记。原理是通过PCR扩增获得目的基因。若目的基因存在等位变异(多态性),且变异正好发生在某种限制性内切酶识别位点上,使酶切位点增加或者消失,则酶切结果就会产生大小不同的片段,即片段长度多态性,再利用琼脂糖凝胶电泳分离,可呈现出多态性电泳图谱。若将患者与正常的多态性图谱比较,可确定是否变异。应用PCR-RFLP,可检测某一致病基因已知的点突变,进行直接基因诊断,也可以此为遗传标记进行连锁分析进行间接基因诊断。 三、器材与试剂 1. 器材 ⑴离心机。 ⑵DNA扩增仪。 ⑶电泳仪。 ⑷水平电泳槽。 ⑸紫外检测仪。 ⑹移液器。 2. 试剂 . . ⑴口腔拭子DNA抽提试剂盒。 ⑵琼脂糖。 ⑶1×TAE电泳缓冲液:980ml蒸馏水中加入50×TAE母液20ml。 ⑷50×TAE母液:Tris 121g,0.5M EDTA(pH8.0)50ml,冰醋酸28.55ml,定容至500ml。

麻醉药物,个体化用药综述,协和医院,罗爱伦

中华麻醉在线 http://www.csaol.cn 2007年9月 麻醉药物基因组学研究进展 王颖林郭向阳罗爱伦 北京协和医院麻醉科 本文对药物基因组学的基本概念和常用麻醉药的药物基因组学研究进展进行综述。 药物基因组学是伴随人类基因组学研究的迅猛发展而开辟的药物遗传学研究的新领域,主要阐明药物代谢、药物转运和药物靶分子的基因多 态性及药物作用包括疗效和毒副作用之间关系的学科。 基因多态性是药物基因组学的研究基础。药物效应基因所编码的酶、受体、离子通道作为药物作用的靶,是药物基因组学研究的关键所在。基 因多态性可通过药物代谢动力学和药物效应动力学改变来影响麻醉药物的 作用。 基因多态性对药代动力学的影响主要是通过相应编码的药物代谢酶及药物转运蛋白等的改变而影响药物的吸收、分布、转运、代谢和生物转化等方面。与麻醉药物代谢有关的酶有很多,其中对细胞色素-P450家族与丁酰胆碱酯酶的研究较多。基因多态性对药效动力学的影响主要是受体蛋白编码基因的多态性使个体对药物敏感性发生差异。 苯二氮卓类药与基因多态性:咪唑安定由CYP3A代谢,不同个体对咪唑安定的清除率可有五倍的差异。地西泮是由CYP2C19和CYP2D6代谢,基因的差异在临床上可表现为用药后镇静时间的延长。 吸入麻醉药与基因多态性:RYR1基因变异与MH密切相关,现在已知至少有23种不同的RYR1基因多态性与MH有关。氟烷性肝炎可能源于机体对在

CYP2E1作用下产生的氟烷代谢产物的一种免疫反应。 神经肌肉阻滞药与基因多态性:丁酰胆碱酯酶是水解琥珀酰胆碱和美维库铵的酶,已发现该酶超过40种的基因多态性,其中最常见的是被称为非典型的(A)变异体,与用药后长时间窒息有关。 镇痛药物与基因多态性:μ-阿片受体是阿片类药的主要作用部位,常见的基因多态性是A118G和G2172T。可待因和曲马多通过CYP2D6代谢。此外,美沙酮的代谢还受CYP3A4的作用。儿茶酚O-甲基转移酶(COMT)基因与痛觉的产生有关。 局部麻醉药与基因多态性:罗哌卡因主要由CYP1A2和CYP3A4代谢。CYP1A2的基因多态性主要是C734T和G2964A,可能影响药物代谢速度。 一直以来麻醉科医生较其它专业的医疗人员更能意识到不同个体对药物的反应存在差异。麻醉药的药物基因组学研究将不仅更加合理的解释药效与不良反应的个体差异,更重要的是在用药前就可以根据病人的遗传特征选择最有效而副作用最小的药物种类和剂型,达到真正的个体化用药。 能够准确预测病人对麻醉及镇痛药物的反应,一直是广大麻醉科医生追求的目标之一。若能了解药物基因组学的基本原理,掌握用药的个体化原则,就有可能根据病人的不同基因组学特性合理用药,达到提高药效,降低毒性,防止不良反应的目的。本文对药物基因组学的基本概念和常用麻醉药的药物基因组学研究进展进行综述。 一、概述

如何用PCR法检测基因的多态性

如何用PCR法检测基因的多态性 多态性(polymorphism)是指处于随机婚配的群体中,同一基因位点可存在2种以上的基因型。在人群中,个体间基因的核苷酸序列存在着差异性称为基因(DNA)的多态性(gene polymorphism)。这种多态性可以分为两类,即DNA 位点多态性(site polymorphism)和长度多态性(longth polymorphism)。 基因多态性的主要检测方法简述如下: 1.限制性片段长度多态性(Restriction Fragment Length Polymorphism,RFLP):由DNA 的多态性,致使DNA 分子的限制酶切位点及数目发生改变, 用限制酶切割基因组时, 钠 问 亢兔扛銎 蔚某ざ染筒煌 此 降南拗菩云 纬ざ榷嗵 裕 贾孪拗破 纬ざ确⑸ 谋涞拿盖形坏悖 殖莆 嗵 晕坏恪W钤缡怯肧outhern Blot/RFLP方法检测,后来采用聚合酶链反应(PCR)与限制酶酶切相结合的方法。现在多采用PCR-RFLP法进行研究基因的限制性片段长度多态性。 2.单链构象多态性(SSCP):是一种基于单链DNA构象差别的点突变检测方法。相同长度的单链DNA如果顺序不同,甚至单个碱基不同,就会形成不同的构象。在电泳时泳动的速度不同。将PCR产物经变性后,进行单链DNA凝胶电泳时,靶DNA中若发生单个碱基替换等改变时,就会出现泳动变位(mobility shift),多用于鉴定是否存在突变及诊断未知突变。 3.PCR-ASO探针法(PCR-allele specific oligonucleotide, ASO):即等位基因特异性寡核苷酸探针法。在PCR扩增DNA片段后,直接与相应的寡核苷酸探杂交,即可明确诊断是否有突变及突变是纯合子还是杂合子。其原理是:用PCR扩增后,产物进行斑点杂交或狭缝杂交,针对每种突变分别合成一对寡核苷酸片段作为探针,其中一个具有正常序列,另一个则具有突变碱基。突变碱基及对应的正常碱基匀位于寡核苷酸片段的中央,严格控制杂交及洗脱条件,使只有与探针序列完全互补的等位基因片段才显示杂交信号,而与探针中央碱基不同的等位基因片段不显示杂交信号,如果正常和突变探针都可杂交,说明突变基因是杂合子,如只有突变探针可以杂交,说明突变基因为纯合子,若不能与含有突变序列的寡核苷探针杂交,但能与相应的正常的寡核苷探针杂交,则表示受检者不存在这种突变基因。若与已知的突变基因的寡核苷探针匀不能杂交,提示可能为一种新的突变类型。 4. PCR-SSO法:SSO技术即是顺序特异寡核苷酸法(Sequence Specific Oligonucleotide, SSO)。原理是PCR基因片段扩增后利用序列特异性寡核苷酸探针,通过杂交的方法进行扩增片段的分析鉴定。探针与PCR产物在一定条件下杂交具有高度的特异性,严格遵循碱基互补的原则。探针可用放射性同位素

CYP2C19基因多态性检测

CYP2C19基因多态性检测 项目简介:CYP2C19是CYP450酶第二亚家族中的重要成员,是人体重要的药物代谢 酶,在肝脏中有很多表达。CYP2C19基因座位于染色体区10q24.2上,由9个外显子构成。CYP2C19具有很多SNP位点,最常见的是CYP2C19*2和CYP2C19*3。CYP2C19*2会导致转录蛋白的剪切突变失活,而CYP2C19*3能构成一个终止子,破坏转录蛋白的活性。据统计,CYP2C19*2和CYP2C19*3两个突变位点能解释几乎100%的东亚人和85%的高加索人种的相关弱代谢遗传缺陷,而其他两种等位基因CYP2C19*4和CYP2C19*5主要在高加索人种中分布。大量证据证实,不同人种在CYP2C19的底物的代谢能力有很大差异;2–5%高加索人是弱代谢者,而13–23%的亚洲人是弱代谢者。这是由于在亚洲人口中CYP2C19*2和CYP2C19*3等位基因的高频率造成的。通过CYP2C19基因检测,判断患者对相关药物的代谢能力,可以指导临床用方案的制定,实现个体化用药治疗。 临床上常用的经由CYP2C19酶代谢的药物: 1、治疗胃酸相关性疾病:如质子泵抑制剂:奥美拉唑(omeprazole)、兰索拉唑(lansoprazole)、泮托拉唑(pantoprazole)、 雷贝拉唑(rabeprazole)、埃索美拉唑 (Esomeprazole)。 2、治疗心血管疾病:Clopidogrel、氯吡格雷、抗凝血药物。 3、抗真菌药物:Voriconazole、伏立康唑、广谱抗真菌药物。 4、神经类药物:①S-美芬妥英mephenytoin为乙内酰脲类抗癫痫药,在体内的羟化代谢主要由单基因CYP2C19编码表达的CYP2C19酶蛋白介导,由羟化酶CYP2C19氧化生成4’-羟基美芬妥英;②地西泮diazepam,一种长效的镇静、安眠药;③丙米嗪imipramine ,抗抑郁药,N-去甲基化和2-羟化;④苯巴比妥phenobarbital,传统的抗癫痫药;⑤抗心律失常药,抗抑郁药,抗精神病药,β受体阻断剂,抗高血压药和止痛剂。 5、抗肿瘤药:环磷酰胺。 6、抗结核药:利福平。 7、孕激素:黄体酮。 8、抗疟疾药:氯胍。 9、HIV蛋白酶抑制剂。 10、抗移植排斥药物:他克莫司、兰索拉唑。 CYP2C19基因多态性检测标本采集及出报告时间:病人抽静脉血2ml(用 EDTA-K2抗凝)送检验科分子生物诊断室,4个工作日出报告。 电话:8801063 手机:余宗涛65327 高波 64444 CYP2C19基因多态性检测临床意义: 1、基因剂量效应。 2、CYP2C19基因多态性,导致了个体间酶活性的多样性。等位基因的突变使酶活性降低,对药物代谢的能力随着等位基因的不同组合而呈现出一定的规律性,表现出正常基因纯合子>正常基因与突变基因杂合子> 突变基因纯合子或杂合子的变化趋势。 3、对于不同代谢能力的个体,运用不同的药物剂量等策略是非常必要的,可达到更好的治疗效果。 4、根据CYP2C19基因型给予个性化的药物和剂量可以降低副作用发生率-安全性;提高治

SNP单核苷酸多态性检测技术

1定义: 单核苷酸多态性(single nucleotide polymorphism,SNP),主要是指在基因组水平上由单个核苷酸的变异所引起的DNA序列多态性。它是人类可遗传的变异中最常见的一种。占所有已知多态性的90%以上。SNP在人类基因组中广泛存在,平均每500~1000个碱基对中就有1个,估计其总数可达300万个甚至更多。SNP所表现的多态性只涉及到单个碱基的变异,这种变异可由单个碱基的转换(transition)或颠换(transversion)所引起,也可由碱基的插入或缺失所致。但通常所说的SNP并不包括后两种情况。单核苷酸多态性(SNP)是指在基因组上单个核苷酸的变异,包括置换、颠换、缺失和插入。所谓转换是指同型碱基之间的转换,如嘌呤与嘌呤( G2A) 、嘧啶与嘧啶( T2C) 间的替换;所谓颠换是指发生在嘌呤与嘧啶(A2T、A2C、C2G、G2T) 之间的替换。从理论上来看每一个SNP 位点都可以有4 种不同的变异形式,但实际上发生的只有两种,即转换和颠换,二者之比为2:1。SNP 在CG序列上出现最为频繁,而且多是C转换为T ,原因是CG中的C 常为甲基化的,自发地脱氨后即成为胸腺嘧啶。一般而言,SNP 是指变异频率大于1 %的单核苷酸变异。在人类基因组中大概每1000 个碱基就有一个SNP ,人类基因组上的SNP 总量大概是3 ×106个。依据排列组合原理,SNP 一共可以有6种替换情况,即A/ G、A/ T、A/ C、C/ G、C/ T 和G/ T ,但事实上,转换的发生频率占多数,而且是C2T 转换为主,其原因是Cp G的C 是甲基化的,容易自发脱氨基形成胸腺嘧啶T , Cp G 也因此变为突变热点。理论

临床药学习题

临床药学习题

————————————————————————————————作者:————————————————————————————————日期: ?

第二章 名词解释: 1、治疗药物检测 2、有效血药浓度范围 简答题:?1、治疗药物监测的定义是什么? 2、开展治疗药物监测的意义是什么??3、尽管血液中的药物浓度与靶位浓度并不相等,但为什么仍将检测血药浓度的大小作为调整剂量的依据??4、剂量与血药浓度之间相关性的影响因素有哪些??5、何为有效血药浓度范围?何为目标浓度?有效血药浓度范围与药物效应有何关系??6、体内药物分析的目标物有哪些?为什么说测定游离药物浓度更有指导意义? 7、目前治疗药物监测常用的体内药物分析方法有哪些??8、药物分析方法学确证包括哪些方面?各有何要求??9、体内药物分析的质量控制的目的意义是什么?质量控制分哪两大部分? 10、回顾性室内质量控制主要方法是什么?质量控制图绘制的目的和方法是什么? 11、何为室间质量控制?开展室间质量控制的目的和主要程序是什么??12、治疗药物监测的主要临床指征是什么?哪些情况不需要进行治疗药物监测? 13、治疗药物监测的主要流程是什么? 14、治疗药物监测的采样时间如何决定? 15、样本采集注意事项是什么? 16、如何做好治疗药物监测结果解释工作和向临床提供咨询服务? 17、血药浓度检测结果可能会出现哪些情况?如何处置? 18、调整给药方案主要从那几方面入手? 19、治疗药物监测的临床应用主要在哪些方面??20、常规的治疗药物监测的药物主要有哪 22、群体药动学在TDM中的应用有哪些方面? 些?? 21、给药方案的调整主要有哪些方法?? 24、群体药动学的应用特点和意义? 23、群体药动学的定义是什么?? 26、何为混合效应?何为混25、群体药动学分析方法中存在有几个主要参数群?各是什么?? 合效应模型法? 28、NONMEN法和Bayesian反馈法的意义及其实施步骤是什27、何为Bayesian反馈法?? 么??29、NONMEN软件有何特点? 第三章 名词解释:?1、临床试验?2、知情同意?3、检察员?4、病例报告表?5、多中心临床试验 6、临床试验标准操作规程 简答题:?1、我国的《药品注册管理办法》将临床试验分为几期?简述各期临床试验的概念的特点??2、简述哪些方面需要制定SOP? 第四章 名词解释:?1、遗传药理学?2、单核苷酸多态性?简答题: 1、等位基因的变异有哪几种类型? 2、计算题:某研究分析了人体血标本100份(男、女各50份),发现该基因的突变纯合子个体10个,突变杂合子个体30个,野生型个体60个,试计算该基因中各基因型的频率和等位基因频率(假设该基因单核苷酸多态性的野生型为GG,突变杂合子为GA,突变纯合子为AA)。 3、药物转运蛋白主要有哪些?

基因多态性分析

人基因多态性分析 一、实验目的 1. 了解基因多态性在阐明人体对疾病、毒物的易感性与耐受性、疾病临床表现的多样性以及对药物治疗的反应性中的重要作用。 2. 了解分析基因多态性的基本原理和研究方法。 二、实验原理 基因多态性(gene polymorphism)是指在一个生物群体中,同时存在两种及以上的变异型或基因型或等位基因,也称为遗传多态性(genetic polymorphism)。人类基因多态性对于阐明人体对疾病的易感性、毒物的耐受性、药物代谢差异及遗传性疾病的分子机制有重大意义;与致病基因连锁的多态性位点可作为遗传病的诊断标记,并为分离克隆致病基因提供依据;病因未知的疾病与候选基因多态性的相关性分析,可用于辅助筛选致病易感基因。 聚合酶链反应-限制性片段长度多态性(polymerase chain reaction—Restriction Fragment Length Polymorphism,PCR-RFLP)分析是一种常用的DNA分子标记。原理是通过PCR扩增获得目的基因。若目的基因存在等位变异(多态性),且变异正好发生在某种限制性内切酶识别位点上,使酶切位点增加或者消失,则酶切结果就会产生大小不同的片段,即片段长度多态性,再利用琼脂糖凝胶电泳分离,可呈现出多态性电泳图谱。若将患者与正常的多态性图谱比较,可确定是否变异。应用PCR-RFLP,可检测某一致病基因已知的点突变,进行直接基因诊断,也可以此为遗传标记进行连锁分析进行间接基因诊断。 三、器材与试剂 1. 器材 ⑴离心机。 ⑵DNA扩增仪。 ⑶电泳仪。 ⑷水平电泳槽。 ⑸紫外检测仪。 ⑹移液器。 2. 试剂

药物基因组学

药物基因组学 PART 01 药物基因组学 一、药物基因组学 药物基因组学:是研究人类基因变异和药物反应的关系,利用基因组学信息解答不同个体对同一药物反应存在差异的原因。 基因组(genome):是指生物体单倍细胞中一套完整的遗传物质,包括所有的基因和基因间区域(即编码区和非编码区)。 人类基因组计划是由序列(结构)基因组学向功能基因组学的转移。开启了人类的“后基因组时代”。 后基因组时代研究的重要方向: 功能基因组学 比较基因组学 结构基因组学 蛋白质组学 药物基因组学 …… PART 02 基因多态性 二、基因多态性 基因多态性是指在一个生物群体中,呈不连续多峰曲线分布的一个或多个等位基因发生突变而产生的遗传变异。 CYP450酶超大家族 共涉及1000种药物的代谢(拓展) 12种亚型:CYP1、CYP2、CYP3…… 15个亚家族:A~Q 如:CYP2C9、CYP2C19、CYP2D6、CYP3A5等 药物转运蛋白-MDR1(多药耐药基因)(拓展) 调控许多药物吸收、分布和排泄过程 与胆红素、抗癌化疗药物、强心苷、免疫抑制剂、糖皮质激素、HIVⅠ型蛋白抑制剂有关 药物靶蛋白-ADRB2 编码人β2肾上腺受体 人类白血球抗原-HLA-B HLA-B变异,将引起某些药物的严重皮肤反应 内容: 1.药物代谢酶的多态性 同一基因位点上具有多个等位基因引起,其多态性决定表型多态性和药物代谢酶的活性,造成不同个体间药物代谢反应的差异。是产生药物毒副作用、降低或丧失药效的主要原因之一。 细胞色素P450酶(CYP)是药物代谢的主要酶系。在细胞色素P450的亚群中,CYP2D6、CYP2C9和CYP2C19对许多药物的效应非常重要。(拓展) 例: 奥美拉唑、兰索拉唑和泮托拉唑等质子泵抑制剂由P450酶代谢,主要由CYP2C19,部分由CYP3A4代谢。 因此,CYP2C19的基因多态性会影响质子泵抑制剂的药动学,从而影响后者治疗相关疾病的临床效果。 艾司奥美拉唑仅经CYP3A4代谢。 2.药物转运蛋白 在药物的吸收、排泄、分布、转运等方面起重要作用,其变异对药物吸收和消除具有重要意义。

基因多态性及其生物学作用和医学意义doc资料

基因多态性及其生物学作用和医学意义

基因多态性及其生物学作用和医学意义 一、基因多态性: 多态性(polymorphism)是指处于随机婚配的群体中,同一基因位点可存在2 种以上的基因型。在人群中,个体间基因的核苷酸序列存在着差异性称为基因(DNA)的多态性(gene polymorphism)。这种多态性可以分为两类,即DNA位点多态性(site polymorphism)和长度多态性 (longth polymorphism)。 1.位点多态性:是由于等位基因之间在特定的位点上DNA序列存在差异,也就是基因组中散在的碱基的不同,包括点突变(转换和颠换),单个碱基的置换、缺失和插入。突变是基因多态性的一种特殊形式,单个碱基的置换又称为单核苷酸多态性(single nucleotide polymorphism, SNP), SNP通常是一种二等位基因(biallelic)或二态的变异。据估计,单碱基变异的频率在1/1000-2/1000。SNP在基因组中数量巨大,分布频密,检测易于自动化和批量化,被认为是新一代的遗传标记。 2. 长度多态性:一类为可变数目***重复序列(variable number of tandem repeats, VNTRS),它是由于相同的重复顺序重复次数不同所致,它决定了小卫星 DNA(minisatellite)长度的多态性。小卫星是由15-65 bp的基本单位***而 成,总长通常不超过20bp,重复次数在人群中是高度变异的。另一类长度多态性是由于基因的某一片段的缺失或插入所致,如微卫星DNA (microsatellite),它们是由重复序列***构成,基本序列只有1-8bp,如(TA)n及

麻醉药物基因组学研究论文

麻醉药物基因组学研究论文 本文对药物基因组学的基本概念和常用麻醉药的药物基因组学研究进展进行综述。 药物基因组学是伴随人类基因组学研究的迅猛发展而开辟的药物遗传学研究的新领域,主要阐明药物代谢、药物转运和药物靶分子的基因多态性及药物作用包括疗效和毒副作用之间关系的学科。 基因多态性是药物基因组学的研究基础。药物效应基因所编码的酶、受体、离子通道作为药物作用的靶,是药物基因组学研究的关键所在。基因多态性可通过药物代谢动力学和药物效应动力学改变来影响麻醉药物的作用。 基因多态性对药代动力学的影响主要是通过相应编码的药物代谢酶及药物转运蛋白等的改变而影响药物的吸收、分布、转运、代谢和生物转化等方面。与麻醉药物代谢有关的酶有很多,其中对细胞色素-P450家族与丁酰胆碱酯酶的研究较多。基因多态性对药效动力学的影响主要是受体蛋白编码基因的多态性使个体对药物敏感性发生差异。 苯二氮卓类药与基因多态性:咪唑安定由CYP3A代谢,不同个体对咪唑安定的清除率可有五倍的差异。地西泮是由CYP2C19和CYP2D6代谢,基因的差异在临床上可表现为用药后镇静时间的延长。 吸入麻醉药与基因多态性:RYR1基因变异与MH密切相关,现在已知至少有23种不同的RYR1基因多态性与MH有关。氟烷性肝炎可能源于机体对在CYP2E1作用下产生的氟烷代谢产物的一种免疫反应。 神经肌肉阻滞药与基因多态性:丁酰胆碱酯酶是水解琥珀酰胆碱和美维库铵的酶,已发现该酶超过40种的基因多态性,其中最常见的是被称为非典型的(A)变异体,与用药后长时间窒息有关。 镇痛药物与基因多态性:μ-阿片受体是阿片类药的主要作用部位,常见的基因多态性是A118G和G2172T。可待因和曲马多通过CYP2D6代谢。此外,美沙酮的代谢还受CYP3A4的作用。儿茶酚O-甲基转移酶(COMT)基因与痛觉的产生有关。 局部麻醉药与基因多态性:罗哌卡因主要由CYP1A2和CYP3A4代谢。CYP1A2

相关文档
相关文档 最新文档