文档库 最新最全的文档下载
当前位置:文档库 › 常用的分离和富集方法教学目的学习各种常用分离和富集

常用的分离和富集方法教学目的学习各种常用分离和富集

常用的分离和富集方法教学目的学习各种常用分离和富集
常用的分离和富集方法教学目的学习各种常用分离和富集

第十一章 常用的分离和富集方法

教学目的:学习各种常用分离和富集方法的原理、特点及应用,掌握复杂体系的

分离与分析;分离法的选择、无机和有机成分的分离与分析。 教学重点:掌握各种常用分离和富集方法的原理、特点及应用。 教学难点:萃取分离的基本原理、实验方法和有关计算。

一.概述

在实际分析工作中,遇到的样品往往含有多种组分,进行测定时彼此发生干 扰,不仅影响分析结果的准确度,甚至无法进行测定。 为了消除干扰,比较简单的方法是控制分析条件或采用适当的掩蔽剂。但是在许多情况下,仅仅控制分析条件或加入掩蔽剂,不能消除干扰,还必须把被测元素与干扰组分分离以后才能进行测定。所以分离是分析化学的重要内容之一。在痕量分析中,试样中的被测元素含量很低,如饮用水中Cu 2+的含量不能超过0.1mg /L 、Cr(Ⅵ)的含量不能超过0.65 mg /L 等。这样低的含量直接用一般方法是难以测定, 因此可以在分离的同时把被测组分富集起来,然后进行测定。所以分离的过程也同时起到富集的作用,提高测定方法的灵敏度。

一种分离方法的分离效果,是否符合定量分析的要求,可通过回收率和分离率的大小来判断, 例如,当分离物质A 时,回收率

式中R A 表示被分离组分回收的完全程度。

R A 越大(最大接近于1)分离效果越好。

常量组分的分析,要求R A ≥0.99,微量组分的分析,要求R A ≥0.95; 如果在分离时,是为了将物质A 与物质B 分离开来。则希望两者分离得越完全越好,其分离效果可用分离因数

S B/A 表示分离的完全程度S B/A 越小,分离效果越好

对常量组分的分析,一般要求S B/A ≤10-3痕量组分的分析,一般要求S B/A =10-6左右。

常用分离方法

1)沉淀分离法 传统分离方法,采用沉淀剂;液-固分离。

2)溶剂萃取分离法 被分离物质由一液相转入互不相溶的另一液相的

程. 液-液两相;互不相溶。

3)离子交换分离法

通过带电荷溶质与固体(或液体)离子交换剂中可交换的离子进行反复多次交换而达到分离

4)色谱分离方法二.沉淀分离法

(一)、常量组分的沉淀分离

沉淀分离法是利用沉淀反应使被测离子与干扰离子分离的一种方法。

它是在试液中加入适当的沉淀剂,并控制反应条件,使待测组分沉淀出来,或者将干扰组分沉淀,从而达到分离的目的。

在定量分析中,沉淀分离法只适合于常量组分而不适合于微量组分的分离。(二)、微量组分的共沉淀分离和富集

在重量分析中由于共沉淀现象的产生,造成沉淀不纯,影响分析结果的准确度。因此共沉淀现象对于重量分析是一种不利因素。但在分离方法中,反而能利用共沉淀的产生将微量组分富集起来,变不利因素为有利因素。

例如测定水中的痕量铅时,由于Pb2+浓度太低、无法直接测定,加入沉淀剂也沉淀不出来。如果加入适量的Ca2+之后,再加入沉淀剂Na2CO3,生成CaCO3沉淀,则痕量的Pb2+也同时共沉淀下来。这里所产生的CaCO3称为载体或共沉

淀剂。

1、无机共沉淀剂无机共沉淀剂的作用主要是利用无机共沉淀剂对痕量元素的吸附或与痕量元素形成混晶两种。为了增大吸附作用,应选择总表面积大的胶状沉淀作为裁体。

例如以Fe(OH)3作裁体可以共沉淀微量的A13+、Sn4+、Bi3+、Ga3+、In3+、V(V)等离子;以Al(OH)3作裁体可以共沉淀微量的Fe3+、TiO2+和U(VI)等离子;以CuS为载体富集Hg2+等。根据形成混晶作用选择载体时,要求痕量元素与载体的离子半径尽可能接近,形成的晶格应相同。例如以BaSO4作载体共沉淀Ra2+,以SrSO4作载体共沉淀Pb2+和以MgNH4PO4作载体共沉淀AsO43-

等,都是以此为依据的。2、有机共沉淀剂有机共沉淀剂具有较高的选择性,得到的沉淀较纯净沉淀通过灼烧即可除去有机共沉淀剂而留下待测定的元素。由于有机共沉淀剂具有这些优越性,因而它的实际应用和发展,受到了人们的注意和重视。

利用有机共沉淀剂进行分离和富集的作用,大致可分为三种类型。

(1)利用胶体的凝聚作用

例如H2WO4在酸性溶液中常呈带负电荷的胶体,不易凝聚,当加入有机共沉淀

剂辛可宁,它在溶液中形成带正电荷的大分子,能与带负电荷的钨酸胶体共同凝

聚而析出,可以富集微量的钨。常用的这类有机共沉淀剂还有丹宁、动物胶,可以共沉淀钨、银、钼、硅等含氧酸。

(2)利用形成离子缔合物

有机共沉淀剂可以和一种物质形成沉淀作为裁体,能同另一种组成相似的由痕量元素和有机沉淀剂形成的化合物生成共溶体而一起沉淀下来。

例如在含有痕量Zn2+的弱酸性溶液中,加入NH4SCN和甲基紫,甲基紫在溶液中电离为带正电荷的阳离子R+,其共沉淀反应为:

R+ + SCN- =RSCN↓(形成裁体)

Zn2+ + SCN- =Zn(SCN)42-2R+ + Zn(SCN)42+ =R2Zn(SCN)4(形成缔合物)

生成的R2Zn(SCN)4便与RSCN共同沉淀下来。沉淀经过洗涤、灰化之后,

即可将痕量的Zn2+富集在沉淀之中,用酸溶解之后即可进行锌的测定。3. 利

用惰性共沉淀剂

加入一种裁体直接与被共沉淀物质形成固溶体而沉淀下来。

例如痕量的Ni2+与丁二酮肟镍螯合物分散在溶液中,不生成沉淀,加入丁二

酮肟二烷酯的酒精溶液时,则析出丁二酮肟二烷酯,丁二酮肟镍便被共沉淀下来。这里裁体与丁二酮肟及螯合物不发生反应,实质上是“固体苯取”作用,则丁二酮肟二烷酯称为“惰性共沉淀剂”。

三.溶剂萃取分离法

萃取分离法包括液相-液相、固相-液相和气相-液相等几种方法,但应用最广泛的为液-液萃取分离法(亦称溶剂萃取分离法)。

定义:

被分离物质由一液相转入互不相溶另一液相的过程称为液-液萃取。

原理:

被分离组分在两液相中的溶解度具有较大的差异该法常用一种与水不相溶的有机溶剂与试液一起混合振荡,然后搁置分层,这时便有一种或几种组分转入有机相中,而另一些组分则仍留在试液中,从而达到分离的目的。

溶剂萃取分离法既可用于常量元素的分离又适用于痕量元素的分离与富集,而且方法简单、快速。如果萃取的组分是有色化合物,便可直接进行比色测定,称为萃取比色法。这种方法具有较高的灵敏度和选择性。

优点:

设备简单,操作快速,分离效果好,应用广泛

缺点:

费时,工作量大,萃取溶剂易挥发,易燃,有毒

(一)萃取分离的基本原理

1、萃取过程的本质

根据相似相溶规则,将物质由亲水性转化为疏水性。极性化合物易溶于极性的溶剂中,而非极性化合物易溶于非极性的溶剂中,这一规律称为“相似相溶原则”。

例如I2是一种非极性化合物、CCl4是非极性溶剂,水是极性溶剂,所以I2易溶于CCl4而难溶于水。当用等体积的CCl4从I2的水溶液中提取I2时,萃

取百分率可达98.8%。

又如用水可以从丙醇和溴丙烷的混合液,萃取极性的丙醇。常用的非极性溶剂有:酮类、醚类、苯、CCl4和CHCl3等。无机化合物在水溶液中受水分子极性的作

用,电离成为带电荷的亲水性离子,并进一步结合成为水合离子,而易溶于水中。如果要从水溶液中萃取水合离子,是比较困难的为了从水溶液中萃取某种金属离子,就必须设法脱去水合离子周围的水分子,并中和所带的电荷,使之变成极性很弱的可溶于有机溶剂就是说将亲水性的离子变成疏水性的化物。

为此,常加入某种试剂使之与被萃取的金属离子作用,生成一种不带电荷的易溶于有机溶剂的分子,然后用有机溶剂萃取。

例如Ni2+在水溶液中是亲水性的,以水合离子Ni(H2O)62+的状态存在。

如果在氨性溶液中,加人丁二酮肟试剂,生成疏水性的丁二酮肟镍螯合物分子,它不带电荷并由硫水基团取代了水合离子中的水分子,成为亲有机溶剂的疏水性

化合物,即可用CHCl3萃取。

2、分配系数

设物质A在萃取过程中分配在不互溶的水相和有机相中:A有=A水在一定

温度下,当分配达到平衡时,物质A在两种溶剂中的浓度(或活度)比保持恒定,即分配定律可用下式表示:

K D称为分配系数,分配系数大的物质,绝大部分进入有机相

分配系数小的物质,仍留在水相中,因而将物质彼此分离

3、分配比(D)

分配系数K D仅适用于溶质在萃取过程中没有发生任何化学反应的情况。

例如I2在CCl4和水中均以I2的形式存在。而在许多情况下,溶质在水和有机相中以多种形态存在。

例如用CCl4萃取OsO4时,在水相中存在Os04、OsO52-和HOs05-等三种形

式,在有机相中存在OsO 4和(OsO 4)4两种形式, 此种情况如果用分配系数K D =[OsO 4]有/[OsO 4]水便不能表示萃取的多少。

用溶质在两相中的总浓度之比来表示分配情况。

D 称为分配比。

4、萃取率

对于某种物质的萃取效率大小,常用萃取率(E)来表示。设某物质在有机相中的总浓度为C

有,在水相中的总浓度为C 水,两相的体积分别为V 有和V 水,则 萃取率等于:

分配比越大则萃取百分率越大,萃取效率越高,并可以通过分配比计算萃取百分率。

由于在一定条件下,某物质的D 是一个常数,可采用增加萃取次数的方法来提高萃取效率.经第一次分离之后,再加入新鲜溶剂,重复操作,进行二次或三次萃取。但萃取次数太多、不仅操作费时,而且容易带人杂质或损失萃取的组分。 设试样水溶液体积为V 水(mL),组分A

的质量为m 0 ,加入有机溶剂体积V 有(mL),经过一次萃取后,A 在水相中的残留量为m 1 其分配比D :

5

当溶液中同时含有两种以上组分时,通过萃取之后它们之间的分离情况如何。例如A 、B 两种物质的分离程度可用两者的分配比D A 、D B 的比值来表示。

βA /B =D A /D B

式中β称为分离系数。D A与D B之间相差越大,则两种物质之间的分离效果越好如果D A和D R很接近,则β接近于1两种物质便难以分离因此为了扩大分配

比之间的差值,必须了解各种物质在两相中的溶解机理以便采取措施,改变条件,使欲分离的物质溶于一相,而使其他物质溶于另一相,以达到分离的目的。二)、重要萃取体系1、金属螯合物金属离子与螯合剂(亦称萃取络合剂)的阴离子结合而形成中性螯合物分子。

这类金属螯合物难溶于水,而易溶于有机溶剂,因而能被有机溶剂所萃取:如丁二酮肟镍即属于这种类型。

Fe3+与铜铁试剂所形成的螯合物也属于此种类型。常用的螯合剂还有8-羟基喹

啉、双硫踪、乙酰丙酮和噻吩甲酰三氟丙酮(TTA)等。1)金属螯合物的萃取平衡

以HR萃取水溶液中的金属离子M n+为例来说明。

M n+水+ nHR有= MRn有+ nH+水

K

螯合剂的分配比、螯合物的稳定常

数和螯合物的分配比有关。MRn在水相中的浓度很小可忽略即:(2)萃取条件的选择

螯合剂的选择

所选择的螯合剂与被萃取的金属离子生成的螯合物越稳定,分配比越大, 则萃取效率越高。此外螯合剂必须具有一定的亲水基团,易溶于水,才能与金属离子生成螯合物;但亲水基团过多了,生成的螯合物反而不易被萃取到有机相中。

因此要求螯合剂的亲水基团要少,疏水基团要多。亲水基团有-OH、-NH2、-COOH、-SO3H,疏水基团有脂肪基(-CH3、-C2H5等)芳香基(苯和萘基)等。EDTA虽然能与许多种金属离子生成螯合物,但这些螯合物多带有电荷,不易

被有机溶剂所萃取,故不能用作萃取螯合剂。溶液酸度的控制

溶液的酸度越小,则被萃取的物质分配比越大,越有利于萃取。

但酸度过低则可能引起金属离子的水解或其他干扰反应发生。因此应根据不同的金属离子控制适宜的酸度。

例如,用双硫腙作螯合剂,用CCl4从不同酸度的溶液中萃取Zn2+时,萃取

Zn2+pH值必须大于6.5,才能完全萃取,但是当pH值大于10以上,萃取效率反而降低,这是因为生成难络合的ZnO22-所致,所以萃取Zn2+最适宜的pH范

围为6.5-10之间。

萃取溶剂的选择

被萃取的螯合物在萃取溶剂中的溶解度越大,则萃取效率越高。

萃取溶剂与水的比重差别要大,粘度要小,这样便于分层,有利于操作的进行。挥发性、毒性要小,而且不易燃烧。

干扰离子的消除

可以通过控制酸度进行选择性萃取,将待测组分与干扰组分离。

如果通过控制酸度尚不能消除干扰时,还可以加入掩蔽剂,使干扰离子生成亲水性化合物而不被萃取。

例如测量铅合金中的银时,用双硫腙-CCl4萃取,为了避免大量Pb2+和其他元素

离子的干扰,可以采取控制pH与加入EDTA等掩蔽剂的办法,把Pb2+及它少

量干扰元素掩蔽起来。

常用的掩蔽剂有氰化物、EDTA、酒石酸盐、柠檬酸盐和草酸盐等

2、离子缔合物萃取体系

由金属络离子与异电性离子借静电引力的作用结合成不带电的化合物,称为离子缔合物,此缔合物具有疏水性而能被有机溶剂萃取。通常离子的体积越大,电荷越低,越容易形成疏水性的离子缔合物。

(1)缔合物的分类

根据采用的萃取剂不同,形成不同的缔合物,常遇到的有以下几类。

金属阳离子的离子缔合物

金属阳离子与大体积的络合剂作用,形成没有或很少配位水分子的络阳离子,然后与适当的阴离子缔合,形成疏水性的离子缔合物。

金属络阴离子的离子缔合物

金属离子与溶液中简单配位阴离子形成络阴离子,然后与大体积的有机阳离子形成疏水性的离子缔合物。

形成洋盐的缔合物

含氧的有机萃取剂如醚类、醇类、酮类和烷类等它们的氧原于具有孤对电子,

因而能够与H+或其他阳离于结合而形成洋离子。它与金属络离子结合形成的洋盐易溶于有机溶剂而被萃取。

例如在盐酸介质中,用乙醚萃取Fe3+,这里乙醚既是萃取剂又是有机溶剂。实践证明,含氧有机溶剂形成洋盐的能力按下列次序增强。

R2O<ROH<RCOOH<RCOOR<RCOR

其它离子缔合物

如含砷的有机萃取剂萃取铼,是基于铼酸根与氯化四苯砷反应,生成可被苯或甲苯萃取的离子缔合物。

分析化学中常用的分离和富集方法教案

第8章 分析化学中常用的分离和富集方法 教学目的:学习各种常用分离和富集方法的原理、特点及应用,掌握复杂体系的 分离与分析;分离法的选择、无机和有机成分的分离与分析。 教学重点:掌握各种常用分离和富集方法的原理、特点及应用。 教学难点:萃取分离的基本原理、实验方法和有关计算。 8.1 概述 干扰组分指样品中原有杂质(溶解)或加入试剂引入的杂质,当杂质量少时可加掩蔽剂消除干扰,量大或无合适掩蔽剂时可采用分离的方法。 分离完全的含义:(1)干扰组分少到不干扰;(2)被测组分损失可忽略不计。 完全与否用回收率表示 100?分离后测得的量回收率=%原始含量 对回收率的要求随组分含量的不同而不同: 含量(质量分数) 回收率 1%以上 >99.9% 0.01-1% >99% 0.01%以下 90-95% 常用的分离方法:沉淀、挥发和蒸馏、液-液萃取、离子交换、色谱等。 8.1.1沉淀分离法 1.常量组分的分离(自己看书:5分钟) (1) 利用生成氢氧化物 a. NaOH 法 b. NH3法(NH 4+存在) c. 有机碱法 六次(亚)甲基四胺 pH =5-6 d. ZnO 悬浮液法 pH =6 (2) 硫化物沉淀 (3) 有机沉淀剂 2.痕量组分的共沉淀分离和富集 (1) 无机共沉淀分离和富集 a. 利用表面吸附进行共沉淀 CuS 可将0.02ug 的Hg 2+从1L 溶液中沉淀出 b. 利用生成混晶 (2) 有机共沉淀剂 灼烧时共沉淀剂易除去,吸附作用小,选择性高,相对分子质量大,体积也大,分离效果好。 a. 利用胶体的凝聚作用进行共沉淀:辛可宁,丹宁,动物胶b. 利用形成离子缔合物进行共沉淀:甲基紫,孔雀绿,品红,亚甲基蓝c. 利用“固体萃取剂”进行共沉淀。 8.1.2挥发和蒸馏分离法 挥发法:选择性高 As 的氢化物,Si 的氟化物,As 、Sb 、Sn 、Ge 的氯化物 蒸馏法:N -NH 4+-NH 3↑(酸吸收) 利用沸点不同,进行有机物的分离和提纯。 8.2 液-液萃取分离法 8.2.1萃取分离法的基本原理 萃取:把某组分从一个液相(水相)转移到互不相溶的另一个液相(有机相)的过程。 反萃取:有机相→水相

磁性纳米材料在重金属分离富集方法中的应用

目录 摘要......................................................I Contrast..................................................I 前言....................................................II 第一章纳米材料 (1) 1.1纳米材料简介 (1) 1.2纳米材料的特性 (2) 第二章纳米磁性材料 (3) 2.1磁性功能材料的磁学性质及表征方法 (5) 2.2磁性纳米粒子的制备 (5) 2.2.1共沉淀法 (5) 2.2.2高温分解法 (6) 2.2.3球磨法 (6) 2.2.4溶胶—凝胶法 (6) 2.2.5水热法与溶剂热法 (6) 第三章重金属离子的检测及分离富集方法 (6) 3.1重金属的检测方法 (7) 3.1.1原子发射光谱法 (7) 3.1.2电感耦合等离子质谱法 (7) 3.1.3原子荧光光谱法 (7) 3.1.4原子吸收光谱法 (8)

3.2重金属离子的分离富集方法 (8) 3.2.1固相萃取 (8) 3.2.2共沉淀法 (8) 3.2.3液—液萃取法 (8) 3.2.4离子交换分离法 (9) 总结与展望 (10) 参考文献 致谢

磁性纳米材料在重金属分离富集方法中的应用 摘要:随着人类生产生活活动的进一步发展,人类在提高生产力和生产水平的过程中也带来了了环境污染。其中重金属对人类生命健康的危害不容小觑,因此如何有效分离检测重金属成为当今人类急需攻克的难题。磁性纳米材料是最近新兴的一种具有特殊性质的纳米材料,它可有效用于重金属的检测与分离富集,因此备受科学家们的关注。本文重点从以下三个方面将行了介绍: 1、纳米材料的分类及其性质 2、磁性功能材料的磁学性质及表征方法和磁性纳米材料的制备 3、重金属离子的检测及分离富集方法 关键词:纳米材料、磁性纳米材料、重金属离子、检测、富集 Contrast: With the fast development of human production and life activities, environmental pollution also comes out.The affection of heavy metals on human life and health hazards should not be underestimated, so how effective separation and detection of heavy metals becomes an urgent need to overcome the problem of mankind. Magnetic nano-materials is a recently emerging nano-materials with special properties, it can be useful for detection and separation and enrichment of heavy metals, which gets scientists' much attention. This article focuses on the following three aspects will introduce the line: 1.Classification and properties of nano-materials. 2.Prepared magnetic properties, magnetic materials and functional characterization and magnetic nano-materials. 3.The method of detection and separation and enrichment of heavy metal ions. I

常用的分离和富集方法

第十章常用的分离和富集方法 1.试说明定量分离在定量分析中的重要作用。 答:在实际的分析工作中,遇到的样品往往含有各种组分,当进行测定时常常彼此发生干扰。不仅影响分析结果的准确度,甚至无法进行测定,为了消除干扰,较简单的方法是控制分析条件或采用适当的掩蔽剂,但在有些情况下,这些方法并不能消除干扰,因此必须把被测元素与干扰组分分离以后才能进行测定。所以,定量分离是分析化学的主要内容之一。 2.何谓回收率?在回收工作中对回收率要求如何? 答:回收率是用来表示分离效果的物理量,回收率越大,分离效果越好,一般要求R A>90~95%即可。 3.何谓分离率?在分析工作中对分离率的要求如何? 答:分离率表示干扰组分B与待测组分A的分离程度,用表示S B/A,S B/A越小,则R B越小,则A与B之间的分离就越完全,干扰就消除的越彻底。通常,对常量待测组分和常量干扰组分,分离率应在0.1%以下;但对微量待测组分和常量干扰组分,则要求分离率小于10-4%。 4.有机沉淀剂和有机共沉淀剂有什么优点。 答:优点:具有较高的选择性,沉淀的溶解度小,沉淀作用比较完全,而且得到的沉淀较纯净。沉淀通过灼烧即可除去沉淀剂而留下待测定的元素。 5.何谓分配系数、分配比?二者在什么情况下相等? 答:分配系数:是表示在萃取过程中,物质进入有机溶剂的相对大小。 分配比:是该物质在有机溶剂中存在的各种形式的浓度之和与在水中各存在形式的浓度之和的比值,表示该物质在两相中的分配情况。 当溶质在两相中仅存在一种形态时,二者相等。 6.为什么在进行螯合物萃取时控制溶液的酸度十分重要? 答:在萃取过程中,溶液的酸度越小,则被萃取的物质分配比越大,越有利于萃取,但酸度过低则可能引起金属离子的水解,或其他干扰反应发生,应根据不同的金属离子控制适宜的酸度。 7.解释下列各概念:交联度,交换容量,比移值。 答:交联度:在合成离子交换树脂的过程中,将链状聚合物分子相互连接而形成网状结构的过程中,将链状聚合物分子连接而成网状结构的过程称为交联。 交换容量:表示每克干树脂所能交换的相当于一价离子的物质的量。是表征树脂交换能力大小的特征参数,通常为3~6 mmol/g。 比较值R f:表示某组分再滤纸上的迁移情况。 8.在离子交换分离法中,影响离子交换亲和力的主要因素有那些? 答:离子亲和力的大小与离子所带电荷数及它的半径有关,在交换过程中,价态愈高,亲和力越大,对于同价离子其水化半径越大,(阳离子原子序数越大)亲和力越小。 9.柱色谱、纸色谱、薄层色谱和离子交换色谱这几种色谱分离法的固定相和流动相各是什么?试比较它们分离机理的异同。

分析化学第六版第十一章 分析化学中常用的分离及答案

第十一章分析化学中常用的分离和富集方法 一、选择题 1.用PbS作共沉淀载体,可从海水中富集金。现配制了每升含0.2μg Au3+的溶液10 L, 加入足量的Pb2+,在一定条件下,通入H2S,经处理测得1.7μg Au。此方法的回收率为( ) A、80% B、85% C、90% D、95% 2.含有Ca2+、Zn2+、Fe3+混合离了的酸性溶液,若以Fe(OH)3形式分离Fe3+,应选用的试剂是( ) A.浓NH3水B.稀NH3水C.NH3-NH4Cl D.NaOH 3.用NH3-NH4Cl沉淀Fe3+,使它与Mg2+分离,为分离完全,应使( ) A.NH4Cl浓度小一些,NH3浓度大一些B.NH4Cl浓度大一些,NH3浓度小一些 C.NH4Cl、NH3浓度均大一些D.NH4Cl 、NH3浓度均小一些 4.为使Fe3+、Al3+、与Ca2+、Mg2+分离,应选用( ) A.NaOH B.NH3-NH4Cl C.Na2O2D.(NH4)2CO3 5.下列各组混合溶液中,能用过量NaOH溶液分离的是( ) A.Pb2+-Al3+ B.Pb2+-Co2+ C.Pb2+-Zn2+ D.Pb2+-Cr3+ 6.下列各组混合溶液,能用pH≈9的氨性缓冲溶液分离的是( ) A.Ag+-Co2+ B.Fe2+-Mg2+ C.Ag+-Mg2+ D.Cd2+-Cr3+ 7.含量为10.00mg的Fe3+试液,在浓HCl中用等体积的乙醚萃取,已知Fe3+-乙醚萃取体系的分配比为99,当用等体积的乙醚2次萃取后,残留于水中的Fe3+的量(mg)为( ) A.1.0 B.0.10 C.0.010 D.0.0010 8.属于阳离子交换树脂的是( ) A.RNH3OH B.RCOOH C.RNH2CH3OH D.RN(CH3)3OH 9.下列树脂属于阴离子交换树脂的是( ) A.RNH3OH B.ROH C.RSO3H D.RCOOH 10.下列各类树脂中,最易与H+起交换作用的是( ) A.R=NH2+Cl-B.RONa C.RSO3Na D.RCOONa 11.萃取的本质可表述为 A.金属离子形成络合物的过程B.金属离子形成离子缔合物的过程 C.络合物进入有机相的过程D.将物质由亲水性变成疏水性的过程 12.水溶液中的Ni2+之所以能被丁二酮肟-CHCl3萃取,是因为在萃取过程中发生了下列何种变化A.Ni2+形成了离子缔合物B.溶液酸度降低了C.Ni2+形成的产物的质量增大了 D.Ni2+形成的产物中引入了疏水基团 13.在pH=2.0,EDTA存在下,用双硫腙-CHCl3萃取Ag+。今有含Ag+溶液100ml,每次用20ml 萃取剂萃取2次,已知萃取率为89%,其分配比为 A.100 B.80 C.10 D.50

分离与富集

人胎盘组织造血干/祖细胞的分离富集 【摘要】为了探索从胎盘组织中分离富集造血干/祖细胞(HSPC)的标化流程,采用机械法加胶原酶消化法制备人胎盘组织单个细胞悬液,用羟乙基淀粉(6% HES)法从中分离出单个核细胞(MNC),再经免疫磁珠分选法分选出CD34-、CD34+CD38-、CD34+CD38+ 3个细胞亚群,用流式细胞术对各阶段分选细胞进行表型分析并计算分选细胞的富集度和回收率。结果表明:机械法加胶原酶消化法制备的人胎盘组织单个细胞悬液中单个核细胞(MNC)数达(12.30±3.51)×108,与脐血初始样品所含的MNC数(8.86±5.38)×108 比较差异无统计学意义,而其CD34+细胞所占百分率[(3.93±2.31)%]则明显高于脐血[(0.44±0.29)%]。胎盘组织单个细胞悬液经6% HES分离后MNC和CD34+细胞的回收率分别为(45.3±11.7)%和(51.1±9.8)%;MNC经免疫磁珠分选后,其CD34+细胞的纯度和回收率分别为(73.4±14.1)%和(52.7±11.7)%。结论:本实验所建立的"机械法加胶原酶消化法-HES分离MNC-MACS分选目标细胞"的分离纯化方法可从胎盘组织获得高丰度、高富集度、高活性的HSPC,为进一步研究胎盘HSPC提供了比较经济、效果较好的分离富集方案。【关键词】

CD34抗原;造血干细胞;胎盘;免疫磁珠细胞分选;脐血【材料和方法】 造血干/祖细胞(hematopoietic stem/ progenitor cells,HSPC)存在于人骨髓、动员的外周血和脐血等组织中。新近,有学者提出人胎盘组织中含有比脐血更为丰富的造血干细胞;人胎盘组织中CD34+ HSPC的百分率是脐血的8.8倍,并且人胎盘组织中免疫细胞成分较少,极有希望成为今后HSPC 的新来源。从人胎盘组织分离出高活性、高丰度的HSPC是对其进行相关生物学特性等研究的前提,目前尚无有关人胎盘组织HSPC分离的优化方案可循。本研究旨在建立从胎盘组织中分离、 纯化HSPC的标化流程,为今后人胎盘组织HSPC的深入研究打下良好的基础。 主要试剂 胶原酶(collagenase Ⅳ)、羟乙基淀粉(hydroxyethyl starch,HES)为Sigma公司产品。RPMI 1640、新生牛血清(FCS)购自于Gibco公司。荧光标记单克隆抗体 CD38-FITC、CD34-PE及CD34绝对计数试剂盒为Becton Dickinson公司产品。免疫磁珠细胞分选试剂盒购自Miltenyi Biotec公司。

常用的分离和富集方法

第十一章 常用的分离和富集方法 【教学目标】 1.学习各种常用分离和富集方法的原理、特点及应用 2.掌握复杂体系的分离与分析 3.了解分离法的选择、无机和有机成分的分离与分析 【重点难点】 掌握各种常用分离和富集方法的原理、特点及应用 【课时安排】计划4课时 【教学内容】共五节 第一节 概述 一、回收率 100 分离后测得的量回收率=%原始含量 对回收率的要求(随组分含量的不同而不同): 含量(质量分数) 回收率 1%以上 >99.9% 0.01-1% >99% 0.01%以下 90-95% 常用的分离方法:沉淀、挥发和蒸馏、液-液萃取、离子交换、色谱等。 8.1.1沉淀分离法 1.常量组分的分离(自己看书:5分钟) (1) 利用生成氢氧化物 a. NaOH 法 b. NH3法(NH 4+存在) c. 有机碱法 六次(亚)甲基四胺 pH =5-6 d. ZnO 悬浮液法 pH =6 (2) 硫化物沉淀 (3) 有机沉淀剂 2.痕量组分的共沉淀分离和富集 (1) 无机共沉淀分离和富集 a. 利用表面吸附进行共沉淀 CuS 可将0.02ug 的Hg 2+从1L 溶液中沉淀出 b. 利用生成混晶 (2) 有机共沉淀剂 灼烧时共沉淀剂易除去,吸附作用小,选择性高,相对分子质量大,体积也大,分离效果好。 a. 利用胶体的凝聚作用进行共沉淀:辛可宁,丹宁,动物胶b. 利用形成离子缔合物进行共沉淀:甲基紫,孔雀绿,品红,亚甲基蓝c. 利用“固体萃取剂”进行共沉淀。 8.1.2挥发和蒸馏分离法 挥发法:选择性高 As 的氢化物,Si 的氟化物,As 、Sb 、Sn 、Ge 的氯化物

分析化学中常用的分离富集方法

分析化学中常用的分离富集方法 思考题 11-1 在分析化学中,为什么要进行分离富集?分离时对常量和微量组分的回收率要求如何?答:在定量分析,对于一些无法通过控制分析条件或采用掩蔽法来消除干扰,以及现有分析方法灵敏度达不到要求的低浓度组分测定,必须采用分离富集方法。换句话说,分离方法在定量分析中可以达到消除干扰和富集效果,保证分析结果的准确性,扩大分析应用围。在一般情况下,对常量组分的回收率要求大于99.9%,而对于微量组分的回收率要求大于99%。样品组分含量越低,对回收率要求也降低。 11-2 常用哪些方法进行氢氧化物沉淀分离?举例说明。 答:在氢氧化物沉淀分离中,沉淀的形成与溶液中的[OH-]有直接关系。因此,采用控制溶液中酸度可使某些金属离子彼此分离。在实际工作中,通常采用不同的氢氧化物沉淀剂控制氢氧化物沉淀分离方法。常用的沉淀剂有: a 氢氧化钠:NaOH是强碱,用于分离两性元素(如Al3+,Zn2+,Cr3+)与非两性元素,两性元素的含氧酸阴离子形态在溶液中,而其他非两性元素则生成氢氧化物胶状沉淀。 b 氨水法:采用NH4Cl-NH3缓冲溶液(pH8-9),可使高价金属离子与大部分一、二金属离子分离。 c 有机碱法:可形成不同pH的缓冲体系控制分离,如pH5-6六亚甲基胺-HCl缓冲液,常用于Mn2+,Co2+,Ni2+,Cu2+,Zn2+,Cd2+与Al3+,Fe3+,Ti(IV)等的分离。 d ZnO悬浊液法等:这一类悬浊液可控制溶液的pH值,如ZnO悬浊液的pH值约为6,可用于某些氢氧化物沉淀分离。 11-3 某矿样溶液含Fe3+,A13+,Ca2+,Mg2+,Mn2+,Cr3+,Cu2+和Zn2+等离子,加入NH4C1和氨水后,哪些离子以什么形式存在于溶液中?哪些离子以什么方式存在于沉淀中?分离是否完全? 答:NH4Cl与NH3构成缓冲液,pH在8-9间,因此溶液中有Ca2+,Mg2+,,Cu(NH3)42-、Zn(NH3)42+等离子和少量Mn2+,而沉淀中有Fe(OH)3,Al(OH)3和Cr(OH)3和少量Mn(OH)2沉淀。试液中Fe3+,A13+,Cr3+可以与Ca2+,Mg2+,Cu2+和Zn2+等离子完全分开,而Mn2+分离不完全。 11-4 如将上述矿样用Na2O2熔融,以水浸取,其分离情况又如何? 答:Na2O2即是强碱又是氧化剂,Cr3+、Mn2+分别被氧化成CrO42-和MnO4-。因此溶液有AlO22-,ZnO22-,MnO4-和CrO42-和少量Ca2+,在沉淀中有:Fe(OH)3,Mg(OH)2和Cu(OH)2和少量Ca(OH)2或CaCO3沉淀。Ca2+将分离不完全。

第11章分离和富集方法练习答案

第11章分析化学中常用的分离和富集方法 思考题 1.分离方法在定量分析中有什么重要性?分离时对常量和微量组分的回收率要求如何? 答:在定量分析,对于一些无法通过控制分析条件或采用掩蔽法来消除干扰,以及现有分析方法灵敏度达不到要求的低浓度组分测定,必须采用分离富集方法。换句话说,分离方法在定量分析中可以达到消除干扰和富集效果,保证分析结果的准确性,扩大分析应用范围。 在一般情况下,对常量组分的回收率要求大于99.9%,而对于微量组分的回收率要求大于99%。样品组分含量越低,对回收率要求也降低。 2.在氢氧化物沉淀分离中,常用的有哪些方法?举例说明。 答:在氢氧化物沉淀分离中,沉淀的形成与溶液中的[OH-]有直接关系。因此,采用控制溶液中酸度可使某些金属离子彼此分离。在实际工作中,通常采用不同的氢氧化物沉淀剂控制氢氧化物沉淀分离方法。常用的沉淀剂有:A.氢氧化钠:NaOH是强碱,用于分离两性元素(如Al3+,Zn2+,Cr3+)与非两性元素,两性元素的含氧酸阴离子形态在溶液中,而其他非两性元 素则生成氢氧化物胶状沉淀。 B.氨水法:采用NH4Cl-NH3缓冲溶液(pH8-9),可使高价金属离子与大部分一、二金属离子分离。 C.有机碱法:可形成不同pH的缓冲体系控制分离,如pH5-6六亚甲基胺-HCl缓冲液,常用于Mn2,Co2+,Ni2+,Cu2+,Zn2+,Cd2+与Al3+,Fe3+,Ti(IV)等的分离。 D.Z nO悬浊液法等:这一类悬浊液可控制溶液的pH值,如ZnO悬浊液的pH值约为6,可用于某些氢氧化物沉淀分离。 3.某矿样溶液含Fe3+,A13+,Ca2+,Mg2+,Mn2+,Cr3+,Cu2+和Zn2+等离子,加入NH4C1和氨水后,哪些离子以什么形式存在于溶液中?哪些离子以什么方式存在于沉淀中?分离是否完全? 答:NH4Cl与NH3构成缓冲液,pH在8-9间,因此溶液中有Ca2+,Mg2+,,Cu (NH3)42-、Zn(NH3)42+等离子和少量Mn2+,而沉淀中有Fe(OH)3,Al(OH)

分离与富集

分离与富集 读书报告 题名:共沉淀分离富集法的应用与新进展姓名:樊红霞 指导老师:陈建荣 学院:化学与生命科学学院 专业:分析化学 班级:10级 学号:2010210638 成绩:

共沉淀分离富集法的应用与新进展 姓名:樊红霞学号:2010210638 专业:分析化学 摘要:对共沉淀分离富集法的应用与新进展进行了综述。近年来,由于其与固体进样分析仪器的结合而得到了迅速发展,从自然水样到高纯和其它特殊材料曲分析,从空属元素到非空属乃至有机物的测定,越来越多、越来越好的有机和无机的共沉淀体系正被研究和广泛应用。关键词:共沉淀;分离;富集;进展 引言 沉淀法是一种传统的分离富集方法,但共沉淀法能在60年代迅速发展得益于Luke C L 的技能:在溶液中加入沉淀剂和一点点金属(称为载体)离子共沉淀溶液中的痕量金属元素,另一方面得益于其与具有高选择性的固体进样仪器的结合,使富集倍数极大提高而被应用于超痕量分析,近年来又与流动注射分析结合克服了耗时多的缺点。科学技术的发展对共沉淀方法提出了更高要求,新型沉淀剂的研究,两种或数种沉淀剂的联合使用以及传统沉淀剂与其他分离富集技术的联用等方面的研究非常活跃。另外由于其操作相对简便,实验条件容易满足,经济可行,正在被广泛应用于材料物质的改性方面,利用共沉淀合成纳米材料已见报道。因此探索新型高选择性共沉淀剂和将理论与经验规律结合,寻找特定的沉淀剂和与之相配的载体离子以及寻求简单、快速的共沉淀技术是最新的发展动向。 1新共沉淀捕集剂的研究与应用[1] Luke C L等最初使用的沉淀剂主要是金属氢氧化物和二乙基硫代氨基甲酸盐,研究了它们共沉淀痕量金属离子的实验条件。而后30年间,大多数研究致力于开发新的共沉淀捕集剂,以适应各种式样中不同组分的分离富集并达到尽可能高的回收率。 1.1新的金属氢氧化物和其它无机共沉淀捕集剂 金属氢氧化物作为共沉淀剂捕集剂以其不需要有机试剂、易于离心分离以及回收率高等优点而得到广泛应用,最早使用和用的最多的是Fe(OH)3、Al(OH)3、Mg(OH)2,进入80年代以后,新的无机共沉淀捕集剂不断涌现,日本学者在这方面处于领先地位,Yoshimura W等对Zr(OH)4、Harada Y等对La(OH)3、Ueda J等对Hf(OH)4做了较多研究。日本学者还对Be(OH)2、Ga(OH)3、Y(OH)3、Sn(OH)4作为共沉淀捕集剂进行了应用研究。其它的无机共沉淀捕集剂还有GaPO4、碱式碳酸锌、BaSO4、AlPO4等。以上这些新的无机氢氧化物共沉淀捕集剂大多以稀有元素作为载体离子,比起以前的无机捕集剂具有以下优点:

第十一章 常用分离富集方法

第八章 分析化学中常用的分离和富集方法 1. 0.020 mol/L Fe 2+溶液,加NaOH 进行沉淀时,要使其沉淀达99.99%以上。试问溶液中的pH 至少应为多少?若考虑溶液中除剩余Fe 2+外,尚有少量FeOH + (β=1×104),溶液的pH 又至少应为多少?已知16sp 108-?=K 。 解: 30.9H mol/L 100.2% 01.0020.0108][OH ]][OH [Fe 1) (516sp 22=??=??=?=--- -+p K () 34 .9H mol/L 1021.22 1044104104][OH 0104-][OH 104][OH 10 8][OH ] [OH 10110.01%0.020]][OH [Fe 2)(510 2 6610-6216 2-4sp 22=??=??+?+ ?= ?=??-??=???+?? =----- ------+p K 2. 若以分子状态存在99%以上时可通过蒸馏分离完全,而允许误差以分子状态存在1%以下,试通过计算说明在什么酸度下可挥发分离甲酸和苯酚? 解: 74 .5H mol/L 1084.1]H [%110 ]H [] H []H []H [%195.7H mol/L 1011.1]H [% 9910]H [] H []H []H [%9995 .974.3674 .3HCOOH a,89.95 OH H C a,OH H C a,HCOOH a,5656=??=?=+=+=??=?=+=+==-+-++++-+-++++p K p K pK pK 以分子状态存在,则甲酸以分子状态存在,则苯酚 因此可挥发分离甲酸和苯酚的酸度为5.74-7.95 3. 某纯的二元有机酸H 2A ,制备为纯的钡盐,称取0.3460 g 盐样,溶于100.0 mL 水中,将溶液通过强酸性阳离子交换树脂,并水洗,流出液以0.09960 mol/L NaOH 溶液20.20 mL 滴至终点,求有机酸的摩尔质量。 解:

化学中常用的分离和富集方法

分析化学中常用的分离和富集方法 1.在分析化学中,为什么要进行分离富集?分离时对常量和微量组分的回收率要求如何? 答:在定量分析,对于一些无法通过控制分析条件或采用掩蔽法来消除干扰,以及现有分析方法灵敏度达不到要求的低浓度组分测定,必须采用分离富集方法。换句话说,分离方法在定量分析中可以达到消除干扰和富集效果,保证分析结果的准确性,扩大分析应用范围。在一般情况下,对常量组分的回收率要求大于99.9%,而对于微量组分的回收率要求大于99%。样品组分含量越低,对回收率要求也降低。 2.常用哪些方法进行氢氧化物沉淀分离?举例说明。 答:在氢氧化物沉淀分离中,沉淀的形成与溶液中的[OH-]有直接关系。因此,采用控制溶液中酸度可使某些金属离子彼此分离。在实际工作中,通常采用不同的氢氧化物沉淀剂控制氢氧化物沉淀分离方法。常用的沉淀剂有: a 氢氧化钠:NaOH是强碱,用于分离两性元素(如Al3+,Zn2+,Cr3+)与非两性元素,两性元素的含氧酸阴离子形态在溶液中,而其他非两性元素则生成氢氧化物胶状沉淀。 b 氨水法:采用NH4Cl-NH3缓冲溶液(pH8-9),可使高价金属离子与大部分一、二金属离子分离。 c 有机碱法:可形成不同pH的缓冲体系控制分离,如pH5-6六亚甲基胺-HCl缓冲液,常用于Mn2+,Co2+,Ni2+,Cu2+,Zn2+,Cd2+与Al3+,Fe3+,Ti(IV)等的分离。 d ZnO悬浊液法等:这一类悬浊液可控制溶液的pH值,如ZnO悬浊液的pH值约为6,可用于某些氢氧化物沉淀分离。 3.某矿样溶液含Fe3+,A13+,Ca2+,Mg2+,Mn2+,Cr3+,Cu2+和Zn2+等离子,加入NH4C1和氨水后,哪些离子以什么形式存在于溶液中?哪些离子以什么方式存在于沉淀中?分离是否完全? 答:NH4Cl与NH3构成缓冲液,pH在8-9间,因此溶液中有Ca2+,Mg2+,,Cu(NH3)42-、Zn(NH3)42+等离子和少量Mn2+,而沉淀中有Fe(OH)3,Al(OH)3和Cr(OH)3和少量Mn(OH)2沉淀。试液中Fe3+,A13+,Cr3+可以与Ca2+,Mg2+,Cu2+和Zn2+等离子完全分开,而Mn2+分离不完全。 4.如将上述矿样用Na2O2熔融,以水浸取,其分离情况又如何? 答:Na2O2即是强碱又是氧化剂,Cr3+、Mn2+分别被氧化成CrO42-和MnO4-。因

常用的分离和富集方法

第十一章常用的分离和富集方法 1.试说明定量分离在定量分析中的重要作用。 答:在实际的分析工作中,遇到的样品往往含有各种组分,当进行测定时常常彼此发生干扰。不仅影响分析结果的准确度,甚至无法进行测定,为了消除干扰,较简单的方法是控制分析条件或采用适当的掩蔽剂,但在有些情况下,这些方法并不能消除干扰,因此必须把被测元素与干扰组分分离以后才能进行测定。所以,定量分离是分析化学的主要内容之一。 2.何谓回收率?在回收工作中对回收率要求如何? 答:回收率是用来表示分离效果的物理量,回收率越大,分离效果越好,一般要求R A>90~95%即可。 3.何谓分离率?在分析工作中对分离率的要求如何? 答:分离率表示干扰组分B与待测组分A的分离程度,用表示S B/A,S B/A越小,则R B越小,则A与B之间的分离就越完全,干扰就消除的越彻底。通常,对常量待测组分和常量干扰组分,分离率应在0.1%以下;但对微量待测组分和常量干扰组分,则要求分离率小于10-4%。 4.有机沉淀剂和有机共沉淀剂有什么优点。 答:优点:具有较高的选择性,沉淀的溶解度小,沉淀作用比较完全,而且得到的沉淀较纯净。沉淀通过灼烧即可除去沉淀剂而留下待测定的元素。 5.何谓分配系数、分配比?二者在什么情况下相等? 答:分配系数:是表示在萃取过程中,物质进入有机溶剂的相对大小。 分配比:是该物质在有机溶剂中存在的各种形式的浓度之和与在水中各存在形式的浓度之和的比值,表示该物质在两相中的分配情况。 当溶质在两相中仅存在一种形态时,二者相等。 6.为什么在进行螯合物萃取时控制溶液的酸度十分重要? 答:在萃取过程中,溶液的酸度越小,则被萃取的物质分配比越大,越有利于萃取,但酸度过低则可能引起金属离子的水解,或其他干扰反应发生,应根据不同的金属离子控制适宜的酸度。 7.解释下列各概念:交联度,交换容量,比移值。 答:交联度:在合成离子交换树脂的过程中,将链状聚合物分子相互连接而形成网状结构的过程中,将链状聚合物分子连接而成网状结构的过程称为交联。 交换容量:表示每克干树脂所能交换的相当于一价离子的物质的量。是表征树脂交换能力大小的特征参数,通常为3~6 mmol/g。 比较值R f:表示某组分再滤纸上的迁移情况。 8.在离子交换分离法中,影响离子交换亲和力的主要因素有那些? 答:离子亲和力的大小与离子所带电荷数及它的半径有关,在交换过程中,价态愈高,亲和力越大,对于同价离子其水化半径越大,(阳离子原子序数越大)亲和力越小。 9.柱色谱、纸色谱、薄层色谱和离子交换色谱这几种色谱分离法的固定相和流动相各是什么?试比较它们分离机理的异同。

第八章分析化中常用的分离和富集方法

第八章分析化学中常用的分离和富集方法 在实际工作中,遇到的样品往往含有多种组分,进行测定时常常发生干扰,不仅影响结果的准确度,甚至无法测定,为了消除干扰,比较简单的方法是控制分析条件或加入掩蔽剂。但很多情况仅此不够,必须把待测组分与干扰组分分离,有时为了测定试样中痕量组分,在进行分离的同时,也进行必要的浓缩和富集。以保证分析结果的准确度。 对于常量组分的分离和痕量组分的富集,总的要求是分离要完全,即:待测组分的回收率要符合一定要求。 待测组分的回收率: 对于常量组分 (>1%) : R T>99% ( 接近 100%) 对于微量组分: R T>90% 常见的分离方法: 1 .沉淀分离 2 .萃取分离 3 .离子交换分离 4 .色谱分离 5 .气浮分离 6 .挥发和蒸馏分离 第一节沉淀分离法 沉淀分离是利用沉淀反应进行分离的方法。根据难溶化合物的溶解度不同,利用沉淀反应进行分离,在试液中加入适当沉淀剂,使待测组分沉淀出来或将干扰组分沉淀除去。从而达到分离的目的。 它主要有:无机沉淀剂沉淀分离法 有机沉淀剂沉淀分离法 共沉淀分离法。 ( 还有均相沉淀法 ) 一、无机沉淀剂沉淀分离法 无机沉淀剂沉淀分离法很多,形成沉淀的类型也很多,本书只对M (OH ) n ↓和硫化物沉淀简单介 绍.

例如: Fe(OH)3,,当 [时,刚析出沉淀时pH ≥ 2.18 ;沉淀完全时pH ≥ 3.51 。因此,氢氧化物是否能沉淀完全,取决于溶液的酸度。 NaOH Fe(OH)3 沉淀剂: NH3·H2O → Mg(OH)2WO3 xH2O 等 ZnO 等 SiO2·xH2O 两种离子是否能借M(OH)n↓ N(OH)n↓ ( 氢氧化物沉淀 ) 完全分离,取决于它们溶解度的相对大小

第十一章 分析化学中常用的分离富集方法

第十一章 分析化学中常用的分离富集方法 一、选择题 1. 用PbS 作共沉淀载体,可从海水中富集金。现配制了每升含0.2μg Au 3+的溶液10 L ,加入足量的Pb 2+,在一定条件下,通入H 2S,经处理测得1.7μg Au 。此方法的回收率为-------( ) (A) 80% (B) 85% C) 90% (D) 95% 2. 现有Pb 2+-Al 3+混合液,可将它们分离的沉淀剂是-----------------------------------------( ) (A) 过量NaOH 溶液 (B) pH=9的氨缓冲液 (C) 稀H 2SO 4溶液 (D) pH ≈9的(NH 4)2S 溶液 3 在有过量I -时,碘在水溶液中的存在形式主要是I 3-,亦有少量I 2,而被有机溶剂萃取的是I 2,则分配比D 可表示成--------------------------------------------------------------------( ) (A) D = 2有2水 [I ][I ] (B) D = 2水2有 [I ][I ] (C)D = 2[I ]+2有 - 3水 水 [I ][I ] (D) D= 2[I ]-32水水 有 [I ]+[I ] 4. Fe 3+在某有机相与水相的分配比是99,今有含10 mg Fe 3+的水溶液,若用等体积该有机溶剂萃取2次,则水相中剩余Fe 3+的质量是---------------------------------------------------------( ) (A) 0.03mg (B) 0.01mg (C) 0.003mg (D) 0.001mg 5 以下离子交换树脂属阳离子交换树脂的是-------------------------------------------------( ) (A) R —NH 3OH (B) RNH 2CH 3OH (C) ROH (D) R —N(CH 3)3OH 6. 离子交换树脂的交联度大小是指------------------------------------------------------------( ) (A) 聚苯乙烯含量大小 (B) 二乙烯苯含量大小 (C) 磺酸基团多少 (D) 羧基基团多少 7. 用纸色谱法分离Fe 3+、Cu 2+、Co 2+,以丙酮-正丁醇-浓HCl 为展开剂。若展开剂的前沿与原点的距离为13cm ,而Co 2+斑点中心与原点的距离为 5.2cm ,则Co 2+的比移值(R f )为-------------------------------------------------------------------------------------------------( ) (A) 0.63 (B) 0.54 (C) 0.40 (D) 0.36 8. 大量Fe 3+存在会对微量Cu 2+的测定有干扰,解决此问题的最佳方案是------------( ) (A) 用沉淀法(如NH 3-NH 4Cl)分离除去Fe 3+ (B) 用沉淀法(如KI)分离出Cu 2+ (C) 用萃取法(如乙醚)分离除去Fe 3+ (D) 用萃取法分离出Cu 2+ 二、填空题 1. 1221 100mL 水溶液中含有溶质A, 用20mL 有机溶剂可萃取90%的A, 则此溶质的分配比D 为__________________________。 2. 1225 指出下列术语的意义(填A,B,C,D) (1) 分配比 ____________ (2) 分配系数 _______________

9分离富集习题及其答案

第9章 分析化学中的分离与富集方法 思考题答案 1. 分析化学中,为何要进行分离富集如何评价分离效果 答:将被测组分从复杂体系中分离出来后测定;把对测定有干扰的组分分离除去;将性质相近的组分相互分开;把微量或痕量的待测组分通过分离达到富集的目的,提高测定灵敏度。 用回收率(回收因子)和分离率(分离因子)评价分离效果。 2. 某水样溶液中含有Fe 3+、Al 3+、Ca 2+、Mn 2+、Mg 2+、Cr 3+、Zn 2+和Cu 2+等离子,加入NH4Cl 和氨水后,哪些离子以什么形式存在于沉淀中哪些离子以什么形式存在于溶液中如果加入NaOH 溶液呢 答:加入NH4Cl-NH3缓冲液,pH 在8-9间,因此溶液中有Ca2+,Mg2+,,Cu(NH3)42-、Zn(NH3)42+等离子和少量Mn2+,而沉淀中有Fe(OH)3,Al(OH)3和Cr(OH)3和少量Mn(OH)2沉淀。试液中Fe3+,A13+,Cr3+可以与Ca2+,Mg2+,Cu2+和Zn2+等离子完全分开,而Mn2+分离不完全。 3. 相对于无机共沉淀剂,有机共沉淀剂有何优点其进行共沉淀分离有哪些方式 答:与无机共沉淀剂相比,有机共沉淀剂可经灼烧而除去,被测组分则被留在残渣中,用适当的溶剂溶解后即可测定;有机共沉淀剂的相对分子质量较大,体积也大,有利于微量组分的共沉淀;与金属离子生成的难溶性化合物表面吸附少,沉淀完全,沉淀较纯净,选择性高,分离效果好。 进行共沉淀分离的方式:利用胶体的凝聚作用进行共沉淀;利用形成离子缔合物进行共沉淀;利用惰性共沉淀剂。 : 4. 试说明分配系数和分配比的物理意义,两者有何关系分配比与萃取率有何联系如何提高萃取率 答:分配系数:是溶质在两相中型体相同组分的浓度比(严格说应为活度比)。而分配比:是溶质在两相中的总浓度之比。在给定的温度下,KD 是一个常数。但D 除了与KD 有关外,还与溶液酸度、溶质浓度等因素有关,它是一个条件常数。 D 与K D 的关系:w ,HA o ,HA D w ,HA w o ,HA o w ,HA o ,HA K ]HA []HA [c c D αα=αα== D 与 E 的关系:%V /V D D E O W 100?+=

第11章 分析化学中常用的分离与富集方法

第11章 分析化学中常用的分离与富集方法 1. 向0.02mol ·L-1Fe3+溶液中加入NaOH ,要使沉淀达到99.99%以上,溶液pH 至少是多少?若溶液中除剩余Fe3+外外,尚有少量FeOH+(β=1*104),溶液的pH 又至少是多少?已知KSP=8*10-10(9.30,9.34) 解:(1)由于剩余的Fe 3+为0.01%,所以[Fe 3+]=0.002×0.0001=2×10-6mol/L K sp =8×10-38=[Fe 3+][OH -]3, [OH -]=10-10.53, PH=3.53 (2) 若为Fe 2+时,则K sp =8×10-16=[ Fe 2+][OH -]2=2×10-6×[OH -]2, [OH -]=10-4.7 PH=9.30 若有FeOH +时,αFe(OH)=c Fe /[ Fe 2+]=1+β[OH -]=1+10-4[OH -] 代入得:K sp =8×10-16=[ Fe 2+][OH -]2= c Fe ×[OH -]2/αFe(OH) 解得 [OH -]=2.21×10-5 ,PH=9.34 2. 某溶液含Fe3+10mg ,用有机溶剂萃取它时,分配比为99。问用等体积溶剂萃取1次和2次后,剩余Fe3+量各是多少?若在萃取2次后,分出有机相,用等体积水洗一次,会损失多少Fe3+? 解:由公式m n =m o [V W /(DV O +V W )]n 计算得: 萃取一次后,m 1=10×[1/(99+1)]=0.1mg 萃取二次后,m 2=0.001mg 转入有机相的质量为:10-0.0001=9.999mg 因为D=99,所以反萃取率为1%,故水洗时Fe 3+的损失为:9.999×1%=0.1mg 3. 250mL 含103.5μg 铅的试液,分取10 mL ,用10 mL 氯仿—双硫腙溶液萃取,萃取率95%,用1cm 比色池,490 nm 测定,测得吸光度0.198,求分配比及吸光物质的摩尔吸光系数。(MPb=207.2 g ·mol-1){19,1.04*10 L ·cm-1·mol-15} 解:由E=D/D+1×100%=95%得:D=19 C(Pb)=m/M Pb V=103.5×10-6/207.2×0.25=1.998×10-6mol/L 5. 用乙烷萃取稻草试样中的残留农药,并浓缩到5.0mL ,加入5ml 的90%的二甲基亚砜,发现83%的农药残留量在乙烷相,它在两相中的分配比是多少?(4.88) 解:由E=D/D+1×100%=0.83 解得:D=4.88 6. 螯合物萃取体系的萃取常数,与螯合物的分配体系K D (ML n ),螯合剂的分配系数K D (HL ),螯合剂的解离常数Ka (HL )和螯合物稳定常数β有密切关系。试根据下列反应,推导出萃取常数与这几个常数的关系式。 (M n+)W +n (HL )O =(ML n )O +n (H +)W 10.现有0.1000 mol.L -1某有机一元弱酸(HA )10 mL ,用25.00mL 苯萃取后,取水相25.00mL ,用0.02000 mol.L -1溶液滴定至终点,消耗20.00mL ,计算一元弱酸在两相中的分配系数K D 。(21.00) 解: [][][][][][][][]()(){}(){} ()(){}(){}1n n n o w w n n n n n n D n D n o o w w n n n n n n n D o w D w w o n n w w H R MR MR MR H K MR Ka HR K MR Ka HR HR K M HR K HR M R HR K HR MR HR ββ +-+ ++-????????????====????????????

分离与富集应用方案

方案 一DMF-H2O精馏分离时蒸馏水中二甲基胺的除去 1工作原理及流程1.1工作原理DMF蒸馏回收系统工作原理:主要是利用DMF回收废液中各成分(主要是水与DMF)的沸点也即挥发性的不同(常压下DMF沸点152.8℃、水100℃),通过控制系统各个操作过程的温度,形成气液分离,将水及其他杂质逐一从DMF回收废液中分离出来,从而达到提纯回收DMF的目的。 1.2系统主要构成 (1)脱水塔(2)精馏塔(3)蒸发器(4)再沸器(5)冷凝器(6)脱酸和脱胺装置(7)真空泵等。 1.3工作流程首先是废水的排放收集过程,第二步就是废水的处理过程,第三步是DMF 的回收过程 2废水的产生与排放 塔顶蒸馏冷凝水的产生与排放 如果排放将对环境造成影响,现在大多数的合成革企业,已经采取用罐装回收的办法,将该废水重新利用于湿法生产线作为补充用水,基本防止了污染的发生。 吹脱法去除废水中二甲胺的原理 在碱性条件下,将大量空气与废水接触,使废水中游离的二甲胺被吹出。以达到去除废水中二甲胺的目的。此法也叫二甲胺解析法.解析速率与温度、气液比有关。 二甲胺的水溶液显碱性,其溶解度的大小受溶液的pH值影响(CH3)2NH+H2O—(CH3)2NH2++OH-,如果增加溶液的碱性,左移,溶解度下降。加碱量太小无法彻底脱出二甲胺,太大不仅会对设备造成腐蚀还会使成本上升,且加大废水后续处理的难度。 温度也会影响二甲胺的溶解度,温度上升,气体在水中的溶解度下降。 气液比越小,泛点气速越小。在其他因素一定时,随着液体喷淋量的增大,填料层的持液量增加而空隙率减少,从而使开始发生液泛的空塔气速变小在吹脱过程中适当增大气量以减少二甲胺在液体表面的分压,显著增加二甲胺传质效率,提高二甲胺去除率。 NaOH浓度的影响温度的影响气液比的影响 吹脱出的二甲胺的处理方法和结果 二甲胺极易被水吸收,稳态吸收就能达到很好的效果,吸收率可达95%。 二甲胺极易与盐酸反应生成盐酸二甲胺。 (CH3)2NH+HCl— (CH3)2NH·HCl 因为此吸收属于化学反应,所以吸收速率与吸收率很高。二甲胺的吸收率达到100%。二甲胺-一氧化碳法由二甲胺与一氧化碳在甲醇钠作用下,直接反应而得。反应条件是1.5-2.5MPa 和110-150℃。粗品经精馏制得成品。 二含氟废水处理工艺 处理方法 沉淀法 指投加化学药品形成氟化物沉淀或氟化物被吸附于所形成的沉淀物中而共沉淀,然后分离固

相关文档
相关文档 最新文档