文档库 最新最全的文档下载
当前位置:文档库 › 红外分光光度法

红外分光光度法

红外分光光度法
红外分光光度法

红外分光光度法

1简述

化合物受红外辐射照射后,使分子的振动和转动运动由较低能级向较高能及跃迁,从而导致对特定频率红外辐射的选择性吸收,形成特征性很强的红外吸收光谱,红外光谱又称振-转光谱。

红外光谱是鉴别物质和分析物质化学结构的有效手段,已被广泛应用于物质的定性鉴别、物相分析和定量测定,并用于研究分子间和分子内部的互相作用。

习惯上,往往把红外区分为3个区域,进红外区(12800~40000cm-1,0.78~2.5μm),中红外区(4000~400cm-1,2.5~25μm)和远红外区(400~10cm-1,25~1000μm)。其中中红外区是药物分析中最常用的区域。红外吸收与物质的关系在一定范围内服从朗伯-比尔定律,因而它也是红外分光光度法定量的基础。

红外分光光度计分为色散型和傅里叶变换型两种。前者主要由光源、单色器(通常为光栅)、样品室、检测器、记录仪、控制盒数据处理系统组成。以光栅为色散元件的红外分光光度计,以波数为线性刻度,以棱镜为色散元件的仪器,以波长为线性刻度。波数与波长的换算关系如下:

104

波数(cm-1)=─────

波长(μm)

傅里叶变换型红外光谱仪(简称FT-IR)则由光学台(包括光源、干涉仪、样品室和检测器)、记录装置和数据处理系统组成,由干涉图变为红外光谱需经快速傅里叶变换。该型号仪器现已成为最常用的仪器。

2 红外分光光度计的检定

所用仪器应按现行国家质量与核查技术监督局“色散型红外分光光度计鉴定规程”、“傅里叶变换红外光谱仪鉴定规程”和《中国药典》附录规定,并参考仪器说明书,对仪器定期进行校正检定。

.1 波数准确度

2.1.1波数准确度的允差范围傅里叶变换红外光谱仪在3000cm-1附近的波数误差应不大于±5cm-1,在1000cm-1附近的波数误差应不大于±1cm-1。

2.1.2 波数准确度检定方法

2.1.2.1 以聚苯乙烯膜校正按仪器使用说明书要求设置参数,以常用的扫描速度记录厚度为50μm的聚苯乙烯膜红外光谱图。测量有关谱带的位置,其吸收光谱图应符合《药品红外光谱集》所附聚苯乙烯图谱的要求,并与参考波数(表1)比较,计算波数准确度。

表1 聚苯乙烯吸收谱带常用的波数值

波数(cm-1)波数(cm-1)

3027.11583.1

2850.71154.3

1944.01027.0

1801.6906.7

1601.4

2.1.2.2 以液体池用液体茚校正液体茚在3900~690cm-1范围内有较多的吸收峰可资比较,适于测定中等分辨率的仪器。一般需用适当液层厚度的固定厚度密封液体池,选用液体池的窗片材料应能保证在测定波数范围内有良好的红外光透过率,窗片应有良好的光洁度和平面平行度,注样品时将液体池放在一楔形板上,打开2个金洋孔塞,把样品用专用注射器从下部进样孔缓缓注入。同时观察池内液面缓缓上升而不夹带气泡,至液体在上进样孔内接近满溢时,取下注射器,先盖好下进样孔塞,再盖上上进样孔塞,吸去外溢液体后即可在仪器上测定吸收光谱,其主要谱带见表2.

表2 茚主要吸收谱带的波数值(50μm液层,cm-1)

3926.53139.52771.01915.31553.2

1361.11205.11018.5830.5590.8

2.2 波数重现性用与2.1波数准确度测量相同的仪器参数,对同一张聚苯乙烯膜进行反复重叠扫描。一般扫描3~5次。从扫描所得光谱测定波数的重现性。测得的各吸收峰的重现性应符合现行国家技术监督局的要求。

2.3 分辨率以聚苯乙烯膜检定。色散型红外仪用常规狭缝程序,通常的扫描速度,或以较窄的狭缝程序用较慢的扫描速度,记录聚苯乙烯的图谱。傅里叶红外仪设置于2cm-1分辨率和适宜的扫描次数,依法记录光谱图。在3110~2850cm-1范围内,应能显示7个吸收带,其中峰2851cm-1与谷2870 cm-1的分辨深度应不小于18%透光率;又峰1583 cm-

1与谷1589 cm-1之间的分辨深度应不小于12%透光率。的标称分辨率,应不低于2 cm-1。

2.4 100%线平直度调节100%控制旋钮,使记录笔置于95%透光率处,以快速扫描速度扫描全波长段,其100%线的偏差应小于4%透光率。

2.5 噪声调节100%控制旋钮,使记录笔置于95%透光率处,在1000cm-1处定波数连续扫描5min,其最大噪声(峰-峰值)应小于1%透光率。

2.6 其他杂散光水平和透光率准确度检查,因需要特殊器件,且对药品测定影响不大,故不作硬性要求,

3 红外光谱测定操作方法

红外光谱测定技术分两类。一类是指检测方法,如透射、衰减全反射、漫反射、光声及红外发射等;另一类使之制样技术。在药物分析中,通常测定的都是透射光谱,采用的制样技术主要有压片法、糊法、膜法、溶液法、衰减全反射法和气体吸收池法等、

3.1压片法取供试品约1~1.5mg,置玛瑙研钵中,加入干燥的溴化钾或氯化钾细粉约200~300mg(与供试品的比约为200:1)作为分散剂,充分研磨混匀,置于直径为13mm的压片磨具中,使铺展均匀,抽真空约2min,加压至(0.8×106)kPa(约8~10T/cm2),保持压力2min,撤去压力并放气后取出制成的供试片,目视检测,片子应呈透明状,其中样品分布应均匀,并无明显的颗粒状样品。亦可采用其他直径的压模制片,样品与分散剂的用量需相应调整以制的浓度适合的片子。

3.2 糊法取供试品约5mg,置玛瑙研钵中,粉碎研细后,滴加少量液状石蜡或其他适宜的糊剂,研成均匀的糊状物,取适量糊状物夹于量窗片或空白溴化钾片(每片约150mg)之间,作为供试片,另以溴化钾约300mg制成空白片作为补偿。亦可用专用专职夹持糊状物。制备时应注意尽量使糊状样品在窗片间分布均匀。

3.3 膜法参照上述糊法所述的方法,将能形成薄膜的液体样品铺展于适宜的盐片中,使形成薄膜后测定。若为高分子聚合物,可先制成适宜厚度的高分子薄膜,直接置于样品光路中测定。熔点较低的固体样品可固体样品可采用熔融成膜的方法制样。

3.4 溶液法将供试片溶于适宜的溶剂中,制成1%~10%浓度的溶液,灌入适宜厚度的液体池中测定。常用溶剂有四氯化碳、三氯甲烷、二硫化碳、己烷、环己烷及二氯乙烷等。选用溶液应在被测定区域中透明或仅有中至弱的吸收,且与样品间的相互作用应尽可能小。

3.5 气体吸收池法测定气体样品需要使用气体吸收池,常用气体吸收池的光路长度为10cm。通常先把气体吸收池抽空,然后充以适当压力(约50mmHg)的供试品测定。也可用注射器向气体吸收池内注入适量的样品,待样品完全气化后测定。

3.6 衰减全反射法(ATR)取供试品适量,均匀地铺展在衰减全反射棱镜的底面上,使紧密接触,依法录制反射光谱图。本法适用于纤维、高分子聚合物等粉碎的样品。

3.7 试样的制备方法出另有规定外,用作鉴别时应按照药典委员会编订的《药品红外光谱集》第一卷(1995年版)、第二卷(2000年版)、第三卷(2005年版)和第四卷(2010年版)收载的各光谱图所规定的制备方法制备。具体操作技术可参见《药品红外光谱集》的说明。当新卷收载旧卷相同谱号的光谱图时,旧卷图谱作废。

用作晶型、异构体限度检查或含量测定时,试样制备和具体测定方法均按药典各品种项下有关规定操作。

4 供试品的测定

4.1 原来要的鉴别采用固体制样技术时,最常碰到的问题是多晶型现象,固体样品的晶型不同,其红外光谱往往也会产生差异。当供试品的实测光谱与《药品红外光谱集》所收载的对照图谱不一致时,在排除各种可能影响光谱的外在或认为因素后,应按该药品光谱图中备注的方法或各品种项下规定的方法进行预处理,再绘制光谱,进行比对。如未规定该品种在相同的条件下同时进行重结晶,然后一发绘制光谱,进行比对。如已规定特定的药用晶型,则应采用相应晶型的对照品依法进行比对。

当采用固体制样技术不能满足鉴别需要时,可改用溶液法绘制光谱后对比。

.2 制剂的鉴别

4.2.1分类

4.2.1.1 不加辅料的制剂如无菌原料直接分装的注射用粉针剂及不加辅料的冻干剂和胶囊剂等其他成品,可直接取内容物绘制光谱图进行鉴别。

4.2.1.2 单方制剂一般采用简单的提取分离手段就能有效去除辅料,可根据不同剂型的特点选择不同的分离提取方法,取干燥后的提取物绘制光谱图进行鉴别。

4.2.1.3 复方制剂一般情况比较复杂,根据具体问题具体分析。

4.2.2 前处理

4.2.2.1 预处理对可能影响样品红外光谱的部分,在提取前应尽量

去除,如对于报以制剂应先去除包衣,双层片将二层分开等。

4.2.2.2 提取一般按各品种项下规定的方法对待测成分进行分离提取。如品种项下未规定提取方法,对国外药典已收载有红外光谱鉴别的制剂或有其他相关文献资料的品种,可参考相关文献方法进行处理。对于无文献资料的药物制剂,可根据活性成分和辅料的性质选择适当的提取方法。首选易挥发、非极性的有机溶剂为提取溶剂,如乙醚、乙酸乙酯、丙酮、三氯甲烷、二氯甲烷、石油醚、乙醇、甲醇等;如标准光谱集中有转晶方法,或可获得原料药的精制溶剂,最好选用与转晶方法相同的溶剂或精制溶剂。若首选溶剂不适用,可考虑混合溶剂。一般所选溶剂为无水溶剂,提取时有机层可加无水硫酸钠除去水分。

根据活性成分和辅料的溶解度不同,通过选择适合的溶剂即能提取活性成分又能去除辅料,则采用直接提取法。对于多数药品,一般选用的常用溶剂如水、甲醇、乙醇、丙酮、三氯甲烷、二氯甲烷、乙醚、石油醚等就能基本达到分离效果,非极性溶剂的效果比极性的好。一般非电离有机物质(不是有机酸或有机碱的盐)采用此法可获得满意的结果。如冻干制剂常用辅料均不溶于乙醇和甲醇,用醇提取均能获得满意结果;辅料只有水的的液体蒸干水分后绘制红外光谱。对于液体或半固体制剂宜选择萃取法,可根据活性成分和辅料性质选用直接萃取法,当有机酸或有机碱的盐类药物经直接提取法不能够火的满意的光谱图时,一般采用经酸化(或碱化)后再萃取的方法,但需与火星物质(基)的红外光谱进行比对。

含有待测成分的提取溶液经过滤后,可选择析晶、蒸干、挥干等方法火的待测成分;必要时可经洗涤、重结晶等方法纯化。

4.2.3 干燥可根据《药品红外光谱集》备注中的干燥方法对待测成分进行干燥,也可采用各品种项下的干燥失重方法或参考(《中国药典》2010年版二部附录ⅧL)干燥失重测定法项下的方法进行干燥,可视待测成分情况适当增减干燥时间。

4.2.4 图谱比对

4.2.4.1 辅料无干扰,待测成分的晶型不变化,此时可直接与对照品图谱或对照图进行比对。

4.2.4.2 辅料无干扰,但待测成分的晶型有变化,次中情况可用对照品经同法处理后的图谱比对。

4.2.4.3 待测成分的晶型不变化,而辅料存在不同程度的干扰,此时可参照原料药的对照图谱,在指纹区内选择3~5个不受辅料干扰的待测成分的特征谱带作为鉴别的一句。鉴别时,实测谱带的波数误差应小于规定值的0.5%。

4.2.4.4 待测成分的晶型有变化,辅料也存在干扰,此种情况一般不宜采用红外光谱鉴别。

4.3 多组分原料药的鉴别不能采用全光谱比对,可借鉴4.2.4.3的方法,选择主要成分若干个特征谱带,用于组成相对稳定的多组分原料的鉴别。

4.4 晶型、异构体的限度检查或含量测定供试品制备和具体测定方法均按各品种项下有关规定操作。

5 测量操作注意事项

5.1 环境条件红外式的室温应控制在15~30℃,相对湿度应小于65%,适当通风换气,以免积聚过量的二氧化碳和有机溶剂蒸汽。

供电电压和接地电阻应符合仪器说明书要求。

5.2 背景补偿或空白校正记录供试品光谱时,双光束仪器的参比光路中应置相应的空白对照物(空白盐片、溶剂或糊剂);单光束仪器(常见的傅里叶变换红外仪)应先进行空白背景扫描,扫描供试品后扣除背景吸收,即得供试品光谱。

5.3 采用压片法时,以溴化钾最常用,若供试品为盐酸盐,可比较氯化钾压片和溴化钾压片法的光谱,若而这没有区别,则使用溴化钾。

所用的溴化钾或氯化钾在中红区应无明显的干扰吸收;应预先研细,过200目筛,并在120℃干燥4h后分装并在干燥器中保存备用。若发现结块,需重新干燥。

5.4 供试品研磨应适度,通常以粒度2~5μm为宜。供试品过度研磨有时会导致晶格结构的破坏或晶型的转化。粒度不够细则易引起光散射能量损失,使整个光谱极限倾斜,甚至严重变形。该现象在

4000~2000cm-1高频端最为明显。压片法及糊法中最易发生这种现象。

5.5 压片法制成的片厚在0.5mm左右时,常可在光谱上观察到干涉条纹,对供试品光谱产生干扰。一般可将片厚调节至0.5mm以下即可减弱或避免。也可用金相砂纸将片稍微打毛以去除干扰。

5.6 测定样品时的扫描速度应于波长校正的条件一致(快速扫描将使波长滞后)。制成图谱的最强吸收峰透光率应在10%以下,图谱的质量应符合《药品红外光谱集》的要求。

5.7 使用预先印制标尺记录纸的色散型仪器,在制图时应注意记录笔在纸上从横坐标的位置与仪器示值是否相符,以避免因图纸对准不良引起的误差。

5.8 压片模具及液体吸收池等红外附件,使用完后应及时擦拭干净,必要时清洗,保存在干燥器中,以免锈蚀。

5.9 关于样品的纯度提取后获刑成分的纯度在90%~95%的范围内就能基本满足制剂红外鉴别的要求。

5.10 建立自己的光谱库不同仪器间峰波数和更的强弱会有微小差别,建议各实验室建立自己的光谱库,用仪器自带软件计算与参考图谱的一致性。导数光谱能够极大的增强判断的准确性,

5.11 波数的偏差低于1000cm-1波数的偏差不超过0.5%,其他波数的偏差不超过±10cm-1。

5.12 整体性红外光谱与分子结构有密切的关系,谱带之间相互关联,特别是指纹区体现的是整体结构。图谱比较时,应主要从整体上比较谱带最大吸收的位置、相对强度和性状与参考图谱的一致性。

6 结果判定

红外光谱在药品分析中,主要用于定性鉴别和物相分析。定性鉴别时,主要着眼于供试品光谱与对照品光谱全谱谱形的比较,即首先是谱带的有与无,然后是各谱带的相对强弱。若供试品的光谱图与对照光谱图一致,通常可判定量化合物为同一物质(只有少数例外,如有些光学异构体或大分子同系物等)。若两光谱图不同,则可判定量化和不同。但下此结论时,须考虑供试品是否存在多晶现象,纯度如何,乙基其他外界因素的干扰。采用固体样品制备法,如遇多晶现象造成的实测光谱与对照光谱又差异时,一般可按《药品红外光谱集》中所载重结晶处理法或与对照品平行处理后测定。但如对药用晶型有规定时,则不能自行重结晶。

其他影响常可通过修改制样技术而解决。由于各种型号的仪器性能不同,试样制备时研磨程度的差异或吸水程度不同等原因,均会影响光谱的性状。因此,晶型光谱比对时,应考虑各种因素可能造成的影响。

7 常见的外界干扰因素

7.1 大气吸收。

7.1.1 二氧化碳 2350cm-1,667 cm-1。

7.1.2 水汽 3900~3300 cm-1,1800~1500 cm-1。

7.1.3 溶剂蒸汽。

7.2 干涉条纹规律性的正弦形曲线叠加在光谱图上。

7.3 仪器分辨率的不同和不同研磨条件的影响。

红外分光光度法

中文名称:红外分光光度法 英文名称:infrared spectrophotometry 定义:通过测定物质在波长2.5~25 μm(按波数计为4000~400 cm-1)的红 外光区范围内光的吸收度,对物质进行定性和定量分析的方法。所用仪器为 红外分光光度计 仪器:红外分光光度计 流程:光源->吸收池->单色器->检测器->记录装置 分为色散型(已淘汰)和干涉型。 色散型: 光源:一般常见的为硅碳棒,特殊线圈,能斯特灯(已淘汰)。 色散元件:反射光栅 检测器:真空热电偶及Golay池 吸收池:液体池和气体池(具有岩盐窗片) 干涉型: 光源:同色散型 单色器:迈克尔逊干涉仪 检测器:多用热电性硫酸三甘肽(TGS)或光电导性检测器。 图解析 解析原则:四先四后相关法 先特征(区),后指纹(1250/cm)。先最强(峰),后次强(峰)。先粗查,后细找。先否定,后肯定。 红外识谱歌 外可分远中近,中红特征指纹区, 1300来分界,注意横轴划分异。 看图要知红外仪,弄清物态液固气。 样品来源制样法,物化性能多联系。 识图先学饱和烃,三千以下看峰形。 2960、2870是甲基,2930、2850亚甲峰。 1470碳氢弯,1380甲基显。 二个甲基同一碳,1380分二半。 面内摇摆720,长链亚甲亦可辨。 烯氢伸展过三千,排除倍频和卤烷。

末端烯烃此峰强,只有一氢不明显。 化合物,又键偏,~1650会出现。 烯氢面外易变形,1000以下有强峰。 910端基氢,再有一氢990。 顺式二氢690,反式移至970; 单氢出峰820,干扰顺式难确定。 炔氢伸展三千三,峰强很大峰形尖。 三键伸展二千二,炔氢摇摆六百八。 芳烃呼吸很特征,1600~1430。 1650~2000,取代方式区分明。 900~650,面外弯曲定芳氢。 五氢吸收有两峰,700和750; 四氢只有750,二氢相邻830; 间二取代出三峰,700、780,880处孤立氢醇酚羟基易缔合,三千三处有强峰。 C-O伸展吸收大,伯仲叔醇位不同。1050伯醇显,1100乃是仲, 1150叔醇在,1230才是酚。 1110醚链伸,注意排除酯酸醇。 若与π键紧相连,二个吸收要看准, 1050对称峰,1250反对称。 苯环若有甲氧基,碳氢伸展2820。 次甲基二氧连苯环,930处有强峰, 环氧乙烷有三峰,1260环振动, 九百上下反对称,八百左右最特征。 缩醛酮,特殊醚,1110非缩酮。 酸酐也有C-O键,开链环酐有区别, 开链强宽一千一,环酐移至1250。 羰基伸展一千七,2720定醛基。 吸电效应波数高,共轭则向低频移。 张力促使振动快,环外双键可类比。 二千五到三千三,羧酸氢键峰形宽, 920,钝峰显,羧基可定二聚酸、 酸酐千八来偶合,双峰60严相隔, 链状酸酐高频强,环状酸酐高频弱。 羧酸盐,偶合生,羰基伸缩出双峰, 1600反对称,1400对称峰。 1740酯羰基,何酸可看碳氧展。

TJ270-30A型红外分光光度计操作、维修保养规程

二、适用范围:适用于TJ270-30A型红外分光光度计的操作、维修保养。 三、编制依据:《TJ270-30A型红外分光光度计使用说明书》 四、责任者:QC检验员。 五、内容: (一)操作规程: 1 开机 首先分别打开计算机、红外系统主机与控制(控制器--升级版)开关,再连接号USB 电缆线,然后点击“开始\程序\TJ270”或双击桌面快捷方式,进行系统初始化并运行系统程序。 2 测试样品 2.1 系统参数设置 点击“文件\参数设置” 单。 参数设置应根据样品要求来确定,若无要求或者要求不明确,一般按照如下设置:将测量模式设置为透过率,扫描速度设置为快,狭缝宽度设置为正常,响应时间设置为正常,X—范围设置为4000-400,Y—范围设置为0-100,扫描方式设置为连续,次数设置为1即可。 2.2 系统校准 此处,样品以真空作为参比物。 在确认样品室中未放置任何物品的情况下,点击菜单栏中的“系统操作\系统校准”或直接按F2快捷键,进行系统0、100%校准。 2.3 扫描 将事先处理好的样品放入样品室中的样品光样品池中,点击“测量方式\扫描”或直接 2.4 数据处理 扫描结束后,可在右侧的信息栏中的“当前谱线\名称”一栏中,输入样品名称及操作者。 点击“文件\ 点击“文件\ 点击“数据处理\读取数据”来进行列表读取火光标读取,或直接点击工具栏中的

点击“数据处理\ 3 退出系统与关机 样品测试结束后,点击“文件\退出系统”或直接点击右上角的关闭按钮退出红外操作系统。分别关闭控制(控制器--升级版)开关、红外主机与计算机。 4 填写仪器使用记录。 (二)维护保养规程 TJ270-30A型红外分光光度计是大型机密光学仪器。仪器在出厂之前,已经过仔细的调制。如给以适当的维护、保养,不仅能保证仪器稳定可靠地进行工作,而且也可延长仪器的寿命。 1 保证使用环境。 2 用户在使用仪器过程中,不得擅自对仪器加以调整更不可拆卸其中的零件,尤其是光学镜面,不可随意擦拭。 3 定期对仪器的性能进行检测,发现问题,请立即与制造厂方联系解决。 4 每次测试结束,首先取出样品,关断电源(最好拔下插头)并取下记录笔,配上笔帽放置。 5 长期不用仪器时,注意环境的温度(20±5℃)和湿度(65%以下)。 6 关于有毒池窗的注意事项 6.1 KRS-5(TL1-TLBr)KRs6(TLBr+TLCL):可用来短时间测定酸、碱(除浓硝酸外)。用后应立即清洗。也可测量脱水不完全的样品,应避免在高温下使用,100℃以上将产生有毒气体,会使人产生铝中毒的症状。 6.2 C8I:最容易潮解,要在湿度40%以上使用,不能作高温测量,100℃以下亦产生有毒气体。 6.3 As2Se3:50℃以上表面即酸化。对红外光不透明。如温度再高,则与样品发生化学反应,溢出有毒物质。对碱溶液、10%以上的硝酸、王水等的测量均不能使用。 7 及时填写仪器保养、维修记录。 (三)故障的诊断和排除 一般来说出现下列现象时,并非仪器故障,请注意判断。 1 一部分波数范围内的测光值有较大跳动:原因是,由于样品光、参考光同时大幅度减小,比例计算几乎在0%附近进行,这时噪声电平的扰动导致计算结果大幅度地跳动。 2 校准100%值时有跳动。在狭缝太窄或响应太快时将出现此现象。一般来说,在3000cm-1附近,狭缝位于较宽档,响应位于慢档时,如果跳动值在±5%为正常现象。 3 偶尔出现操作键失灵现象。此时屏幕所有显示不能变动,对键盘操作没有反应,这是系统程序受到干扰不能正常运行所至。此时需要重新启动程序,并检查一下样室空间是否有异物挡光,若有需要将异物拿开。 4 仪器的故障诊断和排除 4.1 一般故障及处理方法请参考表1。

红外分光光度法课后答案-仪器分析-梁生旺

红外分光光度法课后答案 1.分子吸收红外光能级跃迁,必须满足什么条件? 答:①分子吸收的红外辐射应具有刚好满足分子振动跃迁所需的能量。 ②分子振动只有使偶极矩发生变化的振动形式才能吸收红外辐射。 2.何为红外非活性振动? 答:分子发生能级跃迁需要产生偶极矩的变化,如果只振动而无偶极矩变化,那么红外光谱上无吸收曲线。 3.乙酰乙酸乙酯存在酮式和烯醇式两种互变异构体,二者的红外光谱有何区别?答:烯醇式红外吸收中的羰基和羟基振动频率因为其内部形成氢键而向短波移动。 4.苯甲酸乙酯和苯乙酸甲酯可否用红外光谱区别?为什么? 答:能;①苯乙酸甲酯的乙基因为和苯环的大π键形成p-π共轭,其振动频率向短频方向移动。 ②苯甲酸乙酯的羰基因为和苯环形成π-π共轭,其振动频率向短频方向 移动。 5.试推测分子式为C9H6O2的化合物结构。 答

该红外图谱中有关炔基的振动频率并未标出,但图上可以明显的看见其特征吸收峰。另在920cm处的吸收峰为苯的芳氢面内伸缩振动引起的。 6.一化合物为无色可燃液体,有果子香味,沸点为7 7.1,微溶于水,易溶于有机溶剂。其分子式为C4H8O2,推测其结构式。 答:Ω=2+2x4-8/2=1,故含有双键。 842cm处的吸收属于乙基的面内摇摆振动频率。 9.一白色粉末,有特殊气味,熔点为76.5,稍溶于水,溶于乙醇和乙醚。质谱分析,确定分子式为C8H8O2.试推测其结构式。 答:Ω=2+2x8-8/2=5,故含有苯环或为芳香化合物。 927cm处为芳氢的面内振动引起的。1690处的吸收峰为高强吸收峰,无干扰峰,可确认为羧基的羰基基团。

8.某未知物的分子式为C10H12O.推断其结构式。 答:Ω=2+2x10-12/2=5,故含有苯环或为芳香化合物。 1390、1365cm处的两个峰,分裂峰,吸收强度几乎相同,说明含有偕二甲基(异丙基)。 830cm的吸收峰说明苯环上含有对位取代。 2820、2720cm处的特征吸收峰则表示分子结构中含有醛基。 3030、3060cm处为芳氢的伸缩振动、

红外分光光度计报告

Nanjing Simcere Dongyuan Pharmaceutical Co.,Ltd. 南京先声东元制药有限公司 Name: Validation Report Serial Number: VR094-01 类别:验证报告报告号:VR094-01 Location: Instrument Room of QC Page: No.1 of 8 安装位置:化验室页码:共8页第1页 PerkinElmer Fourier-transform Infrared Spectrophotometer Spectrum BXⅡOperational And Performance Qualification Report 傅立叶变换红外光谱仪运行及性能确认报告 (设备编号:DG0202147)

目录 1 Equipment Description 设备描述 (3) 2 History of Prequalification 前确认历史 (3) 3 Spare Parts 仪器备品备件 (3) 4 Safety Inspection 安全检查 (3) 5 Verification of equipment 检验设备的校验 (3) 6 Calibration of instruments 仪表的校验 (4) 7 SOP for OQ OQ中所用标准操作规程 (4) 8 Operating Qualification 运行确认 (4) 8.1 Self-checking仪器自检 (4) 8.2 Resolution仪器的分辨率 (4) 8.3 Accuracy仪器的准确度 (5) 8.4 Repeatability仪器的重复性 (5) 8.5 Baseline(100%)straightness基线(100%)平直度 (6) 8.6 Baseline noise 基线噪声 (7) 9 Performance Qualification性能确认 (7) 10 Deviation and Action 偏离和不符合的纠正行为 (7) 11 Revalidation period 验证周期 (7) 12 Personel Trainning 人员培训 (7) 13 Conclusion验证结论 (7) 14 Report appendix detailed list报告附件清单 (8)

分析化学基础知识——第七课 红外分光光度法

第七课红外分光光度法 一、概述 1.红外区波长范围及分区 波长范围:0.76μm-1000μm 分区: 2.红外吸收光谱的表示方法 3.IR的特点 适用于气、液、固态样品、且样品用量少。 大多数化合物均有红外吸收,除了单原子分子和同核分子。 红外光谱中的吸收峰较多,特征性强,适合用于定性和结构解析。红外光谱仪的价格相对低廉。 定量分析灵敏度差,准确度低,主要用于定性分析。 不适合作含水样品的分析。 二、基本原理 分子振动和红外吸收 吸收峰的位置 吸收峰的强度 1.分子振动和红外吸收 双原子分子的振动与红外吸收 分子振动简单的双原子A-B间的振动可近似地用谐振子模型来描述振动频率可由虎克定律和牛顿定律推导出来 A、B视为两个刚性小球 化学键视为质量忽略不计的弹簧

A、B间的振动视为简谐振动 红外吸收 入射光频率与分子振动频率相等时,分子将吸收入射光,振动振幅加大,产生吸收光谱,因此,所吸收光的频率为: 多原子分子振动形式 伸缩振动γ弯曲振动δ (1)伸缩振动 键长变化但键角不变的振动 它包括两种类型 对称伸缩振动γs 反称伸缩振动γas 亚甲基的伸缩振动

(2)弯曲振动 键角发生周期性变化,但键长不变的振动。它包括以下几种类型 面内弯曲振动 AX2 面外弯曲振动 变形振动AX3 面内弯曲振动(β) 剪式振动(δ) 面内摇摆振动(ρ) 面外弯曲振动(γ) 面外摇摆振动(ω)

扭曲振动(τ) 变形振动 对称变形振动(δs) 不对称变形振动(δas) (3)振动自由度 双原子分子:一种振动形式 多原子分子:振动形式复杂,可以分解为许多简单的基本振动。基本振动的数目称为振动自由度,可以用作估计基频峰的可能数目。 振动自由度的计算 分子的运动形式分为:平动、振动和转动,则:振动自由度=总自由度-平动自由度-转动自由度 设:分子含有N个原子 则:总自由度为3N,平动自由度为3 转动自由度为3(对于非线形分子) 或2(对于线形分子) 振动自由度 非线形分子线形分子 3N-6 3N-5 H2O分子的振动自由度 3×3-6=3 CO2的振动自由度

红外分光光度法检验标准操作规程

红外分光光度法检验标准操作规程 目的:建立红外分光光度法标准操作规程,以确保检验结果的正确性与准确性。 范围:本规程适用于红外分光光度法。 职责:检测中心、质量管理部对本规程实施负责。 内容: 1.简述 化合物受红外辐射照射后,使分子的振动和转动运动由较低能级向较高能级跃迁,从而导致对特定频率红外辐射的选择性吸收,形成特征性很强的红外吸收光谱,红外光谱又称振-转光谱。 红外光谱是鉴别物质和分析物质化学结构的有效手段,已被广泛应用于物质的定性鉴别、物相分析和定量测定,并用于研究分子间和分子内部的相互作用。 习惯上,往往把红外区分为3个区域,即近红外区(12800~4000cm,0.78~2.5m)。其中中红外区是药物分析中最常用的区域。红外吸收与物质浓度的关系在一定范围内服从于朗伯-比尔定律,因而它也是红外分光光度法定量的基础。 红外分光光度计分为色散型和傅里叶变换型两种。前者主要由光源、单色器(通常为光栅)、样品室、检测器、记录仪、控制和数据处理系统组成。以光栅为色散元件的红外分光光度计,以波数为线性刻度,以棱镜为色散元件的仪器,以波长为线性刻度。波数与波长的换算关系如下: 波数(cm-1 )= 104 /波长μm 傅里叶变换型红外光谱仪(简称FT-IR)则由光学台(包括光源、干涉仪、样品室和检测器)、记录装置和处理系统组成,由干涉图变为红外光谱需经快速傅里叶变换。该型仪器现已成为最常用的仪器。 2 红外分光光度计的检定 所用仪器应按现行国家质量与核查技术监督局“色散型红外分光光度计检定规程”、“傅里叶变换红外光谱仪检定规程”和《中国药典》附录规定,并参考仪器说明书,对仪器定期进行校正检定。

红外分光光度法

红外分光光度法 一、填空题 1. 红外光谱是介于与之间的电磁波,其波长范围是。 2. 化合物的红外吸收曲线可由来描述。 3. 不同分子在红外谱图中出现的吸收峰位,是由所决定的。 4.乙醛CH3CHO的v c=0为1731cm-1,若醛上氢被一氯原子所取代形成CH3—C—Cl后,则v c=0向移动。 5. 丙酮的v c=0为l715cm-1,若其中一个甲基被一苯基所取代形成苯乙酮后,则v c=0向移动。 6. 化合物的v c=0为l663cm-1,若8位上氢被甲基取代后则v c=0由于因而频率。 7. 红外光谱中所说的特征频率区是指的区间,其特点是。 8. 苯甲醛的红外光谱中出现了2780cm-1和 2700cm-1两个吸 收峰,是由而产生的。 9. 分子内形成氢键与分子间形成氢键一样会使基团的振动频率向低波数移动。但是分子间氢键而分子内氢键。 10. 压片法所用的KBr必须进行干燥处理,一般要在左右。 11. 含羟基的样品,因溴化钾分散剂易吸水,干扰羟基的测定,因此采用特别合适。 12. 调糊法常用的悬浮剂有 , 但此法不能用于样品中的鉴定。 13. 液体池窗板很容易吸潮变乌,致使透光性变坏,因此使用时禁止,拆装时应 , 在的房间操作。 14. 液体池法需选择溶剂,一般常用的溶剂有 。 15. 顺-2-丁烯与反-2-丁烯的红外光谱在区域有显著不同的特征。顺式r C-H在处有数强吸收而反

式r C-H在有很强吸收峰。 16.氢键使v OH向且。 17. 一纯品的分子式为 C5H3NO,其红外光谱中有1725、2210、2280 cm-1,此化合物最可能结构是。 18. 一种苯的氯化物在 900~69Ocm-1区域波没有吸收峰,它的可能结构为。 19. 有一种溴甲苯C7H7Br,有一单峰在801cm-1,它的结构式为。 20. 化合物SO2的平动自由度为,转动自由度为 , 振动自由度为。 二、单项选择题 1、某化合物受电磁辐射作用后,振动能级发生变化,所产生的光谱波长范围是( ) A. 紫外光 B. X射线 C. 微波 D. 红外线 2、由红外光谱测得S—H的伸缩振动为 2000cm-1,S—D的伸缩振动频率为( ) A.1440cm-1 B.2000cm-1 C.4000cm-1 D.1000cm-1 3、乙烯分子的振动自由度为( ) A.20 B.13 C.12 D.6 4、乙炔分子的振动自由度为( ) A.12 B.7 C.6 D.5 5、苯分子的振动自由度为( ) A.32 B.36 C.30 D.31 6、下列化学键伸缩振动产生的基频峰出现在最低频的是() A. C-H B. C-N C. C-C D. C-F 7、分子式为C8H7ClO s的化合物其不饱和度为( ) A.5 B.4 C.6 D.2 8、CO2分子没有偶极矩这一事实表明该分子是( ) A. 以共价键结合的 B. 角形的 C. 线性的并且对称 D. 非线性的 9、下列羰基化合物中,v c=0出现最高波数者为( ) O O O A. R—C—R′ B. R—C—Cl C. R—C—H

红外分光光度计确认方案

红外分光光度计确认方案 ****药业有限公司

确认报告确认名称:红外分光光度仪确认

红外分光光度计确认方案 ****药业有限公司

目录 1.概述 2.确认目的 3.确定范围 4.职责 5.人员组成 6.风险评估 7.确认方案内容 7.1设计确认及相关文件 7.2安装确认 7.3运行确认 7.4性能确认 8. 偏差处理 9.确认结果及评价 10.再确认周期

1.概述 傅里叶变换红外光谱仪(简称FT-IR)是利用干涉调频的工作原理,根据干涉图和光谱图之间的对应关系,通过测量干涉图和对干涉图进行傅里叶变换来获得光谱图;它能同时测量、记录来自光源所有谱元的信息,高效率地采集来自光源的辐射能量。检测器接收到的随光程差变化的信号强度便是光源所有谱元的贡献。数据处理系统通过对干涉图函数进行傅里叶变换得到按频率(波数)分布的物质的吸收光谱。由于具有多通道的优点,因有具有较高的信噪比、分辩率、检测灵敏度和较快的扫描速度,广泛应用于物质的定性定量及结构成分分析,是测量、研究分子振动、转动光谱的重要工具。 2. 确认目的 确认傅里叶变换红外光谱仪测定数据准确可靠,符合检验要求。 3. 确认范围 本文件适用于傅里叶变换红外光谱仪的确认。 4. 职责 4.1质量控制部职责 负责起草确认方案、总结报告; 负责整个确认方案的实施,并做记录、总结报告; 负责该确认得出可靠的确认结论,适用于产品检验。 4.2质量保证部职责 做好过程监控,确保方案执行过程符合法规要求; 负责确认方案的审核; 负责确认实施的协调; 负责确认档案的管理。 5.人员组成 6.风险评估 6.1风险识别 6.1.1注意仪器是否稳定牢固,防止仪器不稳定。

红外吸收光谱分析及其应用

红外吸收光谱分析及其应用 20世纪50年代初期,红外光谱仪问世,揭开了有机物结构鉴定的新篇章。到了50年代末期,已经积累了大量的红外光谱数据,到70年代中期,红外光谱法成为了有机结构鉴定的重要方法。红外光谱测定的优点: 1、任何气态、液态、固态样品都可以进行红外光谱的测定,这是核磁、质谱、紫外等仪器所不及的。 2、每种化合物均有红外吸收,又有机化合物的红外光谱可以获得丰富的信息。 3、常规红外光谱仪价格低廉,易于购置。 4、样品用量小。 红外吸收光谱分析也叫红外分光光度法,十一研究物质分子对红外辐射的吸收特性二建立起来的一种定性(包括结构分析)、定量分析法。根据试样的红外吸收光谱进行定性、定量分析和确定分子结构等分析的方法,称为红外吸收光谱法。 原理:当分子中某个基团的振动频率和红外光的振动频率一致时,分子就吸收红外光的能量,从原来的基态振动能级跃迁到能量较高的振动能级。物质对红外光的吸收曲线称为红外吸收光谱(IR)。 分子吸收红外光必须满足如下两个条件: 1.红外光的能量应恰好能满足振动能级跃迁所需要的能量,当红外光的频率与分子中某基团的振动频率相同时,红外光的能量才恩能够被吸收。 2.分子必须有偶极矩的变化。 与UV(紫外光谱)相比,IR的特点:IR频率范围小、吸收峰数目多、吸收曲线复杂、吸收强度弱。IR峰出现的频率位置由振动能级差决定;吸收峰的个数与分组振动自由度的数目有关;吸收峰的强度则主要取决于振动过程中偶极矩变化的大小和能级跃迁的几率。 红外吸收光谱具有高度的特征性,除光学异构外,没有两种化合物的红外光谱是完全相同的。红外光谱中往往具体要几组相关峰可以互相佐证而增强了定性和结构分析的可靠性,因此在官能团定性方面,是紫外、核磁、质谱等结构分析方法所不及的。红外光谱法可测定链、位置、顺反、晶型等异构体,而质谱法对异构体的鉴别则无能为力;红外光谱测定的样品范围广,无机、有机、高分子等

红外分光光度法鉴别

演示性试验 实验二十六 红外分光光度法鉴别 氢化可的松与醋酸氢化可的松 一、实验目的 1.了解红外分光光度计的基本原理及操作方法。 2.熟悉利用红外光谱鉴别药物的方法。 二、仪器与试药 1.仪器 FI 型光栅红外分光光度计 玛瑙乳钵 2.试药 溴化钾 三、实验原理 1.氢化可的松: 分子中三个羟基的存在,形成分子内及分子间的氢键缔合,使羟基的谱带变宽向低波数移动,V OH 约为3400cm ﹣1,C 20酮的Vc=o 为1715cm ﹣1,△4-3-酮的Vc=o 为1645cm –1,原因是与羟基形成氢 键、与双键共轭,故向低波数移动;Vc=o 为1620cm –1,由于C 3酮基形成氢键向低波数移动时,1620cm –1峰表现为肩峰:Vc=o1140~1000cm –1。 2.醋酸氢化可的松: 酯链羟基,因诱导效应,降低了羟基的极性,增强了双键成分因而增强了键力,使Vc=o 为1750cm –1;C 20酮基的位置在1710cm –1,△4-3-酮的Vc=o 为1635cm ﹣1;Vc-o-c1240cm ﹣1和1060cm ﹣1 是酯类的红外光谱特征。 四、实验内容: 取干燥供试品 1~2mg 与200mg 溴化钾(干燥并过 200目筛)粉末,在玛瑙乳钵中研磨均匀,将样粉适量置压片模具中,均匀覆盖模底,装置模具,联接真空系统,抽气5分钟(除去混于粉末中的湿气及空气,)然后,边抽气边加压至8吨维持5分钟,去除真空,取下模具,去除透明的供试品溴化钾片,置于样品框中,将样品框置于红外分光光度仪的光路中,空白置于参比光路,选择适当的增益、狭缝、程序及扫描时间,扫描区间为4000cm ﹣1~400cm ﹣1,得红外光谱曲线。 五、注意事项 1.供试品的纯度必须符合要求。 2.研磨样品时,应在红外灯下小心操作。 3.实验用溴化钾必须干燥、纯度符合要求并且颗粒均匀。 4.某些供试品在固体状态测定时,可能因为同质多晶型,测得图谱与标准图谱不符,此时应 CH 3O

红外分光光度法

红外光谱法 红外光谱法又称“红外分光光度分析法”。简称“IR”,分子吸收光谱的一种。利用物质对红外光区的电磁辐射的选择性吸收来进行结构分析及对各种吸收红外光的化合物的定性和定量分析的一法。 红外光谱法的一般特点 特征性强、测定快速、不破坏试样、试样用量少、操作简便、能分析各种状态的试样、分析灵敏度较低、定量分析误差较大。 红外光谱法的应用 1.定性分析和结构分析 红外光谱具有鲜明的特征性,其谱带的数目、位置、形状和强度都随化合物不同而各不相同。因此,红外光谱法是定性鉴定和结构分析的有力工具 2.定量分析 红外光谱法对试样的要求 红外光谱的试样可以是液体、固体或气体,一般应要求: (1)试样应该是单一组份的纯物质,纯度应>98%或符合商业规格才便于与纯物质的标准光谱进行对照。多组份试样应在测定前尽量预先用分馏、萃取、重结晶或色谱法进行分离提纯,否则各组份光谱相互重叠,难于判断。 (2)试样中不应含有游离水。水本身有红外吸收,会严重干扰样品谱,而且会侵蚀吸收池的盐窗。 (3)试样的浓度和测试厚度应选择适当,以使光谱图中的大多数 吸收峰的透射比处于10%~80%范围内。 目前主要有两类红外光谱仪:色散型红外光谱仪和傅立叶变换红外光谱仪。 一、色散型红外光谱仪 1 . 光源 红外光谱仪中所用的光源通常是一种惰性固体,同电加热使之发射高强度的连续红外辐射。常用的是Nernst灯或硅碳棒。Nernst灯是用氧化锆、氧化钇和氧化钍烧结而成的中空棒和实心棒。工作温度约为1700℃,在此高温下导电并发射红外线。但在室温下是非导体,因此,在工作之前要预热。它的特点是发射强度高,使用寿命长,稳定性较好。缺点是价格地硅碳棒贵,机械强度差,操

紫外分光光度法在药物分析中的应用

紫外分光光度法在药物分析中的应用 蒋贤森临床52 2152001037 摘要 药物分析是分析化学的一个重要应用领域,在药物分析工作中经常出现含复杂成分的药物或复方药物,对此经典的容量分析,重量分析等化学分析方法往往难于处理,一般都要借助于仪器分析方法,我国在药物分析方法上的研究经过几十年的发展已经有了很大的进步,用于药品质量控制的分析方法日益增多,使用的仪器类型日趋先进,并且仪器分析所占的比率越来越大,常用的仪器分析方法有紫外红外分光光度法气相色谱法液相色谱法毛细管电泳质谱法热分析法等,这些方法都有各自的特点和应用范围,紫外分光光度法由于具有方法简便灵敏度和精确度高重现性好可测范围广等明显优点,加之其仪器价格相对低廉易于维护因而越来越为分析工作者所重视,发展成为仪器分析方法中应用最广泛的方法以我国历版药典为例,紫外分光光度法的应用在其中占据很大的比例,高居各种仪器分析方法之首。虽然不断有新的分析方法出现,但紫外分光光度法因为具有灵敏度高快速准确等特点一直是制剂含量测定的首选方法,紫外分光光度法可广泛应用于分析合成药物,生物药品以及中药制剂等各种药物。 对紫外分光光度法,在飞速发展的现代药物分析领域中的可靠性

和作用作了总结,以大量的文献和数据说明紫外分光光度法仍然是有效可行的一种药物分析方法,紫外分光光度法发展到今天已经成为一种非常成熟的方法,衍生出许多种具体的应用方法如:双波长和三波长分光光度法差示分光光度法导数分光光度法薄层扫描紫外光谱法光声光谱法热透镜光谱分析法催化动力学分光光度法速差动力学分光光度法流动注射分光光度法以及化学计量学辅助的紫外分光光度法等等。 这些方法大都可用于药物分析的含量测定之中。 在此仅介绍其中的几种方法。 关键词:紫外分光光度法双波长三波长分光光度法差示分光光度法导数分光光度法 双波长三波长分光光度法 普通的单波长分光光度法要求试样透明无浑浊,对于吸收峰相互重叠的组分,或背景很深的试样分析往往难以得到准确的结果,双波长分光光度法简称双波长法,是在传统的单波长分光光度法的基础上发展起来的。使用二个单色器得到二个不同波长的单色光,它取消了参比池,通过波长组合在一定程度上能消除浑浊背景和重叠谱图的干扰,双波长法一般要求有二个等吸光度点,而三波长法,则只需在吸收曲线上任意选择三个波长 1 2 3 处测量吸光度,由这三个波长处的吸光度 A1 A2 A3计算 A A 与待测物浓度成正,因而可通过 A-C

专用型双光束红外分光光度计 WGH-30A标准操作规程

************有限公司GMP文件 文件名称: WGH-30A双光束红外分光光度计 标准操作规程文件编号: SOP-**-**-***-00 起草人日期年月日第 1 页,共 2 页 审核人日期年月日分发号 QA审核日期年月日生效日期年月日批准人日期年月日颁发部门质量部 分发部门质量部QC 1 目的:建立WGH-30A双光束红外分光光度计的标准操作规程 2 依据:WGH-30A双光束红外分光光度计使用说明书 3 适用范围:WGH-30A双光束红外分光光度计,2010版中国药典二部 4 责任者:QC主任、QC检验员 5 规程内容: 5.1准备工作: 5.1.1检查温湿度计,观察环境是否符合要求,温度为16-25℃,相对湿度为20-50%。确认仪器周围无振动、热源、辐射等。插上电源,打开电源开关,开启仪器,开始自检。 5.1.2开启电脑,运行操作软件,检查电脑与仪器连接是否正常。 5.1.3检查仪器工作是否正常,如有异常需查找原因并进行相应的处理,正常后方可进行测量。 5.1.4在窗口左侧的【参数设置】设置各项测定参数。 5.1.5仪器稳定后,进行测量。 5.2仪器校正 5.2.1 点击【复位】,仪器回复到所设置的最大波数处; 5.2.1 以空气为空白,在样品槽中放入标准聚苯乙烯样本,点击【单程】,开始测试。若所得红外谱图透光率最小值未达5%,则点击【校正】。 5.3 样品测定 5.3.1准备样品

5.3.1.1取适量的KBr于称量瓶中,在红外灯下烘1小时或在恒温105℃下烘3个小时,取出后置于干燥器中待用。 5.3.1.2溴化钾压片法:取供试品约0.3mg(在红外灯下烘1小时或在恒温105℃下烘3个小时,特殊供试品需用其他方法进行干燥,置玛瑙研钵中,加入干燥的溴化钾(溴化钾与供试品的比例应按照具体要求进行混合),充公研磨混匀(同一方向),移至压模中,使分布均匀,把压模水平放置于压片机座上,加压至20MPa,保持3分钟,(压力大小与保持时间应根据实际需要进行调整),取出供试片,有目视检查均匀,表面平滑,透光好。 5.3.1.3浆糊法:取干燥供试品约15mg,置于玛瑙研钵中,同一方向研磨,用滴管加相当量的大石蜡油,混合研匀使成糊状,用不锈钢小铲取出均匀地涂在溴化钾窗片上,放上另一窗片压紧。 5.3.2根据供试器的实验要求,设置参数。 5.3.2.1采集样品:在样品槽中里侧放空白试样,外侧放供试样品。单击【单程】,开始测定。 5.3.2.2 样品测定结束后,对该谱图进行相应的数据处理,单击【保存】,跳出保存窗口,命名和设置保存位置后单击【确定】。 5.4关机 5.4.1退出软件操作系统 5.4.2按仪器电源开关,关闭仪器。 5.4.3移走样品仓中的样品,确保样品仓清洁。 5.4.4清洁光谱仪和模具。 5.5.5关闭电脑 5.5.6作好仪器使用记录。

近红外分光光度法的测量模式及应用

药物分析结课论文 近红外分光光度法的测量 模式及应用 学生姓名: 学号: 任课教师: 所在学院: 专业: 中国·大庆 2012年12 月

近红外分光光度法的测量模式及应用 (黑龙江八一农垦大学) 摘要:近红外(near infrared)区域按ASTM定义是指波长在780—2526nm范围内的电磁波,是人们最早发现的非可见光区域,距今已有近200年的历史[1]。分光光度法是通过测定被测物质在特定波长处或一定波长范围内光的吸光度或发光强度,对该物质进行定性和定量分析的方法[3]。近红外分光光度法(near-infrared spectrophotometry ,NIRS)系通过测定被测物质的近红外谱区(波长范围约在780~2500nm,按波数计约为12800~4000cm-1)的特征光谱并利用适宜的化学计量学方法提取相关信息后,对被测物质进行定性、定量分析的一种分析技术[2]。 关键词:近红外分光光度法;测量模式;应用领域 1近红外分光光度法的原理和特点 近红外分光光度法是通过测定被测物质在近红外区的特征光谱进行定性定量分析的一种分析技术。由于近红外在常规光纤中有良好的传输特性,且具有仪器较简单、分析速度快、非破坏性和样品制备量小、几乎适合各类样品的分析以及可进行多组分多通道同时测定等特点。近年来,随着化学计量学、光纤和计算机技术的发展,近红外分光光度法在食品、化工、制药等许多领域,尤其是过程分析方面具有非常广泛的应用。近红外分光光度法的缺点是吸收信号弱、谱带宽、重叠较严、,而且吸收信号弱、信息解析复杂、光谱易动等[5]。 1.1化学分析[2] 1、定性分析 可对药品的活性成分、辅料、制剂、中间产物、化学原料以及包装材料进行鉴别。 2、定量分析 可定量测定药品的活性成分和辅料;测定某些脂肪类化合物的化学值,如羟值、

(完整版)Lambda750紫外-可见-近红外分光光度计使用说明

Lambda 750 紫外/可見/近紅外分光光度計使用說明 Lambda 750資料獲取(Data Collection)頁是一個圖形化的設置介面,但需要設置的參數是類似的,下面就以掃描方法設置為例來看看每一個專案的情況。 以掃描方法為例,資料獲取頁面讓您設置掃描的開始和結束範圍,縱座標類型和狹縫寬度。其他可以設置的參數包括掃描速度(Scan speed)、資料間隔(Data interval)、迴圈次數(Number of cycles)等。 設置掃描範圍時,開始(Start)值必須大於結束(End)值。不然的話數值將被互換。 縱座標類型從下拉清單中選擇。可選擇的縱座標類型(Ordinate mode)有: A ——Absorbance,吸光度 %T ——Transmittance,透過率

E1 ——樣品光路能量值 E2 ——參考光路能量值 %R ——Reflectance,反射率 狹縫寬度(Slit width)的選擇: 狹縫寬度在紫外/可見範圍內以nm表示, 通常選擇狹縫寬度為所測量的譜帶寬度的五分之一到十分之一之間,設置寬的狹縫可以 增加能量,提高信噪比,但同時會降低解析度和準確度,並且可能引起譜帶增寬;設置一個較小的狹縫可以增加解析度和光度計的準確度,但會降低信噪比。 掃描速度(Scan speed)——掃描速度(nm / min)。從下拉清單中選擇需要的掃描速度,慢掃描速度適用於窄峰,並且可以改善信噪比,使用較快地掃描速度適用於寬峰。如果選擇快速掃描,資料間隔會被自動設定。 資料間隔(Data interval)——採樣的數據間隔(nm) 迴圈次數(Number of cycles)——迴圈(重複)掃描的次數。 最快迴圈(Cycle as fast as possible)——儘快地迴圈,一個迴圈結束就立即開始下一個。 迴圈時間(Cycle time)——自行輸入一個迴圈時間,並選擇時間單位。迴圈 時間必須比最小迴圈時間長。 燈切換(Lamp change)——切換使用氘燈或鎢燈進行測量的波長位置(nm)。 如果您關心的光譜峰正好位於默認的切換波長(326 nm)附近,編輯改變該波長缺

Nicolet is5型红外分光光度计操作规程

一、目的: 制订详尽的工作程序,规范操作人员日常仪器设备操作,保证仪器设备稳定可靠。 二、范围: 适用于Nicolet iS5型红外分光光度计的操作、清洁和维护、维修。 三、职责: 1、操作人:严格执行本规程,认真、及时、准确地填写相关记录; 2、化验室负责人:监督检查检验员执行本操作规程。 四、内容: 1.操作方法 1.1打开计算机开关,双击电脑桌面“OMNIC”进入工作站,仪器自动复位至4000cm-1,并自动设计在常用工作参数状态。 1.2 参数设定或默认仪器设定参数。 1.3 数据处理。 1.4 压片法压制样品和参比片。 1.5 自动校准0%及100%(样品室不得放其他物件);校准后,放入已压好片的样品或涂有液体样品的溴化钾片(里面放参比,外面放样品)。 1.6 开始扫描;扫描至设定区间的下线波数时,仪器自动停止扫描。 1.7 输入想要存的文件名称后回车,按F10回到原始画面。 1.8绘图操作:即刻打印。 1.9打印峰值。 1.10 进行复位。 1.11 如继续测下一样品,重复操作1~10。 1.12 全部测量工作完毕后,退出红外系统。关闭计算机电源。 2、清洁和维护、维修: 2.1 清理仪器表面,用微湿软抹布擦拭仪器表面。 2.2 定期检查设备的干燥程度并活化干燥剂。 2.3 定期对仪器的性能指示进行检测。 2.4 维护保养执行参照以上方法,并填写仪器维护保养记录 HG/REC-QC023。 2.5本仪器的维护保养为每周不少于1次。如检测中发生需进行维护保养的情况,应适时调整增加维护保养的次数。如仪器出现故障不得私自拆卸和校准应联系专业人士查看原因并及时维修。 3.注意事项: 3.1工作电压与仪器要求的一致;环境温度在10-30℃,湿度在65%以下。 3.2 测试结束后,立即取出样品,盖好样品室罩及防尘罩。

红外分光光度法

红外分光光度法 1 简述 化合物受红外辐射照射后,使分子的振动和转动运动由较低能级向较高能及跃迁,从而导致对特定频率红外辐射的选择性吸收,形成特征性很强的红外吸收光谱,红外光谱又称振-转光谱。 红外光谱是鉴别物质和分析物质化学结构的有效手段,已被广泛应用于物质的定性鉴别、物相分析和定量测定,并用于研究分子间和分子内部的互相作用。习惯上,往往把红外区分为3个区域,近红外区(12800~40000cm -1,0.78~2.5μ m),中红外区(4000~400cm -1 ,2.5~25 μ m)和远红外区(400~10cm -1 ,25~1000μ m)。其中中红外区是药物分析中最常用的区域。红外吸收与物质的关系在一定范围内服从朗伯-比尔定律,因而它也是红外分光光度法定量的基础。 红外分光光度计分为色散型和傅里叶变换型两种。前者主要由光源、单色器(通常为光栅)、样品室、检测器、记录仪、控制盒数据处理系统组成。以光栅为色散元件的红外分光光度计,以波数为线性刻度,以棱镜为色散元件的仪器,以波长为线性刻度。波数与波长的换算关系如下: 10000 波数(cm -1)= ) 波长(μm 傅里叶变换型红外光谱仪(简称FT-IR)则由光学台(包括光源、干涉仪、样品室和检测器)、记录装置和数据处理系统组成,由干涉图变为红外光谱需经快速傅里叶变换。该型号仪器现已成为最常用的仪器。 2 红外分光光度计的检定 所用仪器应按现行国家质量与核查技术监督局“色散型红外分光光度计鉴定规程”、“傅里叶变换红外光谱仪鉴定规程”和《中国药典》附录规定,并参考仪器说明书,对仪器定期进行校正检定。 2.1 波数准确度 2.1.1 波数准确度的允差范围傅里叶变换红外光谱仪在3000cm -1附近的波数误差应不大于±5cm -1,在1000cm -1附近的波数误差应不大于±1cm -1。2.1.2 波数准确度检定方法

IRAffinity-1s红外分光光度计校验操作程序

目的:建立IRAffinity-1S红外分光光度仪校验操作程序和方法,以确保IRAffinity-1S 红外分光光度仪的正常使用。 范围:适用于IRAffinity-1S红外分光光度仪的校验。 职责:操作人员应严格按本校验操作程序进行正确操作和校验,以提供准确可靠的校验结果,确保仪器的正常使用。 1 校验项目与技术要求 1 .1 波数准确度与波数重现性 1.2 分辨率 聚苯乙烯薄膜红外光谱中,在3110~2850 cm—1范围内应能清晰地分辨出7个峰,其中峰2851cm—1与谷2870m—1之间的分辨深度不小于18%透光率;峰1583cm—1与谷1583cm—1之间的分辨深度不小于12%透光率。 1.3 100%线的平直度:≤4%透光率。 1.4 噪声:≤1%透光率。 2 检定条件 2.1 标准物质:聚苯乙烯薄膜(厚度0.03~0.05mm),其吸收带的波数值见下表: 仪器应置于平稳的工作台上,安放处无强振动源,无强光直射。室内应清洁,无腐蚀性气体,无强电磁场干扰。室温0~30℃;相对湿度≤65%;供电电源;电压为AC(220±22)V,频率为(50±1)Hz。 3 校验方法

3.1 波数准确度与波数重现性校验方法 3.1.1校验方法:以聚苯乙烯的吸收带作参考波数。将聚苯乙烯薄膜插入样品架中,以常用的扫描参数进行全波段扫描,重复扫描三次,将其吸收带数据打印下来,读取所对应的各吸收带的波数值。 3.1.2波数准确度(△)的计算: △υ=∑ = -- υ-υ n 1 i r i n 1 式中:υi为波数测得值; υr为参考波数的数值; n为测量次数。 3.1.3 波数重现性(R)的计算: R=υmax—υmin 式中:υmax为波数测得值的最大值; Υmin为波数测得值的最小值。 3.2 分辨率的检定方法 以适当的扫描速度对聚苯乙烯薄膜全波段扫描,观察其红外光谱,在3110~2850 cm—1范围内应能清晰地分辨出7个峰,其中峰2851cm—1与谷2870m—1之间的分辨深度不小于18%透光率;峰1583cm—1与谷1583cm—1之间的分辨深度不小于12%透光率。 3.3 100%线平直度的校验方法 调节100%控制旋钮,使记录笔置于95%透光率处,以快速扫描速度扫描全波段,其100%线的偏差应小于4%透光率。 3.4 噪声的校验方法 调节100%控制旋钮,使记录笔置于95%透光率处,在1000cm-1处定波数连续扫描5min,其最大噪声(峰-峰值)应小于1%透光率(水和二氧化碳的吸收区噪声除外)。 4 校验结果处理和校验周期 4.1 校验结果:校验的全部项目均应符合技术要求的即判为合格,方可使用。 若个别指标达不到要求,确难以维修而又不影响定性、定量结果准确性者,可作为准用品。 4.2 校验和检定周期:

红外分光光度法在油品检测中的应用

毕业论文文献综述 题目:红外分光光度法在油品检测中的应用学院:化学与药学院______ 专业:材料化学________ 班级:08级02班___ 学号:20084177________ 学生姓名:马鸽_________ 指导教师:王秀霞 2011年10月25日

摘要 所谓红外分光光度法是通过测定物质在波长2.5~25 μm(按波数计为4000~400 cm-1)的红外光区范围内光的吸收度,对物质进行定性和定量分析的方法。 其原理是对物质自发发射或受激发射的红外射线进行分光,可得到红外发射光谱,物质的红外发射光谱主要决定于物质的温度和化学组成。对被物质所吸收的红射线进行分光,可得到红外吸收光谱。红外光谱具有高度的特征性,不但可以用来研究分子的结构和化学键,而且广泛地用于表征和鉴别各种化学物种。 关键词红外分光光度法,油品检测,应用原理,实验操作 选题的依据及意义 通过阅读多篇文献资料,在油品检测方面应用前景广阔,主要方向有以下几种:分析工业废水中的微量油,测定土壤中石油类的应用,测定水质中石油类和动植物油。并且通过对各种测油方法的比较,得出红外分光光度法是目前最理想的测油方法,包括对石油类,动植物油类的检测,在环境监测方面的用处也很大。 本课题研究内容 1.概述 现在油类(即石油类、动植物油)的测定方法很多,常用的分析方法是重量法、红外分光光度法、非分散红外法。其中重量法是常用的分析方法,它不受油品种限制。但操作繁杂,灵敏度低,只适于测定10mg/L以上的含油水样。方法的精密度随操作条件和熟练程度的不同差别很大。而非分散红外法适用于测定0.02mg/L以上的含油水样,当油品的比吸光系数较为接近时,测定结果的可比性较好;但当油品相差较大,测定的误差也较大,尤其当油样中含芳烃时误差要更大些,这时要注意消除其他非烃类有机物的干扰。目前监测分析中用得最多的是红外分光光度法,它克服了以上两种方法的不足,适用于0.01mg/L以上的含油水样,该方法不受油品种的影响,所以尤其在环境监测中能比较准确地反映水中石油类的污染程度。 2.各种测油方法的比较 2.1重量法。该方法的优点是不受油品的限制,缺点是操作复杂,重现性、灵敏度差,不能检出低沸点油。 2.2紫外法。该方法灵敏度较高,缺点是波长选择随油品的种类而定,不同种类的油采用不同的波长。由于地方与地方之间的油品差别很大,采用同一种方法测定的数据也无可比性。 2.3荧光法。该方法用紫外线照射,激发萃取剂中的油发出荧光。荧光强度越强,含油量越高。但有些油类不能被紫外线激发出荧光,而有些非油类荧光物质也能被紫外线激发出荧光。所以,荧光法灵敏度较高,但抗干扰性极差。 2.4非色散红外法。该方法优点是灵敏度较高。操作简便。缺点是测定结果随油品种类的变化而变化,对芳烃无反应,不能分辨甲基、亚甲纂,更不能显示油品结构,不适合对石油类的整体测量。 2.5红外分光光度法。该方法优点是灵敏度较高,适合于各种油品,选择性强,测定结果不受地方油品变化的影响,在不同地方测定的数据均具有可比性。 从上述分析可知,采用红外分光光度法测定值 3.红外分光光度法测油原理 用四氯化碳萃取水中的油类物质,测定总萃取物,然后将萃取液用硅酸镁吸附,经脱除动植

相关文档