文档库 最新最全的文档下载
当前位置:文档库 › 天然气涡旋式涡旋压缩机结构设计

天然气涡旋式涡旋压缩机结构设计

天然气涡旋式涡旋压缩机结构设计
天然气涡旋式涡旋压缩机结构设计

百度文库

I

摘要

本设计为涡旋压缩机结构设计,主要零件包括动涡盘、静涡盘、支

架体、偏心轴及防自转机构,动静涡旋盘应用圆的渐开线及其修正曲线的线型。

首先,确定了重要结构参数,进而确定了涡旋线圆的渐开线线型。然后进行了受力分析,结构强度及寿命计算。最终说明了结构设计中的有关问题。在涡旋齿线型的设计中,不仅说明了渐开线的特性和涡旋线的形成过程,而且还对涡旋线线型进行了修正。

通过以上的设计过程,我们最终得到了涡旋压缩机。

关键词涡旋压缩机动涡盘静涡盘偏心轴圆的渐开线

百度文库

II

Abstract

The design for the structural design of scroll compressors, the

main parts, including moving vortex plate, static vortex plate, frame body, eccentric shaft and anti-rotation mechanism, the application of static and dynamic disk vortex involute circle and linear correction curve.

First of all, to identify the important structural parameters, which determine the vortex line of the involute circle line. And then proceed to the stress analysis, structural strength and life span.

百度文库

Describes the structural design of the end of the problem. In the design of linear wrap, not only describes the characteristics of involute and the formation of vortex lines, but also on the linear vortex line has been amended.

The design process through the above-mentioned, we have finally received the scroll compressor.

Key words: Scroll Compressor;Moving vortex plate;Static vortex plate; Eccentric shaft;Circle involute

III

目录

摘要....................................................................................................... I Abstract....................................................................................................... II 绪言 . (1)

第一章空气压缩机及装置系统总体方案设计 (3)

第三章涡旋齿线型的选择与绘制原理 (15)

1、涡旋型线构成原则 (15)

2、圆的渐开线的形成 (15)

3、渐开线的特性 (16)

4、涡旋线的形成 (17)

5、涡旋线线型的修正 (19)

5.1修正型线方程 (20)

5.2圆弧修正后涡旋压缩机的特点 (21)

6、防自传机构的选择评比 (22)

6.1、圆柱销 (22)

6.2、特殊结构滚环轴承 (23)

6.3、小曲柄销 (23)

B、轴承及支承 (25)

C、压缩机的性能 (25)

D、径向密封 (26)

E、轴向间隙 (27)

总结 (35)

参考文献 (36)

致谢 (38)

IV

绪言

涡旋压缩机是国际上70年代开发应用的一种新型压缩机,它以高效率、高可靠性、低能耗、低噪音、零件数少、结构紧凑等突出优点引起许多国家的重视,被称为全新一代(第三代)压缩机。在1~705kw输出功率的范围内,涡旋压缩机已在单元式空调机及汽车空调器种得到相当普遍的应用,并很快牢固地占领了市场。由于涡旋压缩机在较宽的频率范围内(30~120hz)均有较高的容积效率与绝热效率,适合采用变频装置,可进一步降低空调器的能耗,提高舒适性,所以在空调领域中具有广阔的发展前景。为防止臭氧层被破坏,汽车空调领域中具有采用全封闭式涡旋压缩机的发展方向。此外,涡旋空气压缩机、涡旋氦气压缩机、涡旋膨胀机、涡旋真空泵、涡旋液体泵也在积极开发与研制当中。涡旋压缩机最早由法国工程师Creux发明并于1905年在美国获得专利。但由于难以得到高精度的涡旋形状,缺乏实用而可靠地驱动机构,摩擦磨损问题不能妥善解决,因此涡旋压缩机在将近70年的时间内未得到普及应用。直到70年代初期,美国的ADL公司及日本,中国的几家公司又相继重新开始涡旋压缩机的研究开发工作。因若干关键技术逐步得到解决,于80年代初就推出了空调用涡旋压缩机的系列产品。这些产品与相

1

同容量的往复式压缩机相比,体积小40%,重量轻15%,零件数减少85%,效率提高10%,扭矩变化幅度小90%,噪声降低5dB(A)。

自石油危机以来,由于在供暖,空调与制冷应用中,主要的能量消耗在压缩机上,高效压缩机对美国市场已成为头等重要因素。在欧洲和日本市场,低噪音,低振动的需要比效率更为突出。因而,兼有高效,低噪两大优势的涡旋压缩机成为换代产品已是必然趋势。虽然在完善密封机构,减少机械摩擦耗功以及数控加工提高涡旋盘成产率等方面,已经进行了广泛有效地工作,但作为技术密集程度很高的涡旋压缩机,其技术优势和效益仍存在很大的发展潜力。

2

第一章空气压缩机及装置系统总体方案设计涡旋式压缩机是一种借助于容积的变化来实现气体压缩的流体机械,这一点于往复式压缩机相同。涡旋式压缩机的主要零件动涡盘的运动,是在偏心轴的直接驱动下进行的,这一点又与旋转式压缩机相同。涡旋式压缩机的压缩腔,既不同于往复式的又不同于旋转式的,故把它称作新一代容积式压缩机。涡旋式压缩机的主要零件包括动涡盘、静涡盘、支架体、偏心轴及防自转机构。动静涡旋盘的最常用型线是圆的渐开线及其修正曲线。下面以圆的渐开线涡旋型线为例来说明涡旋压缩机的工作原理。

把涡旋型线参数相同,相位差π、基圆中心相距Ror的动涡盘与静涡盘组装后,可以形成数对月牙形的封闭的容积腔。容积腔的轴随偏心轴推动动涡盘中心饶静涡盘中心作半径为Ror的圆周轨道运动时相应的扩大或缩小,由此实现气体的吸入、压缩和排气的目的。低压气体从静涡盘上开设的吸气孔口或动静涡盘的周边缝隙进入吸气腔,经压缩后由静涡盘中心处的排气孔口排出。下面以三对压缩腔为例说明气体压缩过程。

三对容积腔分别用○1○2○3来表示,并依次称之为中心压缩腔(即第一3

压缩腔,又称排气腔)、第二和第三压缩腔。动涡盘中心绕静涡盘中心的

θ=时,第转动角,也就是偏心轴的曲柄转角,用θ表示。当曲柄转角0

三压缩腔刚好封闭,压缩机的吸气过程结束,这时第三压缩腔中充入的气体所占据的空间即为吸气容积,相当于往复式压缩机的形成容积。随

θ=时,第三压缩腔完着曲柄转角增大,月牙形的面积逐渐减小。当360

成对气体的压缩过程,这时的压缩腔容积就是第二压缩腔的最大封闭容

θ=),其轴向积,即第二压缩腔充气终了时的容积(对应的主轴转角为0

投影面积最大。中心压缩腔和第二压缩腔中气体容积变化规律与第三压缩腔中的相同。

第三压缩腔在压缩气体同时,压缩机的吸气过程也在进行。第二压缩腔和中心压缩腔并不存在吸气过程,只是在几何关系上按2π为一循环划分时,分割为不同的压缩腔而已。涡旋式压缩机压缩气体的过程是连续进行的需要主轴转动数圈而非一圈,但主轴每转一周即可完成一次吸气。需要指出的是,中心压缩腔中的气体并不受到压缩,其容积减小是一个等压过程,即排气过程。中心压缩腔容积取得最大值时,不一定对θ=,而与开始排气角有关。涡旋压缩机的动涡盘被置于静涡盘和应于0

支架体之间,可以沿轴向移动。当涡旋压缩机工作时,动涡盘在气体力作用下,沿轴向与静涡盘脱离,增大涡盘顶部的气体泄漏通道面积,降

4

低容积效率和热效率。因此,如何有效的平衡作用在动涡盘上的轴向气体作用力,成为涡旋压缩机能否获得良好性能的重要因素之一。动涡盘在气体力作用下,有绕其中心自转的趋势。这种趋势破坏了涡旋压缩机的正常工作,必须予以限制。防自转机构设置在动涡盘与支体架之间,常见的结构形式有十字滑环、圆柱销、球轴承、小曲柄销。十字滑块、圆柱销、小曲柄销只能防止动涡盘的自转,而球轴承不仅能够防止动涡盘的自转,而且能够承受动涡盘传递的轴向气体作用力。

综合起来,涡旋压缩机有以下特点:

①多个压缩腔同时工作,相邻压缩腔的气体压差小,气体泄漏量小,容积效率高,可达90%~98%。

②驱动动涡盘的运动的偏心轴可以高速旋转,因此,涡旋式压缩机体积小、重量轻。

③动涡盘与主轴等运动件的受力变化小,整机震动小。

④没有吸、排气阀,涡旋压缩机的运转可靠,且特别适应于变速运转和变频调速技术。

⑤由于吸排气过程几乎连续进行,整机噪声很低。

轴向和径向柔性机构提高了涡旋式压缩机的生产效率,而且保证轴向间隙和径向间隙的密封效果,不因摩擦和磨损而降低,即涡旋式压缩5

机有可靠地密封性。动涡盘上承受的轴向气体作用力,随主轴转角发生变化,很难恰如其分的加以平衡,因此轴向气体力往往带来摩擦功率消耗。涡旋盘的加工精度,特别是涡旋体的形位公差有很高要求,端板平面的平面度,以及端板平面与涡旋体侧壁面的垂直度,应控制在微米级,因此,需采用专门的加工方法,加工技术和加工设备。在我国,涡旋压缩机的研究开发工作始于1986年,经过11年的努力,已经形成了比较成熟的涡旋式空调与制冷压缩机设计制造技术,某些高校如西安交通大学,甘肃工业大学在涡旋压缩机技术、生产方面在国内具有顶尖水平。综观国内外涡旋压缩机的研究开发现状、生产制造水平以及市场需求趋势,今后一段时间内,有关涡旋压缩机的研究动向可归纳为:降低生产制造成本被列为研究工作的首要任务之一。提高涡旋盘的生产效率,设计出更加紧凑与更加适宜于工业化生产的结构都是直接的措施。通过压缩过程模拟及优化设计、采用新的材料与新的机构来减少机械摩擦损失、气体泄漏顺势、传热损失、气流阻力损失,提高涡旋压缩机的工作效率和工作可靠性。拓宽应用范围和使用领域,实现产品系列化。扩大变频调速技术和热泵技术的应用。总之,涡旋压缩机相对于往复式压缩机来讲,有很多优点如振动小、噪声低、效率高、可靠性好、容积小、重量轻等。已在空调和制冷行业有了广泛应用。

6

7

第二章 主要部件设计

(一)设计的已知条件

设计已知数据如下:

理论排气量: 1.0m3/min (标况)

进口压力: 0.1Mpa (表)

出口压力: 0.6 Mpa (表)

(二)性能及结构参数确定

1. 涡漩圈数n ,涡旋齿厚t 和涡旋齿高h

根据有关资料确定:

n=3 t=4.5mm h=40mm

2.排气量Vs 和涡旋节距p:

设计理论排气量1.0m3/min (标况),转换成进气状态为0.5 m3/min ,转数为2900rpm, 每转排气量为172413.79 mm3/r,

则得: p=t+h **)1n *2(Vs

t *t π-+=21.66mm

圆整p=22mm

3.基圆半径a a=π*2p

=3.501mm

因节距p 由基圆半径决定,则重新取a=3.5mm,得p=21.99mm

则设计理论排气量为

Vs ’=(2*n-1)* Π*p*(p-2*t)*h=179479.25mm/r

考虑泄漏等因素的储备系数为:

λ=Vs Vs

'Vs -*100%=4.09%

4.回转半径Ror

Ror=2t*

2

p-

=6.495mm 5.渐开线的初始角α

α=a*2t

=0.643rad

6.理论压力比ε

ε=

33

.1

*

3

1

n

2

??

?

?

?

?

?

?

?

π

θ

-

-

?

=3.985

其中θ'=3.87rad

(三)平衡计算

(1)动涡旋的静平衡

1.涡旋齿的重量Gi

动涡旋的静平衡采用去配重的方式进行

根据电子计算机计算结果

Si=3285.477mm2

Gi=Si.h.ρ=3285.477×40×7.8÷103=1025.0688g

涡旋齿的重心XG,YG

根据电子计算机计算结果

XG=0.978mm YG=-6.950mm RG=7.019mm

平衡铁的形状为部分圆环,所对应的圆心角为120°,其中心线于Y轴夹角为8.9°(8°54`),内径为45mm,外径为88mm,该扇形中每隔40°有一宽度为4mm的加强筋(共两根),内所有圆角为R3。

根据电子计算机计算结果及有关计算得

S平=6914.161mm

平衡铁的厚度h平为:

h平= 2.52mm(距离靠轴承部分的端板为3.52mm)

8

则挖去的配重为

G平=[5622.360×2.52+(1007.451+214.350)×1] ×7.8/1000=120.042g (2)动平衡

1.确定动盘的重心

通过合成法求得动盘的总重为

519451.87 ×7.8/1000=4051.7246g

重心距齿端的距离为42.9097mm.

2.确定第一部分(动涡旋、轴承、偏心轴)的重量及重心

轴承质量:221g 重心距原点位置67.5 F=14917.5

偏心轴:551.3495g 重心距原点位置86+2-36/2=70 F=38594.5 则作为第一部分(动涡旋、轴承、偏心轴)的重量为:

4051.7246+221+551.3495=4824.0741

重心距齿端距离为

(173837.7676+14917.5+38594.5)/4824.0741=47.1282mm

3.离心惯性力和惯性力矩的平衡

ma, m1, m11,m2, ror,r1, r11,r2,分别为第一部分,平衡铁Ⅰ1,平衡铁Ⅰ11,平衡铁Ⅱ的重量和偏心距。La,l1, l11,l2分别表示他们距涡齿前端的距离。由轴的尺寸可知:

l2=361mm

O B

A C

9

10

大平衡铁的设计

m1的形状为: R=81mm, r 未知,厚度为15mm;m11×的形状为:R=81mm, r=72mm, 厚度12mm.

m1×r1=())r 81(0606.010715r 813333333-=???--

m11×r11=()

mm g 634.2191710712438133333?=???-- 对c 点取距:

ma ×ror ×(L2-La)= m1×r1×(L2-L1)+ m11×r11×(L2-L11)

4824.0741×6.5×(361-47.1282)

=0.0606(813-r3) ×274.5+21917.634×261

813-r3=247759.9754 则r=65.707mm

大平衡铁由平衡铁Ⅰ1、平衡铁Ⅰ11组成,几何尺寸如图所示

整个平衡铁重: ()()()

3

222222107]24334315707.65813112438131[-?π??-+?-+?-=1062.303g 小平衡铁的设计

对B 点取矩

ma ×ror ×(L11-La)- m1×r1×(L11-L1)=m2×r2×(L2-L11)

4824.0741×6.5×52.8718-0.0606(813-65.7073) ×13.5

= m2×r2×261

m2×r2=5575.41634gmm

小平衡铁铸在小皮带轮上,外径为55mm ,内径为37mm ;在中心处对称填实。

φ10的圆孔面积:78.540mm2 r2=46mm

圆孔质量矩:78.540×6×7×10-3×46=151.739gmm2

剩余部分为:

yS ×11×2×7×10-3=5575.41634-151.739

11

yS=35218.684 mm3 yS=()3

337552sin 32-α

得α=60.36°

考虑到小皮带轮的结构决定,α取60°。

则小平衡铁总重为: m2=()

3

22107]6540.7821137556[-???+??-π=136.829g 4.电机功率计算

涡旋压缩室中的气体力随动盘运转角度的变化而变化当压缩终了时各气体力达到最大

当θ'=3.87rad ,得到最大的切向力ft=1615.134N

最大阻力矩

T=r f t ?=1615.134×6.5=10498.371Nmm=1.071Kgf-m

理论轴功率Nz 为: Nz=n 2T 9751??=29002071.19751??=1.593KW

选机械效率为90%得所需电机的功率Ne 为:

Ne= Nz/η=1.593/0.90=1.77KW

压缩机的功率

Vp=h )1n 2)(t 2p (p --π=179699.0998mm3

指示功Li=]1)p p [(1k k v p k 1k 1211---

=59.275 J

指示功率 Pi=100060Li

Nr ??=2.86KW

轴功率 Pc=Pi+Pm=Pi+0.12Pi=3.2032KW

(三)带轮的设计

1.电动机的选择

由《机械设计手册》第五卷附表40-1(Y系列电动机技术数据)选用同步转速为1500的4极Y系列三相异步电动机,型号为Y132M-4,其技术数据为:

P=7.5Kw n2=1440r/min

2.确定计算功率Pca

由《机械设计》手册第三册表22.1-9选取工况系数KA=1.3

故Pca=KA×P=9.75Kw

3.选定带型

根据Pca =9.75Kw和大带轮转速n2=1440 r/min,由图22.1-2确定为SPZ型

4.确定带轮基准直径

参考表22.1-14和图22.1-2取D1=140mm(外径为144mm)

i=n1/ n2 =2900/1400=2.014

根据D2=i×D1 =2.014×140=281.96mm

由表22.1-14取D2=280mm(外径为284mm)

验算带的转速

v=π. D1. n1/(60×1000)=21.26m/s < 35m/s

即带的速度合适

5.确定窄V带的基准长度和传动中心距

根据0.7(D1+ D2)< a0 <2(D1+ D2) 初步确定中心距

a0=400mm

所需基准长度

Ld0=2 a0+Π(D1+D2)/2+( D2- D1)2/(4 a0)

=2×400+Π(140+280)/2+(280-140)2/(4×400)

=1471.98mm

12

由表22.1-7选取基准长度Ld=1400mm(±16mm)则实际中心距

a= a0+(Ld- Ld0)/2=400+(1400-1471.98)≈364mm

安装时所需最小轴间距

amin=a-0.015×Ld=364-0.015×1400=343mm

张紧或补偿伸长所需最大轴间距

amax=a+0.03×Ld=364-0.03×1400=406mm

6.小带轮包角

α1=180°-60°×(D2- D1)/ a=156.92 > 120°

包角合适

7. 单根V带的基本额定功率

根据D1=140mm和n1=2900r/min由表22.1-13h查得SPZ型窄V带的单根基本额定功率

在n1=2800r/min时

D1=112mm时P1=4.64Kw

D1=125mm时P1=5.40Kw

差值法得在n1=2800r/min D1=140mm时

P1=4.64+(140-112)×(5.40-4.64)/(125-112)

=6.28Kw

在n1=3200r/min时

D1=112mm时P1=5.06Kw

D1=125mm时P1=5.88Kw

差值法得在n1=3200r/min D1=140mm时

P1=5.06+(140-112)×(5.88-5.06)/(125-112)

=6.83Kw

再次运用差值法得:在n1=2900r/min D1=140mm时13

14

P1=6.28+(2900-2800)×(6.83-6.28)/(3200-2800)

=6.42Kw

考虑传动比的影响i= n2/ n1=2.01额定功率的增量由表22.1-13h 查得:在n1=2800r/min ΔP1=0.43 Kw

在n1=3200r/min ΔP1=0.49 Kw

由差值法得

ΔP1=0.43+(2900-2800)×(0.49-0.43)/(3200-2800)

=0.445 Kw

窄V 带的根数

z= Pca /[( P1+ΔP1)K α.Kl]

由表22.1-10查得

在 α1=155°时 K α=0.93Kw

α1=160°时 K α=0.95Kw

由差值法得

K α=0.93+(156.92°-155°)×

15516093.095.0-- =0.938

由表22.1-11查得Kl =0.96 z= 9.75 /[( 6.42+0.445) ×0.938×0.96]=1.479

取2根

7. 计算预紧力

F0=500(2.5/ K α-1) Pca /(v.z )+qv2

查表22.1-12查得q=0.07Kg/m

F0=500×(2.5/ 0.938-1) ×9.75 /(21.26×2)+0.07×21.262

=222.56N

8. 计算作用在轴上的压轴力Q

Q=2.Z. F0.sin(α1/2)=2×2×222.56×sin(156.92/2)

=872.24N

第三章涡旋齿线型的选择与绘制原理

1、涡旋型线构成原则

当涡旋压缩机正常压缩气体时,涡旋型线的构成应符合如下原则:

①.对于动涡盘或静涡盘上位于压缩腔内的任一给定点,在静涡盘或动涡盘上,必有一点并且只有一点与之相啮合,并且内侧壁面上的点与外侧壁面上的点相啮合。

②.当涡旋型面上一对共轭点相啮合(接触)时,动、静涡旋盘涡旋型线特征形状几何中心之间的距离,不随主轴角变化。这里的特征性状,是指能够反映涡旋型线类型的几何形状,对于圆渐开线漩涡线型,是指基圆。

③.一对啮合点相啮合时,啮合点所在涡旋型面的切向相平行,并且与通过涡旋型线特征性状几何中心之间连线方向相垂直。

构成涡旋体的型线,可采用线段、正多角形及圆的渐开线,除了圆的渐开线外,它们都是由圆弧连接而成的涡线,而圆的渐开线则可以理解为有限多圆弧连接而成曲率连续变化的曲线,一般常用圆的渐开线作为涡旋体的型线。

2、圆的渐开线的形成

15

如图所示,当一直线BK沿一圆周做纯滚动时,直线上任意点K的轨迹AK就是该圆的渐开线,这个圆称为渐开线的基圆,其半径为基圆半径α

.

3、渐开线的特性

根据渐开线的形成的过程,可知渐开线具有下列特性:

①.发生线沿基圆滚过的长度,等于基圆上被滚过的圆弧长度。

②.因发生线BK沿基圆作纯滚动,故它与基圆的切点B即为其速度瞬心,所以发生线BK即为渐开线在点K的法线。又因为发生线恒切于基圆,故可得出结论:渐开线上任意点的法线恒与其基圆相切。

③.发生线与基圆的切点B也就是渐开线在K点的曲率中心,而线段BK是渐开线在点K的曲率半径。

④.渐开线形状取决于基圆的大小,在相同展角处,基圆的大小不同,

16

制冷压缩机不工作原因及维修方法

制冷压缩机不工作原因及维修方法 06/09 发布者:百福马 制冷压缩机不工作也是制冷系统中故障的一大问题,那么压缩机不工作怎么处理。压缩机一般分为空调压缩机和冰箱压缩机。 下面分别介绍这两种压缩机不工作的理由供大家参考。 冰箱压缩机不工作原理: 首先是电源电压不正常,修复电源,使电压稳定在220V。 第二:温度控制器故障 把温控器旋钮调到强冷位置,用万用表测量温控器的两接线端子,阻值应为“0”。 1。故障原因如有阻值或阻值无穷大时,为温控器触点接触不良,触点烧坏或其他零部件损坏。 2.排除方法检修温控器触点或更换温度控制器。 第三:化霜定时器故障 1。故障原因:化霜定时器触点烧毁,触点在除霜位置,化霜定时器电机烧坏,机械传动部分失灵。 2.排除方法修理化霜定时器触点、齿轮,更换定时器电机。如化霜定时器触点在除霜位时,用平头螺丝刀转动定时器凸轮转轴应接通压缩机。如仍不能接通时,说明定时器传动部分失灵或电气回路有故障,应近一步检查修理。 第四:启动继电器故障 1.故障原因重锤式启动继电器触点烧坏;PTG式启动继电器阻值是否正常(25度时应为十几欧至二十几欧),如阻值小于5欧姆或大于50欧姆为PTG启动继电器损坏。 2.排除方法修理重锤式启动继电器触点,更换PTC式启动继电器。 第五:热保护继电器故障 1.故障原因热保护继电器双金属片变形,电热丝烧断。 2.排除方法修理或更换热保护继电器。 第六:压缩机电机故障

1.故障原因压缩机出现机械部件卡阻或电机本身质量差,造成绕组烧坏。 2.排除方法修理压缩机电机或更换压缩机。 二;空调压缩机工作原因分析:电压太底;制冷温控放置在高温处;温度控制器失灵;压缩机电路故障;压缩机电机烧坏;压缩机启动器烧坏;过载保护故障。 压缩机处理方法:先检查压缩机电源线,如有正常电压220V,则可能是过载保护、压缩机电容坏或着压缩机烧坏。没有这些故障后,检测外机运行压力,如外机电流只有 0.1--0.3A,而且压缩机感觉很烫,冷却一会儿后又可启动,那么就是过载保护器起作用,应检查: 安装位置是否影响了冷凝器的空气流通。前面空间距离至少60厘米,后面至少要有10厘米。 室外冷凝器是否太脏。如过太脏灰尘油污过多,会导致换热效果差,致使压力偏高。保护器断开保护。 电压是否正常,电压低时压缩机不能启动,电流大导致保护器断开保护。 查看高、低压阀门是否全部打开。 要是维修过的空调.看是否换过过载保护,要是换过,查看型号是否正确。 易迅制冷主要经营谷轮压缩机、布里斯托压缩机、泰康压缩机、美优乐压缩机、百福马压缩机、大金压缩机、空调压缩机、冷冻压缩机、制冷压缩机等世界知名品牌压缩机 美优乐压缩机常见故障和维修法 06/02 发布者:美优乐 压缩机不能起动故障原因和维修法 检查并修理。1电气线故障。 高压断电器断开,2压差继电器断开。将压差继电器复位按钮揿下等待压力变化能将接点闭合或重新调整断开压力。 压缩机的排气温度高故障原因和维修法 调节膨胀阀。1吸入气体太热。

空气压缩机毕业设计_说明

第一章、空气压缩机简介 (2) 第一节、空气压缩机的作用和类型 (3) 一、作用 (3) 二、类型 (3) 第二节、回旋式空气压机泵体的结构和工作原理 (5) 一、泵体组成的零部件 (5) 二、回转式空气压缩机工作原理 (7) 第二章、空气压缩机的三维造型及装配 (9) 第一节、轴承座的三维设计 (9) 第二节、曲轴的三维设计 (14) 第三节、空气压缩机泵体重要零部件的设计过程 (14) 1.1设置工作目录 (14) 1.2曲轴的绘制 (14) 第四节、泵体的装配 (21) 第三章、轴承的加工工艺 (23) 第一节、生产纲领 (23) 第二节、零件结构公用分析 (24) 第三节、确定毛坯 (25) 第四节、选择设备及工艺装备 (27) 第五节、工序设计及工艺文件的填写 (27) (一)、工序设计 (27) (二)、填写工艺文件 (29) 1、填写机械加工工艺过程综合卡 (29) 2、填写指定工序的机械加工工序卡 (29)

第一章、空气压缩机简介 空气压缩机(英文为:air compressor)是气源装置中的主体,它是将原动机(通常是电动机)的机械能转换成气体压力能的装置,是压缩空气的气压发生装置。空气压缩机的种类空气压缩机的种类很多,按工作原理可分为容积式压缩机,速度式压缩机,容积式压缩机的工作原理是压缩气体的体积,使单位体积气体分子的密度增加以提高压缩空气的压力;速度式压缩机的工作原理是提高气体分子的运动速度,使气体分子具有的动能转化为气体的压力能,从而提高压缩空气的压力。 我国的空气压缩机行业的市场规模均为8%以上的增速增长,2010-2011年增长率甚至超过了28%,市场规模扩迅速。然而,在规模如此巨大的市场上,过去很长一段时间由外资企业掌握绝大部分市场。2009年度,我国空气压缩机行业共有生产企业近400家,其中资企业数量接近90%,实现销售收入总额约为60亿元,占全行业的40%;外资

VW-7.50.5-3型天然气压缩机设计

VW ?7.5/0.5?3型天然气压缩机设计 排气体积: V d = 7?5〃F / min 压缩介质: 吸气压力: 排气压力: 笫一级排气温度: 天然气 0.5 Mpa 3Mpa 20 °C 第二级排气温度: 25 °C 吸入气体相对湿度: 0.8 二.热力计算 压缩机的热力计算是根据气体压力容积和温度之间存在一定的关系,结合压缩机 的具体特征和使用要求而进行的。其口的是的到最有力的热力参数和适宜的主要 结构尺寸。 已知:设计条件 排气体积: =3.5/H 3/nin 压缩介质: 吸气压力: 排气压力: 第一级排 气温度: 第二级排气温 度: 吸入气体相对湿度: 0.8 2.1结构形式及方案选择 查文献得 £ r =P1/ 根据公式的到压力比为: s f =3/0.5 = 6 根据总压力比为6,圧缩机的级数取二级比较合适,为了获得较好的动力平衡性 能应采用双作用缸。另外,压缩机采用水冷方式。题目要求为V 形结构,且是 无油润滑。 2.2确定汽缸直径 2.2.1初步确定各级名义压力 根据丄况的需要,选择级数为三级,按照等压分配原则有: 天然气 0.5 Mpa 3Mpa 20 °C 25 °C

第一.二压力比:8( = S2 = >/6 = 2.449 但为使笫一级有较高的容积系数,第一级的压力比取稍小值,各级名义进排气压力比见表2-1 o 表2?1各级名义压力及压力比 222确定各级容积效率 (1)确定各级容积系数 山表2-2 则膨胀指数: “ =1.2 〃匚=1.25 容积系数:入= l — a(/‘一1)(2-2) 初步确定各级汽缸的相对容积系数:a t=0.1 a2=0.12 代入式(2-2)计算得: X rI = 1-0.1(21712-1) = 0.922 X v2 = l-0.12(3,?, 25-1) = 0.831 (2)选取确定压力系数 由文献查得:—=0.97 " =0.99 (3)选取确定温度系数 由文献查得:几=0.96 \2 = 0.97

2500t冷库毕业设计..

XXXXXXXXXXXXXXXXXX XXXXXXXXXXXXX 课题名称XX市果蔬公司2500吨XX冷藏库的设计 专业XXXXXXXXX 班级XXXXXXXXX 学号XXXXXXX 姓名XXX 指导教师XX 毕业设计开题报告

一、课题设计(论文)目的及意义: 毕业设计是专业知识的综合体现,是制冷工艺设计知识基础上的系统深化,是对本专业所学专业知识的加深理解和综合体现,以培养我们以后综合运用知识技能的能力,运用所学知识提高分解问题的能力,树立严肃认真的科学态度,和严谨求实的工作作风。完成基本的设计训练和冷库系统的初步设计,为以后冷库工程的设计安装技术能力的培养,知识的创新,科学知识的研究奠定良好基础。 二、课题设计(论文)提纲 1)搜依据原始资料做出能用于施工安装的制冷工艺施工图纸。 集冷库相关资料,见习相关企业确定方案(制冷剂的种类、制冷系统的供液方式); 2)确定冷藏库库房和机房的建筑面积和围护结构; 3)确定计算设计参数,计算系统负荷; 4)设备选型(压缩机、冷凝器等冷却设备); 5)管道管径设备管道保温层确定; 6)绘制图纸详图(系统原理图、冷库平面平面图、冷凝器平面剖面图、设备间平剖面图、高温库平剖面图、风道详图、管道阀门绝热层详图); 三、毕业设计(论文)思路方法及进度安排: 1、第一周:完成XX市某果蔬公司2500吨XX冷藏库设计的开题报告,搜集参数,确定冷藏库库房和机房的建筑面积和围护结构,并参考相关资料,进行相应计算; 2、第二周:确定设计参数,计算系统负荷,完成压缩机、冷凝器等冷却设备的选型; 3、第三周:管道管径、设备,管道保温层厚度确定; 4、第四周:编写设计说明书,绘制图纸,包括系统原理图、冷库平面平面图、冷凝器平面剖面图、设备间平剖面图、高温库平剖面图、风道详图、管道阀门绝热层详图; 5、第五周:完善图纸,修改设计内容。 四、课题设计(论文)参考文献: 《制冷原理》机械工业出版社雷霞 《制冷工艺设计》中国商业出版社张萍 《冷库设计规范》中国计划出版社 《食品冷冻学》中国商业出版社刘学浩

往复活塞式压缩机设计毕业设计(论文)

1 引言 空气压缩机是指压缩介质为空气的压缩机,主要作用是为生活、生产提供源源不断地、具有一定压力的压缩空气。作为一种工业装备,压缩机广泛应用于石油、化工、天然气管线、冶炼、制冷和矿山通风等诸多重要部门;作为燃气涡轮发动机的基本组成元件,在航空、水、陆交通运输和发电等领域随处可见;作为增压器,已成为当代内燃机不可缺少的组成部件。在诸如大型化肥、大型乙烯等工艺装置中,它所需投资可观,耗能比重大,其性能的高低直接影响装置经济效益,安全运行与整个装置的可靠性紧密相关,因而成为备受关注的心脏设备[1]。 压缩机按工作原理可分为容积式和动力式两大类;按压缩级数分类,可分为单级压缩机、两级压缩机和多级压缩机;按功率大小分类,可分为微小型压缩机、中型压缩机和大型压缩机。按压缩机的结构形式可分为立式、卧式和角度式。而且角度式又可分为L型、V型、W型、扇形和星型等。不同形式的压缩机具有其鲜明的特点,根据其工作原理的不同决定了其不同的适用范围[2]。 空气压缩机的选择主要依据气动系统的工作压力和流量。起源的工作压力应比气动系统中的最高工作压力高20%左右,因为要考虑供气管道的沿程损失和局部损失。如果系统中某些地方的工作压力要求较低,可以采用减压阀来供气。空气压缩机的额定排气压力分别为低压(0.7MPa~1.0MPa)、中压(1.0MPa~10MPa)、高压(10MPa~100MPa)和超高压(100MPa以上),可根据实际需求来选择。常见使用压力一般为0.7~1.25MPa[3]。 空气压缩机应用范围极为广泛,且由资料显示国内需求量呈上升趋势,是中小型工业用压缩机一个庞大的族群。中、小型微型工业用往复活塞式压缩机有着相同的传动部件基础上变换压缩级数和气缸直径,迅速派生出多品种变形产品的便利条件。不仅其容积流量、排气压力变化多端,通过适当调整部分零部件材质还可以压缩多种气体,大为扩展服务领域[4]。 活塞式压缩机与其他类型的压缩机相比,特点是 (1)压力范围最广。活塞式压缩机从低压到超高压都适用,目前工业上使用的最高工作压力达350MPa,实验室中使用的压力则更高。 (2)效率高。由于工作原理不同,活塞式压缩机比离心式压缩机的效率高很多。而回转式压缩机由于高速气流阻力损失和气体内泄漏等原内,效率亦较低。 (3)适应性强。活塞式压缩机的排气量可在较广泛的范围内进行选择;特则是在较小排气量的情况下,要做成速度型,往往很困难,甚至是不可能的。此外,气体的重度对压缩机性能的影响也不如速度型那样显著,所以同一规格的压缩机,将其用于不同介质时,较易改造[5~7]。 根据机械部JB1407-85《微型往复活塞式空气压缩机基本参数》规定,额定排气压力分为0.25MPa、0.4MPa、0.7MPa、1.0MPa、1.25MPa和1.4MPa几个档

VW-7.5 0.5-3型天然气压缩机设计

VW-7.5/0.5-3型天然气压缩机设计 排气体积: 37.5/min d V m = 压缩介质: 天然气 吸气压力: 0.5 Mpa 排气压力: 3Mpa 第一级排气温度: 20 ℃ 第二级排气温度: 25℃ 吸入气体相对湿度: 0.8 二.热力计算 压缩机的热力计算是根据气体压力容积和温度之间存在一定的关系,结合压缩机的具体特征和使用要求而进行的。其目的是的到最有力的热力参数和适宜的主要结构尺寸。 已知:设计条件 排气体积: min /5.33m V d = 压缩介质: 天然气 吸气压力: 0.5 Mpa 排气压力: 3Mpa 第一级排气温度: 20 ℃ 第二级排气温度: 25℃ 吸入气体相对湿度: 0.8 2.1 结构形式及方案选择 查文献得 21/t p p ε= 根据公式的到压力比为: 3/0.56t ε== 根据总压力比为6,压缩机的级数取二级比较合适,为了获得较好的动力平衡性能应采用双作用缸。另外,压缩机采用水冷方式。题目要求为V 形结构,且是无油润滑。 2.2 确定汽缸直径 2.2.1初步确定各级名义压力

根据工况的需要,选择级数为三级,按照等压分配原则有: 第一.二压力比:12 2.449ε=ε== 但为使第一级有较高的容积系数,第一级的压力比取稍小值,各级名义进排气压力比见表2-1。 表2-1 各级名义压力及压力比 2.2.2 确定各级容积效率 (1)确定各级容积系数 由表2-2查得绝热指数为K=1.4,各级膨胀过程的等熵指数m 为 则膨胀指数: 1 1.2m = 2 1.25m = 容积系数: 1/1(1)m v λ=-αε- (2-2) 初步确定各级汽缸的相对容积系数:10.1α= 20.12α= 代入式(2-2)计算得: 1/1.2110.1(21)0.922v λ=--= 1/1.25210.12(31)0.831v λ=--= (2)选取确定压力系数 由文献查得:10.97p λ= 20.99p λ= (3) 选取确定温度系数

压缩机毕业设计

四川理工学院毕业设计 0.42/150型空气压缩机 学生:田虎 学号:08011010318 专业:过程装备与控制工程 班级:2008.3 指导教师:唐克伦 四川理工学院机械工程学院 二O一二年六月

摘要 往复式压缩机是工业上使用量大、面广的一种通用机械。立式压缩机是往复活塞式压缩机的一种,属于容积式压缩机,是利用活塞在气缸中运动对气体进行挤压,使气体压力提高。 热力计算、动力计算是压缩机设计计算中基本,又是最重要的一项工作,根据任务书提供的介质、气量、压力等参数要求,经过计算得到压缩机的相关参数,如级数、列数、气缸尺寸、轴功率等,经过动力计算得到活塞式压缩机的受力情况。活塞式压缩机热力计算、动力计算的结果将为各部件图形以及基础设计提供原始数据,其计算结果的精确程度体现了压缩机的设计水平。 关键词:活塞式压缩机; 热力计算; 动力计算;气缸;曲轴

Abstract Reciprocating compressor is a common type machine, used in the industry .V- type of piston compressors is a kind of reciprocating compressor, belong to the compressor , utilize the pistons in the cylinder moving to squeeze on the gas ,squeezed the gas pressure. Thermal calculation and dynamical computation is basic of compressor design’ calculation, is also an important woke, according to medium, displacement, pressure of task-book, by calculating getting related parameters of compressors, such as levels, columns, size of cylinder, shaft power, by dynamical computation getting stressed status of a piston type compression, due to reduce the vibration is very important. heat calculation and dynamical computation of the piston type compressor, which is providing design data. The calculations reflect exactly the design level of the compressor. Keywords: piston compressor; thermal calculation; dynamical computation; cylinder; cranksh

天然气压缩机的控制设计

2008年 第4期管 道 技 术 与 设 备 Pi peline Technique and Equi pment 2008 No 14  收稿日期:2007-11-26 收修改稿日期:2008-02-25 天然气压缩机的控制设计 刘 亮 (中国石油集团工程设计有限责任公司北京分公司,北京 100085) 摘要:介绍了离心式压缩机的自控系统设计,及在自控设计中应注意的问题。从离心机的负荷控制、入口压力控制、密封系统控制、润滑油系统控制、转子振动和轴位移控制、防喘振控制等方面入手,综合解决有关离心式压缩机的控制问题,从而满足现场实际情况的要求。DCS 系统控制方案可以结合上述几个方面的因素制定,以实现整个装置的最优化配置。 关键词:离心式;压缩机;自控系统 中图分类号:TP2 文献标识码:A 文章编号:1004-9614(2008)04-0023-02 D esi gn of the Con trol of Na tura l Ga s Com pressor L I U L iang (Be iji n g Branch Co m pany,Ch i n a Petroleu m Eng i n eer i n g Co .,L td .,Be iji n g 100085,Ch i n a) Abstract:I ntr oduce the contr ol system,which design on the centrifugal comp ress or thr ough the p r oject experience .And s ome p r oble m s need t o be paid attenti on .Contr ol the centrifugal comp ress or according t o the l oading,inlet p ress,sealing syste m,lubri 2cati on system,and shaft vibrati on and offset t o meet the p ractical require ment on site .DCS system contr ol phil os ophy shall f oll ow above p rinci p le t o make guarantee that whole facilities are in good conditi on .Key words:centrifugal;comp ress or;contr ol syste m 1 项目简介 阿尔及利亚的OC 2T OUT 油田项目共分为5个站。位于整个油田中心的CPF (Central Pr ocess Facilities )站,将各井来油及天然气进行油、气、水分离,将分离出的天然气经过脱烃干燥处理后送到天然气发电机,用于发电,给整个装置供电。天然气先输送到集气器V -001内,经过压缩机SK -001的一级压缩后,将天然气从常压升高到0125MPa,然后再通过二级压缩将压力进一步压缩到0155MPa,此时的天然气品质及压力都不能满足天然气发电机的要求,需将干燥后的天然气送到压缩机 SK -002内,继续增压到0175MPa,增压后的天然气再通过外 输分离器V -002内,进行进一步气水分离。分离出来的水送到轻烃分离器V -003,干燥后的天然气送到天然气发电机。其工艺流程图如图1所示。图1中,LC 表示液位控制,SK 表示橇装设备,V 表示容器。 2 离心式压缩机的控制 离心式压缩机的基本原理是利用高速旋转的叶轮使出口的气流达到很高流速,然后在扩压室内将高速气体的动能转化为压力能,从而使压缩机出口的气体达到较高压力。常用的离心式压缩机的吸入流量在14~5660m 3/m in 的范围内[1]。根据同一台压缩机中经历的压缩级数,离心式压缩机分为单级和多级。为了提高压比,可以采用多级离心式压缩机。一台多级离心式压缩机的压缩级数最多可以达到6~8级,每级压比在 111~115之间。 211  离心式压缩机负荷控制 图1 工艺流程图 平稳的负荷控制能使离心式压缩机随工艺生产的变化不断改变其工作点(流量、压力),以适应工况的变化。为实现该目标,首先要确定压缩机的特性以及与压缩机相连接的系统特性。离心式压缩机是流量可变,而压比几乎恒定的机器。而往复式压缩机是流量恒定,而压比可变的机器。另外,按照离心式压缩机能否调速,可分为恒速和可以调速两类。 离心式压缩机负荷(流量)控制可以避免压缩机与工艺过程出现喘振和扰动,使系统运行稳定。对于不能调速的离心式压缩机,一般采用出口节流法,改变出口阻力,使离心式压缩机的工作点移动,以适应工艺工况的变化;对于可以调速的离心式压缩机,由于其出口压力与转速的平方成正比,因此采用改变压缩机转速的调节方法,这是一种节能的调节方法。

暖通空调毕业设计(论文)任务书解答

毕业设计(论文)任务书 毕业设计(论文)题目:某市某综合楼空调系统设计 系别能源与动力学院班级建环本121/122 学生姓名___________________ 学号 ________________________ 指导教师________ 职称_______________________ 毕业设计(论文)进行地点:校内 _______________________ 任务下达时间:2015 年12 月24 日 起止日期:2016年3月1日起——至2016年6月日止 教研室主任_________________ 年月日批准 1、论文的原始资料及依据:

(一)题目来源:某市某综合楼建筑结构图 (二)设计主要技术参数 (1)土建资料 详见建筑图纸。 (2 )气象参数:根据本市的气象资料确定; (3 )建筑参数: 外墙体结构:根据地区自行选定,如S =370 m m红砖,内外抹灰20mm 屋面:根 据地区自行选定,如200mm 厚混凝土板加12.5mm 厚加气混凝土保温层。 外窗:根据地区自行选定,如标准玻璃的单层钢窗,全部挂淡色窗帘,(4)室内空调设计参数:温度t n=26C; 湿度? n=60% 风速不大于0.3 m/s 。 (5)照明容量:40W/m (6)房间人数:0.5人/m2,群集系数0.92 (三)设计主要技术关键 正确进行空调负荷和新风量的计算,确定出冷气方案,合理地布置管道,并进 行水力计算,合理选择及布置设备,做好气流组织。 2、设计(论文)主要内容及要求通过本次设计使学生系统地掌握空调系统设计的主 要方法和步骤,能根据实际情况合理确定空调方案,会计算空调系统的负荷量和新风负荷量,能合理布置管道和设备,了解空调设备的型式及用途,会进行设备的选型,合理进行气流组织,会计算水管、风道的阻力,选取水泵、风机等。使学生能把所学知识灵活运用到实际当中去,让理论与实际相结合,为学生毕业以后的工作打下坚实基础。 主要内容: 空调系统的设计 1)、由建筑物所在地区确定室内外气象参数; 夏季室内外设计计算参数;室内温度、湿度、风速、新风量等参数。 (2)、空调房间热湿负荷计算;

压缩机常见故障及维修办法

压缩机常见故障及维修方法 2007年05月29日星期二19:25 压缩机是空调器制冷系统最重要的部件,由于压缩机不同于冷凝器、蒸发器之类的非运动部件,在系统工作中要高速运转,又是一种机电一体化的高精度装置,所以在实际使用中经常会发生故障。 故障现象: 1、绕组短路、断路和绕组碰机壳接地:这类故障都是由压缩机的电机部分引起的,其故障现象断路时为电源 正常,压缩机不工作;短路和碰壳时通电后保护器动作,或烧保险丝;要注意的是如果绕组匝间轻微短路时,压缩机还是能够工作的,但工作电流很大,压缩机的温度很高,过不了多久,热保护器就会动作。绕组短路和绕组碰机壳接地一般用万用表即可检查;绕组短路特别是轻微短路,由于绕组的电阻本身就很小,所以不容易 判定,应根据测量电流来判定。 2、压缩机抱轴、卡缸:压缩机如果失油或有杂质进入往往会引起抱轴或卡缸,其故障现象为,通电后压缩机 不运转,保护器动作。 3、压缩机吸、排气阀关闭不严:如果压缩机的吸、排气阀门损坏,即使制冷剂充足系统也不能建立高低压或 难以建立合格的高低压,系统不制冷或制冷效果很差。 4、压缩机的震动和噪音:这类问题在维修工作中经常发生,一般对制冷性能并没有多大影响,但会使用户感 觉不正常,引起的原因往往是管道和机壳相碰、压缩机的固定螺栓松动和减震块脱落等。 5、热保护器损坏:热保护器是压缩机的附件,故障一般为断路或动作温度点变小。断路会引起压缩机不工作;动作温度点变小会引起压缩机工作一段时间后就停机并反复如此,该问题往往容易和绕组匝间轻微短路相混淆,区别是热保护器损坏时工作电流是正常的,绕组短路时电流偏大。 维修方法: 压缩机电机部分出现问题、压缩机吸、排气阀关闭不严和热保护器故障应采取更换的办法。 压缩机抱轴、卡缸故障可以先尝试维修,具体方法为以下几种: (1)敲击法: 开机后用木锤敲压缩机下半部,使压缩机内部被卡部件受到震动而运转起来。 (2)电容起动法: 可以用一个电容量比原来更大的电容接入电路启动。 (3)高压启动法: 可以用调压器将电源电压调高后启动。 (4)卸压法: 将系统的制冷剂全部放空后启动。 如果上述方法都不能奏效,就只有更换了。 压缩机的震动和噪音问题处理时,应检查并分开相互碰击的部件;检查并紧固压缩机地脚螺栓,要注意压缩机的地脚螺栓是不能完全拧到底的,设计要求必须保持1mm左右的间隙,维修过程中就有将压缩机地脚螺栓拧死 而引起压缩机剧烈震动的事例;要检查减震块是否脱落、粘帖是否牢*,也可以试着增加减震块,具体位置用尝试法,帖在那里效果好就帖那里。 压缩机故障的判断及处理: 1.如何识别全封闭式压缩机机壳上的3只接线柱?

高含硫天然气压缩机的设计和应用

高含硫天然气压缩机的设计和应用 作者:未知来源:互联网点击数:19 更新时间:2009年01月16日 编者按:刘虎厂长、李德禄总工程师带领的中国石油天然气集团公司四川石油管理局成都天然气压缩机厂的技术团队,多年来紧密结合基层单位的运行实际,着力研发服务于油气田的高含硫天然气压缩机,技术成果丰硕,节能业绩斐然,为我国油气田的开发和运营作出了重要贡献 概述 西南油气田分公司川西北气矿雷三气藏天然气H2S含量7.08%,是国内H2S含量较高气藏之一,且含量烃3.5%,CO24.8%,凝析油60g/m3。经过20余年的开采,压力衰减,产量下降,低压天然气不能进入集气管网,需采用压缩机增压。2000年,根据川西北矿区提出的技术要求,成都天然气压缩机厂设计制造了两台ZTY440MH9×9整体式天然气压缩机组(工况为:进气压力1~2.8MPaG,排气压力3.2~4MPaG)用于雷三气藏衰减气井含硫天然气的增压。该两台机组于2001年3月投入生产运行,至今已达5个年头,机组经受住了高含硫天然气的考验,抗硫效果明显。机组与天然气直接接触的零部件,如压缩缸、活塞、活塞杆、工艺管线等,没有因硫化氢的腐蚀而损坏现象,但运转初期,气阀弹簧,滑动轴承寿命短,出现弹簧断裂,轴承合金层脱落等。通过与采气作业区的技术人员和操作工人的共同探索,已基本解决了滑动轴承、气阀弹簧的寿命问题,使机组能稳定的运行在高含硫天然气的增压中。回顾ZTY440整体式天然气的设计制造和现场运行过程,说明我厂压缩机防止硫化氢腐蚀专有技术是成功的。下面就硫化氢的腐蚀机理,压缩机制抗硫设计、制造、现场运用等作一简述,期望对含硫气藏地面工艺设备的防腐问题起到抛砖引玉的效果,更好的保证高含硫气用天然气压缩机的可靠性、安全性。 硫化氢的腐蚀机理 硫化氢是强毒性的,是天然气开采中最严重的腐蚀剂,其对钢材腐蚀的形式有全面腐蚀和硫化物应力腐蚀开裂。硫化氢所造成的全面腐蚀,其特征是腐蚀产物具有成片、分层、易碎、气孔及附着力差,呈层状剥落,导致设备壁厚减薄。硫化物应力腐蚀开裂是当硫化氢腐蚀钢材时,在阴极区产生大量的氢,氢的产生受下列两个反应的速度所控制 H H (1) H→→1/2H 2 (2) 存在硫化氢的情况下式(2)若受到抑制,则在钢材表面上将集聚大量的氢原子,在一般情况下,氢原子结合成氢分子的速度很快,只有少量的氢原子向钢材内部扩散,但由于硫化氢的存在,氢原子结合成氢分子的速度会显著减慢,大量的氢原子向钢材内部扩散,而被金属内部缺陷处或空隙处所形成的隐阱捕集,继而结合成氢分子,在钢材内部产生巨大的内应力,使钢材脆化或开裂。其特征是属于低应力的破坏,多发生在设备使用初期,甚至在无任何预兆下,几十小时几十天内突然发生。开裂的断口无塑形变形,呈脆性破坏。

压缩机常见故障及解决方法

压缩机常见故障及解决方法 摘要:在科学技术日益发展的今天,压缩机在各个行业受到广泛应用,尤其是在大型的煤化行业、机械行业等行业中。压缩机状态的好坏直接决定着装置的安全运行。活塞式压缩机在运转过程中会出现烧瓦,注油器不上油及压力偏低气量不足等常见故障。如何迅速准确地判断并及时处理故障,直接影响压缩机的开工率和产品产量。本文主要分析压缩机的基本原理、常见故障及解决方法。 关键词:压缩机,故障,烧瓦,注油,压力偏低 1压缩机分类与简介 随着工业技术的发展。空压机的类别与型号不断更新,按原理和结构不同可以分为:活塞式、回转式,离心式与轴流式四种。 而根据应用不同又可分为不同的类型,如用于制冷的压缩机通常可分为[1]:一、封闭式压缩机:此类型压缩机由于功率小,主要用于冰箱、家用空调等电器中,它由电机(绕组、转子等)与机械(曲轴、活塞等)部分组成一体,置于密封的缸体中。一旦出现故障修复起来比较困难。二、半封闭和开启式压缩机:此类型压缩机由于功率大,广泛用于中央空调、冷库等大型制冷、空调净化等部门,由于电机与机械分为两部分,一经出现故障可便于拆装修理。 2压缩机的常见故障及解决方案 从气流的角度来讲,可能出现的故障是:风压过高或压缩空气温度过高;风量不足或风量过低。前者当保护装置失灵时,有可能引起积炭自燃、压力容器爆炸,而后者直接影响生产。图1为压缩机常见故障树。从压风机结构来看,造成压缩机故障主要有润

滑系统故障、冷却水路故障,压缩空气气路故障和机械故障四类[2]。 下面主要分析以下几点常见故障[3]: 2.1烧瓦 活塞式压缩机运转中出现烧瓦、主轴瓦或连杆大头瓦巴氏合金层烧伤或脱落,使轴瓦温度升高。产生高温并冒烟,巴氏合金熔化。 2.1.1 油温过低引起烧瓦 以往我们注意曲轴箱油温,都是担心油温过高引起烧瓦。比如说明书中注明油温不能超过60℃或7O℃,但确投有油温下限.忽略了油温过低也引起烧瓦。冬季停机之后压缩机曲轴箱油温降低,所以油非常粘稠,开机后发生烧瓦。因此,冬季采用稠度低的机油为好。 图l 压缩机常见故障树 2.1.2 曲轴箱油位过低引起烧瓦 油标下孔堵塞,油位低时不能发现油位下降,曲轴箱油位过低时.油泵断续吸入空

空气压缩机全套设计毕业论文

空气压缩机全套设计毕业论文 1 引言 空气压缩机是指压缩介质为空气的压缩机,主要作用是为生活、生产提供源源不断地、具有一定压力的压缩空气。作为一种工业装备,压缩机广泛应用于石油、化工、天然气管线、冶炼、制冷和矿山通风等诸多重要部门;作为燃气涡轮发动机的基本组成元件,在航空、水、陆交通运输和发电等领域随处可见;作为增压器,已成为当代内燃机不可缺少的组成部件。在诸如大型化肥、大型乙烯等工艺装置中,它所需投资可观,耗能比重大,其性能的高低直接影响装置经济效益,安全运行与整个装置的可靠性紧密相关,因而成为备受关注的心脏设备[1]。 压缩机按工作原理可分为容积式和动力式两大类;按压缩级数分类,可分为单级压缩机、两级压缩机和多级压缩机;按功率大小分类,可分为微小型压缩机、中型压缩机和大型压缩机。按压缩机的结构形式可分为立式、卧式和角度式。而且角度式又可分为L型、V型、W型、扇形和星型等。不同形式的压缩机具有其鲜明的特点,根据其工作原理的不同决定了其不同的适用范围[2]。 空气压缩机的选择主要依据气动系统的工作压力和流量。起源的工作压力应比气动系统中的最高工作压力高20%左右,因为要考虑供气管道的沿程损失和局部损失。如果系统中某些地方的工作压力要求较低,可以采用减压阀来供气。空气压缩机的额定排气压力分别为低压(0.7MPa~1.0MPa)、中压(1.0MPa~10MPa)、高压(10MPa~100MPa)和超高压(100MPa以上),可根据实际需求来选择。常见使用压力一般为0.7~1.25MPa[3]。 空气压缩机应用范围极为广泛,且由资料显示国内需求量呈上升趋势,是中小型工业用压缩机一个庞大的族群。中、小型微型工业用往复活塞式压缩机有着相同的传动部件基础上变换压缩级数和气缸直径,迅速派生出多品种变形产品的便利条件。不仅其容积流量、排气压力变化多端,通过适当调整部分零部件材质还可以压缩多种气体,大为扩展服务领域[4]。 活塞式压缩机与其他类型的压缩机相比,特点是 (1)压力范围最广。活塞式压缩机从低压到超高压都适用,目前工业上使用的最高工作压力达350MPa,实验室中使用的压力则更高。 (2)效率高。由于工作原理不同,活塞式压缩机比离心式压缩机的效率高很多。而回转式压缩机由于高速气流阻力损失和气体内泄漏等原内,效率亦较低。 (3)适应性强。活塞式压缩机的排气量可在较广泛的范围内进行选择;特则是在较小排气量的情况下,要做成速度型,往往很困难,甚至是不可能的。此外,气体的重度对压缩机性能的影响也不如速度型那样显著,所以同一规格的压缩机,将其用于不同介质时,较易改造[5~7]。

螺杆压缩机系统装置设计

摘要 螺杆空气压缩机(又称为双螺杆压缩机)是机电一体化的工业产品,用途非常广泛,其简称:螺杆压缩机。20世纪30年代,瑞典工程师Alf Lysholm在对燃气轮机进行研究时,希望找到一种作回转运动的压缩机,要求其转速比活塞压缩机高得多,以便可由燃气轮机直接驱动,并且不会发生喘振。为了达到上述目标,他发明了螺杆压缩机。在理论上,螺杆压缩机具有他所需要的特点,但由于必须具有非常大的排气量,才能满足燃气轮机工作的要求,螺杆压缩机并没有在此领域获得应用。1937年,Alf Lysholm 终于在SRM公司研制成功了两类螺杆压缩机试验样机,并取得了令人满意的测试结果。随后持续的基础理论研究和产品开发试验,螺杆压缩机才真正发展起来,并且其性能也在不断的完善。螺杆压缩机具有结构简单、运行可靠及操作方便等一系列独特的优点,广泛应用于矿山、化工、动力、冶金、建筑、机械、制冷等工业部门。在宽广的容量和式况范围内,逐步替代了其它种类的压缩机,统计数据表明,螺杆压缩机的销售量已占其它容积式压缩机销售量的80%以上,在所有正在运行的容积式压缩机中,有50%的是螺杆压缩机。螺杆压缩机具有结构简单、体积小、没有易损件、工作可靠、寿命长、维修简单等优点。 关键词:螺杆压缩机主机阴、阳转子接触线型线容积

第一章螺杆压缩机的现状和意义 螺杆压缩机广泛应用于矿山、化工、动力、冶金、建筑、机械、制冷等工业部门,在宽广的容量和式况范围内,逐步替代了其它种类的压缩机,统计数据表明,螺杆压缩机的销售量已占其它容积式压缩机销售量的80%以上,在所有正在运行的容积式压缩机中,有50%的是螺杆压缩机。今后螺杆压缩机的市场份额仍将不断的扩大。 20世纪30年代,瑞典工程师Alf Lysholm在对燃气轮机进行研究时,希望找到一种作回转运动的压缩机,要求其转速比活塞压缩机高得多,以便可由燃气轮机直接驱动,并且不会发生喘振。为了达到上述目标,他发明了螺杆压缩机。 在理论上,螺杆压缩机具有他所需要的特点,但由于必须具有非常大的排气量,才能满足燃气轮机工作的要求,而螺杆压缩机只能提供中等排气量,因此并没有在此领域获得应用。但尽管如此,Alf Lysholm及其所在的瑞典SRM公司,为螺杆压缩机能在其它领域的应用,继续进行了深入的研究。1937年,Alf Lysholm 在SRM公司研制成功了两类螺杆压缩机试验样机,并取得了令人满意的测试结果。 1946年,位于苏格兰的英国 James Howden 公司,第一个从瑞典SRM公司获得了生产螺杆压缩机的许可证。 随后,欧洲、美国和日本的多家公司也陆续从瑞典SRM公司获得了这种许可证,从事螺杆压缩机的生产和销售。最先发展起来的螺杆压缩机是无油螺杆压缩机。 1957年喷油螺杆空气压缩机投入了市场应用。 1961年又研制成功了喷油螺杆制冷压缩机和螺杆工艺压缩机。 过随后持续的基础理论研究和产品开发试验,通过对转子型线的不断改进和专用转子加工设备的开发成功,螺杆压缩机的优越性能得到了不断的发挥。 压缩机可分二大类,容积式压缩机和动力式压缩机。容积式压缩机又可分往复式和回转式。回转式压缩机可分单轴和双轴或多轴。本可题研究的是螺杆空气压缩机,属于双轴压缩机。螺杆压缩机--是回转容积式压缩机,在其中两个带有螺旋型齿轮的转子相互啮合,从而将气体压缩并排出。 用可靠性高的螺杆式压缩机取代易损件多,可靠性差的活塞式压缩机,已经成为必然趋势。日本螺杆压缩机1976年仅占27%,1985年则上升到85%。目前西方发达国家螺杆压缩机市场占有率为80%,并保持上升势头。螺杆压缩机具有结构简单、体积小、没有易损件、工作可靠、寿命长、维修简单等优点。

压缩机常见三种详细故障分析报告

压缩机常见三种详细故障分析 压缩机常见故障分析(1)——电机烧毁 电动机压缩机(以下简称压缩机)的故障可分为电机故障和机械故障(包括曲轴,连杆,活塞,阀片,缸盖垫等)。机械故障往往使电机超负荷运转甚至堵转,是电机损坏的主要原因之一。电机的损坏主要表现为定子绕组绝缘层破坏(短路)和断路等。定子绕组损坏后很难及时被发现,最终可能导致绕组烧毁。绕组烧毁后,掩盖了一些导致烧毁的现象或直接原因,使得事后分析和原因调查比较困难。 然而,电机的运转离不开正常的电源输入,合理的电机负荷,良好的散热和绕组漆包线绝缘层的保护。从这几方面入手,不难发现绕组烧毁的原因不外乎如下六种:(1)异常负荷和堵转; (2)金属屑引起的绕组短路;(3)接触器问题;(4)电源缺相和电压异常;(5)冷却不足;(6) 用压缩机抽真空。实际上,多种因素共同促成的电机损坏更为常见。 1.异常负荷和堵转 电机负荷包括压缩气体所需负荷以及克服机械摩擦所需负荷。压比过大,或压差过大,会使压缩过程更为困难;而润滑失效引起的摩擦阻力增加,以及极端情况下的电机堵转,将大大增加电机负荷。 润滑失效,摩擦阻力增大,是负荷异常的首要原因。回液稀释润滑油,润滑油过热,润滑油焦化变质,以及缺油等都会破坏正常润滑,导致润滑失效。回液稀释润滑油,影响摩擦面正常油膜的形成,甚至冲刷掉原有油膜,增加摩擦和磨损。压缩机过热会引起使润滑油高温变稀甚至焦化,影响正常油膜的形成。系统回油不好,压缩机缺油,自然无法维持正常润滑。曲轴高速旋转,连杆活塞等高速运动,没有油膜保护的摩擦面会迅速升温,局部高温使润滑油迅速蒸发或焦化,使该部位润滑更加困难,数秒钟内可引起局部严重磨损。润滑失效,局部磨损,使曲轴转动需要更大力矩。小功率压缩机(如冰箱,家用空调压缩机)由于电机扭矩小,润滑失效后常出现堵转(电机无法转动)现象,并进入“堵转-热保护-堵转”死循环,电机烧毁只是时间问题。而大功率半封闭压缩机电机扭矩很大,局部磨损不会引起堵转,电机功率会在一定范围内随负荷而增大,从而引起更为严重的磨损,甚至引起咬缸(活塞卡在气缸内),连杆断裂等严重损坏。 堵转时的电流(堵转电流)大约是正常运行电流的4-8倍。电机启动瞬间,电流的峰值可接近或达到堵转电流。由于电阻放热量与电流的平方成正比,启动和堵转时的电流会使绕组迅速升温。热保护可以在堵转时保护电极,但一般不会有很快的响应,不能阻止频繁启动等引起的绕组温度变化。频繁启动和异常负荷,使绕组经受高温考验,会降低漆包线的绝缘性能。

W型空气压缩机设计

W型空气压缩机设计

W型空气压缩机设计

1 引言 空气压缩机是指压缩介质为空气的压缩机,主要作用是为生活、生产提供源源不断地、具有一定压力的压缩空气。作为一种工业装备,压缩机广泛应用于石油、化工、天然气管线、冶炼、制冷和矿山通风等诸多重要部门;作为燃气涡轮发动机的基本组成元件,在航空、水、陆交通运输和发电等领域随处可见;作为增压器,已成为当代内燃机不可缺少的组成部件。在诸如大型化肥、大型乙烯等工艺装置中,它所需投资可观,耗能比重大,其性能的高低直接影响装置经济效益,安全运行与整个装置的可靠性紧密相关,因而成为备受关注的心脏设备[1]。 压缩机按工作原理可分为容积式和动力式两大类;按压缩级数分类,可分为单级压缩机、两级压缩机和多级压缩机;按功率大小分类,可分为微小型压缩机、中型压缩机和大型压缩机。按压缩机的结构形式可分为立式、卧式和角度式。而且角度式又可分为L型、V型、W型、扇形和星型等。不同形式的压缩机具有其鲜明的特点,根据其工作原理的不同决定了其不同的适用范围[2]。 空气压缩机的选择主要依据气动系统的工作压力和流量。起源的工作压力应比气动系统中的最高工作压力高20%左右,因为要考虑供气管道的沿程损失和局部损失。如果系统中某些地方的工作压力要求较低,可以采用减压阀来供气。空气压缩机的额定排气压力分别为低压(0.7MPa~1.0MPa)、中压(1.0MPa~10MPa)、高压(10MPa~100MPa)和超高压(100MPa以上),可根据实际需求来选择。常见使用压力一般为0.7~1.25MPa[3]。 空气压缩机应用范围极为广泛,且由资料显示国内需求量呈上升趋势,是中小型工业用压缩机一个庞大的族群。中、小型微型工业用往复活塞式压缩机有着相同的传动部件基础上变换压缩级数和气缸直径,迅速派生出多品种变形产品的便利条件。不仅其容积流量、排气压力变化多端,通过适当调整部分零部件材质还可以压缩多种气体,大为扩展服务领域[4]。 活塞式压缩机与其他类型的压缩机相比,特点是 (1)压力范围最广。活塞式压缩机从低压到超高压都适用,目前工业上使用的最高工作压力达350MPa,实验室中使用的压力则更高。 (2)效率高。由于工作原理不同,活塞式压缩机比离心式压缩机的效率高很多。而回转式压缩机由于高速气流阻力损失和气体内泄漏等原内,效率亦较低。 (3)适应性强。活塞式压缩机的排气量可在较广泛的范围内进行选择;特则是在较小排气量的情况下,要做成速度型,往往很困难,甚至是不可能的。此外,气体的重度对压缩机性能的影响也不如速度型那样显著,所以同一规格的压缩机,将其用于不同介质时,较易改造[5~7]。 根据机械部JB1407-85《微型往复活塞式空气压缩机基本参数》规定,额定排气压力分为0.25MPa、0.4MPa、0.7MPa、1.0MPa、1.25MPa和1.4MPa几个档次,并规定

相关文档
相关文档 最新文档