文档库 最新最全的文档下载
当前位置:文档库 › 运动生物化学(5.3.1)--脂肪酸分解代谢与运动

运动生物化学(5.3.1)--脂肪酸分解代谢与运动

运动生物化学习题

《运动生物化学》习题集 绪论 一.名词解释运动生物化学是生物化学的一个分支学科。是用生物化学的理论及方法 研究人体运动时体内的化学变化即物质代谢及其调节的特点与规律 研究运动引起体内分子水平适应性变化及其机理的一门学科。 二.是非判断题 1、人体的化学组成是相对稳定的,在运动的影响下,一般不发生相应的变化。(错) 2、运动生物化学是研究生物体化学组成的一门学科。(错) 3、1937年Krebs提出了三羧酸循环的代谢理论。(对) 4、《运动生物化学的起源》是运动生物化学的首本专著。(错) 三.填空题 1、运动时人体内三个主要的供能系统是___、___、____。 2、运动生物化学的首本专著是____。 3、运动生物化学的研究任务是____。 1、磷酸原系统、糖酵解系统、有氧代谢系统 2、《运动生物化学概论》 3、揭示运动人体变化的本质、评定和监控运动人体的机能、科学地指导体育锻炼和运动训练 四.单项选择题 1. 运动生物化学成为独立学科的年代是()。 A. 1955年 B. 1968年 C. 1966年 D. 1979年 2. 运动生物化学是从下列那种学科发展起来的()。 A. 细胞学 B. 遗传学 C. 生物化学 D. 化学 3. 运动生物化学的一项重要任务是()。 A. 研究运动对机体组成的影响 B. 阐明激素作用机制 C. 研究物质的代谢 D. 营养的补充 4. 运动生物化学的主要研究对象是()。 A. 人体 B. 植物体 C. 生物体 D. 微生物 1、A 2、C 3、A 4、A 五.问答题 1.运动生物化学的研究任务是什么? 1 揭示运动人体变化的本质 2 评定和监控运动人体的机能 3 科学地指导体育锻炼和运动训练 第一章物质代谢与运动概述 一.名词解释

脂类代谢考试试题及答案

第九章脂类代谢 一、选择题(请将选择的正确答案的字母填写在题号前面的括号内) ()1合成甘油酯最强的器官是 A 肝; B 肾; C 脑; D 小肠。 ()2、小肠粘膜细胞再合成脂肪的原料主要来源于 A 小肠粘膜吸收来的脂肪水解产物; B 肝细胞合成的脂肪到达小肠后被消化的产物 C 小肠粘膜细胞吸收来的胆固醇水解产物; D 脂肪组织的水解产物; E 以上都对。 ()3、线粒体外脂肪酸合成的限速酶是 A 酰基转移酶; B 乙酰辅酶A羧化酶; C 肉毒碱脂酰辅酶A转移酶Ⅰ; D 肉毒碱脂酰辅酶A转移酶Ⅱ; E β—酮脂酰还原酶。 ()4、酮体肝外氧化,原因是肝脏内缺乏 A 乙酰乙酰辅酶A硫解酶; B 琥珀酰辅酶A转移酶; C β—羟丁酸脱氢酶; D β—羟—β—甲戊二酸单酰辅酶A合成酶; E 羟甲基戊二酸单酰辅酶A裂解酶。 ()5、卵磷脂含有的成分是 A 脂肪酸、甘油、磷酸和乙醇胺; B 脂肪酸、甘油、磷酸和胆碱; C 脂肪酸、甘油、磷酸和丝氨酸; D 脂肪酸、磷酸和胆碱; E 脂肪酸、甘油、磷酸。 ()6、脂酰辅酶A的β—氧化过程顺序是 A 脱氢、加水、再脱氢、加水; B 脱氢、脱水、再脱氢、硫解; C 脱氢、加水、再脱氢、硫解; D 水合、加水、再脱氢、硫解。 ()7、人体内的多不饱和脂肪酸是指 A 油酸、软脂肪酸; B 油酸、亚油酸; C 亚油酸、亚麻酸; D 软脂肪酸、亚油酸。 ()8、可由呼吸道呼出的酮体是 A 乙酰乙酸; B β—羟丁酸; C 乙酰乙酰辅酶A; D 丙酮。 ()9、与脂肪酸的合成原料和部位无关的是

A 乙酰辅酶A; B NADPH+H+; C 线粒体外; D 肉毒碱;E、HCO3- ()10、并非以FAD为辅助因子的脱氢酶有 A 琥珀酸脱氢酶; B 脂酰辅酶A脱氢酶; C 二氢硫辛酸脱氢酶; D β—羟脂酰辅酶A脱氢酶。 ()11、不能产生乙酰辅酶A的是 A 酮体; B 脂肪酸; C 胆固醇; D 磷脂; E 葡萄糖。 ()12、甘油磷酸合成过程中需哪一种核苷酸参与 A ATP; B CTP; C TTP; D UDP; E GTP。 ()13、脂肪酸分解产生的乙酰辅酶A的去路 A 合成脂肪酸; B 氧化供能; C 合成酮体; D 合成胆固醇; E 以上都是。()14、胆固醇合成的限速酶是 A HMGCoA合成酶; B 乙酰辅酶A羧化酶; C HMGCoA还原酶; D 乙酰乙酰辅酶A硫解酶。 ()15、胆汁酸来源于 A 胆色素; B 胆红素; C 胆绿素; D 胆固醇。 ()16、脂肪酸β—氧化的限速酶是 A 肉毒碱脂酰转移酶Ⅰ; B 肉毒碱脂酰转移酶Ⅱ C 脂酰辅酶A脱氢酶; D β—羟脂酰辅酶A脱氢酶; E β—酮脂酰辅酶A硫解酶。 ()17、β—氧化过程的逆反应可见于 A 胞液中脂肪酸的合成; B 胞液中胆固醇的合成; C 线粒体中脂肪酸的延长; D 内质网中脂肪酸的合成。 ()18、并非类脂的是 A 胆固醇; B 鞘脂; C 甘油磷脂; D 神经节苷脂; E 甘油二脂。 ()19、缺乏维生素B2时,β—氧化过程中哪一个中间产物合成受到障碍? A 脂酰辅酶A; B β—酮脂酰辅酶A; C α,β—烯脂酰辅酶A ; D L—β—羟脂酰辅酶A; E 都不受影响。 ()20、合成胆固醇的原料不需要 A 乙酰辅酶A; B NADPH; C A TP ; D O2。 ()21、由胆固醇转变而来的是

运动生物化学学习重点大全

绪论生物化学:是研究生命化学的科学,它从分子水平探讨生命的本质,即研究生物体的分子结构与功能、物质代谢与调节及其在生命活动中的作用。运动生物化学:是研究人体运动时体内的化学变化即物质代谢及其调节的特点与规律,研究运动引起体内分子水平适应性变化及其机理的一门学科。 运动生物化学的任务主要体现在:1、解释人体运动变化的本质;2、评定和监控运动人体的机能;3、科学的知道体育锻炼和运动训练。 第一章 1.酶催化反应的特点是什么?影响酶促反应速度的因素有哪些? 一、高效性;二、高度专一性;三、可调控性 一、底物浓度与酶浓度对反应速度的影响;二、PH对反应速度的影响;三、温度对反应速度的影响;四、激活剂和抑制剂对反应速度的影响; 2.水在运动中有何作用?水代谢与运动能力有何关系? 人体内的水是进行生物化学反应的场所,水还具有参与体温调节、起到润滑等作用,并与体内的电解质平衡有关。 运动时,人体出汗量迅速增多,水的丢失加剧。一次大运动负荷的训练可以导致人体失水2000~7000ml,水丢失严重时即形成脱水,会不同程度的降低运动能力。 3.无机盐体内有何作用?无机盐代谢与运动能力有何关系? 无机盐在体内中解离为离子,称为电解质,具有调节渗透压和维持酸碱平衡等重要作用。

4.生物氧化合成ATP有几种形式,他们有何异同? 生物氧化共有两种形式:1、底物水平磷酸化;2、氧化磷酸化 相同点:1、反应场所都是在线粒体;2、都要有ADP和磷酸根离子存在 不同点:1、在无氧代谢供能中以底物水平磷酸化合成ATP为主,而人体所利用的ATP约有90%来自于氧化磷酸化的合成即在有氧代谢中主要提供能量;2、底物水平低磷酸化不需要氧的参与,氧化磷酸化必须要有氧;3、反应的方式不同。 5.酶对运动的适应表现在哪些方面?运动对血清酶有何影响? 一、酶催化能力的适应;二、酶含量的适应。 ①、运动强度:运动强度大,血清酶活性增高 ②、运动时间:相同的运动强度,运动时间越长,血清酶活性增加越明显 ③、训练水平:由于运动员训练水平较高,因此完成相同的运动负荷后,一般人血清酶活性增高比运动员明显 ④、环境:低氧、寒冷、低压环境下运动时,血清酶活性升高比正常环境下明显。 6.试述ATP的结构与功能。 ATP分子是由腺嘌呤、核糖和三个磷酸基团组成的核苷酸,其分子结构 功能:生命活动的直接能源;合成磷酸肌酸和其他高能磷酸化合物 7.酶:酶是生物体的活性细胞产生的具有生物催化功能的蛋白质。 生物氧化:指物质在体内氧化生成二氧化碳和水,并释放出能量的过程。生物氧化实际上是需氧细胞呼吸作用中一系列氧化---还原反应,故又称为细胞呼吸。 同工酶:人体内有一类酶,他们可以催化同一化学反应,但催化特性、理

22 脂肪酸的分解代谢

第28章、脂肪酸的分解代谢(p230) 本章重点:1、脂肪酸分解代谢过程,2、脂肪酸代谢的能量产生,3、脂肪酸分解脱氢,4脂肪酸分解代谢和糖酵解的关系。 本章主要内容: 一、脂肪的水解——脂酶的水解作用(细胞质中) 生物体内脂肪是由脂肪酶水解,在脂肪酶的催化下生成一分子甘油和三分子脂肪酸,脂肪酶的特点:主要作用于有酯键的化合物,不论脂肪来源于什么组织,不论脂肪酸碳链的长短,只要是酯键,脂肪酶就可以使其断裂,这就是酶的专一性即键专一性。 事实上,脂肪的水解不是一步完成的,而是分步完成,分步进行水解。第一步脂肪酶水解第一或第三全酯键,即α或α′酯键,如果第一步水解α-酯键,第二水解α′酯键,生成α和α′脂肪酸和甘油-酯,最后,β-位的脂肪酸在转移酶的催化下β-的脂肪酸转到α或α′位上,再在脂肪酶的作用下,脂肪酸水解下来,共生成三分子脂肪酸和一分子甘油,水解过程为: 脂肪(甘油三酯)水解的产物:一分子甘油和三分子脂肪酸。 二、甘油的转化 脂肪的水解产物甘油是联系脂肪代谢和糖代谢的重要化合物,它可以轩化成磷酸甘油醛进入糖代谢,其代谢过程为: 生成的磷酸2羟丙酮有两种去路: 1、DHAP可以进入EMP途径生成pyr,再经脱氢、脱羟生成乙酰COA,经TCA循环氧化 成CO2和H2O。 2、G-3-P可以与DHAP逆EMP途径在醛缩酶催化下生成F-1.6-P,继续转化成糖类。 甘油被彻底氧化以后可以生成多少molATP呢?首先总结氧化的部位: ①α-磷酸甘油脱氢,生成1molNADH·H+ ②G-3-P生成1,3-DPG 1molNADH·H+ ③Pyr脱氢 1molNADH·H+ ④异柠檬酸脱氢1molNADH·H+ ⑤α-酮戊二酸脱氢 1molNADH·H+ ⑥平果酸脱氢 1molNADH·H+ ⑦琥珀酸脱氢 1molFADH2 琥珀酰COA→琥珀酸 另外,甘油还可在代谢的过程中转化到蛋白质中去,如进入TCA后生成Pyr、OAA、α-Kg等可经转氨基作用生成Ala、Asp和Glu参与到蛋白质的合成中去。 三、脂肪酸的降解 脂肪酸的降解(分解)即氧化分解有几种形式,最重要的是β-氧化,其次是α-氧化和ω-氧化。 (一)β-氧化(线粒体内进行) 1、概念:脂肪酸的β-氧化作用是脂肪酸经一系列酶的作用,从α、β碳位之间断裂生 成1mol乙酰COA和比原来脂肪酸少两个碳原子的脂酰COA。 2、β-氧化过程:脂肪酸β-氧化的合成过程包括下列几个主要步骤: 1)活化或叫做脂酰COA的形成:脂肪酸首先与辅酶A缩合同时消耗一分子ATP,形成活化的脂酰COA,这步反应要消耗ATP的两个高能磷酸键。 第一步反应是在脂酰 COA合成酶的催化下进行的,活化了的脂酰COA借线粒体内膜两侧的肉毒碱脂酰COA转移酶的作用,进入线粒体内。 肉毒碱脂酰COA转移酶 脂酰COA++COA 肉毒碱的结构: 肉毒碱起携带脂肪酸酰基通过线粒体内膜的作用。

习题-运动生物化学

第一章物质代谢与运动概述 一、单项选择题: 1. 运动生物化学成为独立学科的年代是()。 A. 1955年 B. 1968年 C. 1966年 D. 1979年E1982年 2. 运动生物化学的一项重要任务是()。 A. 研究运动对机体组成的影响 B. 阐明激素作用机制 C. 研究物质的代谢 D. 营养的补充 E. 研究运动人体的物质组成 3.酶促反应中决定反应特异性的是() A. 酶蛋白 B. 辅基 C. 辅酶 D. 金属离子 E .变构剂 4.酶促反应速度(V)达最大反应速度(Vm)的60%时,底物浓度[S]为() A. 1 Km B. 2 Km C. 1.5 Km D. 2.5 Km E. 3 Km 5.下列哪个化学物质不属于运动人体的能源物质。() A.葡萄糖 B.维生素C C.氨基酸 D.软脂酸 E.糖原 6.酶分子中将底物转变为产物的基团是() A. 结合基团 B. 催化基团 C. 碱性基团 D. 酸性基团 E. 疏水基团 7.温度对酶活性的影响是() A. 低温可以使酶失活 B. 催化的反应速度随温度的升高而增加 C. 最适温度是酶的特征性常数 D. 最适温度随反应的时间而有所变化 E. 以上全对 8.关于酶活性中心的叙述,哪项不正确() A. 酶与底物接触只限于酶分子上与酶活性密切有关的较小区域 B. 必需基团可位于活性中心之内,也可位于活性中心之外 C. 一般来说,总是多肽链的一级结构上相邻的几个氨基酸的残基相对集中,形成酶的活性中心 D. 酶原激活实际上就是完整的活性中心形成的过程 E. 当底物分子与酶分子相接触时,可引起酶活性中心的构象改变 9.一种酶作用于多种底物,其天然底物的Km是() A. 与其他底物相同 B. 最大 C. 最小 D. 居中 E. 与Km相同

“运动生物化学”课程教学大纲

“运动生物化学”课程教学大纲 教研室主任:田春兰执笔人:王凯 一、课程基本信息 开课单位:体育科学学院 课程名称:运动生物化学 课程编号:144213 英文名称:sports biochemistry 课程类型:专业方向任选课 总学时: 36理论学时:36 实验学时: 0 学分:2 开设专业:休闲体育 先修课程:运动解剖运动生理 二、课程任务目标 (一)课程任务 运动生物化学是从分子水平上研究运动与身体化学组成之间的相互适应,研究运动过程中机体内物质和能量代谢及调节的规律,从而为增强体质、提高竞技能力提供理论和方法的一门学科,是一门科学性和应用性很强的学科。重视最新科学成就的介绍和体现体育专业的特点及需要。在体育科学和体育教学中占有重要的地位,在体育专业各层次教学中被列为专业基础理论课,是体育院校学生的必修课。 (二)课程目标 在学完本课程之后,学生能够: 1.使学生初步了解运动与身体化学组成之间的相互适应,初步掌握运动过程中机体物质和能量 代谢及调节的基本规律。 2.为增强体质、提高竞技能力(如运动性疲劳的消除和恢复、反兴奋剂及其监测技术、机能监 控和评定、制定运动处方等)提供理论和方法。 3.增强学生的科学素养,培养科学思维的良好习惯。 三、教学内容和要求

第一章绪论 1.理解运动生物化学的概念,研究任务,发展、现状及展望; 2.了解运动生物化学在体育科学中的地位;激发学生学习本学科的兴趣; 3.使学生树立整体观、动态观,用辩证的思维去看待生命、看待运动人体。 重点与难点:运动生物化学的概念;运动生物化学的研究任务。 第二章糖代谢与运动 1.掌握糖的概念、人体内糖的存在形式与储量、糖代谢不同化学途径与ATP合成的关系; 2.了解糖酵解、糖的有氧氧化的基本代谢过程及其在运动中的意义; 3.掌握糖代谢及其产物对人体运动能力的影响; 4.熟悉糖原合成和糖异生作用的基本代谢过程及其在运动中的意义; 5.了解运动训练和体育锻炼中糖代谢产生的适应性变化。 重点与难点:糖代谢的不同化学途径及其与ATP合成的关系 第三章脂代谢与运动 1.掌握脂质的概念与功能、脂肪酸分解代谢的过程; 2.了解酮体的生成和利用及运动中酮体代谢的意义; 3.掌握运动时脂肪利用的特点与规律; 4.理解运动、脂代谢与健康的关系。 重点与难点:脂肪酸分解代谢的过程、酮体代谢的意义;运动时脂肪利用的特点与规律。第四章蛋白质代谢与运动 1.掌握蛋白质的概念、分子组成和基本代谢过程; 2.理解蛋白质结构与功能的辩证关系。 3.了解运动与蛋白质代谢和氨基酸代谢的适应。 重点与难点:运动时蛋白质和氨基酸代谢变化的规律;蛋白质的代谢过程; 第五章水无机盐维生素的生物化学与运动 1.了解掌握水的生物学功能与对运动能力影响 2.了解掌握无机盐的生物学功能及与运动能力的关系 3.了解掌握维生素的生物学功能与运动能力的关系 第六章酶与激素 1了解酶的特点,理解运动中酶的适应变化及运动对血清酶的影响和应用 2了解运动对

运动生物化学习题库

《运动生物化学》习题集 一.名词解释 运动生物化学 二.是非判断题 1、人体的化学组成是相对稳定的,在运动的影响下,一般不发生相应的变化。 2、运动生物化学是研究生物体化学组成的一门学科。 3、1937年Krebs提出了三羧酸循环的代谢理论。 4、《运动生物化学的起源》是运动生物化学的首本专著。 三.填空题 1、运动时人体内三个主要的供能系统是____、____、____。 2、运动生物化学的首本专著是____。 3、运动生物化学的研究任务是____。 四.单项选择题 1. 运动生物化学成为独立学科的年代是()。 A. 1955年 B. 1968年 C. 1966年 D. 1979年 2. 运动生物化学是从下列那种学科发展起来的()。 A. 细胞学 B. 遗传学 C. 生物化学 D. 化学 3. 运动生物化学的一项重要任务是()。 A. 研究运动对机体组成的影响 B. 阐明激素作用机制 C. 研究物质的代谢 D. 营养的补充 4. 运动生物化学的主要研究对象是()。 A. 人体 B. 植物体 C. 生物体 D. 微生物五.问答题 1.运动生物化学的研究任务是什么 2.试述运动生物化学的发展简史 绪论 一、名词解释 运动生物化学是生物化学的一个分支学科。是用生物化学的理论及方法,研究人体运动时体内的化学变化即物质代谢及其调节的特点与规律,研究运动引起体内分子水平适应性变化及其机理的一门学科。 二、是非判断题 1、错 2、错 3、对 4、错 三、填空题 1、磷酸原系统、糖酵解系统、有氧代谢系统 2、《运动生物化学概论》 3、揭示运动人体变化的本质、评定和监控运动人体的机能、科学地指导体育锻炼和运动训练 四、单项选择题 1、A 2、C 3、A 4、A 五、问答题 1、运动生物化学的研究任务是什么 答:(1)揭示运动人体变化的本质 (2)评定和监控运动人体的机能 (3)科学地指导体育锻炼和运动训练2、试述运动生物化学的发展简史 答:运动生物化学的研究开始于20世纪20年代,在40-50年代有较大发展,尤其是该时期前苏联进行了较为系统的研究,并于1955年出版了第一本运动生物化学的专著《运动生物化学概论》,初步建立了运动生物化学的学科体系,到60年代,该学科成为一门独立的学科。至今,运动生物化学已

运动生物化学学习重点大全

绪论 生物化学:是研究生命化学的科学,它从分子水平探讨生命的本质,即研究生物体的分子结构与功能、物质代谢与调节及其在生命活动中的作用。 运动生物化学:是研究人体运动时体内的化学变化即物质代谢及其调节的特点与规律,研究运动引起体内分子水平适应性变化及其机理的一门学科。 运动生物化学的任务主要体现在:1、解释人体运动变化的本质; 2、评定和监控运动人体的机能; 3、科学的知道体育锻炼和运动训练。 第一章 1.酶催化反应的特点是什么影响酶促反应速度的因素有哪些 一、高效性;二、高度专一性;三、可调控性 一、底物浓度与酶浓度对反应速度的影响;二、PH对反应速度的影响;三、温度对反应速度的影响;四、激活剂和抑制剂对反应速度的影响; 2.水在运动中有何作用水代谢与运动能力有何关系 人体内的水是进行生物化学反应的场所,水还具有参与体温调节、起到润滑等作用,并与体内的电解质平衡有关。 运动时,人体出汗量迅速增多,水的丢失加剧。一次大运动负荷的训练可以导致人体失水2000~7000ml,水丢失严重时即形成脱

水,会不同程度的降低运动能力。 3.无机盐体内有何作用无机盐代谢与运动能力有何关系 无机盐在体内中解离为离子,称为电解质,具有调节渗透压和维持酸碱平衡等重要作用。 4.生物氧化合成ATP有几种形式,他们有何异同 生物氧化共有两种形式:1、底物水平磷酸化;2、氧化磷酸化 相同点:1、反应场所都是在线粒体;2、都要有ADP和磷酸根离子存在 不同点:1、在无氧代谢供能中以底物水平磷酸化合成ATP为主,而人体所利用的ATP约有90%来自于氧化磷酸化的合成即在有氧代谢中主要提供能量;2、底物水平低磷酸化不需要氧的参与,氧化磷酸化必须要有氧;3、反应的方式不同。 5.酶对运动的适应表现在哪些方面运动对血清酶有何影响 一、酶催化能力的适应;二、酶含量的适应。 ①、运动强度:运动强度大,血清酶活性增高 ②、运动时间:相同的运动强度,运动时间越长,血清酶活性增加越明显 ③、训练水平:由于运动员训练水平较高,因此完成相同的运动负荷后,一般人血清酶活性增高比运动员明显 ④、环境:低氧、寒冷、低压环境下运动时,血清酶活性升高比正常环境下明显。

反式脂肪酸在体内如何代谢

反式脂肪酸在体内如何代谢 1、反式脂肪酸同顺式脂肪酸一样能作为能源同样会被氧化而供能; 2、反式脂肪酸的确会导致VDL(极低密度脂蛋白)/LDL(低密度脂蛋白)的水平,它在体内的积累是因为不能通过脂合成途径合成体内其他脂质。 什么是反式脂肪酸? 反式脂肪酸是一类不饱和脂肪酸,包含至少一个反式结构的双键。 反式脂肪酸的来源于食品工业加工产生“氢化油”中以及反刍动物体内。 在食品工业中,由于天然植物油的双键是“顺式”结构,这种油抗氧化能力差,不稳定,工业上将植物油氢化,在这个过程中,部分油脂异构化产生了“反式”双键。以rans 9-Elaidic Acid(t9一C18:1)为主。 反刍动物的油脂以及牛奶中也存在反式脂肪酸,这是由于反刍动物瘤胃中的微生物将脂肪酸氢化而产生。以trans 11.Vaccenic Acid(t11一C18:1)为主,也还有顺9,反11一共轭亚油酸(c9, t11一CLA)和反10,顺12一共轭亚油酸(t10,c12一CLA)。 反式脂肪酸会增加体内VDL/LDL的水平,易导致心血管疾病、肥胖、胰岛素抗性、糖尿病等。 共轭亚油酸也是一种反式脂肪酸,但共轭亚油酸却与其他反式脂肪酸不同,它具有抗癌、降脂、抗动脉粥样硬化等功能。 反式脂肪酸在体内如何被氧化?

饱和脂肪酸的β-氧化过程大致经过4个步骤,既脱氢、加水、再脱氢和硫解这四个步骤。 由于反式脂肪酸为不饱和脂肪酸,因此先讲单不饱和脂肪酸的β-氧化过程。 体内正常的不饱和脂肪酸的双键都是顺式的,它们活化后进入β-氧化时,生成3-顺烯脂酰CoA, 此时需要顺-3反-2异构酶催化使其生成2-反烯脂酰CoA以便进一步反应。2-反烯脂酰CoA加水 后生成D-β-羟脂酰CoA,需要β-羟脂酰CoA差向异构酶催化,使其由D-构型转变成L-构型,以 便再进行脱氧反应(只有L-β-羟脂酰CoA才能作为β-羟脂酰CoA脱氢酶的底物)。 下图为多不饱和脂肪酸氧化示意图: 从不饱和脂肪酸的β-氧化过程可以看出,其“顺式”双键需要首先经过异构酶的催化变成“反式”双键才能进行 下一步氧化反应,而反式脂肪酸的氧化过程则不需要经过顺-3反-2异构酶的催化,直接完成加水、脱氢和硫解过程。 反式脂肪酸在体内的积累和对VDL/LDL水平的影响 体内的脂质作为前体能合成其他多不饱和脂肪酸,该过程需要脂肪酸去饱和酶的参与,但是该类酶 的底物为顺式双键,含有反式双键的脂肪酸则不能被延长或去饱和而被积累下来。

老版本的运动生化习题

绪论 1、简述运动生物化学的研究容 第一章 判断题 1、酶是具有催化功能的蛋白质,酶具有蛋白质的所有属性,所有的蛋白质都具有催化功能。(×) 2、通常将酶催化活性最大时的环境PH称为该酶的最适PH(√) 3、水是人体主要的组成成分,水和无机盐不能直接供能,与能源物质代无关。(×) 4、低氧、寒冷、低压环境下运动时,血清酶活性升高比正常环境小。(×) 5、生物体化学反应速度随温度的增高而加快,温度越高,催化反应的速度越快。(×) 6、酶促反应的反应物称为产物,生成物称为底物。(×) 7、高度专一性是指酶对底物有严格的选择性。(√) 8、酶可分为单纯酶、结合酶和酶的辅助因子3种。(×) 9、当身体的机能状态急剧改变时,如损伤、运动或疾病等,血清酶活性降低。(×) 10、训练引起的酶催化能力的适应性变化,可因停训而消退。(√) 11、生物体物质代与能量代即可同时存在,也可独立存在。(×) 12、凡是提高酶活性的物质为抑制剂,凡能降低酶活性或使酶活性丧失的物质为激活剂(×) 单选题 1、(A)是各种生命活动的直接能量供应者。 A ATP B 糖C脂肪D 蛋白质 2、(B)是生物氧化发生的主要部位。 A 质网B.线粒体C.基质D.叶绿体

3、下列哪个酶不属于糖酵解酶类(B) A.磷酸化酶 B.肌酸激酶 C.磷酸果糖基酶 D.乳酸脱氢酶 4、下列不属于生物氧化意义的是(D) A.能量逐渐释放,持续利用 B.合成人体的直接能源ATP C.产生热量,维持体温 D.加速新代 5、完全在细胞质中进行生物氧化过程的是(D) A.三羧酸循环 B.脂肪酸循环 C.丙酮酸氧化 D.糖酵解 6、人体化学组成中含量最多的是(C) A.糖B .脂肪C.水D.蛋白质 7、蛋白质的基本单位是(A) A. 氨基酸 B.核酸 C.乳酸D .甘油 8、当身体机能状态急剧改变时,如损伤、运动或者疾病等,血清酶活性(A) A.升高 B.降低 C.不变 D.稳定 9、一个正常的成年人每日需要经尿液排出的代废物约为(A),至少要500ml的水作为溶剂,这一数值为最低值。 A.35g B.40g C30g D.45g 10、电解质的作用是(C) A.调节体温 B.间接提供能量 C.调节渗透压和维持酸碱平衡 D.直接提供能量 11、适宜运动可使蛋白质合成(A) A.增加 B.减少 C.不变 D.以上均有可能 12、对整个代过程的反应起控制作用的酶称为(A) A.限速酶 B.辅酶 C.同工酶 D.结合酶 多选题 1、人体的能源物质包括(ABC)

运动生物化学期末重点

绪论 运动生物化学是生物化学的分支,是研究人体运动时体内的化学变化即物质代谢及其调节的特点与规律,研究运动引起体内分子水平适应性变化及其机理的一门学科。是从生物化学和生理学的基础上发展起来的,是体育科学和生物化学及生理学的结合。 运动生物化学的研究开始于本世纪的20年代;在40-50年代有较大的发展,尤其是该时期前苏联的雅科夫列夫等进行了较为系统的研究,并于1955年出版了第一本运动生物化学专著《运动生物化学概论》;初步建立了运动生物化学的学科体系; 第一章 人体的物质组成包括水、糖、脂、蛋白质、无机盐以及维生素、激素、核酸等多种化合物酶的化学本质除有催化活性的RNA之外几乎都是蛋白质 据化学组成,酶可以分为:单纯蛋白酶类和结合蛋白酶类,在结合蛋白酶类中的蛋白质部分称之为酶蛋白,非蛋白质部分称为辅因子(或辅助因子)。 酶催化反应的特点为:酶作用的高度专一性、酶作用的高效性、可调节性及可代谢性以及高度的不稳定性 糖、脂肪与蛋白质是细胞的三大化学燃料,A TP为通用的直接能源。 人体各种运动中所需要的能量分别由三种不同的能源系统供给。即磷酸原系统、糖酵解系统、氧化能系统。 生物氧化中水的生成是通过电子呼吸链进行的,在呼吸链上有两条呼吸链,一条为:NADH 氧化呼吸链,一分子NADH进入呼吸链后可产生3分子的ATP;另一条为FADH2氧化呼吸链,一分子FADH2进入呼吸链后可产生2分子ATP。 一般将水解时释放的标准自由能高于20.92KJ/mol(5千卡/摩尔)的化合物,称为高能化合物。 第二章 糖无氧代谢(糖酵解)过程是在细胞的胞质中进行。 1分子1,6-2磷酸果糖可生成2分子3-磷酸甘油醛 正常情况下血糖浓度:4.5~6.7mmo/L 第三章 脂解过程中释放的甘油,只在肾、肝等少数组织内氧化利用,而骨骼肌中的甘油释入血液循环到肝脏进行糖异生作用生成葡萄糖。 在肝脏,每分子甘油氧化生成乳酸时,释放能量可合成4ATP;如果完全氧化生成CO2和H2O 时,则释放出的能量可合成22A TP。 在安静、空腹状态时,人的血浆FFA浓度为6-16mg%(0.1mmol/L)。 第四章 镰刀状贫血病是血红蛋白β链N端第6个氨基酸(Glu)改为Val 联合脱氨基作用的类型共分为两种:转氨基偶联氧化脱氨基作用与转氨基偶联嘌呤核苷酸循环 正常人血氨浓度一般不超过0.6μmol/L。 评价运动时体内蛋白质分解代谢的常用指标是尿素氮;尿中3-甲基组氨酸。 血尿素在安静正常值为3.2-7.0毫摩尔/升 第五章 CP是肌肉内高能磷酸键的贮存库,C-CP能量穿梭系统使A TP水解与A TP再合成紧密耦联。

2019年运动生物化学知识总结与学习感受

2019年运动生物化学知识总结与学习感受篇一:关于运动生物化学知识总结 体能,即运动员身体素质水平的总称。即运动员在专项比赛中体力发挥的最大程度、也标志着运动员无氧训练和有氧训练的水平,反映了运动员机体能量代谢水平。体能即人体适应环境的能力。包括与健康有关的健康体能和与运动有关的运动体能。 体适能是PhysicalFitness的中文翻译,是指人体所具备的有充足的精力从事日常工作(学习)而不感疲劳,同时有余力享受康乐休闲活动的乐趣,能够适应突发状况的能力。 美国运动医学学会认为:体适能包括“健康体适能”和“技能体适能”。健康体适能的主要内容如下: ①身体成分:即人体内各种组成成分的百分比,身体成分保持在一个正常百分比范围对预防某些慢性病如糖尿病、高血压、动脉硬化等有重要意义。 ②肌力和肌肉耐力:肌力是肌肉所能产生的最大力量,肌肉耐力是肌肉持续收缩的能力,是机体正常工作的基础。

③心肺耐力:又称有氧耐力,是机体持久工作的基础,被认为是健康体适能中最重要的要素。 ④柔软素质:是指在无疼痛的情况下,关节所能活动的最大范围。它对于保持人体运动能力,防止运动损伤有重要意义。 技能体适能包括灵敏、平衡、协调、速度、爆发力和反应时间等,这些要素是从事各种运动的基础,但没有证据表明它们与健康和疾病有直接关系。[1] “体适能”可视为身体适应生活、运动与环境(例如;温度、气候变化或病毒等因素)的综合能力。体适能较好的人在日常生活或工作中,从事体力性活动或运动皆有较佳的活力及适应能力,而不会轻易产生疲劳或力不从心的感觉。在科技进步的文明社会中,人类身体活动的机会越来越少,营养摄取越来越高,工作与生活压力和休闲时间相对增加,每个人更加感受到良好体适能和规律运动的重要性。在测量上,体适能分为心肺适能、肌肉适能、与体重控制三个面向。 体质:由先天遗传和后天获得所形成的,人类个体在形态结构和功能活动方面所固有的、相对稳定的特性,与心理性格具有相关性。个体体质的不同,表现为在生理状态下对外界刺激的反应和适应上的某些差异性,以及发病过程中对某些致病因子的易感性和疾病发展的

运动生物化学学习重点大全培训讲学

运动生物化学学习重 点大全

绪论 生物化学:是研究生命化学的科学,它从分子水平探讨生命的本质,即研究生物体的分子结构与功能、物质代谢与调节及其在生命活动中的作用。 运动生物化学:是研究人体运动时体内的化学变化即物质代谢及其调节的特点与规律,研究运动引起体内分子水平适应性变化及其机理的一门学科。 运动生物化学的任务主要体现在:1、解释人体运动变化的本质;2、评定和监控运动人体的机能;3、科学的知道体育锻炼和运动训练。 第一章 1.酶催化反应的特点是什么?影响酶促反应速度的因素有哪些? 一、高效性;二、高度专一性;三、可调控性 一、底物浓度与酶浓度对反应速度的影响;二、PH对反应速度的影响;三、温度对反应速度的影响;四、激活剂和抑制剂对反应速度的影响; 2.水在运动中有何作用?水代谢与运动能力有何关系? 人体内的水是进行生物化学反应的场所,水还具有参与体温调节、起到润滑等作用,并与体内的电解质平衡有关。

运动时,人体出汗量迅速增多,水的丢失加剧。一次大运动负荷的训练可以导致人体失水2000~7000ml,水丢失严重时即形成脱水,会不同程度的降低运动能力。 3.无机盐体内有何作用?无机盐代谢与运动能力有何关系? 无机盐在体内中解离为离子,称为电解质,具有调节渗透压和维持酸碱平衡等重要作用。 4.生物氧化合成ATP有几种形式,他们有何异同? 生物氧化共有两种形式:1、底物水平磷酸化;2、氧化磷酸化相同点:1、反应场所都是在线粒体;2、都要有ADP和磷酸根离子存在 不同点:1、在无氧代谢供能中以底物水平磷酸化合成ATP为主,而人体所利用的ATP约有90%来自于氧化磷酸化的合成即在有氧代谢中主要提供能量;2、底物水平低磷酸化不需要氧的参与,氧化磷酸化必须要有氧;3、反应的方式不同。 5.酶对运动的适应表现在哪些方面?运动对血清酶有何影响? 一、酶催化能力的适应;二、酶含量的适应。 ①、运动强度:运动强度大,血清酶活性增高 ②、运动时间:相同的运动强度,运动时间越长,血清酶活性增加越明显 ③、训练水平:由于运动员训练水平较高,因此完成相同的运动负荷后,一般人血清酶活性增高比运动员明显

运动生物化学 教学大纲

XX 学院 教学大纲 体育系2012级体育教育专业 2013级专接本 课程名称:运动生物化学 任课教师:XXX 2014年2月24日至2014年6月29日

XX学院体育系体育教育本科专业《运动生物化学》教学大纲 课程名称:运动生物化学 课程代码:108011106S 课程性质:专业必修课 总学时:36 学分:2 适用专业:体育教育 先修课程: 运动解剖学、运动生理学、运动训练学 一、课程的性质、目的与任务: 1.课程性质:《运动生物化学》是生物化学的分支,体育科学学科之一,也是体育科学中应用基础性的学科。本门学科是应用物理学、化学和生物学的方法,从分子水平研究人体运动时机体的化学组成、化学变化、能量转变和运动能力的发展与变化,并应用这些规律为运动实践服务的一门科学。 2.课程目的:通过学习使学生掌握有关运动生物化学基本理论、概念和方法,熟悉运动训练和体育锻炼中人体的生物化学变化特点,能应用运动生物化学的理论方法指导训练和体育锻炼,并为今后进一步学习体育教育专业相关课程打下基础。 3.课程任务:使学生明确运动生物化学的学科地位,提高学生学习兴趣。使学生掌握运动生物化学的基础知识,能够运用化学的原理与方法,从分子水平探讨运动与身体化学组成之间的相互适应,运动过程中机体内物质和能量代谢及调节规律,并学会应用理论指导运动实践活动,为增强体质、提高竞技运动能力提供理论和方法。 二、教学内容与教学基本要求: (一)理论部分 绪论 1.教学内容: 一、运动生物化学的概念与任务 二、运动生物化学的发展与展望 三、学习运动生物化学的意义与方法 2.教学目的与要求:

理解运动生物化学的研究任务,发展、现状及展望;了解运动生物化学在体育科学中的地位;激发学生学习本学科的兴趣;使学生树立整体观、动态观,用辩证的思维去看待生命、看待运动人体。 第一章物质代谢与运动概述 1.教学内容: 第一节运动人体的物质组成 一、组成人体的化学物质 二、运动对人体化学物质的影响 第二节物质代谢的催化剂——酶 一、概述 二、酶催化反应的特点 三、影响酶促反应速度的因素 四、运动与酶适应 五、运动与血清酶 第三节运动时物质代谢 一、糖代谢 二、脂质代谢 三、蛋白质代谢 四、水代谢 五、无机盐代谢 六、维生素代谢 第四节运动时机体的能量代谢 一、腺苷三磷酸——ATP 二、生物氧化 2.教学目的与要求: 掌握运动人体的物质组成、酶催化反应的特点、运动中生物氧化过程及ATP的合成;熟悉运动中机体物质代谢的基本知识;理解运动引起人体物质组成及酶的适应性变化。 第二章糖质代谢与运动 1.教学内容: 第一节糖概述 一、糖的概念和化学组成 二、糖的分类

脂肪酸的分解代谢

第28章脂肪酸的分解代谢 28.1 本章主要内容 1)脂肪酸代谢的主要途径 2)脂肪酸代谢中的能量变化 3)酮体的代谢 28.2 教学目的和要求 通过本章学习,使学生掌握饱和脂肪酸的β-氧化途径和能量变化以及酮体的代谢,了解代谢障碍引起的疾病的发病机制与防治。 28.3 重点难点 1. 脂肪酸的β-氧化途径和能量变化 2. 酮体的代谢 28.4 教学方法与手段 讲授与交流互动相结合,采用多媒体教学。 28.5授课内容 一、脂类的消化和吸收 1.脂类的消化(主要在十二指肠中) 食物中的脂类主要是甘油三酯80-90%,还有少量的磷脂6-10%,胆固醇2-3%。 胃的食物糜(酸性)进入十二指肠,刺激肠促胰液肽的分泌,引起胰脏分泌HCO-3至小肠(碱性)。脂肪间接刺激胆汁及胰液的分泌。胆汁酸盐使脂类乳化,分散成小微团,在胰腺分泌的脂类水解酶作用下水解。 胰腺分泌的脂类水解酶如下: ①三脂酰甘油脂肪酶(水解三酰甘油的C1、C3酯键,生成2-单酰甘油和两 个游离的脂肪酸。胰脏分泌的脂肪酶原要在小肠中激活。) ②磷脂酶A2(水解磷脂,产生溶血磷酸和脂肪酸)。 ③胆固醇脂酶(水解胆固醇脂,产生胆固醇和脂肪酸)。 ④辅脂酶(Colipase)(它和胆汁共同激活胰脏分泌的脂肪酶原)。 2.脂类的吸收 脂类的消化产物,甘油单脂、脂肪酸、胆固醇、溶血磷脂可与胆汁酸乳化成

更小的混合微团(20nm),这种微团极性增大,易于穿过肠粘膜细胞表面的水屏障,被肠粘膜的拄状表面细胞吸收。被吸收的脂类,在柱状细胞中重新合成甘油三酯,结合上蛋白质、磷酯、胆固醇,形成乳糜微粒(CM),经胞吐排至细胞外,再经淋巴系统进入血液。 小分子脂肪酸水溶性较高,可不经过淋巴系统,直接进入门静脉血液中。 3.脂类转运和脂蛋白的作用 甘油三脂和胆固醇脂在体内由脂蛋白转运。 脂蛋白:是由疏水脂类为核心、围绕着极性脂类及载脂蛋白组成的复合体,是脂类物质的转运形式。 载脂蛋白:(已发现18种,主要的有7种)在肝脏及小肠中合成,分泌至胞外,可使疏水脂类增溶,并且具有信号识别、调控及转移功能,能将脂类运至特定的靶细胞中。 4.脂蛋白的分类及功能 1)皮下脂肪在脂肪酶作用下分解,产生脂肪酸,经血浆白蛋白运输至各组织细胞中。 2)血浆白蛋白占血浆蛋白总量的50%,是脂肪酸运输蛋白,血浆白蛋白既可运输脂肪酸,又可解除脂肪酸对红细胞膜的破坏。 二、甘油三酯的水解 甘油三酯的水解由脂肪酶催化。组织中有三种脂肪酶,逐步将甘油三酯水解成甘油二酯、甘油单酯、甘油和脂肪酸。 分解甘油三酯的三种酶是: 脂肪酶(激素敏感性甘油三酯脂肪酶,是限速酶) 甘油二酯脂肪酶 甘油单酯脂肪酶 1.甘油代谢 在脂肪细胞中,没有甘油激酶,无法利用脂解产生的甘油。甘油进入血液,转运至肝脏后才能被甘油激酶磷酸化为3-磷酸甘油,再经磷酸甘油脱氢酶氧化成磷酸二羟丙酮,进入糖酵解途径或糖异生途径。 2.脂肪酸的氧化

运动生物化学名词解释、简答题

第一章:1-3单元 名词解释: 1.糖:是一类含多羟基的醛或酮类化合物的总称 2.必须脂肪酸:维持人体正常生理需要而体内又不能合成必须由外接摄取满足营养的脂肪酸。 3.必须氨基酸:必须从外界摄取以完成营养需要的8种氨基酸。 4.酶:是生物的催化剂。由生物细胞产生,具有催化功能的物质。 5.酸碱平衡:体内酸性物质和碱性物质在调节机构的作用下维持一定的含量和比例,使体液PH值在一个狭窄的范围内维持恒定。 填空题: 1.糖的分类是单糖、低聚糖、多糖。其中淀粉是多糖。运动饮料中通常添加的是低聚糖。 2.脂类的分类是脂肪、复合脂、类脂。胆固醇属于类脂。 3.蛋白质的基本组成单位是氨基酸。 4.无机盐分为常量元素和微量元素。 5.维生素分为水溶性维生素和脂溶性维生素。前者包括维生素B族(B1 B2 B6 B12 PP 叶酸生物素等)和维生素C。后者包括维生素A D E K。 6.酶的特点极高的催化效率(高效性)、专一性、不稳定性、可调控性。 简答题: 1.糖的功能:1.提供机体所需能量。2.促进脂肪分解供能。3.糖氧化可节约利用蛋白质。 2.脂肪的功能: 一般功能:1.脂类是机体组织的组成部分。2.脂肪是人体能量的主要来源和最大储能库。3.防震和隔热保温作用。4.脂溶性维生素的载体。 运动中的生物学功能:1.脂肪提供长时间低强度供能(马拉松、铁人三项)时机体所需的大部分能量。2.脂肪氧化供能具有降低蛋白质和糖消耗的作用。 3.运动员为什么重视补水:人体在剧烈运动时,排汗成为调节体热的主要途径。一次大强度,大排量的排汗可达到2000-7000毫升,如果不能及时补充水分,将会导致人体运动能力明显降低,严重时还会危害到运动员的身体。所以运动员要重视补水。 4.血清酶的来源,为什么运动会引起血清酶增高:血清酶的来源:机体各组织细胞(肝脏、心肌、骨骼肌等) 血清酶增高原理:运动时细胞膜通透性增大,是血清中组织酶升高的主

生化复习题

1、人体的化学组成是相对稳定的,在运动的影响下,一般不发生相应的变化。 2、1937年Krebs提出了三羧酸循环的代谢理论。 三.填空题 1、运动时人体内三个主要的供能系统是____、____、____。 2、运动生物化学的首本专著是____。 四.单项选择题 1. 运动生物化学成为独立学科的年代是()。 A. 1955年 B. 1968年 C. 1966年 D. 1979年 3. 运动生物化学的一项重要任务是()。 A. 研究运动对机体组成的影响 B. 阐明激素作用机制 C. 研究物质的代谢 D. 营养的补充 4. 运动生物化学的主要研究对象是()。 A. 人体 B. 植物体 C. 生物体 D. 微生物 第一章物质代谢与运动概述 一.名词解释 3、限速酶 6、生物氧化 7、氧化磷酸化 8、底物水平磷酸化 9、呼吸链 二、是非判断题 1、酶是蛋白质,但是所有的蛋白质不是酶。

2、通过长期训练可以提高酶活性、增加酶含量。 3、一般意义上的血清酶是指那些在血液中不起催化作用的非功能性酶。 7、CP是骨骼肌在运动过程中的直接能量供应者。 8、生物氧化发生的部位在细胞质。 9、生物氧化中生成的水由有机物脱羧产生,二氧化碳由碳和氧结合生成。 10、氧化磷酸化要求必须保证线粒体内膜的完整性,但是有无氧气参与均可。 三、填空题 2、酶根据其化学组成可分为___、___两类。 3、相同运动负荷量运动后,运动员血清酶水平___非运动员。 5、呼吸链有2条,分别是___、___。 6、能促进钙、磷吸收的是维生素___,能合成视紫红质的是维生素___,能抗强氧化作用的是维生素___。 7、ATP是由___、___、___构成的核苷酸。 8、在肝脏中合成并储存的糖称为___;在肌肉中合成并储存的糖称为___。 四、单项选择题 1、骨骼肌快肌中___相对较丰富。() A LDH1 B LDH2 C LDH3 D LDH5 2、下列哪个化学物质不属于运动人体的能源物质。() A 葡萄糖 B 维生素 C C 氨基酸 D 软脂酸 4 正常成年人每24小时的最低尿量是___。() A 1000毫升 B 500毫升 C 400毫升 D 600毫升 6、缺乏下列哪种物质,会影响对视力有要求的运动项目()。 A 维生素A B 维生素 C C 维生素E D 维生素D 7、下列物质中哪个不属于高能磷酸化合物()。 A 甘油酸-1,3-二磷酸 B 磷酸烯醇式丙酮酸 C 琥珀酰辅酶A D 果糖-6-磷酸 8、经NADH氧化呼吸链测得的P/O为()。 A 2 B 3 C 4 D 6

运动生物化学练习题

《运动生物化学》习题 第一章绪论 一.名词解释 1.运动生物化学 二.问答题 1.运动生物化学的研究内容是什么? 2.试述运动生物化学的发展简史。 第二章运动与高能磷酸化合物 一、名词解释 1、高能磷酸化合物 2、磷酸原 3、生物氧化 4、糖酵解 二.填空题 1.ATP分子是由、和组成的分子。 2、肌酸是以、和为原料合成。 3、磷酸原供能系统供能的最大输出功率是____、可维持最大运动强度运动时间是____正常安静时骨骼肌细胞CP浓度约为____,ATP浓度约为。 4.细胞内合成的ATP转运到ATP利用部位是靠和催化反应的联合作用实现的。 5、根据高能磷酸键的类型可将高能磷酸化合物分为磷酸

酐、、和。 6、通常的生理条件下,因细胞内有大量的存在,而使ATP和ADP结合为和复合物形式。 三.问答题 1、试述运动中CP消耗后的恢复特点和规律? 2、试述运动训练对对ATP,CP供能能力的影响? 3、CP在运动中的供能作用? 4、简述运动员补充肌酸的作用和方法 第三章运动与糖代谢 一、名词解释 1、血糖 2、糖异生 二、填空题 1、运动时,影响肌糖原利用的因素主要包括____、____、____、____、____。 2、血糖浓度的调节,通过和的作用完成。 3、在进行1-2分钟的短时间大强度运动时,骨骼肌主要由____供能,血糖浓度变化情况____。 4、安静时血乳酸水平为。正常生理条件下,乳酸主要在、 、、和皮肤等细胞内生成。 5、运动时机体利用的糖主要有、、。 6、运动时糖异生的原料主要有、、和

。 三、问答题 1.肌糖原与运动能力的关系? 2、血糖与运动能力的关系? 3、简述血乳酸的来源和去路? 4.乳酸消除与运动能力的关系? 第四章运动与脂代谢 一、名词解释 1.脂肪酸动员 2.三脂酰甘油—脂肪酸循环 3、酮体 4、脂蛋白 二.填空题 1、长时间运动时,血浆游离脂肪酸浓度的变化规律是:运动开始后数分钟内出现暂时___,然后逐渐___,大约运动3-4小时后达到___。 2、血浆脂蛋白按密度分为___、___、___、___。 3、酮体是在___中脂肪酸不完全氧化时的中间产物;短时间剧烈运动后血酮体浓度___,长时间运动时,血酮体水平___。 4、酮体氧化利用的部位是。 5、运动时,人体内储存的脂肪通过水解反应生成和,它们以下列三种形式参与供能,在心肌、骨骼肌等组织中,脂肪酸彻

相关文档