文档库 最新最全的文档下载
当前位置:文档库 › 球壳表面积计算公式

球壳表面积计算公式

球壳表面积计算公式
球壳表面积计算公式

设不规则半球体的高为h,底面圆半径为R,球的半径为r。则不规则半球的表面积可用下列积分求得:

S=2π∫(rcosθ)rdθ, [积分:从α到π/2]

上式中的α满足下式:cosα=R/r,sinα=(r-h)/r

对上式积分后得:

S=2πr2(1-sinα)=2πr2(1-(r-h)/r)=2πrh

根据公式cos2α+sin2α=1可推出:

r=(R2+h2)/(2h)。代入上面的面积公式后得:

S=π(R2+h2)。

所以,此不规则半球体的表面积为:

S=π(11.52+92)≈670 m2。

为了便于理解,请参见下图:

(完整版)矿粉比表面积B.doc

检测项目样品状态环境温、湿度 检测地点检测依据检测日期 第页,共页 检测用主要设备一览表 序号设备名称规格型号编号 1 电子分析天平 2 比表面积仪 3 烘箱 4 李氏瓶 5 恒温水槽 其它滤纸等 密度检测数据 次数试样质 量(g) 读数1(cm3)读数2(cm3) 单次密度 (g/cm3) 密度 (g/cm3) 水浴恒温 (℃) 1 60.00 0.8 21.9 2.84 2.84 20 2 60.07 1.0 22.2 2.83 细度(比表面积法)检测数据 1、标样及所标定设备的相关参数 密度ρs(g/cm3) 比表面积 (cm2 /g) 空隙率εs 压力计液面降落时 间Ts(s) 环境温度 (℃) 空气粘度ηs(μPa.s) 3.14 3270 0.5 72.14 20.4 / 2、试样比表面积测定 次数试验温度 (℃) 试样体积 (cm3) 初选 空隙率 εs 确定 空隙率 εi 试样质量 (g) 压力计液面 降落时间 Ti(s) 单次 比表面积 (cm2 /g) 比表面积 (cm2 /g) 1 20.6 1.846 0.5 0.5 2.621 81.28 3684 3710 2 20.4 1.846 0.5 0.5 2.621 82.30 3731 计算公式 W=ρv(1-ε)注:如果试验时温度与 标定时温度之差不大于 3℃时,可不考虑空气粘 度的影响。 审核: 试验: 记录日期:

检测项目样品状态环境温、湿度 检测地点检测依据检测日期 第页,共页 检测用主要设备一览表 序号设备名称规格型号编号 1 电子分析天平 2 比表面积仪 3 烘箱 4 李氏瓶 5 恒温水槽 其它滤纸等 密度检测数据 次数试样质 量(g) 读数1(cm3)读数2(cm3) 单次密度 (g/cm3) 密度 (g/cm3) 水浴恒温 (℃) 1 2 细度(比表面积法)检测数据 1、标准样品及所标定设备的相关参数 密度ρs(g/cm3) 比表面积 (cm2 /g) 空隙率εs 压力计液面降落 时间Ts(s) 环境温度 (℃) 空气粘度ηs(μPa.s) 2、试样比表面积测定 次数试验温度 (℃) 试样体积 (cm3) 初选 空隙率 εs 确定 空隙率 εi 试样质量 (g) 压力计液面 降落时间 Ti(s) 单次 比表面积 (cm2 /g) 比表面积 (cm2 /g) 1 2 计算公式 W=ρv(1-ε)注:如果试验时温度与 标定时温度之差不大于 3℃时,可不考虑空气粘 度的影响。 审核: 试验: 记录日期:

球的体积与表面积教案设计(参考)

球的体积和表面积 一、教材分析 本节内容是数学2第一章空间几何体第3节空间几何体的表面积与体积的第2课时球的体积和表面积,是在学习了柱体、锥体、台体等基本几何体的基础上,通过空间度量形式了解另一种基本几何体的结构特征.从知识上讲,球是一种高度对称的基本空间几何体,同时它也是进一步研究空间组合体结构特征的基础;从方法上讲,它为我们提供了另外一种求空间几何体体积和表面积的思想方法;从教材编排上,更重视学生的直观感知和操作确认,为螺旋式上升的学习奠定了基础. 课时分配 本节内容用1课时的时间完成,主要讲解球的体积公式和表面积公式及公式的应用. 二、教学目标 知识与技能 (1)通过对球的体积和面积公式的推导,了解推导过程中所用的基本数学思想方法:“分割——求和——化为准确和”,有利于同学们进一步学习微积分和近代数学知识. (2)能运用球的面积和体积公式灵活解决实际问题. (3)培养学生的空间思维能力和空间想象能力. 过程与方法 通过球的体积和面积公式的推导,从而得到一种推导球体积公式3 3 4 =R V π和面积公式24=R S π的方法,即“分割求近似值,再由近似和转化为球的体积和面积”的方法,体现了极限思想. 情感与价值观 通过学习,使我们对球的体积和面积公式的推导方法有了一定的了解,提高了空间思维能力和空间想象能力,增强了我们探索问题和解决问题的信心. 三、教学重点、难点 重点:引导学生了解推导球的体积和面积公式所运用的基本思想方法.

难点:推导体积和面积公式中空间想象能力的形成,以及与球有关的组合体的表面积和体积的计算. 四、学法和教学用具 学法:学生思考老师提出的问题,通过阅读教材,发挥空间想象能力,了解并初步掌握“分割、求近似值、再由近似值的和转化为球的体积和面积”的解题方法和步骤. 教学用具:投影仪,旨在通过动态图形使得学生对球这一立体图形有一个直观的认识. 五、教学设计 创设情景 ⑴教师提出问题:乌鸦喝水的问题我们都知道, 只有一颗一颗的小圆石头往水瓶里投乌鸦才能喝到 水,那么我们是不是可以用数学方法精确的计算出乌 鸦具体需要投入几颗小圆石头呢?这里就涉及到了 小石子的体积了,假设小石子都是均匀的球体,我们 知道球既没有底面,也无法像在柱体、锥体和台体那样展开成平面图形,那么怎样来求球的表面积与体积呢?引导学生进行思考. ⑵教师设疑:球的大小是与球的半径有关,如何用球半径来表示球的体积和面积?激发学生推导球的体积和面积公式. 探究新知 1.球的体积: 如果用一组等距离的平面去切割球,当距离很小之时得到很多“小圆片”,“小圆片”的体积的体积之和正好是球的体积,由于“小圆片”近似于圆柱形状,所以它的体积也近似于圆柱形状,所以它的体积有也近似于相应的圆柱和体积,因此求球的体积可以按【设计意图】通过大家所熟知的寓言小故事引出教学内容,提高学生学习兴趣.

水泥矿粉比表面积检验细则

水泥矿粉比表面积检验细则 一、依据标准:《水泥比表面积测定方法》(GB/T 8074— 2008)。 二、仪器设备: 1、Blaine透气仪,由透气圆筒、压力计、抽气装置等 三部分组成。 2、透气圆筒内径为12.70±0.05mm,由不锈钢制成。圆筒内表面的光洁度为▽6,圆筒的上口边应与圆筒主轴垂直,圆筒下部锥度应与压力计上玻璃磨口锥度一致,二者应严密连接。在圆筒内壁,距离圆筒上口边55±10㎜处有一突出的宽度为0.5~1㎜的边缘,以放置金属穿孔板。 3、穿孔板由不锈钢或其他不受腐蚀的金属制成,厚度为1.0~0.1mm。在其面上,等距离地打有35个直径1mm的小孔,穿孔板应与圆筒内壁密合。穿孔板二平面应平行。 4、捣器用不绣钢制成,插入圆筒时,其间隙不大于0.1mm。捣器的底面应与主轴垂直,侧面有一个扁平槽,宽度为3.0±0.3mm。捣器的顶部有一个支持环,当捣器放入圆

筒时,支持环与圆筒上口边接触,这时捣器底面与穿孔原板之间的距离为15.0±0.5mm。 5、压力计 U形压力计的尺寸,由外径为9mm的,具有标准厚度的玻璃管制成。压力计一个臂的顶端有一个锥形磨口与透气圆筒紧密连接,在连接透气圆筒的压力计臂上刻有环形线。从压力计底部往上280~300mm处有一个出口管,管上装有一个阀门,连接抽气装置。 6、抽气装置用小型电磁泵,也可用抽气球。 7、滤纸采用符合国标的中速定量滤纸。 8、分析天平分度值为1mg。 9、计时秒表精确读到0.5s。 10、烘干箱 三、试样准备: 1、将110±5℃下烘干并在干燥器中冷却到室温的标准试 样,倒入100ml的密闭瓶内,用力摇动2min,将结成团的试样振碎,使试样松散。静置2min后,打开瓶盖,轻轻搅拌,使在松散过程中落到表面的细粉,分布到整个

图解球体表面积和体积正确计算方法及计算公式

图解球体表面积和体积正确计算方法及计算公式 一、球体面积 球体表面是可以由N个带弧形的等腰三角形拼凑而成,见图一、图二、图三。设球体的二分之一水平中心为腰线,在球顶和球底正中各设一个顶点和底点a,然后从顶点到腰线按等分分割成N个带弧形的等腰三角形。根据定义:线的长度不因弯曲而改变,球面可无限分割成N个等腰三角形

如图二、图四、图五所示,所有分割好带弧形的等腰三角形都可以自然平展成标准的等腰三角形,亦可将等腰三角形拼凑成方形。 在理解上述图例球体表面和等腰三角形的关系后,我们可以对球体表面积的计算有比较清晰的判断。即,球体表面可以分割成N个相等的等腰三角形,等腰三角形亦可拼凑成方形,由此推导出球体面积可以用矩形公式计算。 即S = 长×宽,如果我们设球体1/4之一的周长为宽,设球体的周长为长,则球体表面积公式为:S=1/4周长×周长(见图六) 例1:已知球体直径是1个单位,求球体表面积(用上述最新推导公式S=1/4周长×周长) S =(3.14159÷4)×3.14159 = 2.4674㎡ 二、球体体积 设以球心作一条垂线或水平中心线,然后以垂线或水平中心向外将球体按等

分无限分割成N个半圆楔形体。见图七、图八。 球体分割完成后,将半圆楔形体镜像排列成圆柱体,见图九、图十。 从图七、图八、图九、图十看,球体从中心按等分分割成半圆楔形体后可以排列堆砌成圆柱体,根据计算得出定义:与球体同直径同体积的圆柱体的柱高正好是球体周长的1/4。

则球体体积公式为:V =πR平方×周长的1/4 或:V = D(直径的三次方)×0.616849233 例2:已知球体直径是1个单位,求球体体积(用上述最新推导公式) V =πR平方×周长的1/4 = 3.14159×0.25×0.7853975 = 0.616849233 三、公知公式在球体面积、体积计算中出现的错误 1、球体面积 如何检验球体面积计算的正确,最好的方法就是用计算结果制成N个等腰三角形的薄膜反贴球体表面。如薄膜能完整不剩的覆盖球体表面则公式应用和计算正确,如薄膜有剩余或薄膜未能完全覆盖球体表面则公式应用和计算不正确,见图十一。 图十一是用新公式和公知公式分别计算球体直径同是一个单位半球面积的结果对比,新公式计算结果反贴复原后正好能覆盖直径是一个单位半球的球体面积。 计算过程: S =(1.570795×0.7853975)= 1.2336㎡ 公知公式计算结果反贴复原后剩余有0.337㎡的面积。 计算过程: S = 1×3.14159÷2 = 1.570795㎡

6 矿粉流动度比

试验技能答辩综合考核打分表(矿渣粉流动度比) 序 号 考核内容考核情况优秀满意合格较差 1 目的测定流动度比,判定矿渣粉质量,指导混凝土配合比 施工和日常混凝土质量控制 10 9-7 6-4 3-0 2 原理测定试验样品和对比样品的流动度,两者流动度比评 价矿渣粉流动度比。 20 19-15 14-10 9-0 3 主要设备天平(量程不小于1000g,最小分度值不大于1g)、 搅拌机(符合GB/T17671—1999规定的行星式水泥 胶砂搅拌机)、流动度跳桌(符合GB/T2419规定)。 标准物质:ISO标准砂、42.5级硅酸盐水泥或普通硅 酸盐水泥且强度、比表面积和碱含量符合规范要求。 10 9-7 6-4 3-0 4 环境条件试验室温度应保持在20±2°C,相对湿度应不低于 50% 10 9-7 6-4 3-0 5 取样制样对比胶砂的材料数量:水泥450g,标准砂13500g, 加水量225ml 试验胶砂的材料数量:水泥225g,矿渣粉225g,标 准砂1350g,加水量225ml; 15 14-11 10-6 5-0 6 试验步骤砂浆搅拌程序: 把水加入锅里,再加入水泥,把锅放在固定架上,上 升至固定位置。然后立即开动机器,低速搅拌30s 后,在第二个30s开始的同时均匀地将砂子加入。机 器转至高速再拌30s。停拌90s,在第1个15s内用 一胶皮刮具将叶片和锅壁上的胶砂,刮入锅中间。在 高速下继续搅拌60s。各个搅拌阶段,时间误差应在 ±1s以内。 预先用湿布擦拭跳桌台面、试模内壁、捣棒以及与胶 砂接触的工具。 将拌好的胶砂分两层迅速装入试模,第一层装至截锥 圆模高度约2/3处,用小刀在相互垂直的两个方向各 划5次,用捣棒按要求(先外10后里5顺时针)均 匀捣压15次,第一层捣至胶砂高度的1/2;随后装 第二层胶砂,装至高出截锥圆模约20mm,用小刀在 相互垂直的两个方向各划5次,用捣棒按要求(先外 7后里3顺时针)均匀捣压10次,第二层捣实不超 过已捣实底层表面。 捣压完毕,取下模套,将小刀倾斜,从中间向边缘分 20 19-15 14-10 9-0

球的体积和表面积附答案

球的体积和表面积附答 案 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

球的体积和表面积 [学习目标] 1.记准球的表面积和体积公式,会计算球的表面积和体积.2.能解决与球有关的组合体的计算问题. 知识点一球的体积公式与表面积公式 1.球的体积公式V=4 3 πR3(其中R为球的半径). 2.球的表面积公式S=4πR2. 思考球有底面吗球面能展开成平面图形吗 答球没有底面,球的表面不能展开成平面. 知识点二球体的截面的特点 1.球既是中心对称的几何体,又是轴对称的几何体,它的任何截面均为圆,它的三视图也都是圆. 2.利用球半径、截面圆半径、球心到截面的距离构建直角三角形是把空间问题转化为平面问题的主要途径. 题型一球的表面积和体积 例1 (1)已知球的表面积为64π,求它的体积; (2)已知球的体积为500 3 π,求它的表面积.

解(1)设球的半径为R,则4πR2=64π,解得R=4, 所以球的体积V=4 3 πR3= 4 3 π·43= 256 3 π. (2)设球的半径为R,则4 3πR3= 500 3 π,解得R=5, 所以球的表面积S=4πR2=4π×52=100π. 跟踪训练1 一个球的表面积是16π,则它的体积是( ) π π 答案D 解析设球的半径为R,则由题意可知4πR2=16π,故R=2.所以球的 半径为2,体积V=4 3 πR3= 32 3 π. 题型二球的截面问题 例2 平面α截球O的球面所得圆的半径为1.球心O到平面α的距离为2,则此球的体积为( ) π π π π 答案B 解析如图,设截面圆的圆心为O′, M为截面圆上任一点, 则OO′=2,O′M=1.

矿粉比表面积B

矿粉细度(比表面积法)及矿粉密度试验记录 样品名称任务单编号样品编号 检测项目样品状态环境温、湿度 检测地点检测依据检测日期 第页,共页 检测用主要设备一览表 序号设备名称规格型号编号 1 电子分析天平 2 比表面积仪 3 烘箱 4 李氏瓶 5 恒温水槽 其它滤纸等 密度检测数据 次数试样质 量(g) 读数1(cm3)读数2(cm3) 单次密度 (g/cm3) 密度 (g/cm3) 水浴恒温 (℃) 1 60.00 0.8 21.9 2.84 2.84 20 2 60.07 1.0 22.2 2.83 细度(比表面积法)检测数据 1、标样及所标定设备的相关参数 密度ρs(g/cm3) 比表面积 (cm2 /g) 空隙率εs 压力计液面降落时 间Ts(s) 环境温度 (℃) 空气粘度ηs(μPa.s) 3.14 3270 0.5 72.14 20.4 / 2、试样比表面积测定 次数试验温度 (℃) 试样体积 (cm3) 初选 空隙率 εs 确定 空隙率 εi 试样质量 (g) 压力计液面 降落时间 Ti(s) 单次 比表面积 (cm2 /g) 比表面积 (cm2 /g) 1 20.6 1.846 0.5 0.5 2.621 81.28 3684 3710 2 20.4 1.846 0.5 0.5 2.621 82.30 3731 计算公式W=ρv(1-ε)注:如果试验时温度与 标定时温度之差不大于 3℃时,可不考虑空气粘 度的影响。

审核: 试验: 记录日期: 矿粉细度(比表面积法)及矿粉密度试验记录 样品名称任务单编号样品编号 检测项目样品状态环境温、湿度 检测地点检测依据检测日期 第页,共页

球的体积和表面积公式具体推导过程精编版

1..3.2球的体积和表面积(1) 设球的半径为R ,将半径OAn 等分,过这些分点作平 面把半球切割成n 层,每一层都是近似于圆柱形状的“小 圆片”,这些“小圆片”的体积之和就是半球的体积。 由于“小圆片”近似于圆柱形状,所以它的体积也近似于圆柱的体积。它的高就是“小圆片”的厚度 n R ,底面 就是“小圆片”的下底面。 由勾股定理可得第i 层(由下向上数)“小圆片”的下底面半径: 2 2)]1([--=i n R R r i ,(i =1,2,3,···,n ) 第i 层“小圆片”的体积为: V ≈π2i r ·n R =??? ???????? ??--2311n i n R π, (i =1,2,3,···,n ) 半球的体积:V 半径=V 1+V 2+···+Vn ≈n R 3π{1+(1-221n )+(1-222n )+···+[1-2 2)1(n n -]} =n R 3π[n -2222)1(21n n -+???++](注:)12)(1(6 121222++=+???++n n n n ) =n R 3π[n -6)12()1(12--?n n n n =236)12)(1(1(n n n R ---π)=????????????---6)12)(11(13n n R π ① 当所分的层数不断增加,也就是说,当n 不断变大时,①式越来越接近于半球的 体积,如果n 无限变大,就能由①式推出半径的体积。 事实上,n 增大, n 1就越来越小,当n 无限大时,n 1趋向于0,这时,有 V 半径=332R π,所以,半径为R 的球的体积为: V =33 4R π

高中数学 球的体积和表面积教案 新人教A版

高中数学人教A 版精品教案集:球的体积和表面积 教学目标 1. 知识与技能 ⑴通过对球的体积和面积公式的推导,了解推导过程中所用的基本数学思想方法:“分 割——求和——化为准确和”,有利于同学们进一步学习微积分和近代数学知识。 ⑵能运用球的面积和体积公式灵活解决实际问题。 ⑶培养学生的空间思维能力和空间想象能力。 2. 过程与方法 通过球的体积和面积公式的推导,从而得到一种推导球体积公式V= 34πR 3和面积公式S=4πR 2的方法,即“分割求近似值,再由近似和转化为球的体积和面积”的方法, 体现了极限思想。 3. 情感与价值观 通过学习,使我们对球的体积和面积公式的推导方法有了一定的了解,提高了空间思维能力和空间想象能力,增强了我们探索问题和解决问题的信心。 二. 教学重点、难点 重点:引导学生了解推导球的体积和面积公式所运用的基本思想方法。 难点:推导体积和面积公式中空间想象能力的形成。 三. 学法和教学用具 1. 学法:学生通过阅读教材,发挥空间想象能力,了解并初步掌握“分割、求近似值 的、再由近似值的和转化为球的体积和面积”的解题方法和步骤。 2. 教学用具:投影仪 四. 教学设计 (一) 创设情景 ⑴教师提出问题:球既没有底面,也无法像在柱体、锥体和台体那样展开成平面图形,那么怎样来求球的表面积与体积呢?引导学生进行思考。 ⑵教师设疑:球的大小是与球的半径有关,如何用球半径来表示球的体积和面积?激发学生推导球的体积和面积公式。 (二) 探究新知 1.球的体积: 如果用一组等距离的平面去切割球,当距离很小之时得到很多“小圆片”,“小圆片”的体积的体积之和正好是球的体积,由于“小圆片”近似于圆柱形状,所以它的体积也近似于圆柱形状,所以它的体积有也近似于相应的圆柱和体积,因此求球的体积可以按“分割——求和——化为准确和”的方法来进行。 步骤: 第一步:分割 如图:把半球的垂直于底面的半径OA作n 等分,过这些 等分点,用一组平行于底面的平面把半球切割成n 个“小圆片”, “小圆片”厚度近似为 n R ,底面是“小圆片”的底面。 如图:

矿粉检测作业指导手册

精心整理 ★磨细矿渣粉检测作业指导书 一、适用范围 本细则适用于粒化高炉矿渣粉密度、比表面积(勃氏法)、氧化镁、烧失量、三氧化硫、流动度比、活性指数等指标的测定。 二、技术标准 1、《水泥密度测定方法》GB/T208—94 2、《水泥化学分析方法》GB/T176-2008 3、《水泥比表面积测定法(勃氏法)》GB8074-2008

(3).试样应预先通过0.90mm方孔筛,在110±5℃温度下干燥1h,并在干燥器内冷却至室温。称取矿粉60g,称准至0.01g。 (4).用小匙将试样一点点的装入(1)条的李氏瓶中,反复摇动(亦可用超声波震动),至没有气泡排出,再次将李氏瓶静置于恒温水槽中,恒温30min,记下第二次读数。 (5).第一次读数和第二次读数时,恒温水槽的温度差不大于0.2℃。 (6).结果计算 ①矿粉体积应为第二次读数减去初始(第一次)读数,即矿粉所排开的无水煤油的体积(mL). ②矿粉密度ρ(g/cm3)按下式计算: 矿粉密度ρ=矿粉质量(g)/排开的体积(cm3) 结果计算到小数第三位,且取整数到0.01g/cm3,试验结果取两次测定结果的算术平均值,两次测定结果之差不得超过0.02 g/cm3。

2、比表面积 (1)漏气检查 气筒上口用橡皮塞塞紧,接到压力计上。用抽气装置从压力计一臂抽出部分气体,然后关闭阀门,观察是否漏气。如发现漏气,用活塞油脂加以密封。 试验层体积的测定 ①.用水银排代法:将两片滤纸沿圆筒壁放入圆筒内,用一直径比透气圆筒略小的细长棒往下按, 直到滤纸平整放在金属的穿孔板上。然后装满水银,用一块薄玻璃板轻压水银表面,使水银面 与圆筒口平齐,并须保证在玻璃板和水银表面之间没有气泡或空洞存在。从圆筒中倒出水银, 称量,精确至0.05g。重复几次测定,到数值基本不变为止。然后从圆筒中取出一片滤纸,试 用约3.3g的水泥,要求压实矿粉层注。再在圆筒上部空间注入水银,同上述方法除去气泡、压 平、倒出水银称量,重复几次,直到水银称量值相差小于50mg为止。 ②. ③.3的平 (3). ①..将 2min ②. ③.± 0.005 ④. 慢慢取出捣器。 ⑤.把装有试料层的透气圆筒连接到压力计上,要保证紧密连接不致漏气,并不振动所制备饿试料 层。 ⑥.打开微型电磁泵慢慢从压力计一臂中抽出空气,直到压力计内液面上升到扩大部下端时关闭阀 门。当压力计内液体的凹月面下降到第一刻度线时开始计时,当液体的凹月面下降到第二条刻 度线时停止计时,记录液面从第一条刻线到第二条刻线所需的时间。以秒记录,并记下试验时 的温度(℃)。 (4).计算 ①.当被测物料的密度、试料层中空 隙率与标准试样相同,试验时温 差≤3℃时,按下式计算: S=S s T1/2/T s 1/2

图解球体表面积和体积正确计算方法及计算公式

图解球体表面积和体积正确计算方法及计算公 式 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

图解球体表面积和体积正确计算方法及计算公式 一、球体面积 球体表面是可以由N个带弧形的等腰三角形拼凑而成,见图一、图二、图三。设球体的二分之一水平中心为腰线,在球顶和球底正中各设一个顶点和底点a,然后从顶点到腰线按等分分割成N个带弧形的等腰三角形。根据定义:线的长度不因弯曲而改变,球面可无限分割成N个等腰三角形 如图二、图四、图五所示,所有分割好带弧形的等腰三角形都可以自然平展成标准的等腰三角形,亦可将等腰三角形拼凑成方形。 在理解上述图例球体表面和等腰三角形的关系后,我们可以对球体表面积的计算有比较清晰的判断。即,球体表面可以分割成N个相等的等腰三角形,等腰三角形亦可拼凑成方形,由此推导出球体面积可以用矩形公式计算。 即S = 长×宽,如果我们设球体1/4之一的周长为宽,设球体的周长为长,则球体表面积公式为:S=1/4周长×周长(见图六) 例1:已知球体直径是1个单位,求球体表面积(用上述最新推导公式 S=1/4周长×周长) S =(÷4)× = ㎡ 二、球体体积 设以球心作一条垂线或水平中心线,然后以垂线或水平中心向外将球体按等分无限分割成N个半圆楔形体。见图七、图八。 球体分割完成后,将半圆楔形体镜像排列成圆柱体,见图九、图十。

从图七、图八、图九、图十看,球体从中心按等分分割成半圆楔形体后可以排列堆砌成圆柱体,根据计算得出定义:与球体同直径同体积的圆柱体的柱高正好是球体周长的1/4。 则球体体积公式为:V =πR平方×周长的1/4 例2:已知球体直径是1个单位,求球体体积(用上述最新推导公式)V =πR平方×周长的1/4 = ×× 三、公知公式在球体面积、体积计算中出现的错误 1、球体面积 如何检验球体面积计算的正确,最好的方法就是用计算结果制成N个等腰三角形的薄膜反贴球体表面。如薄膜能完整不剩的覆盖球体表面则公式应用和计算正确,如薄膜有剩余或薄膜未能完全覆盖球体表面则公式应用和计算不正确,见图十一。 图十一是用新公式和公知公式分别计算球体直径同是一个单位半球面积的结果对比,新公式计算结果反贴复原后正好能覆盖直径是一个单位半球的球体面积。 计算过程:? S =(×) = ㎡ 公知公式计算结果反贴复原后剩余有㎡的面积。 计算过程:?

矿渣粉活性指数及流动度比的测定

附 录 A (规范性附录) 矿渣粉活性指数及流动度比的测定 A.1 范围 本附录规定了粒化高炉矿渣粉活性指数及流动度比的检验方法。 A.2 方法原理 A.2.1 测定试验样品和对比样品的抗压强度,采用两种样品同龄期的抗压强度之比评价矿渣粉活性指数。 A.2.2 测定试验样品和对比样品的流动度,两者流动度之比评价矿渣粉流动度比。 A.3 样品 A.3.1 对比水泥 符合GB 175规定的强度等级为42.5的硅酸盐水泥或普通硅酸盐水泥,且7d 抗压强度35MPa ~45MPa ,28d 抗压强度50MPa ~60MPa ,比表面积300m 2/kg ~400m 2 /kg ,SO 3含量(质量分数)2.3%~2.8%,碱含量(Na 2O+0.658K 2O )(质量分数)0.5%~0.9%。 A.3.2 试验样品 由对比水泥和矿渣粉按质量比1:1组成。 A.4 试验方法及计算 A.4.1 砂浆配比 对比胶砂和试验胶砂配比如表A.1所示。 表A.1 胶砂配比 胶砂种类 对比水泥/g 矿渣粉/g 中国ISO 标准砂/g 水/mL 对比胶砂 450 — 1350 225 试验胶砂 225 225 1350 225 A.4.2 砂浆搅拌程序 按GB/T 17671进行。 A.4.3 矿渣粉活性指数试验及计算 分别测定对比胶砂和试验胶砂的7d 、28d 抗压强度。 矿渣粉7d 活性指数按式(A.1)计算,计算结果保留至整数: 07 77100R R A ?= ……………………(A.1) 式中:

7A ————矿渣粉7d 活性指数,%; 07R ————对比胶砂 7d 抗压强度,单位为兆帕(MPa ); 7R ————试验胶砂7d 抗压强度,单位为兆帕(MPa )。 矿渣粉28d 活性指数按式(A.2)式计算,计算结果保留至整数: 028*******R R A ?= ……………………(A.2) 式中: 28A ————矿渣粉28d 活性指数,%; 028R ————对比胶砂 28d 抗压强度,单位为兆帕(MPa ); 28R ————试验胶砂28d 抗压强度,单位为兆帕(MPa )。 A.4.4 矿渣粉的流动度比试验 按表A.1胶砂配比和GB/T 2419进行试验,分别测定对比胶砂和试验胶砂的流动度,矿渣粉的流动度比按式(A.3)计算,计算结果保留至整数。 m 100L L F ?= ……………………(A.3) 式中: F ————矿渣粉流动度比,%; m L ————对比样品胶砂流动度,单位为毫米(mm ); L ————试验样品胶砂流动度,单位为毫米(mm ) 。

球冠表面积计算公式

球冠表面积计算公式 Revised as of 23 November 2020

假定球冠最大开口部分圆的半径为 r ,对应球半径 R 有关系:r = Rc osθ,则有球冠积分表达: 球冠面积微分元dS = 2πr*Rdθ = 2πR^2*cosθ dθ 积分下限为θ,上限π/2 所以:S = 2πR*R(1 - sinθ) 其中:R(1 - sinθ)即为球冠的自身高度H 所以:S = 2πRH S=∫dS =∫2πr*Rdθ=∫ 2πR^2*cosθ dθ=2πR^2∫cosθ dθ= 2πR*R(1 - sinθ) 1》2πR^2中^2为2πR的平方 2》∫ 要有写上下标,分别为π/2 ,θ 球冠的面积计算公式 推导过程如下: 假定球冠最大开口部分圆的半径为 r ,对应球半径 R 有关系:r = Rcosθ,则有球冠积分表达:

球冠面积微分元 dS = 2πr*Rdθ = 2πR^2*cosθ dθ 积分下限为θ,上限π/2 所以:S = 2πR*R(1 - sinθ) 其中:R(1 - sinθ)即为球冠的自身高度H 所以:S = 2πRH 球冠概念的分析 (1)球冠不是几何体,而是一种曲面,它是球面的一部分,是球面被一个平面截成的,也可以看成由一段弧绕着经过它的一个端点的直径旋转而成的曲面。球冠的任何部分都不能展开平面。 (2)球冠的底面是圆,而不是圆面,故球冠的面积不能包括底面圆的面积。 (3)球面被一个平面截成两个部分,它们都是球冠,其中一个球冠的高小于球的半径,另一个球冠的高大于球的半径。

(4)球冠面积公式S球冠=2πRh对其高小于、等于或大于球半径的球冠都适用。球面积公式S球面=4πr2可看成球冠面积公式当h=2R的特例。由于同一个球的半径是一个常量,所以球冠面积是它的高的一个正比例函数,即S球冠=f(h) =2πRh(0<h≤2R)。 (5)若用距离为h的两个平行平面去截同一个球面,夹在这两个平行平面间的部分叫做球带,h叫做球带的高。把球带面积看成其高分别为h1,h2(h1>h2)的两个球冠面积之差,则有S球带=2πRh1-2πRh2=2πR(h1-h2)=2πRh,其中为球的半径。 由此可知,S=tπR2可以看成球的表面积、球冠的面积、球带的面积的统一计算公式。这里体现了特殊与一般可以互相转化的基本数学思想。

球的表面积和体积

球的表面积和体积 1.球的表面积公式:S球面=4πR2(R为球半径) 2.球的体积公式:V球=4 3 πR3(R为球半径) 球的表面积和体积的计算 过球的半径的中点,作一垂直于这条半径的截面,已知此截面的面积为12π cm2,试求此球的表面积. 若截面不过球的半径的中点,而是过半径上与球心距离为1的点,且截面与此半径垂直,若此截面的面积为π,试求此球的表面积和体积. 球的表面积及体积的应用 一个倒立圆锥形容器,它的轴截面是正三角形,在此容器注入水并且放入一个半径为r的铁球,这时水面恰好和球面相切,问将球从圆锥取出后,圆锥水面的高是多少? 圆柱形容器的壁底面半径为5 cm,两个直径为5 cm的玻璃小球都浸没于容器的水中,若取出这两个小球,则容器的水面将下降多少?

有关球的切、接问题 求棱长为a的正四面体P—ABC的外接球,切球的体积. 有三个球,第一个球切于正方体的六个面,第二个球与这个正方体各条棱都相切,第三个球过这个正方体的各个顶点,求这三个球的表面积之比. 一个球有相距9 cm的两个平行截面,面积分别为49π cm2和400π cm2,求球的表面积.

基础训练 1.若球的体积与其表面积数值相等,则球的半径等于( ) A.1 2 B.1C.2 D.3 2.用过球心的平面将一个球平均分成两个半球,则两个半球的表面积是原来整球表面积的________倍. 3.过球的半径的中点,作一垂直于这条半径的截面,已知此截面的面积为48π cm2,试求此球的表面积和体积. 4.正方体的表面积与其外接球表面积的比为( ) A.3∶π B.2∶πC.1∶2π D.1∶3π 5.(2013·高一检测)长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( ) A.25π B.50πC.125π D.都不对 4.把3个半径为R的铁球熔成一个底面半径为R的圆柱,则圆柱的高为( ) A.R B.2R C.3R D.4R 6.设三棱柱的侧棱垂直于底面,所有棱的长都为a,顶点都在一个球面上,则该球的表面积为( ) A.πa2 B.7 3 πa2C. 11 3 πa2D.5πa2 7.圆柱形容器盛有高度为8 cm的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球,则球的半径是________cm. 提高训练. 1.一只小球放入一长方体容器,且与共点的三个面相接触.若小球上一点到这三个面的距离分别为4、5、5,则这只小球的半径是() A.3或8 B.8或11 C.5或8 D.3或11

球的表面积公式的四种推导方法

解法一 用^表示平方 把一个半径为R的球的上半球切成n份。每份等高。 并且把每份看成一个圆柱,其中半径等于其底面圆半径。 则从下到上第k个圆柱的侧面积S(k)=2πr(k)*h 其中h=R/n r(k)=根号[R^-(kh)^] S(k)=根号[R^-(kR/n)^]*2πR/n =2πR^*根号[1/n^-(k/n^)^] 则 S(1)+S(2)+……+S(n) 当 n 取极限(无穷大)的时候就是半球表面积2πR^ 乘以2就是整个球的表面积 4πR^ 解法二 这是重积分的应用问题 首先知道这个定义:若和数∑ΔAk(k=1 到n)存在极限,设极限是A ,则称A是曲面S的面积,即A=∫∮√(1+fx′^2(x,y)+fy′^2(x,y))dσ 半经为r的球面积A,球心在原点的球面方程是x^2+y^2+z^2=r^2 第一卦限球面方程是z=√(r^2-x^2-y^2) Zx'=-x/√(r^2-x^2-y^2) ;Zy′=-y/√(r^2-x^2-y^2) ∴√(1+Zx'^2+Zy′^2)=r/√(r^2-x^2-y^2) A=8∫∫√(1+Zx'^2+Zy′^2)=8r∫∫dxdy/√(r^2-x^2-y^2) (设x=tsinθ y=tcosθ)=8r∫(定积分0到π/2)dθ∫(定积分0到r)t/√(r^2-t^2)d t =4πr∫(定积分0到r)t/√(r^2-t^2)d t=4πr(-√(r^2-t^2))⊥0到r=4πr^2 注;√(x)表示根号x. 解法三 设球的半径为 R,我们把球面任意分割为一些“小球面片”,它们的面积分别用△S1,△S2, △S3......△Si...表示,则球的表面积: S=△S1+△S2+ △S3+...+△Si+... 以这些“小球面片”为底,球心为顶点的“小锥体”的体积和等于球的体积,这些“小锥体”可近似地看成棱锥,“小锥体”的底面积△Si 可近似地等于“小锥体”的底面积,球的半径R 近似地等于小棱锥的高hi ,因此,第i个小棱锥的体积Vi=hi* △Si,当“小锥体”

矿粉比表面积作业指导书

矿粉比表面积作业指导书 一、引用标准 《水泥比表面积测定方法勃氏法》 GB/T 8074-2008 二、试验条件 试验温度为20℃±2℃,相对湿度不大于50% 三、仪器设备及配料 勃氏比表面积透视仪、烘干箱(控制温度灵敏度±1℃)、分析天平(分度值为0.001g)、秒表(精确至0.5s)、矿粉样品(通过0.9mm方孔筛,再在110℃±5℃下烘干1h,并在干燥器中冷却至室温)、压力计液体(蒸馏水)、边缘光滑的圆形滤纸片(Φ12.7mm) 四、准备工作 4.1水位调整 将仪器放平放稳,接通电源,打开仪器左侧的电源开关,此时如果仪器左侧的四位数码管显示Errl,表示玻璃压力计内的水位未达到最低刻度线。可用滴管从压力计左侧一滴一滴的滴入清水,滴水过程中应仔细观察仪器左侧显示屏,至显示数据时立即停止加水,表示水位已正常。打开仪器如左侧的四位数码管显示正常数据时,表示水位正常不用调整。 4.2漏气检查 用随机配送的橡胶塞塞紧压力计锥形接口,设定必要参数然后起动仪器,仪器自动停止后,仔细观察液面是否有降落,无降落为正常。否则应找出漏气点予以密封处理。 五、试验步骤 5.1 空隙率的确定 矿粉的空隙率采用0.530±0.005。 5.2 密度的确定 1)将无水煤油注入李氏瓶中,液面至OmL到1mL刻度线内。盖上瓶塞并放人恒温水槽内,使刻度部分浸人水中(水温应控制在李氏瓶刻度上的温度),恒温30min,记下第一次读数。 2)从恒温水槽中取出李氏瓶,用滤纸将李氏瓶内零点以上没有煤油的部分仔细擦净。 3)矿粉预先通过0.9mm的方孔筛,在110℃士5'C温度下干燥1h,并且在

干燥器内冷却至室温。称取矿粉60g,精确至O.Olg,用小匙借助洗净烘干的玻璃漏斗装人李氏瓶中,反复摇动,直至没有气泡排出,再次放人恒温水槽,在相同温度下恒温30min,记下第二次读数。(两次读数时,恒温水槽温差不大于0.20C) 5.3 试料层体积的确定 将二片滤纸沿筒壁放入料筒中,用细长棒压平到穿孔板上。装满水银,用玻璃板轻压水银表面,使水银面与料筒口平齐,并保证没有气泡空洞存在。倒出水银,称量,重复几次,直至称量值相差不超过0.05g,记下水银质量P 1。从料筒中取出一片滤纸,将约2.75g的水泥装入料筒中,再放入一片滤纸,按规定压实料层。将料筒上部空间注入水银,按上述同样方法除去气泡,压平,倒出水银,称量,重复几次,直至称量值相差不超过0.05g,记下水银质量P 2。按下式计算料层体积V(cm3) V=(P1-P2)/ρ 水银 计算结果精确到0.001g,并予以记录 5.4 确定试样量 试样计算公式:m=ρV(1-ε) m —需要的试样量,单位为克(g),精确到0.001g; ρ—试样密度,单位为克每立方厘米(g/cm3); V —试料层体积,按JC/T 956测定,单位为立方厘米(cm3); ε—试料层空隙率 5.5 试料层制备 将穿孔板放入透气圆筒的边缘上,用捣棒把一片虑纸放到穿孔板上,边缘放平并压紧。将试样倒入圆筒,轻敲圆筒的边,使矿粉层表面平坦。再放入一片虑纸,用捣棒均匀捣实试料直至搗器的支持环与圆筒顶边接触,并旋转1-2圈,慢慢取出捣器。 5.6 透气试验 把装有试料层的透气圆筒下锥面涂一层凡士林,然后连接到“U”形压力计上,旋转1-2圈(保证紧密连接不致漏气,并不振动所制备的试料层)。先按[S]键,再按[选择]键,则显示二逐位闪烁,按[△]或[▽]键,将被测矿粉密度值逐位调整键入,再按[选择]键确认,按[测量]键,仪器自动完成测量过程,显示并记忆被测矿粉的比表面积值。每次透气试验,应重新制备试料层。 六、结果计算 矿粉比表面积应由两次透气试验结果的平均值确定.如两次试验的结果相差2%以上时,应重新试验.计算结果保留至10cm2/g。

32-矿粉检测实施细则

矿粉检测实施细则 一、适用范围 本细则适用于粒化高炉矿渣粉密度、比表面积(勃氏法)、氧化镁、烧失量、三氧化硫、流动度比、活性指数的测定。 二、技术标准 1、《水泥密度测定方法》GB/T 208—94 2、《水泥化学分析方法》GB/T 176-1996 3、《水泥比表面积测定法(勃氏法)》GB 8074-87 4、《用于水泥和混凝土中的粒化高炉矿渣粉》GB/T 18046-2000 三、采用的仪器设备

五、检测前的检查 1.开始进行检测前应首先检查软练室温湿度是否符合规范要求,若不符合应开启设备使之符合要求后方可开始检测。 2.检查仪器设备的电路连接是否正确,是否出现线路破损、漏电现象。 3.接通电源,空载运转各仪器设备,确定其是否运转正常。 4.检查检测用水是否清澈、可透明,是否符合检测要求。 六、试验步骤及数据处理 1、密度 (1).将无水煤油注入李氏瓶中至0到1mL刻度线后(以弯月面下部为准),盖上瓶塞放入恒 温水槽内,使刻度部分浸入水中(水温应控制在李氏瓶刻度时的温度),恒温30min,记下 初始(第一次)读数。 (2). 从恒温水槽中取出李氏瓶,用滤纸将李氏瓶细长颈内没有煤油的部分仔细擦干净。 (3). 试样应预先通过0.90mm方孔筛,在110±5℃温度下干燥1h,并在干燥器内冷却至室 温。称取矿粉60g,称准至0.01g。 (4). 用小匙将试样一点点的装入(1)条的李氏瓶中,反复摇动(亦可用超声波震动),至 没有气泡排出,再次将李氏瓶静置于恒温水槽中,恒温30min,记下第二次读数。 (5). 第一次读数和第二次读数时,恒温水槽的温度差不大于0.2℃。 (6). 结果计算 ①矿粉体积应为第二次读数减去初始(第一次)读数,即矿粉所排开的无水煤油的体积 (mL). ②矿粉密度ρ(g/cm3)按下式计算: 矿粉密度ρ=矿粉质量(g)/排开的体积(cm3) 结果计算到小数第三位,且取整数到0.01g/cm3,试验结果取两次测定结果的算术平均值,两次测定结果之差不得超过0.02 g/cm3。 2、比表面积 (1)漏气检查 将透气筒上口用橡皮塞塞紧,接到压力计上。用抽气装置从压力计一臂抽出部分气体,然后关闭阀门,观察是否漏气。如发现漏气,用活塞油脂加以密封。 (2).试验层体积的测定

球的体积和表面积附答案

球的体积和表面积 [学习目标] 1.记准球的表面积和体积公式,会计算球的表面积和体积.2.能解决与球有关的组合体的计算问题. 知识点一球的体积公式与表面积公式 1.球的体积公式V=错误!πR3(其中R为球的半径). 2.球的表面积公式S=4πR2. 思考球有底面吗?球面能展开成平面图形吗? 答球没有底面,球的表面不能展开成平面. 知识点二球体的截面的特点 1.球既是中心对称的几何体,又是轴对称的几何体,它的任何截面均为圆,它的三视图也都是圆. 2.利用球半径、截面圆半径、球心到截面的距离构建直角三角形是把空间问题转化为平面问题的主要途径. 题型一球的表面积和体积 例1 (1)已知球的表面积为64π,求它的体积; (2)已知球的体积为\f(500,3)π,求它的表面积. 解(1)设球的半径为R,则4πR2=64π,解得R=4, 所以球的体积V=4 3πR3= 4 3 π·43=错误!π. (2)设球的半径为R,则错误!πR3=错误!π,解得R=5,

所以球的表面积S =4πR 2 =4π×52 =100π. 跟踪训练1 一个球的表面积是16π,则它的体积是( ) A .64π B.\f(64π,3) C .32π D .\f(32π,3) 答案 D 解析 设球的半径为R ,则由题意可知4πR 2 =16π,故R =2.所以球的半径为2,体积V =错误!πR3 =错误!π. 题型二 球的截面问题 例2 平面α截球O 的球面所得圆的半径为1.球心O 到平面α的距离为错误!,则此球的体积为( ) A .\r(6)π B.4错误!π C.4错误!π D.6错误!π 答案 B 解析 如图,设截面圆的圆心为O′, M 为截面圆上任一点, 则OO ′=错误!,O′M =1. ∴OM =错误!=错误!. 即球的半径为\r(3). ∴V =43 π(3)3 =4错误!π. 跟踪训练2 已知长方体共顶点的三个侧面面积分别为\r(3),\r(5),\r(15),则它的外接球表面积为________. 答案 9π 解析 如图,是过长方体的一条体对角线AB 的截面,设长方体有公共顶

球体积、表面积公式推导过程

球体积公式R V 3 3 4∏ = 推导过程 图一 图二 对于一个球体,直接求它的体积是相当困难的。我们可以利用转化的思想,在球体内 放一些大小不同,高度相同的圆柱。(如图一)当每个圆柱的高度越来越小时,所有圆柱的体积和就会越来越接近于球的体积。当圆柱的高无限趋于0时,所有圆柱的体积和就是球的体积。(如图二) 按照这个思路,我们来求球的体积。 设球的体积为V ,半径为R ,每个圆柱的高为a ,则半个球中有n ?? ? ? ?∈=Z n a R n ,个圆柱。 图三中的圆为球的一个轴截面,其中的矩形是圆柱 的轴截面。圆的圆心为原点,所以这个圆的方程式为 R y x 2 2 2 = + 。 在y 轴左侧,从左到右圆柱的序号(用b 表示)分别为1,2,3,…n,则圆柱底面圆的半径 ()[]R a b R r b --- = 12 2 (注意:01 =r ) 图三 () () () ()()( )()()()()()()()()[]()? ? ?? ?? ????? ?+++--+++∏ =? ? ?? ???????? - -++-+-∏=? ????? ??????--++-+- ∏=?? ???? ??????- ++??????- +??????- +∏=+ +++ ∏=∏++∏ +∏ +∏ =++++=-------12 111122 2 2 2 2 2 2 2 2 2 2 22 22 222 32 221 22 32 22 1321... 1..21212...44212...442...0 (2) n a n a a n a a R a n R R a R R a R r r r r r r r r V V V V a n R a R n a R a R aR n aR aR a a a a a a a V n n n

相关文档
相关文档 最新文档