文档库 最新最全的文档下载
当前位置:文档库 › 【CN110048180A】一种镍钴锰三元锂离子电池的高效充电方法【专利】

【CN110048180A】一种镍钴锰三元锂离子电池的高效充电方法【专利】

【CN110048180A】一种镍钴锰三元锂离子电池的高效充电方法【专利】
【CN110048180A】一种镍钴锰三元锂离子电池的高效充电方法【专利】

(19)中华人民共和国国家知识产权局

(12)发明专利申请

(10)申请公布号 (43)申请公布日 (21)申请号 201910233881.4

(22)申请日 2019.03.26

(71)申请人 中国汽车技术研究中心有限公司

地址 300300 天津市东丽区先锋东路68号

申请人 中汽研汽车检验中心(天津)有限公

(72)发明人 王芳 陈立铎 马天翼 马绪 

樊彬 刘仕强 林春景 孙智鹏 

(74)专利代理机构 天津滨海科纬知识产权代理

有限公司 12211

代理人 孙晓凤

(51)Int.Cl.

H01M 10/44(2006.01)

H01M 10/0525(2010.01)

(54)发明名称

一种镍钴锰三元锂离子电池的高效充电方

(57)摘要

本发明涉及一种镍钴锰三元锂离子电池的

高效充电方法,包括在N个不同的电压区间内,

采用具有不同斜率的电流曲线对电池进行充电,N

为大于或等于2的整数。本发明提出的针对镍钴

锰三元锂离子电池的多阶段线性充电法,从理论

上更加符合马斯最佳充电曲线,充进容量的同时

能够减小极化,也减小对电极材料的损伤;与常

规恒流-恒压充电法相比,在充电容量降低不到

5%的前提下,充电时间能够缩短至少20%,大幅

度提升了充电效率。权利要求书1页 说明书5页 附图2页CN 110048180 A 2019.07.23

C N 110048180

A

权 利 要 求 书1/1页CN 110048180 A

1.一种镍钴锰三元锂离子电池的高效充电方法,其特征在于,包括:

在N个不同的电压区间内,采用具有不同斜率的电流曲线对电池进行充电,N为大于或等于2的整数。

2.根据权利要求1所述的一种镍钴锰三元锂离子电池的高效充电方法,其特征在于,所述电压区间为4.0V-4.2V。

3.根据权利要求1所述的一种镍钴锰三元锂离子电池的高效充电方法,其特征在于,所述充电方法如下:

测试样品的额定容量的数值记为X,样品的即时电压数值记为Y;

当电压区间小于等于4.0V时,以X(A)恒电流充电。

4.根据权利要求1所述的一种镍钴锰三元锂离子电池的高效充电方法,其特征在于,所述充电方法如下:

测试样品的额定容量的数值记为X,样品的即时电压数值记为Y;

当电压区间在4.0V-4.15V时,以电流=-3.3Y+15.2(A)的线性变化趋势充电。

5.根据权利要求1所述的一种镍钴锰三元锂离子电池的高效充电方法,其特征在于,所述充电方法如下:

测试样品的额定容量的数值记为X,样品的即时电压数值记为Y;

当电压区间在4.15V-充电截止电压时,以电流=-10.0Y+43.0(A)的线性变化趋势充电。

6.根据权利要求1所述的一种镍钴锰三元锂离子电池的高效充电方法,其特征在于,所述充电方法如下:

测试样品的额定容量的数值记为X,样品的即时电压数值记为Y;

当电压区间在到达充电截止电压后,恒定电压充电至电流降低至0.05X(A)后,停止充电。

7.根据权利要求1所述的一种镍钴锰三元锂离子电池的高效充电方法,其特征在于,所述充电方法如下:

测试样品的额定容量的数值记为X,样品的即时电压数值记为Y;

当电压区间小于等于4.0V时,以X(A)恒电流充电;

当电压区间在4.0V-4.15V时,以电流=-3.3Y+15.2(A)的线性变化趋势充电;

当电压区间在4.15V-充电截止电压时,以电流=-10.0Y+43.0(A)的线性变化趋势充电;

当电压区间在到达充电截止电压后,恒定电压充电至电流降低至0.05X(A)后,停止充电。

2

镍钴锰三元素氢氧化物化学分析方法

高频感应炉燃烧后红外吸收法测定磷酸铁锂中碳含量的研究报告 广东邦普循环科技股份有限公司 2013.7

高频感应炉燃烧后红外吸收法测定磷酸铁锂中碳含量 谢英豪,黎俊茂,袁杰 摘要:试样中的碳经过富氧条件下的高温加热,氧化为二氧化碳气体。该气体经处理后进入相应的吸收池,对相应的红外辐射进行吸收,由探测器转化为信号,经计算机处理输出结果。结果表明:该方法测定磷酸铁锂中碳的精密度为小于1.0%,此方法准确、快速、灵敏度高,适用于实际样品的分析。 关键词:高频红外吸收法法;磷酸铁锂;测定;碳 前言: 现代仪器测定碳的方法主要有高频感应炉燃烧后红外吸收法[1]、X射线荧光光谱法[2-4]、离子色谱法[5]等。高频感应炉燃烧后红外吸收法因结果准确、精密度高、操作简便、分析速度快等优点被广泛应用于分析钢铁材料中的碳元素。本文在高频感应炉燃烧后红外吸收法[6]的基础上,研究了磷酸铁锂正极材料中碳含量的测定,实验结果良好,该方法能满足科研及产业化生产的需要。 1 实验部分 1.1 主要试剂 1.1.1 氧气:纯度不低于99.5 %。 1.1.2 干燥剂:无水高氯酸镁,粒度0.7 mm~1.2 mm。 1.1.3 净化剂:烧碱石棉,粒度0.7 mm~1.2 mm。 1.1.4 纯铁:纯度大于99.8 %,碳含量小于0.002 %。 1.1.5 钨粒:碳含量小于0.002 %。 1.1.6 瓷坩埚:瓷坩埚大小应精确,能够用于在高频感应炉中燃烧;用前将瓷坩埚置于马弗炉中,于1200 ℃灼烧不少于2 h,取出稍冷后储存在干燥器中。 1.2 仪器 除非另有说明,分析中仅使用普通实验室设备。 高频感应燃烧炉和红外吸收定碳仪可以从厂家购买。仪器的操作按照制造厂商的说明书。根据制造厂技术规范,需要一个调压器来控制进炉氧气的压力(通常为28 kN/m2)。市售商品仪器的特性参见GB/T 21631.1—2008中的附录B。 1.3 分析步骤 1.3.1试料 试样用前应置于110℃的烘箱中干燥1 h,取出后储存在干燥器中。称取0.200 0 g试样,精确至0.000 1 g。(粒度应不大于0.10 mm) 1.3.2 分析前准备 仪器启动前用氧气(1.1.1)检查气路的气密性,燃烧室、过滤器应经常清理。按仪器要求定期更换干燥剂(1.1.2)、净化剂(1.1.3)。

三元镍钴锰正极材料的制备及改性

三元镍钴锰正极材料的制备及改性 摘要:三元镍钴锰正极材料作为锂电池正极材料,具有较高的可逆容量、结构 稳定性、热稳定性,它是当下电动汽车领域最具前景的锂离子电池正极材料之一。基于此,作者总结国内外与三元镍钴锰正极材料的制备及改性相关的知识,并结 合自己的理解,从材料制备方法和掺杂改性方面,介绍了三元镍钴锰正极材料制 备技术及改性技术的研究进展。 关键词:三元镍钴锰;正极材料;制备;改性 1三元镍钴锰正极材料的制备工艺 目前合成富镍三元材料的主流方法是首先采用共沉淀方法合成三元前驱体, 然后加入锂盐采用高温固相法合成最终产品。也有其他合成方法,如溶胶-凝胶、 共沉淀法等,但是不同的制备技术,最终所得材料的粒子尺寸和孔结构千差万别,对材料结晶程度、结构稳定性和锂离子传输过程产生巨大影响,进而影响材料电 化学性能。图1为 Li[Ni x Co y Mn z ]O 2晶体结构示意图。 图1 Li[Ni x Co y Mn z ]O 2晶体结构示意图 1.1高温固相法 高温固相法合成工艺简单,产量大,易于实现工业化,但产物粒径相对较大,粒径分布一致性差等缺陷,影响了其性能。Jiang[3]等在固相法制备三元111的过 程中发现,采用特殊的煅烧技术—等离子体辅助煅烧技术,不仅可以极大地降低 煅烧温度、缩减煅烧时间,同时也可以显著提升材料的电化学性能。与普通气体 不同,等离子体实质上是一种电离的气体,具有超高的电导率,且存在一定磁场 效应。在等离子体氛围煅烧过程中,由于等离子体的特殊物理特性,可以提高机 械混合后金属离子之间的化学反应活性,加快煅烧过程中元素的扩散速率,从而 实现三元镍钴锰正极材料的低温快速制备。他们以NiO、MnO2、Co3O4和 Li2CO3为原料经过机械混合后,置入配有等离子体发生装置煅烧炉中,在通入氧 气的条件下,经过600℃低温煅烧40min即可得到高性能Li(Ni1/3Co1/3Mn1/3)O2。与非等离子体氛围1100℃煅烧24h的三元正极材料相比,材料在0.1C(2.8~4.3V) 的初始容量从129.5mAh/g显著增加到218.9mAh/g,循环60圈后稳定性也从 71.89%提高至91.27%。Jiang等[3]的研究中,从提高煅烧过程中反应物活性的角 度入手,采用等离子体辅助煅烧技术,不仅极大地提高了材料的电化学性能,而 且弥补了固相法能耗过大的缺陷,为三元镍钴锰正极材料固相制备方法提供了新 方向。同时,在高温固相合成中,由于阳离子混排现象在高温时更加明显,所以 在煅烧结束时减慢降温的速率并且持续通氧气,控制氧分压,可以有效抑制阳离 子的混排。 1.2共沉淀法 化学共沉淀法一般是向原料中添加适当的沉淀剂与络合剂,使溶液中已经混 合均匀的各组分按化学计量比共同沉淀下来,再把它煅烧分解制备出目标产品。 通过改进传统的共沉淀方法,采用超声共沉淀技术制备LiNi0.6Co0.2Mn0.2O2,成 品有很好的层状结构和低的阳离子混排程度。采用改进的共沉淀法制备出浓度梯 度Li(Ni0.86Co0.10Mn0.04)O2正极材料,材料颗粒从核心到表层,Ni的含量逐渐 下降而Mn、Co的含量逐渐上升,该材料在3~4.4V电压平台下,首次放电比容量 达209mAh?g-1,在55℃、0.2C循环100次后容量保持率为86%,效果显著。 1.3溶胶-凝胶法

【CN109722540A】一种三元正极材料酸浸液分离回收锂与镍钴锰的方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910154856.7 (22)申请日 2019.03.01 (71)申请人 江西赣锋锂业股份有限公司 地址 338000 江西省新余市经济开发区龙 腾路 (72)发明人 李良彬 马木林 胡志华 廖萃  叶明 谢军 胡玉 彭爱平  李芳芳 谢晓林 曾宪勤  (74)专利代理机构 南昌贤达专利代理事务所 (普通合伙) 36136 代理人 金一娴 (51)Int.Cl. C22B 7/00(2006.01) C22B 26/12(2006.01) C22B 23/00(2006.01) C22B 47/00(2006.01) (54)发明名称一种三元正极材料酸浸液分离回收锂与镍钴锰的方法(57)摘要本发明公布了一种三元正极材料酸浸液分离回收锂与镍钴锰的方法,属于有色金属二次资源的循环利用领域。该发明包括以下步骤:(1)除铁、铝;(2)碱化沉镍钴锰回收锂;(3)酸化回收镍钴锰;(4)还原回收锰。据氢氧化物沉淀pH的差异,先用生石灰将Fe、Al去除;然后用碱将Ni、Co、Mn析出,实现Li与Ni、Co、Mn的分离,先回收Li;接着酸浸Ni、Co、Mn渣,回收Ni、Co、Mn;由于Mn价态不稳定,酸浸渣中含有一定黑色的MnO 2,用双氧水将其还原为二价Mn 2+,进一步回收Mn。采用上述步骤,相对于现有技术而言,锂与镍钴锰的回收率高,能达到95%以上,工艺简单,成本低,最 终废弃物为一般废弃物。权利要求书1页 说明书5页 附图1页CN 109722540 A 2019.05.07 C N 109722540 A

锂离子电池三元镍钴锰正极材料研究现状综述

三元系锂电池正极材料研究现状 摘要:综述了近年来锂离子电池层状Li-Ni-Co-Mn-O正极材料的研究进展,重点介绍了正极材料LiNi l/3Co l/3Mn l/3O其合成方法电化学性能以及掺杂、包覆改性等方面的研究结果。 三元系正极材料的结果: LiMn x Co y Ni1-x-y O2具有α-2NaFeO2层状结构。Li原子占据3a位置,Ni、Mn、Co随机占据3b位置,氧原子占据6c位置。其过渡金属层由Ni、Mn、Co 组成,每个过渡金属原子由 6 个氧原子包围形成MO6 八面体结构,而锂离子嵌入过渡金属原子与氧形成的(MnxCo yNi1-x-y) O2层之间。在层状锂离子电池正极材料中均有Li+与过渡金属离子发生位错的趋势,特别是以结构组成中有Ni2+存在时这种位错更为突出。抑制或消除过渡金属离子在锂层中的位错现象是制备理想α-2NaFeO2结构层状正极材料的关键,在LiMn x Co y Ni1-x-y O2结构中, Ni2+的半径( rNi2+=0.069nm)与Li+的( rLi+=0.076nm)半径接近,因此晶体结构会发生位错,即过渡金属层中的镍原子占据锂原3a的位置,锂原子则进驻3b位置。在Li+层中,Ni2+的浓度越大,则Li+在层状结构中脱嵌越困难,电化学性能越差。而相对于LiNiO2及LiNi x Co1-x-y O2 ,LiMn x Co y Ni1-x-y O2中这种位错由于Ni 含量的降低而显著减少。同时由于Ni2 + 的半径( rNi2 + =0. 069nm) 大于Co3+ ( rCo3+ = 0. 0545nm) 和Mn4 + ( rMn4 + =0. 053nm) ,LiMnxCo yNi1 - x - yO2 的晶格常数有所增加。 由于充分综合镍酸锂的高比容量、钴酸锂良好的循环性能和锰酸

国家标准《镍、钴、锰三元素复合氢氧化物》编制说明

国家标准 《镍、钴、锰三元素复合氢氧化物》 编制说明 金川集团有色公司 二00九年二月

1.任务来源 本标准制定任务由中国有色金属工业协会中色协综字[2008]24号文件《关于下达2008年第一批有色金属国家标准制(修)订项目计划的通知》下达,项目序号为20082127-T-610,由金川集团有限公司负责起草,计划于2009年完成。 2.编制原则 镍、钴、锰三元素复合氧化物是锂离子电池用新材料,我国目前尚无相应的国家标准或行业标准。该标准旨在加强供需双方的技术理解和交流,指导和规范产品的生产和贸易,满足市场相关领域的不同需求。 3.编制情况 标准格式按GB/T1.1-2000标准要求编写。标准制定起草工作开展后,主要查阅了国外同类产品标准和国内有关企业技术资料,进行了收集、整理、对比分析,并对国内的生产和使用状况进行调研整合后,经起草单位与用户多次探讨、协商,与2009年2月提出该“标准预审稿”。 4.产品行业背景 锂离子蓄电池具有比能量大、单体工作电压高、工作温度范围宽、循环寿命长、自放电小、对环境污染小等优点,在便携式电器和电动汽车等领域有着广阔的应用前景。随着对现有材料和电池设计技术的改进以及新材料的出现,锂离子电池应用范围将不断拓展,它将作为最具发展前景的新能源服务于人类,已成为本世纪的研发热点。

锂离子电池正极材料LiNi x Co y Mn1-x-y O2具有同LiCoO2和LiNiO2一样的α-NaFeO2结构和理论比容量,但是这种材料具有LiCoO2、LiNiO2等其它正极材料所无法比拟的优势。1. 钴酸锂由于价格昂贵、安全性能差而不适合作为动力电池;2. 锰酸锂具有低成本、环保、安全性好等优点,但其能量密度低、循环性能差、碳做负极时锰的溶解问题突出;3. 镍酸锂合成条件要求苛刻,而且循环性能不好,安全性能差;4. 镍钴酸锂容量比钴酸锂有所提高,但制备成本高、过充存在安全性问题;5. 磷酸铁锂具有成本低廉、环境友好、安全性好等优势,但其体积能量密度较低。相比较而言,LiNi x Co y Mn1-x-y O2的理论比容量较高,约278mAh/g,循环性能好,充放电过程中体积变化小(小于2%),振实密度大,能量密度高,实际比容量可达140-180mAh/g(同镍、钴、锰比例有关),合成方法简单可行,克服了LiMn2O4、LiNiO2、LiCoO2及LiFePO4的部分缺点,因此成为锂离子二次电池,特别是小型动力电池的首选材料之一。 镍、钴、锰三元素复合氢氧化物主要面向锂离子电池正极材料厂商,用该材料可以合成出性能优异的LiNi x Co y Mn1-x-y O2三元素正极材料。由于三元素正极材料具有一系列的优点而深受国内外研究者的重视。目前,三元素正极材料技术刚刚成熟,2007年日本韩国的市场大概有2000吨,国内市场刚刚起步,预计08年会有一个非常大的增长,三元素正极材料及其中间体镍、钴、锰三元素复合氢氧化物世界主要的生产厂家有OMG、3M公司和日本田中化学等。 5.文献检索情况

国家标准镍钴锰三元素复合氢氧化物

国家标准《镍钴锰三元素复合氢氧化物》 编制说明 (审定稿) 《镍钴锰三元素复合氢氧化物》编制组 编写单位:金川集团股份有限公司 2019年10月18日

国家标准《镍钴锰三元素复合氢氧化物》编制说明 一、工作简况 1. 任务来源及计划要求 根据国家标准化管理委员会于2017年12月28日下达的2017年第四批国家标准制修订计划(见国标委综合〔2017〕128号),国家标准《镍钴锰三元素复合氢氧化物》(GB/T 26300-2010)的修订工作由金川集团股份有限公司主持修订,项目计划编号为20173793-T-610,项目完成时间为2019年12月。 2. 标准修订的目的及意义 受益于新能源汽车产业政策的推动,中国已是全球最大的电动汽车市场。三元材料因为其优异的综合性能,已成为车载锂离子动力电池的主流产品。作为三元正极材料最关键的原材料,镍钴锰三元素复合氢氧化物在过去十年里也得到了快速发展。为了满足下游客户的各种不同需求,镍钴锰三元素复合氢氧化物呈现多元化发展的趋势,相应的指标要求也发生了变化。2010年发布的国家标准《镍钴锰三元素复合氢氧化物》(GB/T 26300-2010)中的部分内容已经无法适用于现在的产品。为了跟上产业发展的步伐,提高镍钴锰三元素复合氢氧化物生产企业的开发和生产能力,敦促各企业按更先进的标准进行生产,需要及时对国家标准进行修订。 3. 产品简介 3.1 性质 镍钴锰三元素复合氢氧化物是深棕色或黑色粉末,流动性好,不溶于水,能溶于酸。 3.2 用途 车载锂离子动力电池市场正在走出导入期,开始跨入快速成长期。未来几年,锂离子电池市场规模增长的最大动力确定无疑将来自电动汽车市场。全球锂离子动力电池及其材料的生产主要集中在中国、日本和韩国,主要正极材料包括改性锰酸锂、镍钴锰酸锂或镍钴铝酸锂。高能量密度锂离子动力电池的需求带动了高比容量的高镍三元材料的应用和发展。三元材料单体能量可达到180Wh/kg,高镍三元材料极限密度可达250-260 Wh/kg。三元材料因具有综合性能和成本的双重优势日益被行业所关注和认同,已经超越磷酸铁锂和锰酸锂,成为车载动力电池主流的技术路线。 镍钴锰三元素复合氢氧化物又被称为三元前驱体,主要用于合成锂离子电池正极材料镍

镍钴锰三元技术资料

正极材料微观结构的改善和宏观性能的提高与制备方法密不可分,不同的制备方法导致所制备的材料在结构、粒子的形貌、比表面积和电化学性质等方面有很大的差别。 目前LiNi1/3Co1/3Mn1/3O2的制备技术主要有固相合成法、化学沉淀法、溶胶凝胶法、水热合成法、喷雾降解法等。 溶胶-凝胶法:先将原料溶液混合均匀,制成均匀的溶胶,并使之凝胶,在凝胶过程中或在凝胶后成型、干燥,然后煅烧或烧结得所需粉体材料。溶胶凝胶技术需要的设备简单,过程易于控制,与传统固相反应法相比,具有较低的合成及烧结温度,可以制得高化学均匀性、高化学纯度的材料,但是合成周期比较长,合成工艺相对复杂,成本高,工业化生成的难度较大 化学共沉淀法:一般是把化学原料以溶液状态混合,并向溶液中加入适当的沉淀剂,使溶液中已经混合均匀的各个组分按化学计量比共沉淀出来,或者在溶液中先反应沉淀出一种中间产物,再把它煅烧分解制备出微细粉料。化学共沉淀法分为直接化学共沉淀法和间接化学共沉淀法。直接化学共沉淀法是将Li、Ni、Co、Mn的盐同时共沉淀,过滤洗涤干燥后再进行高温焙烧。间接化学共沉淀法是先合成Ni、Co、Mn三元混合共沉淀,然后再过滤洗涤干燥后,与锂盐混合烧结;或者在生成Ni、Co、Mn三元混合共沉淀后不经过过滤而是将包含锂盐和混合共沉淀的溶液蒸发或冷冻干燥,然后再对干燥物进行高温焙烧。与传统的固相合成技术相比,采用共沉淀方法可以使材料达到分子或原子线度化学计量比混合,易得到粒径小、混合均匀的前驱体,且煅烧温度较低,合成产物组分均匀,重现性好,条件容易控制,操作简单,目前工业上已有规模生产 水热合成法:水热合成技术是指在高温高压的过饱和水溶液中进行化学合成的方法,属于湿化学法合成的一种。利用水热法合成的粉末一般结晶度高,并且通过优化合成条件可以不含有任何结晶水,且粉末的大小、均匀性、形状、成份可以得到严格的控制。水热合成省略了锻烧步骤和研磨的步骤,因此粉末的纯度高,晶体缺陷的密度降低。但是对于锂离子电池来说水热法并不是很好,当用水热法以CoOOH为前驱体合成LiCoO2时,研究表明在160℃的高压釜中反应48h,可以从混合物得到单相的Li CoO2,但其循环性能并不好,需要在高温下热处理,提高其结晶度后,LiCoO2的循环性能得以改善 其他方法:将镍、钴、锰、硝酸锂在氨基乙酸中于400℃点燃,燃烧产物碾碎后在空气中800℃加热4h,冷却后得到正极材料;将蒸馏水溶解的硝酸锂、镍钴锰盐通过喷雾干燥法制备得到正极材料;以镍钴锰盐为原料,柠檬酸为络合剂,配成溶液送入超声喷雾热分解装置,得到[Ni1/3Co1/3Mn1/3]O2前驱体,再将前驱体与锂盐混合高温烧结得到正极材料 评定三元材料好坏的方法因素(各种检测方法总结) 1、性能测试 循环性能测试:测试循环一定次数后容量保持率的大小;容量大小;容量衰减程度; 倍率性能测试:以一定倍率放电,看平均电压及容量保持率。平均电压越高越好。 高低温性能测试:在低温、常温、高温下电压降的多少,容量保持率多少无杂质峰;(006)/(102)及(108)/(110)峰明显分开说明层状结构明显;I(003)/I(104)比值越大,大于1.2,阳离子有序程度越高;R值(I(006)+I(102)/I(101))越小,晶体结构越有序; 2、SEM分析:产物形貌是否粘结,是否为球形,是否团聚,颗粒大小是否均匀,是否均匀分散,颗粒大小适中,表面是否粗糙,排列是否紧密, 3、成分分析:采用ICP-AES元素分析方法测定合成样品中各金属元素的 含量是否与理论值一致。 4、热重差热分析:即TG-DTA分析。在升温过程中测试样品晶型结构的转变、 材料自身熔融、吸附等物理变化;脱去结晶水、材料受热分解、在空气气氛中氧化还原等化

国家标准镍钴锰氢氧化物

国家标准《镍钴锰氢氧化物》 编制说明 (讨论稿) 《镍钴锰氢氧化物》编制组 编写单位:金川集团股份有限公司 2018年6月11日

国家标准《镍钴锰氢氧化物》编制说明 一、工作简况 1. 任务来源及计划要求 根据国家标准化管理委员会于2017年12月28日下达的2017年第四批国家标准制修订计划(见国标委综合〔2017〕128号),国家标准《镍钴锰三元素复合氢氧化物》(GB/T 26300-2010)的修订工作由金川集团股份有限公司主持修订,项目计划编号为20173793-T-610,项目完成时间为2019年12月。 2. 标准修订的目的及意义 受益于新能源汽车产业政策的推动,中国已是全球最大的电动汽车市场。三元材料因为其优异的综合性能,已成为车载锂离子动力电池的主流产品。作为三元正极材料最关键的原材料,镍钴锰氢氧化物在过去十年里也得到了快速发展。为了满足下游客户的各种不同需求,镍钴锰氢氧化物呈现多元化发展的趋势,相应的指标要求也发生了变化。2010年发布的国家标准《镍钴锰三元素复合氢氧化物》(GB/T 26300-2010)中的部分内容已经无法适用于现在的产品。为了跟上产业发展的步伐,提高镍钴锰氢氧化物生产企业的开发和生产能力,敦促各企业按更先进的标准进行生产,需要及时对国家标准进行修订。 3. 产品简介 3.1 性质 镍钴锰氢氧化物是深棕色或黑色粉末,流动性好,不溶于水,能溶于酸。 3.2 用途 车载锂离子动力电池市场正在走出导入期,开始跨入快速成长期。未来几年,锂离子电池市场规模增长的最大动力确定无疑将来自电动汽车市场。全球锂离子动力电池及其材料的生产主要集中在中国、日本和韩国,主要正极材料包括改性锰酸锂、镍钴锰酸锂或镍钴铝酸锂。高能量密度锂离子动力电池的需求带动了高比容量的高镍三元材料的应用和发展。三元材料单体能量可达到180Wh/kg,高镍三元材料极限密度可达250-260 Wh/kg。三元材料因具有综合性能和成本的双重优势日益被行业所关注和认同,已经超越磷酸铁锂和锰酸锂,成为车载动力电池主流的技术路线。 镍钴锰氢氧化物又被称为三元前驱体,主要用于合成锂离子电池正极材料镍钴锰酸锂(三元正极材料),是三元正极材料最为关键的原材料。

国家标准《镍、钴、锰三元素复合氢氧化物》

国家标准《镍、钴、锰三元素复合氢氧化物》 编制说明 (预审稿) 《镍、钴、锰三元素复合氢氧化物》编制组 编写单位:金川集团股份有限公司 2019年6月30日 国家标准《镍、钻、锰三元素复合氢氧化物》编制说明 一、工作简况

1.任务来源及计划要求 根据国家标准化管理委员会于2017年12月28日下达的2017年第四批国家标准制修订 计划(见国标委综合〔2017〕128号),国家标准《镍、钻、锰三元素复合氢氧化物》(GB/T 26300-2010 )的修订工作由金川集团股份有限公司主持修订,项目计划编号为20173793-T-610,项目完成时间为2019年12月。 2.标准修订的目的及意义 受益于新能源汽车产业政策的推动,中国已是全球最大的电动汽车市场。三元材料因 为其优异的综合性能,已成为车载锂离子动力电池的主流产品。作为三元正极材料最关键的 原材料,镍、钻、锰三元素复合氢氧化物在过去十年里也得到了快速发展。为了满足下游客户的各种不同需求,镍、钻、锰三元素复合氢氧化物呈现多元化发展的趋势,相应的指标要求也发生了变化。2010年发布的国家标准《镍、钻、锰三元素复合氢氧化物》(GB/T 26300-2010)中的部分内容已经无法适用于现在的产品。为了跟上产业发展的步伐,提高镍、 钻、锰三元素复合氢氧化物生产企业的开发和生产能力,敦促各企业按更先进的标准进行生 产,需要及时对国家标准进行修订。 3.产品简介 3.1性质 镍、钻、锰三元素复合氢氧化物是深棕色或黑色粉末,流动性好,不溶于水,能溶于 酸。 3.2用途 车载锂离子动力电池市场正在走出导入期,开始跨入快速成长期。未来几年,锂离子电 池市场规模增长的最大动力确定无疑将来自电动汽车市场。全球锂离子动力电池及其材料的 生产主要集中在中国、日本和韩国,主要正极材料包括改性锰酸锂、镍钻锰酸锂或镍钻铝酸 锂。高能量密度锂离子动力电池的需求带动了高比容量的高镍三元材料的应用和发展。三元 材料单体能量可达到180Wh/kg ,高镍三元材料极限密度可达250-260 Wh/kg。三元材料因具 有综合性能和成本的双重优势日益被行业所关注和认同,已经超越磷酸铁锂和锰酸锂,成为 车载动力电池主流的技术路线。 镍、钴、锰三元素复合氢氧化物又被称为三元前驱体,主要用于合成锂离子电池正极材料镍钴锰酸锂(三元正极材料),是三元正极材料最为关键的原材料。 3.3 生产工艺镍、钴、锰三元素复合氢氧化物采用共沉淀法进行生产。将镍盐、钴盐、锰盐按一定的比例配制成一定浓度的混合溶液,该混合溶液与一定浓度的氢氧化钠溶液和络合剂按一定流速持续加入反应器中,在适当的工艺条件下进行沉

钴镍锰分析方法

钴、镍、锰三元氢氧化物的检测 1.1 分析仪器 电子分析天平(精确度0.0001g )、100ml 高型烧杯、表面皿、电热板、10ml 量杯、100ml 容量瓶、10ml 单标线移液管、25ml 单标线移液管、250ml 锥形瓶、长颈漏斗,500 ml 锥形瓶、磁力搅拌器、50ml 酸式滴定管、25ml 酸式滴定管、5ml 刻度移液管、恒温水浴锅、500ml 塑料洗瓶。 1.2试剂 浓盐酸、(1+1)盐酸、双氧水、浓硝酸、浓硫酸、浓磷酸、EDTA 、高纯金属镍、抗坏血酸、紫脲酸铵、浓氨水、氯化铵、PH10的氨-氯化铵缓冲溶液。 1.3 分析步骤: 1.3.1 样品处理 称取0.91克试样(精确到0.0001g )于100ml 烧杯中,加少量水湿润,盖上表面皿,沿杯壁加入盐酸(1+1)8ml 和1ml 双氧水,置于电热板上加热至微沸,当无气泡后,取下冷却到室温,用少量水洗表面皿及杯壁于烧杯中体积约25ml ,观察试样是否全溶解,若没溶解可补盐酸(1+1)3ml 加热至试样完全溶解。取下冷却到室温,用少量水洗表面皿及杯壁于烧杯中,转入100毫升容量瓶中,加水到刻度线,摇匀。 1.3.2钴、镍、锰总量的滴定 准确移取10ml 被测溶液于250ml 锥形瓶中,先用少量水冲洗瓶口,再加水50ml 加热到溶液温度35-40℃,用EDTA 标准溶液滴定,先快滴EDTA 溶液25-30ml (为理论用量的90%),加小半勺抗坏血酸(约0.1g)和约0.1g 紫脲酸铵指示剂,滴加1:1氨水,使溶液呈黄色,再加10mlPH10氨缓冲溶液,溶液温度控制在35-40℃,继续用EDTA 标准溶液滴定紫色为终点,记录消耗的EDTA 标准溶液的体积为V 总。 1 %m M C V Mn Ni CO EDTA EDTA ??=总总量、、 式中:M =平均摩尔质量。 m 1=称取样品的质量。 2 测定单一镍含量

锂电池镍钴锰三元材料最新研究进展

锂电池镍钴锰三元材料最新研究进展 镍钴锰三元材料是近年来开发的一类新型锂离子电池正极材料,具有容量高、循环稳定性好、成本适中等重要优点,由于这类材料可以同时有效克服钴酸锂材料成本过高、锰酸锂材料稳定性不高、磷酸铁锂容量低等问题,在电池中已实现了成功的应用,并且应用规模得到了迅速的发展。 据披露,2014年中国锂离子电池正极材料产值达95.75亿元,其中三元材料为27.4 亿元,占有率为28.6%;在动力电池领域,三元材料正强势崛起,2014年上市的北汽EV200、奇瑞eQ、江淮iEV4、众泰云100等均采用三元动力电池。 2015年上海国际车展,在新能源汽车中,三元锂电池的占有率超过了磷酸铁锂电池成为一大亮点,包括吉利、奇瑞、长安、众泰、中华等大部分国内主流车企都纷纷推出采用三元动力电池的新能源车型。许多专家预言:三元材料凭借其优异的性能和合理的制造成本有望在不久的将来取代价格高昂的钴酸锂材料。 人们发现:镍钴锰三元正极材料中镍钴锰比例可在一定范围内调整,并且其性能随着镍钴锰的比例的不同而变化,因此,出于进一步降低钴镍等高成本过渡金属的含量,以及进一步提高正极材料的性能的目的;世界各国在具有不同镍钴锰组成的三元材料的研究和开发方面做了大量的工作,已经提出了多个具有不同镍钴锰比例组成的三元材料体系。包括333,523,811体系等。一些体系已经成功地实现了工业化生产和应用。 本文将较为系统地介绍近年来几种主要的镍钴锰三元材料的最新研究进展及其成果,以及人们为了改进这些材料的性能而开展的掺杂、包覆等方面的一些研究进展。 1镍钴锰三元正极材料结构特征 镍钴锰三元材料通常可以表示为:LiNixCoyMnzO2,其中x+y+z=1;依据3种元素的摩尔比(x∶y∶z比值)的不同,分别将其称为不同的体系,如组成中镍钴锰摩尔比(x∶y∶z)为1∶1∶1的三元材料,简称为333型。摩尔比为5∶2∶3的体系,称之为523体系等。 333型、523型和811型等三元材料均属于六方晶系的α-NaFeO2型层状岩盐结构,如图1。

镍钴锰含量检验方法

三元基体镍钴锰含量检验方法 1 、试样溶解 称取2.0g左右(称准至0.0001g)试样于250ml烧杯中,加入20ml1+1HCl,盖上表面皿,加热溶解,至无小气泡,只有大气泡冒出时,取下冷却,待冷却后用水冲洗杯壁和表面皿,冷却后移入250ml容量瓶中,并稀释至刻度摇匀,待用。 2、钴含量的测定:(参照GB/T223.20-94) 准确移取20.00ml上述母液,于200ml烧杯中,加入10ml浓硝酸,加热蒸发至干,然后取下冷却,冷却后加入一勺氯酸钠,10ml浓硝酸,并用水冲洗烧杯壁,然后加热,煮沸1-2min,然后取下冷却,冷却后移入100ml 容量瓶中,稀释至刻度,再过滤,留滤液待用。移取20.00ml滤液至200ml烧杯中,加入50ml离子混合液,5.00ml 铁氰化钾标准溶液,置于电磁搅拌器上,用电位滴定仪滴定钴含量。钴含量按公式(4)计算: (K﹡V2—V1) ×T×倍数(250/20×100) Co%= ——————————————————×100% (4) M×V(20)×1000 式中:V2——加入铁氰化钾标准溶液的体积,ml; V1——滴定消耗硫酸钴标准溶液的体积,ml; V——移取的待测液的体积,ml; K——硫酸钴标准溶液相当于铁氰化钾标准溶液的体积比; T——铁氰化钾标准溶液对钴的滴定度,mg/ml; M——所称试样的质量,g。 3 、镍(Ni)含量的测定 3.1 试剂 a) 1+1盐酸; b) 无水乙醇; c) 丁二酮肟(分析纯); d) 柠檬酸三铵(分析纯); e)氯化铵(分析纯); 3.2 试样溶解 称取2.0g左右(称准至0.0001g)试样于250ml烧杯中,加入20ml1+1HCl,盖上表面皿,加热溶解,至无小气泡,只有大气泡冒出时,取下冷却,待冷却后用水冲洗杯壁和表面皿,冷却后移入250ml容量瓶中,并稀释至刻度摇匀,待用。 3.3 测试过程 准确移取20ml(M700、M703移10ml)待测液至250ml烧杯中,加入10ml20%柠檬酸三铵,10ml20%氯化铵,再加水至100ml,盖上表面皿,加热至刚刚煮沸,取下,用氨水调PH值至8~9,然后加1%丁二酮肟溶液25-40ml (加入量视镍含量而定),边加边搅拌,充分搅拌后,陈化30min。用已烘好,恒重,并已称得质量m2玻璃砂芯漏斗过滤,并用热蒸馏水洗净烧杯和沉淀,至滤出得水为无色透明为止,然后把漏斗置于120℃的烘箱中烘2小时,至恒重为止。取出,置漏斗于干燥器中,冷却15min然后在分析天平上称出质量m1,计算镍含量。镍含量按公式(5)计算, Ni%=(m1-m2)×0.2031×倍数/(V*m) (5) m1——玻璃砂芯漏斗和丁二酮肟镍沉淀的总质量,g; m2——玻璃砂芯漏斗的质量,g; m——待测样的质量,g; 0.2031——丁二酮肟镍换算成镍的换算因数; V——移取的待测液的体积, ml。 4 锰(Mn)含量的测定 4.1 试剂 a) 硝酸ρ约1.42g/mL; b) 磷酸ρ约1.69g/mL;

镍钴锰三元正极制备方法

1镍钴锰三元正极材料结构特征 镍钴锰三元材料通常可以表示为:LiNixCoyMnzO2,其中x+y+z=1;依据3种元素的摩尔比(x∶y∶z比值)的不同,分别将其称为不同的体系,如组成中镍钴锰摩尔比(x∶y∶z)为1∶1∶1的三元材料,简称为333型。摩尔比为5∶2∶3的体系,称之为523体系等。 333型、523型和811型等三元材料均属于六方晶系的α-NaFeO2型层状岩盐结构,如图1。 镍钴锰三元材料中,3种元素的的主要价态分别是+2价、+3价和+4价,Ni为主要活性元素。其充电时的反应及电荷转移如图2所示。 一般来说,活性金属成分含量越高,材料容量就越大,但当镍的含量过高时,会引起Ni2+占据Li+位置,加剧了阳离子混排,从而导致容量降低。Co正好可以抑制阳离子混排,而且稳定材料层状结构;Mn4+不参与电化学反应,可提供安全性和稳定性,同时降低成本。 2镍钴锰三元正极材料制备技术的最新研究进展 固相法和共沉淀法是传统制备三元材料的主要方法,为了进一步改善三元材料电化学性能,在改进固相法和共沉法的同时,新的方法诸如溶胶凝胶、喷雾干燥、喷雾热解、流变相、燃烧、热聚合、模板、静电纺丝、熔融盐、离子交换、微波辅助、红外线辅助、超声波辅助等被提出。 2.1固相法

三元材料创始人OHZUKU最初就是采用固相法合成333材料,传统固相法由于仅简单采用机械混合,因此很难制备粒径均一电化学性能稳定的三元材料。为此,HE等、LIU等采用低熔点的乙酸镍钴锰,在高于熔点温度下焙烧,金属乙酸盐成流体态,原料可以很好混合,并且原料中混入一定草酸以缓解团聚,制备出来的333,扫描电镜图(SEM)显示其粒径均匀分布在0.2~0.5μm左右,0.1C(3~4.3V)首圈放电比容量可达161mAh/g。TAN等采用采用纳米棒作为锰源制备得到的333粒子粒径均匀分布在150~200nm。 固相法制得的材料的一次粒子粒径大小在100~500nm,但由于高温焙烧,一次纳米粒子极易团聚成大小不一的二次粒子,因此,方法本身尚待进一步的改进。 2.2共沉淀法 共沉淀法是基于固相法而诞生的方法,它可以解决传统固相法混料不均和粒径分布过宽等问题,通过控制原料浓度、滴加速度、搅拌速度、pH值以及反应温度可制备核壳结构、球形、纳米花等各种形貌且粒径分布比较均一的三元材料。 原料浓度、滴加速度、搅拌速度、pH值以及反应温度是制备高振实密度、粒径分布均一三元材料的关键因素,LIANG等通过控制pH=11.2,络合剂氨水浓度0.6mol/L,搅拌速度800r/min,T=50℃,制备得到振实密度达2.59g/cm3,粒径均匀分布的622材料(图3),0.1C(2.8~4.3V)循环100圈,容量保持率高达94.7%。 鉴于811三元材料具有高比容量(可达200mAh/g,2.8~4.3V),424三元材料则可提供优异的结构和热稳定性的特点。有研究者试图合成具有核壳结构的(核为811,壳层l为424)三元材料,HOU等采用分布沉淀,先往连续搅拌反应釜(CSTR)中泵入8∶1∶1(镍钴锰比例)的原料,待811核形成后在泵入镍钴锰比例为1∶1∶1的原料溶液,形成第一层壳层,然后再泵入组成为4∶2∶2的原溶液,最终制备得到核组成为811,具有壳组成为333、424的双层壳层的循环性能优异的523材料。4C倍率下,这种材料循环300圈容量保持率达90.9%,而采用传统沉淀法制备的523仅为72.4%。 HUA等采用共沉淀法制备了线性梯度的811型,从颗粒内核至表面,镍含量依次递减,锰含量依次递增,从表1可明显看到线性梯度分布的811三元材料大倍率下放电容量和循环性明显优于元素均匀分布的811型。

高压镍钴锰三元正极材料研究进展及应用前景展望

龙源期刊网 https://www.wendangku.net/doc/b719044326.html, 高压镍钴锰三元正极材料研究进展及应用前景展望 作者:吴英强倪欢孟德超王莉何向明 来源:《新材料产业》2015年第09期 锂离子电池具有电压高、比能量高、质量轻、体积小、自放电小、寿命长等众多优点,是目前综合性能最好的电池体系之一,广泛应用于高能便携电子设备。在民用领域,锂离子电池正从3C领域(移动电子设备、智能手机、笔记本电脑等)迅速拓展到能源交通领域,包括电动汽车、电网调峰、太阳能、风能电站蓄电等。在国防军事方面,锂离子电池的应用则覆盖了陆(军用通信设备、单兵系统、陆军战车等)、海(潜艇、水下机器人)、空(无人侦察机)等诸多兵种。随着应用范围的迅速扩展,锂离子电池正朝着更高的能量密度(250~ 300Wh/kg)方向发展,同时对电池的安全性及循环寿命提出更高要求。基于当前的嵌入式电 极反应机制及锂离子电池的工艺技术,正极材料的性能是决定锂离子电池的能量密度、安全性及循环寿命等指标的关键因素。 目前研究和应用最多的正极材料主要有:①聚阴离子类型正极材料[1],如磷酸铁锂(LiFePO4)、 LiFe1-xMnxPO4、硅酸盐如硅酸亚铁锂(Li2FeSiO4)等;②尖晶石结构的正 极材料[2],如次锰酸锂(LiMn2O4)、LiMn1.5Ni0.5O4等;③六方层状结构材料LiNi1-x-yCoxMnyO2,如钴酸锂(LiCoO2)、LiNi0.5Mn0.5O2、LiNi1/3Co1/3Mn1/3O2等[3];④富锂层状材料xLi2MnO3·(1-x)LiMO2〔M=锰(Mn),镍(Ni),钴(Co)〕等[4]。其中,LiFePO4广泛应用于动力锂离子电池的正极材料,但受限于理论比容量及电压平台,LiFePO4电池能量密度的提升空间很小。LiMn2O4具有三维的锂离子扩散通道,电压平台高、倍率性 能优越,加上价格上优势,被认为是极具潜力的动力锂离子电池正极材料。然而,LiMn2O4 的理论比容量较低,且高温性能欠佳。通过改性(掺杂)能有效提高其高温性能,但受到理论比容量的限制,LiMn2O4单独使用作为正极在高比能电池领域的应用没有优势。与LiMn2O4处于同一家族的LiMn1.5Ni0.5O4尖晶石正极材料,由于锰离子全部处于正4价,不受Jahn- Teller效应的影响,其高温性能明显改善。在充放电过程中,镍离子为电化学活性过渡金属,其Ni4+/3+,Ni3+/2+氧化还原电位表现出4.7V左右的电压平台,其电池的能量密度比 LiMn2O4的高14.6%,因此受到研究人员的广泛关注及研究兴趣。然而高压(5.0V)电解液的短板限制了LiMn1.5Ni0.5O4材料的应用,虽然和钛酸锂负极搭配使用能取得很好的效果,但造成的能量密度下降将得不偿失。相比之下,富锂层状材料xLi2MnO3·(1-x)LiMO2无论在电压平台还是比容量上都表现出极大的优势。当充电截止电压(vs.Li)达到4.8V时,富锂层状材料可发挥出超过250mAh/g的可逆比容量,在目前所有的嵌入式正极材料中是最高的。正因为如此,富锂层状材料在学术界及工业界都引起极大的研究兴趣,被认为值下一代高比能电池的首选正极材料。然而这类正极材料的劣势也非常明显,例如循环过程的电压衰减[5]、充 放电过程中的电压滞后问题[6]、首次库伦效率低、倍率性能及循环稳定性差、电解液匹配问题、批量制备过程中的批次性问题,以上每一个问题都会严重影响富锂层状材料的产业化进

行业标准《镍钴锰酸锂化学分析方法 第1部分:镍钴锰总量的测定 EDTA滴定法》编制说明

《镍钴锰酸锂化学分析方法第1部分:镍钴锰总量的测定- EDTA滴定法》编制说明 一工作简况 1 任务来源 根据全国有色金属标准化技术委员会下发的《有色标委(2011)19号》文件的要求,由中信国安盟固利电源技术有限公司制定《镍钴锰酸锂化学分析方法第1部分:镍钴锰总量的测定- EDTA滴定法》行业标准,计划编号:2010-3591T-YS,项目完成时间2012年。 2 起草单位情况 中信国安盟固利电源技术有限公司是北京市科委认定的高新技术企业,主要从事锂离子动力电池及关键材料研究和生产。目前在中关村科技园区昌平园,已经建立了一个有关新型锂离子电池材料和电池技术的新材料技术研究院,拥有实验室(5000平方米),形成了以有突出成就的专家领衔、以年轻博士和硕士为骨干的强大的研究开发队伍,经国家人事部批准设立有博士后工作站。公司拥有等离子体发射光谱仪ICP-AES、等离子体质谱仪ICP-MS、X荧光光谱仪、质谱分析仪、气相色谱仪、激光粒度测试仪、微粒子比表面积测定仪等分析检测仪器和惰性气体手套箱、模拟电池制作设备、实际电池制作等设备、电池安全性能测试仪等先进的研究实验设备以及设施完备的中试车间。 中信国安盟固利电源技术有限公司主要从事锂离子电池正极材料的研发,生产和销售。目前已经达到年产2000吨钴酸锂、1000吨锰酸锂、1000吨镍钴锰酸锂的规模产能。生产的正极材料已经占有国内市场很大的份额。生产方法和生产工艺技术被北京市科委组织的专家鉴定会评定为属于世界领先水平,荣获国家科技进步二等奖、北京市科学技术一等奖。锰酸锂合成与生产技术通过北京市科委组织的专家鉴定,鉴定结论为国际先进水平,并荣获北京市科学技术一等奖。 中信国安盟固利电源技术有限公司在研究开发生产锂离子电池正极材料的同时,一直在致力于各种锂离子电池材料与技术方面的基础研究工作和分析评价方法的探索,在锂离子电池材料的物理性能、化学性能与电化学特性研究与测试方面积累了大量的经验和丰厚的技术储备。从2002年起,中信国安盟固利电源技术有限公司开始参与技术标准化工作。承担了钴酸锂产品国家标准的制订任务,并圆满完成,该标准已经正式颁布实施,同时承担了锰酸锂行业标准的制订任务,该标准已经制订完毕。并且参与了镍钴锰酸锂及钛酸锂的制定。 二编制过程(包括编制原则、工作分工、征求意见单位、各阶段工作过程等) 1标准编制原则 本标准严格按照GB/T1.1-2000《标准化工作导则第一部分:标准的结构编写规则》以及《有色金属冶炼产品国家标准、行业标准编写示例》的规定格式进行编写。 本标准主要针对相关单位对镍钴锰酸锂的质量要求为依据进行编写。 2工作分工 本标准由中信国安盟固利电源技术有限公司负责起草,佛山市邦普循环科技有限公 司、济宁无界科技有限公司,深圳天骄科技开发有限公司进行验证。 3征求意见单位 通过邮件共发送3份征求意见函,收到2份。编制组对回函意见进行整理,并对标

掺杂型镍钴锰三元素复合氢氧化物

《掺杂型镍钴锰三元素复合氢氧化物》 编制说明 广东邦普循环科技有限公司 2014.02

一、工作简介 1.1任务来源及计划要求 根据工业和信息化部《关于印发2013年第二批行业标准制修订计划的通知》(工信厅科[2013]102号)文件的要求,由广东邦普循环科技有限公司负责制定《掺杂型镍钴锰三元素复合氢氧化物》有色金属行业标准,项目计划编号:2013-0332T-YS,完成年限为2014年。 1.2 产品背景 电极材料是锂离子电池技术的核心和关键。新型电极材料的研发成为锂离子电池发展的重要研究内容。目前常用的正极材料主要有钴酸锂、锰酸锂、镍钴锰酸锂、镍钴酸锂和磷酸铁锂等。各种正极材料均有其优点,也存在不足。镍钴锰酸锂因其可逆容量大,结构稳定,循环性能好,合成容易等优点,已经发展成为一种非常重要的正极材料。 镍钴锰三元素复合氢氧化物(俗称三元前驱体)是合成三元材料的前端材料,近年来,随着三元材料在锂离子电池正极材料市场份额的逐步扩大,三元前驱体的生产和销售也日益增长,但为了迎合市场要求,需开发低成本、容量高的新型三元材料。由于三元前驱体的理化性能决定了终端材料三元材料的性能,因此对其进行掺杂改性,提高其各项理化性能。国内外众多研究者大量研究证明,适当的掺杂比例和均匀的掺杂能使三元前驱体的结构更稳定,并改善材料的循环性能和热稳定性。 目前用于掺杂的元素主要有Li、Mg、Al、Fe、Cr、Mo、Zr等。一般来说,掺杂元素越多,三元前驱体的能量密度会变小,所以掺杂元素的数量一为1-2个。采用不同的元素掺杂,材料的性能可以得到不同的改善。研究结果表明,适度的Li可有效抑制阳离子混排,改善材料的循环性能和倍率性能;采用Mg掺杂时,材料的首次放电容量可提高,循环性能和倍率性能也有所提高,热稳定性也得到极大改善;采用Cr掺杂时,可提高材料的振实密度和循环性能;采用Zr 掺杂则可以显著改善材料的循环性能和倍率性能。 1.3 承担单位情况及主要工作过程 1.3.1 承担单位情况 邦普,创立于2005年。企业总部(广东邦普循环科技有限公司)位于广东南海新材料产业基地核心区,总注册资本7645万元人民币;循环基地(湖南邦普循环科技有限公司)位于湖南长沙国家节能环保新材料产业基地,总注册资本

相关文档
相关文档 最新文档