文档库 最新最全的文档下载
当前位置:文档库 › 垂径定理练习题及答案

垂径定理练习题及答案

垂径定理练习题及答案
垂径定理练习题及答案

O D

A

B C

B A

P

O

y

x

P

B

A

O

垂径定理

一.选择题

1.如图1,⊙O 的直径为10,圆心O 到弦AB 的距离OM 的长为3,那么弦AB 的长是( )

A .4

B .6

C .7

D .8

2.如图,⊙O 的半径为5,弦AB 的长为8,M 是弦AB 上的一个动点,则线段OM 长的最小值为( )

A .2

B .3

C .4

D .5

3.过⊙O 内一点M 的最长弦为10 cm ,最短弦长为8cm ,则OM 的长为( ) A .9cm B .6cm C .3cm D .cm 41

4.如图,小明同学设计了一个测量圆直径的工具,标有刻度的尺子OA 、OB 在O 点钉在一起,并使它们保持垂直,在测直径时,把O 点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为( ) A .12个单位 B .10个单位 C .1个单位 D .15个单位

5.如图,O ⊙的直径AB 垂直弦CD 于P ,且P 是半径OB 的中点,6cm CD ,则直径AB 的长是( ) A .23cm B .32cm C .42cm D .43cm 6.下列命题中,正确的是( ) A .平分一条直径的弦必垂直于这条直径 B .平分一条弧的直线垂直于这条弧所对的弦 C .弦的垂线必经过这条弦所在圆的圆心

D .在一个圆内平分一条弧和它所对的弦的直线必经过这个圆的圆心

7.如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为( ) A .5米 B .8米 C .7米 D .53米 8.⊙O 的半径为5cm ,弦AB 空题 1.已知AB 是⊙O 的弦,AB =8cm ,OC ⊥AB 与C ,OC=3cm ,则⊙O 的半径

为 cm 圆中,弦AB 的长为8cm ,则它的弦心距为

2.在直径为10cm 的cm

3.在半径为10的圆中有一条长为16的弦,那么这条弦的弦心距等于

4.已知AB 是⊙O 的弦,AB =8cm ,OC ⊥AB 与C ,

OC=3cm ,则

⊙O 的半径为 cm

5.如图,⊙O

的直径AB 垂直于弦CD ,垂足为E ,若∠COD=120°,OE =3

厘米,则CD = 厘米

6.半径为6cm 的圆中,垂直平分半径OA 的弦长为 cm.

7.过⊙O 内一点M 的最长的弦长为6cm ,最短的弦长为4cm ,则OM 的长等于 cm

8.已知AB 是⊙O 的直径,弦CD ⊥AB ,E 为垂足,CD=8,OE=1,则AB=____________

9.如图,AB 为⊙O 的弦,⊙O 的半径为5,OC ⊥AB 于点D ,交⊙O 于点C , 且CD =l ,则弦AB 的长是 10.某蔬菜基地的圆弧形蔬菜大棚的剖面如图所示,已知AB =16m ,半径OA =10m ,则中间柱CD 的高度为 m 11.如图,在直角坐标系中,以点P 为圆心的圆弧与轴交于A 、B 两点,已知P(4,2) 和A(2,0),则点B 的坐标是

12.如图,AB 是⊙O 的直径,OD ⊥AC 于点D ,BC=6cm ,则OD=

cm

13.如图,矩形ABCD 与圆心在AB 上的圆O 交于点G 、B 、F 、E ,GB=10,EF=8,那么AD= 14.如图,⊙O 的半径是5cm ,P 是⊙O 外一点,PO=8cm ,∠P=30o,则AB= cm

15.⊙O 的半径为13 cm ,弦AB ∥CD ,AB =24cm ,CD =10cm ,那么AB 和CD 的距离是 Cm 16.已知AB 是圆O 的弦,半径OC 垂直AB ,交AB 于D ,若AB=8,CD=2,则圆的半径为 17.一个圆弧形门拱的拱高为1米,跨度为4米,那么这个门拱的半径为 米 18.在直径为10厘米的圆中,两条分别为6厘米和8厘米的平行弦之间的距离是 厘米

19.如图,是一个隧道的截面,如果路面AB 宽为8米,净高CD 为8米,那么这个隧道所在圆的半径OA 是____米

20.如图,AB 为半圆直径,O 为圆心,C 为半圆上一点,E 是弧AC 的中点,OE 交弦AC 于点D 。若AC=8cm ,DE=2cm ,则

OD 的长为 cm

21.已知等腰△ABC 的三个顶点都在半径为5的⊙O 上,如果底边BC 的长为8,那么BC 边上的高为

O

图 4

E D

C

A

B

A

D

C

O

·

A

B

O

D O

B

A

A

C D

B

22.如图,将半径为2cm 的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕AB 的长为

23.如图,⊙O 的的半径为5,直径AB ⊥弦CD ,垂足为E ,CD=6,那么

∠B 的余切值为_________ 三.解答题

1.已知⊙O 的弦AB 长为10,半径长R 为7,OC 是弦AB 的弦心距,求OC 的长

2.已知⊙O 的半径长为50cm ,弦AB 长50cm.求:(1)点O 到AB 的距离;(2)∠AOB 的大小

3.如图,直径是50cm 圆柱形油槽装入油后,油深CD 为15cm ,求油面宽度AB

4.如图,已知AB 是⊙O 的直径,CD ⊥AB ,垂足为点E ,如果BE=OE ,AB=12m ,求△ACD 的周长

5.如图所示,破残的圆形轮片上,弦AB 的垂直平分线交弧AB 于点C ,交弦AB 于点D 。已知:AB=24cm ,CD=8cm

(1)求作此残片所在的圆(不写作法,保留作图痕迹);(2)求(1)中所作圆的半径.

6.如图,⊙O 是△ABC 的外接圆,圆心O 在这个三角形的高AD 上,AB=10,BC=12.求⊙O 的半径

7.如图,已知⊙O 的半径长为25,弦AB 长为48,C 是弧AB 的中点.求AC 的长.

8.已知:在△ABC 中,AB=AC=10, BC=16.求△ABC 的外接圆的半径.

9.本市新建的滴水湖是圆形人工湖。为测量该湖的半径,小杰和小丽沿湖边选取A 、B 、C 三根木柱,使得A 、B 之间的距离与A 、C 之间的距离相等,并测得BC 长为240米,A 到BC 的距离为5米,如图5所示。请你帮他们求出滴水湖的半径。

10.如图,AB 是⊙O 的弦(非直径),C 、D 是AB 上的两点,并且AC=BD 。求证:OC=OD

11.如图,AB 是⊙O 的弦,点D 是弧AB 中点,过B 作AB 的垂线交AD

的延长线于C . 求证:AD =DC

12.如图,AB 、CD 是⊙O 的弦,且AB=CD ,OM ⊥AB ,ON ⊥CD ,垂足分别是点M 、N , BA 、DC 的延长线交于点P . 求证:PA=PC

《切线的性质与判定》

1、如图,在平面直角坐标系中,点在第一象限,⊙P 与x 轴相切于点Q ,与y 轴交于M (2,0),N (0,8)两点,则点P 的坐标是_________

2、如图,PA 、PB 切⊙O 于A 、B 两点,∠APB=70°,C 是⊙O 上不同于A 、B 的任一点,则∠ACB 等于____________

3、如图,在同心圆中,大圆的弦AB 切小圆于点C ,AB=6,则圆环的面积是_____________

O C

E

C

B

A

E

第1题图 第2题图 第3题图

4.如图,已知在△ABC 中, AB=AC ,以AB 为直径的⊙O 交AC 于点F ,交BC 于点D ,DF ⊥AC 于点F .求证:DF 是⊙O 的切线;

5、如图,AB 是⊙O 的直径,半径OC ⊥AB ,P 是AB 延长线上一点,PD 切⊙O 于点D ,CD 交AB 于点E ,判断△PDE 的形状,并说明理由.

6.21.如图,半径OA ⊥OB ,P 是OB 延长线上一点,PA 交⊙O 于D ,过D 作⊙O 的切线CE 交PO 于C 点,求证:PC=CD .

7、如图,△ABC 为等腰三角形,AB=AC ,O 是底边BC 的中点,⊙O 与腰AB 相切于点D ,求证:AC 与⊙O 相切.

8.如图,AB 是⊙O 的直径,BC 与⊙O 相切于点 B ,连接OC 交⊙O 于点E ,且OC 与弦AD 平行.求证: CD 是⊙O 的切线.

9.如图,在△ABC 中,已知∠ABC=90°,在AB 上取一点E ,以BE 为直径的☉O 恰与AC 相切于点D .若AE=2,AD=4.求⊙O 的直径BE 和线段BC 的长。

10、已知:菱形的对角线相交于点O ,⊙O 与AB 相切于点E , 求证:⊙O 与菱形其他边BC 、CD 、DA 也相切

1.在三角形ABC 中,BC=14,AC=9,AB=13,它的内切圆分别和BC 、AC 、AB 切于点D 、E 、F ,求 AF 、BD 、CE 的长。

2.如图所示,已知PA 、PB 切⊙O 于A 、B 两点,C 是上一动点,过C 作⊙O 的切线交PA 于点M ,交PB 于点N ,已

知∠P=56°,求∠MON 的度数。

3.如图,⊙I 是△ABC 的内切圆,D ,E ,F 为三个切点,若∠DEF=50°,求∠A 的度数。

4.如图,在△ABC 中,已知∠C=90°,BC=6,AC=8,则它的内切圆半径是多少

5.如图,点O 是△ABC 的内切圆的圆心,∠BAC=70°,求∠BOC 的度数.

P

B A

O

6.如图所示,BC 是⊙O 的直径,P 为⊙O 外的一点,PA 、PB 为⊙O 的切线,切点分别为A 、B .试证明:AC ∥OP .

9. 如图,AE 、AD 、BC 分别切⊙O 于点E 、D 、F ,若AD=20,求△ABC 的周长.

10. 如图,PA 、PB 是⊙O 的两条切线,切点分别为点A 、B ,若直径AC= 12,∠P=60o

,求弦AB 的长.

11. 如图,PA 、PB 是⊙O 的切线,A 、B 为切点,∠OAB =30°.(1)求∠APB 的度数;(2)当OA =3时,求AP 的长.

12.已知:如图,⊙O 内切于△ABC ,∠BOC =105°,∠ACB =90°,AB =20cm .求BC 、AC 的长.

13.已知:如图,△ABC 三边BC =a ,CA =b ,AB =c ,它的内切圆O 的半径长为r .求△ABC 的面积S .

14. 如图,在△ABC 中,已知∠ABC=90o

,在AB 上取一点E ,以BE 为直径的⊙O 恰与AC 相切于

点D ,若AE=2 cm ,AD=4 cm .(1)求⊙O 的直径BE 的长; (2)计算△ABC 的面积.

1.△ABC 中 , AB=6cm , ∠A=30° , ∠B=15° , 则△ABC 绕直线AC 旋转一周所得几何体的表面积为____ 2.一个圆锥的高为310

cm ,侧面展开图是一个半圆,则圆锥的全面积是

3.已知圆锥的母线长是10cm ,侧面展开图的面积是60πcm2,则这个圆锥的底面半径是 cm .

4.已知圆锥的底面半径是2cm ,母线长是5cm ,则它的侧面积是 .

5.圆锥的轴截面是一个等边三角形,则这个圆锥的底面积、侧面积、全面积的比是 . 6.一个圆锥形的烟囱帽的侧面积为2000πcm2,母线长为50cm ,那么这个烟囱帽的底面直径为

7.圆锥的底面半径为3,母线长为5,求圆锥的侧面积 1 8.圆锥的侧面积为π15,底面半径为3,求圆锥的高。 9.用一个圆心角为120°,半径为4的扇形作一个圆锥的侧面,求这个圆锥的底面圆的半径

10.已知:扇形的弧长为π,扇形的圆心角为60°,求半径。 11.已知:扇形的面积为

3

,半径为4,求扇形的圆心角。 12.已知圆锥的母线长6 cm ;底面半径为 3 cm ,求圆锥的侧面展开图中扇形的圆心角.

13.一个圆锥形的零件,经过轴的剖面是一个等腰直角三角形,则它的侧面展开图扇形的圆心角是多少(结果精确到1°)

14.如图,点D 在⊙O 的直径AB 的延长线上,点C 在⊙O 上,AC=CD ,∠ACD=120°. (1)求证:CD 是⊙O 的切线;

(2)若⊙O 的半径为2,求图中阴影部分的面积.

15.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,∠CDB=30°,OC=2,求阴影部分图形的面积(结果保留π).

P

C

B A

1.圆的半径扩大一倍,则它的相应的圆内接正n 边形的边长与半径之比( ) A.扩大了一倍 B.扩大了两倍 C.扩大了四倍 D.没有变化

2.正三角形的高、外接圆半径、边心距之比为( )

∶2∶1 ∶3∶2 ∶2∶1 ∶4∶3 3.同圆的内接正三角形与内接正方形的边长的比是( ) A.

2

6 B.4

3 C.36 D.3

4

4.周长相等的正三角形、正四边形、正六边形的面积S 3、S 4、S 6之间的大小关系是( ) >S 4>S 6 >S 4>S 3 >S 3>S 4 >S 6>S 3

5.正六边形的两条平行边之间的距离为1,则它的边长为( ) A.6

3 B.

4

3

C.33

2 D.

3

3

6.已知正多边形的边心距与边长的比为2

1,则此正多边形为( )

A.正三角形

B.正方形

C.正六边形

D.正十二边形 7、正六边形两条对边之间的距离是2,则它的边长是( ) A. 33

B. 233

C. 23

D. 2

2

3

8、已知正六边形边长为a ,求它的内切圆的面积_________。

9、正五边形共有__________条对称轴,正六边形共有__________条对称轴. 10.中心角是45°的正多边形的边数是__________.

11.已知△ABC 的周长为20,△ABC 的内切圆与边AB 相切于点D,AD=4,那么BC=__________. 12.若正n 边形的一个外角是一个内角的

3

2

时,此时该正n 边形有_________条对称轴. 13.已知正六边形的半径为3 cm ,则这个正六边形的周长为__________ cm.

14.正多边形的一个中心角为36度,那么这个正多边形的一个内角等于___________度.

15.如图,在正八边形ABCDEFGH 中,四边形BCFG 的面积为20 cm 2,则正八边形ABCDEFGH 的面积为

cm 2.

16.如图,在正八边形ABCDEFGH 中,等腰梯形CDEF 的面积是12,则这个八边形的面积为___________ 17.如图,有一圆内接正八边形ABCDEFGH,若△ADE 的面积为10,则正八边形ABCDEFGH 的面积___________

18、已知⊙O 的半径是5cm,圆心O 到直线L 的距离是3cm,则直线L 与⊙O 的位置关系是( )。 A .相交 B .相切 C .相离 D .以上答案都不是 19.如图,⊙O 中,ABDC 是圆内接四边形,∠BOC=110°,则∠BDC 的度数是 ( )

° ° ° °

20、如图,PA 、PB 是⊙O 的切线,切点分别为A 、B 、C 是⊙O 上一点,若∠APB = 40°,求∠ACB 的度数.

垂径定理最新中考试题讲解

垂径定理最新中考试题讲解 垂径定理 垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。 推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即: ①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。 推论2:圆的两条平行弦所夹的弧相等。 即:在⊙O 中,∵AB ∥CD ∴弧AC =弧BD 例 1 (2015?衢州)一条排水管的截面如图所示,已知排水管的半径OA=1m ,水面宽AB=1.2m ,某天下雨后,水管水面上升了0.2m ,则此时排水管水面宽CD 等于 m . 考点 垂径定理的应用;勾股定理 分析 先根据勾股定理求出OE 的长,再根据垂径定理求出CF 的长,即可得出结论 解:如图: ∵AB=1.2m,OE⊥AB,OA=1m ,∴AE=0.8m,∵水管水面上升了0.2m ,∴AF=0.8﹣0.2=0.6m , ∴CF= m ,∴CD=1.6m.故答案为:1.6. B D

点评:本题考查的是垂径定理的应用,熟知平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧是解答此题的关键 例2 (2015?遂宁)如图,在半径为5cm的⊙O中,弦AB=6cm,OC⊥AB于点C,则OC=() A.3cm B.4cm C.5cm D.6cm 考点:垂径定理;勾股定理.. 分析:连接OA,先利用垂径定理得出AC的长,再由勾股定理得出OC的长即可解答.解:连接OA, ∵AB=6cm,OC⊥AB于点C,∴AC=AB=×6=3cm, ∵⊙O的半径为5cm,∴OC===4cm,故选B. 点评:本题考查了垂径定理,以及勾股定理,熟练掌握垂径定理的应用是解题的关键. 例3 (2015·贵州六盘水,第18题4分)赵洲桥是我国建筑史上的一大创举,它距今约1400年,历经无数次洪水冲击和8次地震却安然无恙。如图10,若桥跨度AB约为40米,主拱高CD约10米,则桥弧AB所在圆的半径R=米. 考点:垂径定理的应用;勾股定理..分析:根据垂径定理和勾股定理求解即可.

垂径定理经典练习题.

圆垂径定理专题练习题 1.垂径定理:垂直于弦的直径____这条弦,并且____弦所对的两条弧. 2.如图,在半径为5 cm的⊙O中,弦AB=6 cm,OC⊥AB于点C,则OC=( ) A.3 cm B.4 cm C.5 cm D.6 cm 3.如图,已知⊙O的半径为5,弦AB=6,M是AB上任意一点,则线段OM的长可能是( ) A.2.5 B.3.5 C.4.5 D.5.5 4. 如图,AB是⊙O的弦,AB长为8,P是⊙O上一个动点(不与A,B重合),过点O作OC⊥AP于点C,OD⊥PB于点D,则CD的长为___. 5. 如图,圆内接四边形ABDC,AB是⊙O的直径,OD⊥BC于点E. (1)请写出四个不同类型的正确结论; (2)若BE=4,AC=6,求DE的长. 6. 一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是( )

A.4 B.5 C.6 D.8 7. 为了测量一铁球的直径,将该铁球放入工件槽内,测得有关数据如图所示(单位:cm),则该铁球的 直径为____. 8. H5N1亚型高致病性禽流感是一种传染速度很快的传染病,为防止禽流感蔓延,政府规定:离疫点3 千米范围内为扑杀区,所有禽类全部扑杀;离疫点3至5千米范围内为免疫区,所有禽类强制免疫;同时,对扑杀区和免疫区内的村庄,道路实行全封闭管理.现有一条笔直的公路AB通过禽流感疫区, 如图所示,O为疫点,在扑杀区内的公路CD长为4千米,问这条公路在免疫区内有多少千米? 9.如图,直线与两个同心圆交于图示的各点,MN=10,PR=6,则MP=____. 10.如图,矩形ABCD与圆心在AB上的⊙O交于点G,B,F,E,GB=8 cm,AG=1 cm,DE=2 cm, 则EF=____cm. 11. 如图,⊙O的直径AB=16 cm,P是OB的中点,∠APD=30°,求CD的长.

中考数学专题模型—【专题2】垂径定理的模型研究(教师版)

【专题2】垂径定理的性质与运用 【回归概念】 垂径定理:垂径定理是数学几何(圆)中的一个定理,它的通俗的表达是:垂直于弦的直径平分弦且平分这条弦所对的两条弧。数学表达为:如图,直径DC垂直于弦AB,则AE=EB,弧AD等于弧BD(包括优弧与劣弧),半圆CAD=半圆CBD。垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。一条直线,在下列5条中只要具备其中任意两条作为条件,就可以推出其他三条结论。称为知二推三。1.平分弦所对的优弧;2.平分弦所对的劣弧(前两条合起来就是:平分弦所对的两条弧);3.平分弦(不是直径);4.垂直于弦;5.过圆心。 【规律探索】 1.垂径定理及其推论实质是指一条直线满足:⑴过圆心⑵垂直于弦⑶平分弦⑷平分弦所对的优弧⑸平分弦所对的劣弧五个条件中的两个,那么可推出其中三个,注意解题过程中的灵活运用; 2.圆中常作的辅助线是过圆心作弦的垂线; 3.垂径定理常用作计算,在半径r弦a弦心d和弦h中已知两个可求另外两个。方法:垂径定理的巧用主要体现在求点的坐标、解决最值问题、解决实际问题等.解题时,巧用弦的一半、圆的半径和圆心到弦的垂线段三条线段组成的直角三角形,然后借助勾股定理,在这三个量中知道任意两个,可求出第三个. 【典例解析】: ①用垂径定理求点的坐标 【例题1】(2019?山东威海?3分)如图,⊙P与x轴交于点A(﹣5,0),B(1,0),与y轴的正半轴交于点C.若∠ACB=60°,则点C的纵坐标为() A133B.23C.2D.2+2

【思路导引】连接PA ,PB ,PC ,过P 作PD ⊥AB 于D ,PE ⊥BC 于E ,根据圆周角定理得到∠APB =120°,根据等腰三角形的性质得到∠PAB =∠PBA =30°,由垂径定理得到AD =BD =3,解直角三角形得到PD =3,PA =PB =PC =23,根据勾股定理得到CE =2 2 PC PE -=124-=22,于是得到结论. 【解答】解:连接PA ,PB ,PC ,过P 作PD ⊥AB 于D ,PE ⊥BC 于E , ∵∠ACB =60°, ∴∠APB =120°, ∵PA =PB , ∴∠PAB =∠PBA =30°, ∵A (﹣5,0),B (1,0), ∴AB =6, ∴AD =BD =3, ∴PD =3,PA =PB =PC =23, ∵PD ⊥AB ,PE ⊥BC ,∠AOC =90°, ∴四边形PEOD 是矩形, ∴OE =PD =3,PE =OD =2, ∴CE =2 2 PC PE -=124-=22, ∴OC =CE+OE =22+3, ∴点C 的纵坐标为22+3, 故选:B . ②巧用垂径定理解决最值问题(对称思想) 【例题2】如图,AB ,CD 是半径为5的⊙O 的两条弦,AB =8,CD =6,MN 是直径,AB ⊥MN 于点E ,CD ⊥MN 于点F ,P 为直线EF 上的任意一点,求PA +PC 的最小值.

人教版九年级数学上册垂径定理

初中数学试卷 垂径定理 一.选择题 ★1.如图1,⊙O 的直径为10,圆心O 到弦AB 的距离OM 的长为3,那么弦AB 的长是( ) A .4 B .6 C .7 D .8 ★★2.如图2,⊙O 的半径为5,弦AB 的长为8,M 是弦AB 上的一个动点,则线段OM 长的最小值为( ) A .2 B .3 C .4 D .5 ★★3.过⊙O 内一点M 的最长弦为10 cm ,最短弦长为8cm ,则OM 的长为( ) A .9cm B .6cm C .3cm D .cm 41 ★★4.如图3,小明同学设计了一个测量圆直径的工具,标有刻度的尺子OA 、OB 在O 点钉在一起,并使它们保持垂直,在测直径时,把O 点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为( ) A .12个单位 B .10个单位 C .1个单位 D .15个单位 ★★5.如图4,O ⊙的直径AB 垂直弦CD 于P ,且P 是半径OB 的中点,6cm CD ,则直径AB 的长是( ) A .23cm B .32cm C .42cm D .43cm ★★6.下列命题中,正确的是( ) A .平分一条直径的弦必垂直于这条直径 B .平分一条弧的直线垂直于这条弧所对的弦 C .弦的垂线必经过这条弦所在圆的圆心 D .在一个圆内平分一条弧和它所对的弦的直线必经过这个圆的圆心 ★★★7.如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为( ) A .5米 B .8米 C .7米 D .53米

★★★8.⊙O 的半径为5cm ,弦AB//CD ,且AB=8cm,CD=6cm,则AB 与CD 之间的距离为( ) A . 1 cm B . 7cm C . 3 cm 或4 cm D . 1cm 或7cm ★★★9.已知等腰△ABC 的三个顶点都在半径为5的⊙O 上,如果底边BC 的长为8,那么BC 边上的高为( ) A .2 B .8 C .2或8 D .3 二.填空题 ★1.已知AB 是⊙O 的弦,AB =8cm ,OC ⊥AB 与C ,OC=3cm ,则⊙O 的半径为 cm ★2.在直径为10cm 的圆中,弦AB 的长为8cm ,则它的弦心距为 cm ★3.在半径为10的圆中有一条长为16的弦,那么这条弦的弦心距等于 ★★4.已知AB 是⊙O 的弦,AB =8cm ,OC ⊥AB 与C ,OC=3cm ,则⊙O 的半径为 cm ★★5.如图1,⊙O 的直径AB 垂直于弦CD ,垂足为E ,若∠COD=120°,OE =3厘米,则CD = 厘米 O 图 4E D C B A ★★6.半径为6cm 的圆中,垂直平分半径OA 的弦长为 cm. ★★7.过⊙O 内一点M 的最长的弦长为6cm ,最短的弦长为4cm ,则OM 的长等于 cm ★★8.已知AB 是⊙O 的直径,弦CD ⊥AB ,E 为垂足,CD=8,OE=1,则AB=____________ ★★9.如图2,AB 为⊙O 的弦,⊙O 的半径为5,OC ⊥AB 于点D ,交⊙O 于点C , 且CD =l ,则弦AB 的长是 ★★10.某蔬菜基地的圆弧形蔬菜大棚的剖面如图3所示,已知AB =16m ,半径OA =10m ,则中间柱CD 的高度为 m ★★11.如图4,在直角坐标系中,以点P 为圆心的圆弧与轴交于A 、B 两点,已知P(4,2) 和A(2,0),则点B 的坐标是 ★★12.如图5,AB 是⊙O 的直径,OD ⊥AC 于点D ,BC=6cm ,则OD= cm ★★13.如图6,矩形ABCD 与圆心在AB 上的圆O 交于点G 、B 、F 、E ,GB=10,EF=8,那么 B A P O y x

垂径定理及推论(各省市中考题)

E A B C O 1. (2013 浙江省舟山市) 如图,⊙O 的半径OD ⊥弦AB 于点C ,连结AO 并延长交⊙O 于点E ,连 结EC .若AB =8,CD =2,则EC 的长为( ▲ ) (A )215 (B )8 (C )210 (D )213 答案:D 4.2 垂径定理及推论 选择题 基础知识 2013-09-29 2. (2013 浙江省温州市) 如图,在⊙O 中,OC ⊥弦AB 于点C ,AB =4,OC =1,则OB 的长是 (A ) 3 (B ) 5 (C )15 (D ) 17 答案:B 4.2 垂径定理及推论 选择题 基础知识 2013-09-24 3. (2013 湖北省宜昌市) 如图,DC 是O ⊙的直径,弦AB CD ⊥于F ,连接BC DB ,.则 下列结论错误.. 的是( ). (A )? ?AD BD = (B )AF BF = (C )OF CF = (D )90DBC ∠=°

答案:C 4.2 垂径定理及推论 选择题 基本技能 2013-09-22 4. (2013 湖北省襄阳市) 如图,水平放置的圆柱形排水管道的截面直径是1m ,其中水面的宽AB 为0.8m ,则排水管内水的深度为 m. 答案:0.2 4.2 垂径定理及推论 填空题 基本技能 2013-09-22 5. (2013 湖北省黄石市) 如右图,在Rt ABC V 中,90ACB ∠=o ,3AC =,4BC =,以点 C 为圆心,CA 为半径的圆与AB 交于点 D ,则AD 的长为 A. 95 B. 245 C. 185 D. 52 C A D B

垂径定理知识点及典型例题

垂径定理 一、知识回顾 1、到定点距离等于的点的集合叫做圆,定点叫做,定长叫做;连接圆上任意两点间的线段叫做,经过圆心的弦叫做;圆上任意两点间的部分叫做,它分为、、三种。 2、能够的两个圆叫做等圆;能够互相的弧叫做等弧,他只能出现在中。 3、圆既具有对称性,也具有对称性,它有对称轴。 4、垂直于弦的直径,并且;平分弦(不是直径)的直径,并且。 5、顶点在的角叫做圆心角;在同圆或等圆中,相等的圆心角所对的相等,所对的也相等,也相等;在同圆或等圆中,如果两条弧相等,那么它们所对的、、;在同圆或等圆中,如果两条弦相等,那么它们所对的、、。 6、顶点在,并且相交的角叫做圆周角。在同圆或等圆中,同弧或等弧所对的圆周角,都等于这条弧所对的圆心角的;在同圆或等圆中,如果两个圆周角相等,那么它们所对的弧。 7、半圆(或直径)所对的圆周角是,900的圆周角所对的弦是。 8、如果一个多边形的都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的。圆的内接四边形。 二、典例解析 例1 如图,某市新建的滴水湖是圆形人工湖,为了测量该湖的半径,小明和小亮在湖边选取A、B、C三根木桩,使得A、B之间的距离等于A、C之间的距离,并测得BC=240m,A 到BC的距离为5m。请帮忙求出滴水湖的半径。 D两点,已知C(0,3)、D(0,-7),求圆心E的坐标。

变式2 已知O e 的半径为13cm ,弦AB ∥CD ,AB=10cm ,CD=24cm ,求AB 和CD 之间的距离。 变式3 如图,O e 的直径AB=15cm ,有一条定长为9cm 的动弦CD 在半圆AMB 上滑动(点C 与点A ,点D 与点B 不重合),且CE ⊥CD 交AB 于点E ,DF ⊥CD 于点F 。 (1)求证:AE=BF ;(2)在动弦CD 的滑动过程中,四边形CDFE 的面积是否发生变化?若变化,请说明理由;若不变化,请予以证明并求出这个值。 变式4 如图,某地方有一座圆弧形的拱桥,桥下水面宽度为7.2米,拱顶高出水面2.4米,现有一竹排运送一货箱欲从桥下通过,已知货箱长10米,宽3米,高2米,问货箱能否顺利通过该桥? 例2 如图,BC 是O e 的直径,OA 是O e 的半径,弦BE ∥OA 。求证:弧AC=弧AE 。 H D N M F E C B A

垂径定理

2 1 垂径定理 一、 圆的对称性 圆是轴对称图形,对称轴是 二、 如图是一个圆形纸片把该纸片沿直径AB 折叠,其中点A 和点是一组对称点 (1)思考∵OC=OD, ∴Δ OCE ≌ΔODE, ∠OEC= ∠OED= ∴AB 与CD 的位置关系是 (2)又∵点C 和点D 是一组对称点 ∴CE= 即点E 是CD 的中点 (3)根据折叠可得,弧AC=弧AD, 弧BC=弧BD, 结论:垂径定理及其推论 1、垂直于弦的直径 弦,并且 弦所对的两段弧 2、推论:平分弦(不是直径)的直径 并且 弦所对的两条弧 三、规律总结;垂径定理及其推论与“知二得三” 对于一个圆和一条直线,若具备: (1) 过圆心(2)垂直于弦(3)平分弦(4)平分弦所对的优弧(5)平分弦所对的劣弧上述五个 条件中的任何两个条件都可以退出其他三个结论 四、 垂径定理基本图形的四变量、两关系 四变量:弦长a,圆心到弦的距离d,半径r ,弓形高h ,这四个量知道任意两个可求其他两个。 五、垂径定理及其推论的应用 (一)、选择题: 1、已知圆内一条弦与直径相交成300角,且分直径成1CM 和5CM 两部分,则这条弦的弦心距是: A 、 B 、1 C 、2 D 、25 2、AB 、CD 是⊙O 内两条互相垂直的弦,相交于圆内P 点,圆的半径为5,两条弦的长均为8,则OP 的长为: A 、3 B 、3 C 、3 D 、2 3、⊙O 是等边三角形ABC 的外接圆,⊙O 的半径为2,则等边三角形ABC 的边长为( ) A B C . D .4、如图2,⊙O 的弦AB =6,M 是AB 上任意一点,且OM 最小值为4,则⊙O 的半径为( )A .5 B .4 C .3 D .2 5、高速公路的隧道和桥梁最多.如图是一个隧道的横截面,若它的形状是以O 为圆心的圆的一部分,路面AB =10米,净高CD =7米,则此圆的半径OA =( ) A .5 B .7 C . 375 D .377 6、如图,圆弧形桥拱的跨度AB =12米,拱高CD =4米,则拱桥的半径为( ) A .6.5米 B .9米 C .13米 D .15米 7、如图,O ⊙是ABC △的外接圆,AB 是直径.若80BOC ∠=°,则A ∠等于( ) A .60° B .50° C .40° D .30°

垂径定理练习题及答案

垂径定理 一.选择题 ★1.如图1,⊙O 的直径为10,圆心O 到弦AB 的距离OM 的长为3,那么弦AB 的长是( ) A .4 B .6 C .7 D .8 答案:D ★★2.如图,⊙O 的半径为5,弦AB 的长为8,M 是弦AB 上的一个动点,则线段OM 长的最小值为( ) A .2 B .3 C .4 D .5 答案:B ★★3.过⊙O 内一点M 的最长弦为10 cm ,最短弦长为8cm ,则OM 的长为( ) A .9cm B .6cm C .3cm D .cm 41 答案:C ★★4.如图,小明同学设计了一个测量圆直径的工具,标有刻度的尺子OA 、OB 在O 点钉在一起,并使它们保持垂直,在测直径时,把O 点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为( ) A .12个单位 B .10个单位 C .1个单位 D .15个单位 答案:B ★★5.如图,O ⊙的直径AB 垂直弦CD 于P ,且P 是半径OB 的中点,6cm CD ,则直径AB 的长是( ) A . B . C . D .

答案:D ★★6.下列命题中,正确的是() A.平分一条直径的弦必垂直于这条直径 B.平分一条弧的直线垂直于这条弧所对的弦 C.弦的垂线必经过这条弦所在圆的圆心 D.在一个圆内平分一条弧和它所对的弦的直线必经过这个圆的圆心 答案:D ★★★7.如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为( ) A.5米 B.8米 C.7米 D.53米 答案:B ★★★8.⊙O的半径为5cm,弦AB//CD,且AB=8cm,CD=6cm,则AB与CD之间的距离为( ) A. 1 cm B. 7cm C. 3 cm或4 cm D. 1cm 或7cm 答案:D ★★★9.已知等腰△ABC的三个顶点都在半径为5的⊙O上,如果底边BC的长为8,那么BC边上的高为( ) A.2 B.8 C.2或8 D.3 答案:C 二.填空题 ★1.已知AB是⊙O的弦,AB=8cm,OC⊥AB与C,OC=3cm,则⊙O的半径为 cm 答案:5 cm ★2.在直径为10cm的圆中,弦AB的长为8cm,则它的弦心距为 cm 答案:3 cm ★3.在半径为10的圆中有一条长为16的弦,那么这条弦的弦心距等于 答案:6 ★★4.已知AB是⊙O的弦,AB=8cm,OC⊥AB与C,OC=3cm,则⊙O的半径为 cm 答案:5 cm ★★5.如图,⊙O的直径AB垂直于弦CD,垂足为E,若∠COD=120°,OE=3厘米,则CD =厘米

九年级数学: 垂径定理典型例题及练习

典型例题分析: 例题1、 基本概念 1.下面四个命题中正确的一个是( ) A .平分一条直径的弦必垂直于这条直径 B .平分一条弧的直线垂直于这条弧所对的弦 C .弦的垂线必过这条弦所在圆的圆心 D .在一个圆内平分一条弧和它所对弦的直线必过这个圆的圆心 2.下列命题中,正确的是( ). A .过弦的中点的直线平分弦所对的弧 B .过弦的中点的直线必过圆心 C .弦所对的两条弧的中点连线垂直平分弦,且过圆心 D .弦的垂线平分弦所对的弧 例题2、垂径定理 1、 在直径为52cm 的圆柱形油槽内装入一些油后,截面如图所示,如果油的最大深 度为16cm ,那么油面宽度AB 是________cm. 2、在直径为52cm 的圆柱形油槽内装入一些油后,,如果油面宽度是48cm ,那么油的 最大深度为________cm. 3、如图,已知在⊙O 中,弦CD AB =,且CD AB ⊥,垂足为H ,AB OE ⊥于E ,CD OF ⊥于F . (1)求证:四边形OEHF 是正方形. (2)若3=CH ,9=DH ,求圆心O 到弦AB 和CD 的距离. 4、已知:△ABC 内接于⊙O ,AB=AC ,半径OB=5cm ,圆心O 到BC 的距离为3cm ,求AB 的长. 5、如图,F 是以O 为圆心,BC 为直径的半圆上任意一点,A 是 的中点,AD ⊥BC 于D ,求证:AD=21BF. O A E F

例题3、度数问题 1、已知:在⊙O 中,弦cm 12=AB ,O 点到AB 的距离等于AB 的一半,求:AOB ∠的度数和圆的半径. 2、已知:⊙O 的半径1=OA ,弦AB 、AC 的长分别是2、3.求BAC ∠的度数。 例题4、相交问题 如图,已知⊙O 的直径AB 和弦CD 相交于点E ,AE=6cm ,EB=2cm ,∠BED=30°,求CD 的长. 例题5、平行问题 在直径为50cm 的⊙O 中,弦AB=40cm ,弦CD=48cm ,且AB ∥CD ,求:AB 与CD 之间的距离. 例题6、同心圆问题 如图,在两个同心圆中,大圆的弦AB ,交小圆于C 、D 两点,设大圆和小圆的 半径分别为b a ,.求证:22b a BD AD -=?. 例题7、平行与相似 已知:如图,AB 是⊙O 的直径,CD 是弦,于CD AE ⊥E ,CD BF ⊥于F .求证: FD EC =. A B D C E O

年级数学垂径定理、圆心角、弧、弦、弦心距间的关系人教版知识精讲

九年级数学垂径定理、圆心角、弧、弦、弦心距间的关系人教版 【本讲教育信息】 一. 教学内容: 垂径定理、圆心角、弧、弦、弦心距间的关系 [学习目标] 1. 理解由圆的轴对称性推出垂径定理,概括理解垂径定理及推论为“知二推三”。(1)过圆心,(2)垂直于弦,(3)平分弦,(4)平分劣弧,(5)平分优弧。已知其中两项,可推出其余三项。注意:当知(1)(3)推(2)(4)(5)时,即“平分弦的直径不能推出垂直于弦,平分两弧。”而应强调附加“平分弦(非直径)的直径,垂直于弦且平分弦所对的两弧”。 2. 深入理解垂径定理及推论,为五点共线,即圆心O ,垂足M ,弦中点M ,劣弧中点D ,优弧中点C ,五点共线。(M 点是两点重合的一点,代表两层意义) 3. 应用以上定理主要是解直角三角形△AOM ,在Rt △AOM 中,AO 为圆半径,OM 为弦AB 的弦心距,AM 为弦AB 的一半,三者把解直角形的知识,借用过来解决了圆中半径、弦、弦心距等问题。无该Rt △AOM 时,注意巧添弦心距,或 半径,构建直角三角形。 4. 弓形的高:弧的中点到弦的距离,明确由定义知只要是弓形的高,就具备了前述的(4)(2)或(5)(2)可推(1)(3)(5)或(1)(3)(4),实际可用垂径定理及推论解决弓形高的有关问题。 5. 圆心角、弧、弦、弦心距四者关系定理,理解为:(1)圆心角相等,(2)所对弧相等,(3)所对弦相等,(4)所对弦的弦心距相等。四项“知一推三”,一项相等,其余三项皆相等。源于圆的旋转不变性。即:圆绕其圆心旋转任意角度,所得图形与原图象完全重合。 ()()()()1234??? 6. 应用关系定理及推论,证角等,线段等,弧等,等等,注意构造圆心角或弦心距作为辅助线。 7. 圆心角的度数与弧的度数等,而不是角等于弧。 二. 重点、难点: 垂径定理及其推论,圆心角,弧,弦,弦心距关系定理及推论的应用。 【典型例题】 例1. 已知:在⊙O 中,弦AB =12cm ,O 点到AB 的距离等于AB 的一半,求:∠AOB 的度数和圆的半径。 点悟:本例的关键在于正确理解什么是O 点到AB 的距离。 解:作OE ⊥AB ,垂足为E ,则OE 的长为O 点到AB 的距离,如图所示: ∴==?=OE AB cm 121 2 126() 由垂径定理知:AE BE cm ==6 ∴△AOE 、△BOE 为等腰直角三角形 ∴∠AOB =90° 由△AOE 是等腰直角三角形 ∴==OA AE 626, 即⊙O 的半径为62cm 点拨:作出弦(AB )的弦心距(OE ),构成垂径定理的基本图形是解决本题的关键。 例2. 如图所示,在两个同心圆中,大圆的弦AB ,交小圆于C 、D 两点,设大圆和小圆的半径分别为a ,b 。 求证:AD BD a b ·=-2 2 证明:作OE ⊥AB ,垂足为E ,连OA 、OC 则OA a OC b ==, 在Rt AOE ?中,AE OA OE 2 2 2 =- 在Rt COE ?中,CE OC OE 2 2 2 =- ()() ∴-=---AE CE OA OE OC OE 222222 =-=-OA OC a b 22 2 2 即()()AE CE AE CE a b +-=-22 BD AC ED CE ==, AD ED AE CE AE =+=+∴ BD AC CE AE ==- 即2 2b a BD AD -=? 点拨:本题应用垂径定理,构造直角三角形,再由勾股定理解题,很巧妙。 例3. ⊙O 的直径为12cm ,弦AB 垂直平分半径OC ,那么弦AB 的长为( ) A. 33cm B. 6cm C. 63cm D. 123cm (2001年辽宁) 解:圆的半径为6cm ,半径OC 的一半为3cm ,故弦的长度为 ( ) 2632321632 2 2 2 -=-=()cm 故选C 。 例4. 如图所示,以O 为圆心,∠AOB =120°,弓形高ND =4cm , 矩形EFGH 的两顶点E 、F 在弦AB 上,H 、G 在AB ? 上,且EF C O A B M D O

初中数学垂径定理中考题精选

初中数学垂径定理练习 一.选择题(共13小题) 1.(2015?大庆模拟)如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm2,则该半圆的半径为() A.cm B.9 cm C.cm D.cm 2.(2015?东河区一模)如图,⊙O过点B、C,圆心O在等腰直角三角形的ABC的内部,∠BAC=90°,OA=1,BC=6,则⊙O的半径为() A.6B.13 C.D.2 3.(2015?上城区一模)一张圆心角为45°的扇形纸板和一张圆形纸板分别剪成两个大小相同的长方形,若长方形长和宽的比值为2:1,则扇形纸板和圆形纸板的半径之比为() A.2:1 B.:1 C.2:1 D.:1 4.(2014?乌鲁木齐)如图,半径为3的⊙O内有一点A,OA=,点P在⊙O上,当∠OPA 最大时,PA的长等于() A.B.C.3D.2 5.(2014?安溪县校级二模)如图,在5×5正方形网格中,一条圆弧经过A,B,C三点,那么这条圆弧所在圆的圆心是()

A.点P B.点Q C.点R D.点M 6.(2014?简阳市模拟)如图,⊙O的半径为5,若OP=3,则经过点P的弦长可能是() A.3B.6C.9D.12 7.(2014?宝安区二模)如图,将半径为6的⊙O沿AB折叠,与AB垂直的半径OC交于点D且CD=2OD,则折痕AB的长为() A.B.C.6D. 8.(2014?河北区三模)如图,以(3,0)为圆心作⊙A,⊙A与y轴交于点B(0,2),与x轴交于C、D,P为⊙A上不同于C、D的任意一点,连接PC、PD,过A点分别作AE⊥PC 于E,AF⊥PD于F.设点P的横坐标为x,AE2+AF2=y.当P点在⊙A上顺时针从点C运到点D的过程中,下列图象中能表示y与x的函数关系的图象是()

垂径定理及推论(2020年各省市中考题)

1. (2013 浙江省舟山市) 如图,⊙O 的半径OD ⊥弦AB 于点C ,连结AO 并延长交⊙O 于点E ,连结EC .若AB =8,CD =2,则EC 的长为( ▲ ) (A )2 (B )8 (C )2 (D )答案:D 07539 4.2 垂径定理及推论 选择题 基础知识 2013-09-29 2. (2013 浙江省温州市) 如图,在⊙O 中,OC ⊥弦AB 于点C ,AB =4,OC =1,则OB 的长是 (A ) 3 (B ) 5 (C )15 (D ) 17 答案:B 6232 4.2 垂径定理及推论 选择题 基础知识 2013-09-24 3. (2013 湖北省宜昌市) 如图,DC 是O ⊙的直径,弦AB CD ⊥于F ,连接BC DB ,.则下列结论错误.. 的是( ). (A )??AD BD = (B )AF BF = (C )OF CF = (D )90DBC ∠=° 答案:C 7704 4.2 垂径定理及推论 选择题 基本技能 2013-09-22 4. (2013 湖北省襄阳市) 如图,水平放置的圆柱形排水管道的截面直径是1m ,其中水面的宽AB 为0.8m ,则排水管内水的深度为 m. 答案:0.2 59477 4.2 垂径定理及推论 填空题 基本技能 2013-09-22 5. (2013 湖北省黄石市) 如右图,在Rt ABC V 中,90ACB ∠=o ,3AC =,4BC =,以点C 为圆心,CA 为半径的圆与AB 交于点D ,则AD 的长为 A. 9 B. 24 C. 185 D. 52 答案:C 84700 4.2 垂径定理及推论 选择题 基础知识 2013-09-22 6. (2013 湖北省黄冈市) 如图,M 是CD 的中点,EM CD ⊥, 若48CD EM ==,,则?CED 所在圆的半径为 . 答案:174 B

垂径定理典型例题及练习

垂径定理练习题 典型例题分析: 例题、垂径定理 1、 在直径为52cm 的圆柱形油槽内装入一些油后,截面如图所示,如果油的最大深度 为16cm ,那么油面宽度AB 是________cm. 2、在直径为52cm 的圆柱形油槽内装入一些油后,,如果油面宽度是48cm ,那么油的 最大深度为________cm. 3、如图,已知在⊙O 中,弦CD AB =,且CD AB ⊥,垂足为H ,AB OE ⊥于E ,CD OF ⊥于F . (1)求证:四边形OEHF 是正方形. (2)若3=CH ,9=DH ,求圆心O 到弦AB 和CD 的距离. 4、已知:△ABC 内接于⊙O ,AB=AC ,半径OB=5cm ,圆心O 到BC 的距离为3cm ,求AB 的长. 5、如图,F 是以O 为圆心,BC 为直径的半圆上任意一点,A 是的中点,AD ⊥BC 于D ,求证:AD=2 1 BF. 例题3、度数问题 1、已知:在⊙O 中,弦cm 12=AB ,O 点到AB 的距离等于AB 的一半,求:AOB ∠的度数和圆的半径. O A E F

2、已知:⊙O 的半径1=OA ,弦AB 、AC 的长分别是2 、3.求BAC ∠的度数。 例题4、相交问题 如图,已知⊙O 的直径AB 和弦CD 相交于点E ,AE=6cm ,EB=2cm ,∠BED=30°,求CD 的长. 例题5、平行问题 在直径为50cm 的⊙O 中,弦AB=40cm ,弦CD=48cm ,且AB ∥CD ,求:AB 与CD 之间的距离. 例题6、同心圆问题 如图,在两个同心圆中,大圆的弦AB ,交小圆于C 、D 两点,设大圆和小圆的半 径分别为b a ,.求证:22b a BD AD -=?. 例题7、平行与相似 已知:如图,AB 是⊙O 的直径,CD 是弦,于CD AE ⊥E ,CD BF ⊥于F .求证: FD EC =. A B D C E O

2013年中考数学试题分类汇编:圆的垂径定理

2013中考全国100份试卷分类汇编 圆的垂径定理 1、(2013年潍坊市)如图,⊙O 的直径AB=12,CD 是⊙O 的弦,CD ⊥AB ,垂足为P ,且BP :AP=1:5,则CD 的长为( ). A.24 B.28 C.52 D.54 答案:D . 考点:垂径定理与勾股定理. 点评:连接圆的半径,构造直角三角形,再利用勾股定理与垂径定理解决. 2、(2013年黄石)如右图,在Rt ABC 中,90ACB ∠=,3AC =,4BC =,以点C 为 圆心,CA 为半径的圆与AB 交于点D ,则AD 的长为 A. 95 B. 245 C. 185 D. 52 答案:C 解析:由勾股定理得AB =5,则sinA =4 5,作CE ⊥AD 于E ,则AE =DE ,在Rt △AEC 中,sinA =CE AC ,即453 CE =,所以, CE =125,AE =95,所以,AD =185 3、(2013河南省)如图,CD 是 O 的直径,弦AB CD ⊥于点G ,直线EF 与O 相切与 点D ,则下列结论中不一定正确的是【】 (A )AG BG = (B )AB ∥EF (C )AD ∥BC (D )ABC ADC ∠=∠ 【解析】由垂径定理可知:(A )一定正确。由题可知:EF CD ⊥,又因为AB CD ⊥,所以AB ∥EF ,即(B )一定正确。因为 ABC ADC ∠∠和所对的弧是劣弧AC ,根据同弧所对的圆周角相等 可知(D )一定正确。 【答案】C 4、(2013?泸州)已知⊙O 的直径CD=10cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,且AB=8cm ,则AC 的长为( ) C A B

九年级数学垂径定理

初三数学垂径定理、圆心角、弧、弦、弦心距间的关系知识精讲 一. 本周教学内容: 垂径定理、圆心角、弧、弦、弦心距间的关系 [学习目标] 1. 理解由圆的轴对称性推出垂径定理,概括理解垂径定理及推论为“知二推三”。(1)过圆心,(2)垂直于弦,(3)平分弦,(4)平分劣弧,(5)平分优弧。已知其中两项,可推出其余三项。注意:当知(1)(3)推(2)(4)(5)时,即“平分弦的直径不能推出垂直于弦,平分两弧。”而应强调附加“平分弦(非直径)的直径,垂直于弦且平分弦所对的两弧”。 2. 深入理解垂径定理及推论,为五点共线,即圆心O,垂足M,弦中点M,劣弧中点D,优弧中点C,五点共线。(M点是两点重合的一点,代表两层意义) C O A B M D 3. 应用以上定理主要是解直角三角形△AOM,在Rt△AOM中,AO为圆半径,OM为弦AB的弦心距,AM为弦AB的一半,三者把解直角形的知识,借用过来解决了圆中半径、弦、弦心距等问题。无该Rt△AOM时,注意巧添弦心距,或半径,构建直角三角形。 4. 弓形的高:弧的中点到弦的距离,明确由定义知只要是弓形的高,就具备了前述的(4)(2)或(5)(2)可推(1)(3)(5)或(1)(3)(4),实际可用垂径定理及推论解决弓形高的有关问题。 5. 圆心角、弧、弦、弦心距四者关系定理,理解为:(1)圆心角相等,(2)所对弧相等,(3)所对弦相等,(4)所对弦的弦心距相等。四项“知一推三”,一项相等,其余三项皆相等。源于圆的旋转不变性。即:圆绕其圆心旋转任意角度,所得图形与原图象完全重合。 ()()()() 1234 ??? O B' M' A' B M A 6. 应用关系定理及推论,证角等,线段等,弧等,等等,注意构造圆心角或弦心距作为辅助线。 7. 圆心角的度数与弧的度数等,而不是角等于弧。

九年级数学上垂径定理练习题

B F E O D C A 垂径定理综合训练习题 一、垂径定理在证明上的应用 1、如图,AB 、CD 都是⊙O 的弦,且AB ∥CD ,求证: 弧AC = 弧BD 。 2.如图,CD 为⊙O 的弦,在CD 上截取CE=DF ,连结OE 、OF ,并且它们的延长⊙O 于点A 、 B 。 (1)试判断△OEF 的形状,并说明理由;(2)求证:? AC =? BD 。 3、如图,在⊙O 中,AB 为⊙O 的弦,C 、D 是直线AB 上两点,且AC =BD 求证:△OCD 为等腰三角形。 4、如图,F 是以O 为圆心,BC 为直径的半圆上任意一点,A 是 的中点, AD ⊥BC 于D ,求证:AD=2 1 BF. 二、垂径定理在计算上的应用(一)求半径,弦长,弦心距 1、 在直径为52cm 的圆柱形油槽内装入一些油后,截面如图所示,如果油的最大深 度为16cm ,那么油面宽度AB 是________cm. A B C D O A B C D O O A E F

变式 2.在直径为52cm 的圆柱形油槽内装入一些油后,,如果油面宽度是48cm ,那么油的最大深度为________cm 2:如图为一圆弧形拱桥,半径OA = 10m ,拱高为4m ,求拱桥跨度AB 的长。 3、如图,已知在⊙O 中,弦CD AB =,且CD AB ⊥,垂足为H ,AB OE ⊥于E ,CD OF ⊥于F . (1)求证:四边形OEHF 是正方形. (2)若3=CH ,9=DH ,求圆心O 到弦AB 和CD 的距离. 4、如图所示,在Rt △ABC 中,∠C =900,AC =3,BC =4,以点C 为圆心,CA 为半径的圆与AB 、BC 分别交于点D 、E ,求AB 和AD 的长。 (二)、度数问题 1、已知:在⊙O 中,弦cm 12=AB ,O 点到AB 的距离等于AB 的一半,求:AOB ∠的度数和圆的半径。. A C B D O C A D E

《垂径定理》典型例题

《垂径定理》典型例题 例1. 选择题: (1)下列说法中,正确的是() A. 长度相等的弧是等弧 B. 两个半圆是等弧 C. 半径相等的弧是等弧 D. 直径是圆中最长的弦答案:D (2)下列说法错误的是() A. 圆上的点到圆心的距离相等 B. 过圆心的线段是直径 C. 直径是圆中最长的弦 D. 半径相等的圆是等圆答案:B 例2. 如图,已知AB是⊙O的直径,M、N分别是AO、BO的中点,CM⊥AB,DN⊥AB。 分析:要证弧相等,可证弧所对的弦相等,也可证弧所对的圆心角相等。 证明:连结OC、OD ∵M、N分别是OA、OB的中点 ∵OA=OB,∴OM=ON 又CM⊥AB,DN⊥AB,OC=OD ∴Rt△OMC≌Rt△OND ∴∠AOC=∠BOD 例3. 在⊙O中,弦AB=12cm,点O到AB的距离等于AB的一半,求∠AOB的度数和圆的半径。 分析:根据O到AB的距离,可利用垂径定理解决。 解:过O点作OE⊥AB于E ∵AB=12 由垂径定理知:

∴△ABO为直角三角形,△AOE为等腰直角三角形。 例4. 如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB、BC分别交于点D、E。求AB、AD的长。 分析:求AB较简单,求弦长AD可先求AF。 解:过点C作CF⊥AB于F ∵∠C=90°,AC=3,BC=4 ∵∠A=∠A,∠AFC=∠ACB ∴△AFC∽△ACB 例5. 如图,⊙O中,弦AB=10cm,P是弦AB上一点,且PA=4cm,OP=5cm,求⊙O的半径。 分析:⊙O中已知弦长求半径,通常作弦心距构造直角三角形,利用勾股定理求解。 解:连OA,过点O作OM⊥AB于点M ∵点P在AB上,PA=4cm

初三数学垂径定理讲义

学科教师辅导讲义 体系搭建 一、知识梳理

二、知识概念 垂径定理 1、内容:垂直于弦的直径平分这条弦,并且平分这条弦所对的两段弧 2、逆定理:平分弦(不是直径)的直径垂直于这条弦,并且平分这条弦所对的两段弧 3、推论:弦的垂直平分线经过圆心,并且平分这条弦所对的弧 平分弦所对的一条弧的直径垂直平分这条弦,并且平分这条弦所对的另一条弧 在同圆或者等圆中,两条平行弦所夹的弧相等 4、使用条件:一条直线,在下列4条中只要具备其中任意两条作为条件,就可以推出其他三条结论 (1)平分弦所对的弧 (2)平分弦 (不是直径) (3)垂直于弦 (4)经过圆心 考点一:垂径定理及其推论 例1、下列说法不正确的是() A.圆是轴对称图形,它有无数条对称轴 B.圆的半径、弦长的一半、弦上的弦心距能组成一直角三角形,且圆的半径是此直角三角形的斜边C.弦长相等,则弦所对的弦心距也相等 D.垂直于弦的直径平分这条弦,并且平分弦所对的弧 例2、如图,AB是⊙O的直径,CD⊥AB,∠ABD=60°,CD=2,则阴影 部分的面积为() A.B.π C.2πD.4π

例3、如图,在5×5正方形网格中,一条圆弧经过A,B,C三点,已知点A 的坐标是(﹣2,3),点C的坐标是(1,2),那么这条圆弧所在圆的圆心坐标 是() A.(0,0)B.(﹣1,1) C.(﹣1,0)D.(﹣1,﹣1) 例4、如图,AB是⊙O的弦,C是AB的三等分点,连接OC并延长交⊙O于点 D.若OC=3,CD=2,则圆心O到弦AB的距离是() A.6B.9﹣ C.D.25﹣3 例5、如图,⊙O的半径为5,弦AB=8,则圆上到弦AB所在的直线距离为2的点 有()个. A.1B.2C.3D.0 考点二:应用垂径定理解决实际问题 例1、李明到某影剧城游玩,看见一圆弧形门如图所示,李明想知道这扇门的相关数据.于是她从景点管理人员处打听到:这个圆弧形门所在的圆与水平地面是相切的,AB=CD=40cm,BD=320cm,且AB,CD与水平地面都是垂直的.根据以上数据,请你帮助李明计算出这个圆弧形门的最高点离地面的高度是多少?

九上《圆的基本性质》的知识点及典型例题

第三章 《圆的基本性质》的知识点及典型例题 知识框图 1、过一点可作 个圆。过两点可作 个圆,以这两点之间的线段的 上任意一点为圆心即可。过三点可作 个圆。过四点可作 个圆。 2、垂径定理:垂直于弦的直径 ,并且平分 垂径定理的逆定理1:平分弦( )的直径垂直于弦,并且平分 垂径定理的逆定理2:平分弧的直径 3、圆心角定理:在同圆或等圆中,相等的圆心角所对的 ,所对的 圆心角定理的逆定理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两个弦心距中有一对量相等,那么 都相等。 注解:在由“弦相等,得出弧相等”或由“弦心距相等,得出弧相等”时,这里的“弧相等”是指对应的劣弧与劣弧相等,优弧与优弧相等。在题目中,若让你求⌒A B ,那么所求的是弧长 圆 概 念 圆、圆心、半径、直径 弧、弦、弦心距、等弧 圆心角、圆周角 三角形的外接圆、三角形的外心、圆的内接三角形 圆的基本性质 圆周角定理及2个推论 圆的相关计算 弧可分为劣弧、半圆、优弧 在同圆或等圆中,能够重合的两条弧叫等弧 点和圆的位置关系 不在同一直线上的三点确定一个圆 圆的轴对称性 垂径定理及其2个逆定理 圆的中心对称性和旋转不变性 圆心角定理及逆定理 求半径、弦长、弦心距 求圆心角、圆周角、弧长、扇形的面积、圆锥的侧面积及表面积 圆的相关证明 求不规则阴影部分的面积 证明线段长度之间的数量关系;证明角度之间的数量关系 证明弧度之间的数量关系; 证明多边形的形状;证明两线垂直 圆心角定理及逆定理都是根据圆的旋转不变性推出来的 三角形的外心到三角形三个顶点的距离相等

4、圆周角定理:一条弧所对的圆周角等于它所对的 圆周角定理推论1:半圆(或直径)所对的圆周角是 ;90°的圆周角所对的弦是 圆周角定理推论2:在同圆或等圆中, 所对的圆周角相等;相等的圆周角所对 的也相等 5、拓展一下:圆内接四边形的对角之和为 6、弧长公式:在半径为R 的圆中,n °的圆心角所对的弧长l 的计算公式为l = 7、扇形面积公式1:半径为R ,圆心角为n °的扇形面积为 。这里面涉及3个变量: ,已知其中任意两个,都可以求出第3个变量。我们中需要记住一个公式即可。 扇形面积公式2:半径为R ,弧长为l 的扇形面积为 8、沿圆锥的母线把圆锥剪开并展平,可得圆锥的侧面展开图是一个 ,圆锥的侧面积等于这个扇形的面积,其半径等于圆锥的 ,弧长等于圆锥的 9、圆锥的侧面积: ;圆锥的全面积: 10、圆锥的母线长l ,高h ,底面圆半径r 满足关系式 11、已知圆锥的底面圆半径r 和母线长l ,那么圆锥的侧面展开图的圆心角为 12、圆锥的侧面展开图的圆心角x 的取值范围为 考点一、与圆相关的命题的说法正确的个数,绝大多数是选择题,也有少部分是填空题(填序号) 考点二、求旋转图形中某一点移动的距离,这就要利用弧长公式 考点三、求半径、弦长、弦心距,这就要利用勾股定理和垂径定理及逆定理 考点四、求圆心角、圆周角 考点五、求阴影部分的面积 考点六、证明线段、角度、弧度之间的数量关系;证明多边形的具体形状 考点七、利用不在同一直线上的三点确定一个圆的作图题 考点八、方案设计题,求最大扇形面积 考点九、将圆锥展开,求最近距离 练习 一、选择题 1、下列命题中:① 任意三点确定一个圆;②圆的两条平行弦所夹的弧相等;③ 任意一个三角形有且仅有一个外接圆;④ 平分弦的直径垂直于弦;⑤ 直径是圆中最长的弦,半径不是弦。正确的个数是( ) A.2个 B.3个 C.4个 D.5个 2、如图,AB 是半圆O 的直径,点P 从点O 出发,沿OA AB BO -- 的路径运动一周.设OP 为s ,运动时间为t ,则下列图形能大致地刻画s 与t 之间关系的是( ) 3、如图所示,在△ABC 中,∠BAC=30°,AC=2a ,BC=b ,以AB 所在直线为轴旋转一周得到一个几何体,则这个几何体的全面积是( ) A. 2πa B. πab C. 3πa2+πab D. πa (2a+b ) P A O B s t O s O t O s t O s t A . B . C . D .

相关文档
相关文档 最新文档