文档库 最新最全的文档下载
当前位置:文档库 › 高考圆锥曲线部分大题解析

高考圆锥曲线部分大题解析

高考圆锥曲线部分大题解析
高考圆锥曲线部分大题解析

1.【2018浙江21】如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线

2:4C y x =上存在不同的两点,A B 满足,PA PB 的中点均在C 上。

(1) 设AB 中点为M ,证明:PM 垂直于y 轴;

(2) 若P 是半椭圆22

1(0)4

y x x +=<上的动点,求PAB ?面积的取值范围。

解析:(1)设2200112211(,),(,),(,)44

P x y A y y B y y

AP 中点满足:2

2

102014(

)4()22

y x y y ++= BP 中点满足:2

2

202024:(

)4()22

y x y y BP ++= 所以12,y y 是方程2

2

0204()4()22

y x y y ++=即22000

280y y y x y -+-=的两个根,所以

12

02

y y y +=,故PM 垂直于y 轴。 (2)由(1)可知212012002,8y y y y y x y +=?=-

所以222

1200013||()38

4

PM y y x y x =+-=

-

,12||y y -=

因此,3

2212001||||4)2PAB

S PM y y y x ?=?-=- 因为2

2

0001(0)4

y x x +=<,所以2200004444[4,5]y x x x -=--+∈ 因此,PAB ?

面积的取值范围是]4

1. 距离型问题

2.【2018全国3 理20】已知斜率为k 的直线l 与椭圆22

:143

x y C +=交于,A B 两

点,线段AB 的中点为(1,)(0)M m m > (1)证明:12

k <-;

(2)设F 为C 的右焦点,P 为C 上一点且0FP FA FB ++=u u u r u u u r u u u r r ,证明:,,FP FA FB u u u r u u u r u u u r

等差数列,并求出该数列的公差。 解析:(1)由中点弦公式22OM

b k k a ?=-,解得34k m

=- 又因为点M 在椭圆内,故3

02

m <<,故12

k <-

(2)由题意知2,2FA FB FM FP FM +==-u u u r u u u r u u u u r u u u r u u u u r

,故(1,2)P m -

因为点P 在椭圆上,代入可得3

,14

m k ==-,即3

||2

FP =u u u r

根据第二定义可知,1211

||2,||222

FA x FB x =-=-u u u r u u u r

联立22

212121114371402,4287

4x y x x x x x x y x ?+=???-+=?+==?

?=-+?? 即121

||||4()32

FA FB x x +=-+=u u u r u u u r

故满足2||||||FP FA FB =+u u u r u u u r u u u r ,所以,,FP FA FB u u u r u u u r u u u r

为等差数列

设其公差为d ,因为,A B 的位置不确定,则有

代入得21428

d d =±

3.【2018全国3 文20】已知斜率为k 的直线l 与椭圆22

:143

x y C +=交于,A B 两点,

线段AB 的中点为(1,)(0)M m m > (1)证明:1

2

k <-;

(2)设F 为C 的右焦点,P 为C 上一点且0FP FA FB ++=u u u r u u u r u u u r r

,证明

2||||||FP FA FB =+u u u r u u u r u u u r

解析:(1)设1122(,),(,)A x y B x y ,则222211221,14343

x y x y +

=+=,因为2121y y

k x x -=- 两式相减可得:

1212

043

x x y y k +++= 又因为

1212

1,22

x x y y m ++==即12122,2x x y y m +=+=代入上式得 34k m =-

,又因为点M 在椭圆内,故302m <<,故1

2

k <- (2)(1,0)F ,设33(,)P x y ,3311220(1,)(1,)(1,)0FP FA FB x y x y x y ++=?-+-+-=u u u r u u u r u u u r r

3123123()1,()2x x x y y y m =-+==-+=- 因为点P 在椭圆上,代入得

34m =,所以33(1,),||22

P FP -=u u u

r

因为1||22x FA ==-u u u r ,同理得2||22x FB =-u u u r

故121

||||4()32FA FB x x +=-+=u u u r u u u r

所以2||||||FP FA FB =+u u u r u u u r u u u r

注意:文理科题目相同,但是给出的解题思路是不同的。

4.【2018天津 理19】设椭圆22

221x y a b

+=的左焦点为F ,上顶点为B .已知椭圆的

A 的坐标为(,0)b

,且||||FB AB ?= (1)求椭圆的方程;

(2)设直线:(0)l y kx k =>与椭圆在第一象限的交点为P ,且l 与直线AB 交于点

Q

,若

||||4

AQ AOQ PQ =∠(O 为原点),求k 的值。 解析:(1)由题意知:

2222

22

59

c a b e a a -===,解得23a b =

,又因为||,||FB a AB ==

由||||FB AB ?=知6ab =,解得3,2a b ==

故椭圆方程为22

194

x y +=

(2)设1122(,),(,)P x y P x y

,则12

2||,||sin y y PQ AQ AOQ

-=

=∠

(得到一个等量关系,然后用k 分别表示出12,y y )

联立22212,21194y kx

y kx k y y x y y x k =?=???=?=??=-+++

=???分别代入上式得

181k k =

+,解得12k =或11

28

k = 5.【2018江苏 18】如图,在平面直角坐标系xoy 中,椭圆C

过点1

)2

,焦点

12(F F ,圆O 的直径为12F F 。

(1)求椭圆C 及圆O 的方程;

(2)设直线l 与圆O 相切于第一象限内的点P

(i )设直线l 与椭圆C 有且只有一个公共点,求点P 的坐标; (ii )直线l 与椭圆C 交于,A B 两点.若OAB ?

的面积为

,求直线l 的方程。

解析:(1)设椭圆方程为22221x y a b +=

,其中c =

1

)2

在椭圆上,

222

2

223

114413

a a

b b a b ??+==?????=???-=?

,所以椭圆C 的方程为2214x y += 又因为圆O 的直径为12F F ,故圆的方程为223x y += (2)(i )本题有两种解法:

法一:椭圆和圆有公切线时求点P 的坐标,可先设公切线方程为y kx b =+

然后根据直线分别与圆和椭圆相切求出,k b 的值,再求

出点P 的坐标,这个方法很容易想到,但是需要两次计算相切时的条件。 法二:题目中让求点P 的坐标,不如一开始就设出点P 的坐标,利

用点P 的坐标表示出切线方程,然后直线与椭圆联立,0?=即可求出点P 的坐标。这里我们选用第二种方法: 设直线与圆的切点00(,)P x y ,则满足22003x y +=,故直线l 的方程为: 0000

()x y y x x y -=-

-即0003x y x y y =-+

联立02222000000223(4)24364014

x y x y y x y x x x y x y ?

=-+??

?+-+-=??+=?? (1)

因为直线l 与椭圆有且只有一个交点,故0?=,即

因为点P 位于第一象限,即000,0x y >>

,故001x y = 所以点P

的坐标为

(ii )分析:第二问由于OAB ?的高即为圆的半径,故由面积可以得出弦

长AB 的值,根据弦长再求出直线方程,最容易想到的就是设出直线方程y kx b =+,根据直线与圆相切可得2233b k =+,然后直线与椭圆联立,根据韦达定理写出弦长公式,将k 或b 转化成一个,求出即可,但是计算过程很麻烦,下面给出同一个方法的两种不同解法:

解析:设直线方程为y kx b =+,1122(,),(,)A x y B x y ,根据直线与圆相切得

2233b k =+

将2

2

33b k =+=

注意此处,根据韦达定理得出的两根和与积的形式本来很复杂,如果利用

上式还需要进行平方,再将b 转化为k 的形式计算起来相当复杂,因此我们要想办法避开平方,因此不如直接根据直线与椭圆联立的方程解出两根,再利用弦长公式,就可以避开平方的出现,解法也会简单一些。

12|||AB x x =-==解得225,18k b ==

所以k b ==y =+

5.定值问题

6.【2018全国1 理】设椭圆2

2:12

x C y +=的右焦点为F ,过F 的直线l 与C 交于

,A B 两点,点M 的坐标为(2,0)

(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:OMA OMB ∠=∠

分析:第二问两角度相等如何证明?解析几何中常出现的量无非是距离长度,斜

率,面积,周长,如果你想到了证明两个角余弦值相等,那么恭喜你,你想到了长度,但是长度不容易求得,本题目M 点在x 轴上且角度均从O 点出发,,A B 两点一个在x 轴上方一个在下方,因此可以考虑两条直线关于x 轴对称,而对称又反应了斜率互为相反数的关系,因此本题目虽是证明题的形式出现,但本质上是求定值问题,即120k k +=

解析:(1)由题意知(1,0)F ,当l 与x 轴垂直时,:1l x =,此时(1,2

A ±

,所以

直线AM 的方程为(2)2

y x =±

- (2)设直线,AM BM 的斜率分别为12,k k

当直线l 斜率不存在时,此时直线,AM BM 的倾斜角互补,则OMA OMB ∠=∠

当直线l 斜率存在时,设1122:(1),(,),(,)l y k x A x y B x y =-

联立2

222221(21)42202(1)x y k x k x k y k x ?+=??+-+-=??=-?

所以1212121212121212(1)(1)[23()4]

2222(2)(2)

y y k x k x k x x x x k k x x x x x x ---+++=

+=+=------ (注意,此处为什么不需要整理分母部分,因为证明分式为零,只需要证

明分子为零即可)

所以222

212122(22)12[4]21210(2)(2)

k k k k k k k x x --++++=

=-- 所以直线,AM BM 的倾斜角互补,则OMA OMB ∠=∠

7.【2018全国1 文20】设抛物线2:2C y x =,点(2,0),(2,0)A B -,过点A 的直线l 与C 交于,M N 两点

(1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:ABM ABN ∠=∠

解析:(1)当l 与x 轴垂直时,:2l x =,此时(2,2)B ±,直线BM 的方程为

1

(2)2

y x =±+

(2)具体过程可以参考32题,在上题中是分情况讨论直线斜率不存在与存在的情况,其实无需讨论斜率是否存在,可以直接将直线方程设为2x my =+

设:2l x my =+,直线,BM BN 的斜率分别为12,k k

联立212122

2

2402,42x my y my y y m y y y x

=+??--=?+==-?=? 所以12121212121224()

022(4)(4)

y y my y y y k k x x my my +++=

+==++++ 所以直线,AM BM 的倾斜角互补,则OMA OMB ∠=∠

8.【2018全国3 理16】已知点(1,1)M -和抛物线2:4C y x =,过C 的焦点且斜率

为k 的直线与抛物线交于,A B 两点,若90ABM ?∠=,则k =________. 解析:用到结论:在抛物线中以焦点弦为直径的圆与准线相切

所以1N M y y ==,设0(,1)N x ,根据焦点弦斜率公式可得

000

12

2AB ON AB AB p k k k k x x x ?=

??=?= 9.【2018北京 理 19】已知抛物线2:2C y px =经过点(1,2)P ,过点(0,1)Q 的直线l

与抛物线C 有两个不同的交点,A B ,且直线PA 交y 轴于M ,直线PB 交y 轴于N . (1)求直线l 的斜率的取值范围;

(2)设O 为原点,,QM QO QN QO λμ==u u u u r u u u r u u u r u u u r ,求证:11

λμ

+为定值。

解析:(1)因为抛物线经过(1,2)P ,则2p =,抛物线方程为24y x = 由题意可知直线l 的斜率存在且不为0,设直线l 的方程为

1(0)y kx k =+≠

由2224(24)101

y x

k x k x y kx ?=?+-+=?

=+? 22(24)410k k ?=--??>解得0k <或01k <<

又,PA PB 与y 轴相交,故直线l 不过点(1,2)-,故3k ≠-【最容易遗漏的地方】

所以直线l 斜率的取值范围是(,3)(3,0)(0,1)-∞-?-?

(2)第二问考察有关向量系数的定值问题,很显然需要将,λμ用,A B 两点的坐标表示出来然后在利用直线与抛物线联立即可,实际运算起来发现,λμ和,M N 两点的纵坐标有关系,所以需要建立,A B 和,M N 坐标的关系,此时就需要根据,A B 两点坐标大胆写出,PA PB 的直线方程,求出,M N 两点坐标即可,不要想什么便捷方法,怎么问怎么想就可以。

设1122(,),(,)A x y B x y ,由2224(24)101

y x

k x k x y kx ?=?+-+=?

=+? 直线PA 的方程为112

2(1)1

y y x x --=

--,令0x =得点M 的纵坐标为111121

2211

M y kx y x x -+-+=

+=+--,同理得N 点的纵坐标为 22121

N kx y x -+=+-,由,QM QO QN QO λμ==u u u u r u u u r u u u r u u u r 得1,1M N y y λμ=-=-

所以

1212

111

1

11

11(1)(1)M N x x y y k x k x λ

μ

--+

=

+=+---- 故1

1

λμ

+为定值。 10.【2018北京文 20】已知椭圆2222:1(0)x y M a b a b

+=>>

k 的直线l 与椭圆M 有两个不同的交点,A B

(1)求椭圆M 的方程; (2)若1k =,求||AB 的最大值;

(3)设(2,0)P -,直线PA 与椭圆M 的另一个交点为C ,直线PB 与椭圆M 的另一

个交点为D ,若,C D 和点71(,)42

Q -共线,求k

解析:(1

)由题意知221332c a x y a c c ??==???+=??

=???=?

(2)设1122:,(,),(,)l y x m A x y B x y =+

联立22

22

4633013

y x m x mx m x y =+???++-=?+=?? 令22(6)44(33)0m m ?=-??->,则24m < 故当0m =时,||AB 最大。

(3)题目给出共线,则用向量共线即可,但是需要知道,C D 两点的坐标,因此大胆设出,PA PB 的方程,求出,C D 的坐标(坐标与,A B 坐标产生关联之后即可)

设11223344(,),(,),(,),(,)A x y B x y C x y D x y ,又(2,0)P -,所以可设

1

112

PA y k k x ==

+,直线PA 的方程为:1(2)y k x =+ 则2113211213k x x k +=-+即2

131

2

11213k x x k =--+,又1112y k x =+,代入得13171247x x x --=+ 【注意此处也可以不转化,直接将3x 转化为11,x y 的形式,但是不如一开

始就转化简单】

故13147y y x =

+,1

111712(,)4747x y C x x --++,同理可得22

22712(,)4747

x y D x x --++ 故33447171

(,),(,)4444

QC x y QD x y =+-=+-u u u r u u u r

因为,,Q C D 三点共线,所以34437171()()()()04444

x y x y +--+-= 将,C D 坐标代入化简可得

12

12

1y y x x -=-,即1k = 11.【2018天津文 19】椭圆22

221(0)x y a b a b

+=>>的右顶点为A ,上顶点为B 。已

||AB =(1)求椭圆的方程;

(2)设直线:(0)l y kx k =<与椭圆交于,P Q 两点,l 与直线AB 交于点M ,且点,P M 均在第四象限,若BPM ?的面积是BPQ ?面积的2倍,求k 的值。

解析:(1)22

194

x y +=

(2)设1122(,),(,)P x y M x y

212||2||||4||5BPM BPQ S S PM PQ PM OQ x x ??=?=?=?=【需要的等量关系】,

接下来用k 表示出12,x x 即可

2623233y kx

x k y x =???=?+=-+??

,2

2119

4y kx x x y =???=?+=??

所以

632k =+,解得89k =-或1

2k =- 当89k =-时,120,0x x ><不符合题意,当12

k =-时,120,0x x >>符合题意,所以12

k =-

2. 极坐标与参数方程问题

12.【2018全国1 选做22】在直角坐标系xoy 中,曲线1C 的方程为1:||2C y k x =+,

以坐标原点为极点,x 轴正半轴为极轴建立坐标系,曲线2C 的极坐标方程为22cos 30ρρθ+-=

(1)求2C 的直角坐标方程;

(2)若1C 与2C 有且仅有三个公共点,求1C 的方程。 解析:(1)22230x y x ++-=

(2)||2y k x =+恒过(0,2)点,当0k ≥时不符合题意

当0k <时,2,0

()2,0kx x f x kx x +≥?=?-+

当0x <时,2y kx =-+与2C 恒有两个交点,所以只需当0x ≥时,2y kx =+与

2C 只有一个交点即可,联立 令0?=解得43

k =-

所以1C 的方程为4||23y x =-+

13.【2018全国2 选修22】在直角坐标系xoy 中,曲线C 的参数方程为

2cos ()4sin x y θθθ=??=?为参数,直线l 的参数方程为1cos (t )2sin x t y t α

α=+??

=+?为参数 (1)求C 和l 的直角坐标方程;

(2)若曲线C 截直线l 所得线段的中点坐标为(1,2),求l 的斜率。

解析:(1)曲线C 的直角坐标方程为22

1416

x y +=

当cos 0α≠时,l 的直角坐标方程为tan 2tan y x αα=?+- 当cos 0α=时,l 的直角坐标方程为1x =

(2)考察中点弦问题,因此可以利用中点弦求斜率公式,设中点坐

标为(1,2)M ,则2

2242OM

a k k k k b

?=-?=-?=- 常规做法如下:

将l 的参数方程代入C 的直角坐标方程,整理得关于t 的方程 因为曲线C 截直线l 所得线段的中点(1,2)在C 内,故上式有两个解,

设为12,t t ,则120t t +=

又因为122

4(2cos sin )

13cos t t ααα

++=-

+,故2cos sin 0αα+=

所以直线l 的斜率tan 2k α==-

【此处用到了直线的参数方程的两个用法之一】

14.【2018 全国3 选做22】在平面直角坐标系xoy 中,O e 的参数方程为

cos ()sin x y θ

θθ=??

=?为参数

,过点(0,且倾斜角为α的直线l 与O e 交于,A B 两点 (1)求α的取值范围;

(2)求AB 中点P 的轨迹的参数方程。 解析:(1)当斜率不存在时,此时2

π

α=

符合要求

当斜率存在时,若要满足直线与圆相切只需要保证圆心到直线的距

离小于半径

即可。

设直线:l y kx =

1(,1)(1,)d k =

根据正切函数图像可知3(,)(,)42

24

ππππ

α∈?

综上可知3(,)44

ππ

α∈

(2)可以用直线的普通方程来做,但是如果那样题目就失去意义了。既

然是中点,就应该想到直线的参数方程应用中关于中点的用法。、

设直线l

的参数方程为cos (t )sin x t y t α

α

=???=??是参数(3(,)44ππα∈)

将直线的参数方程代入221x y +=

得2sin 10t α-+= 设P 点对应 的参数为P t

,故12

2

P t t t α+=

=

所以2cos 3((,))44P

P x y αα

ππαα

?=?∈?=?? 所以点P

的轨迹方程为223((,))44P

P

x y αππαα

?=?∈??=?

3. 探究性问题

15.【2018 上海 20】设常数2t >,在平面直角坐标系xoy 中,已知点(2,0)F ,直线:l x t =,曲线28(0,0)y x x t y Γ=≤≤≥:,l 与x 轴交于点A ,与Γ交于点B ,,P Q 分别是曲线Γ与线段AB 上的动点。 (1)用t 表示点B 到点F 的距离;

(2)设3t =,||2FQ =,线段OQ 的中点在直线FP 上,求AQP ?的面积; (3)设8t =,是否存在以,FP FQ 为邻边的矩形FPEQ ,使得点E 在Γ上?若存在求出点P 的坐标,若不存在说明理由。

解析:(1)点F 是抛物线的焦点,所以||22B BF x t =+=+ (2)从中点入手即可

因为||1,||2AF FQ ==,所以||AQ =Q ,则OQ 中点坐标

为3(2,所以:2)PF y x =-,联立

所以1()26

AQP Q P S AQ x x ?=?-= (3)

若存在这样的点E ,则E 点坐标符合抛物线方程,若能求出坐标且符合范围

要求,则E 点存在。求E 点坐标时可以利用向量的平行四边形法则:FP FQ FE +=u u u r u u u r u u u r

,因此需要求出,P Q 坐标,另外,P Q 两点为动点,但是,P Q 两点可以通过垂直产生关联,求出一个,另外一个就知道了

解析:假设存在这样的E 点,设2(,)8y P y ,则2816PF y

k y =-,所以2168QF y k y -=

216:(2)8y QF y x y -=

-,所以2

483(8,)4y Q y

- 根据FP FQ FE +=u u u r u u u r u u u r 可得22

48(6,

)84y y E y

++,点E 在抛物线上,

22248()8(6)48y y y +=+,解得216,85y y ==<,所以存在这样的E 点。

高考数学圆锥曲线大题集大全

高考二轮复习专项:圆锥曲线 1. 如图,直线l1与l2是同一平面内两条互相垂直的直线,交点是A ,点B 、D 在直线l1 上(B 、D 位于点A 右侧),且|AB|=4,|AD|=1,M 是该平面上的一个动点,M 在l1上的射影点是N ,且|BN|=2|DM|. 2. (Ⅰ) 建立适当的坐标系,求动点M 的轨迹C 的方程. (Ⅱ)过点D 且不与l1、l2垂直的直线l 交(Ⅰ)中的轨迹C 于E 、F 两点;另外平面上的点G 、H 满足: ○1(R);AG AD λλ=∈u u u r u u u r ○22;GE GF GH +=u u u r u u u r u u u r ○30.GH EF ?=u u u r u u u r 求点G 的横坐标的取值范围. 2. 设椭圆的中心是坐标原点,焦点在x 轴上,离心率 23=e ,已知点)3,0(P 到这个椭圆上的点的最远距离是4,求这个椭圆的方程. 3. 已知椭圆)0(1:22221>>=+b a b y a x C 的一条准线方程是, 425=x 其左、右顶点分别 是A 、B ;双曲线1 :22 222=-b y a x C 的一条渐近线方程为3x -5y=0. (Ⅰ)求椭圆C1的方程及双曲线C2的离心率; (Ⅱ)在第一象限内取双曲线C2上一点P ,连结AP 交椭圆C1于点M ,连结PB 并延长交椭圆C1于点N ,若=. 求证:.0=? B A D M B N l2 l1

4. 椭圆的中心在坐标原点O,右焦点F (c,0)到相应准线的距离为1,倾斜角为45°的直线交椭圆于A ,B 两点.设AB 中点为M ,直线AB 与OM 的夹角为αa. (1)用半焦距c 表示椭圆的方程及tg α; (2)若2

(完整版)高考圆锥曲线经典真题

高考圆锥曲线经典真题 知识整合: 直线与圆锥曲线联系在一起的综合题在高考中多以高档题、压轴题出现,主要涉及位置关系的判定,弦长问题、最值问题、对称问题、轨迹问题等.突出考查了数形结合、分类讨论、函数与方程、等价转化等数学思想方法,要求考生分析问题和解决问题的能力、计算能力较高,起到了拉开考生“档次”,有利于选拔的功能. 1.(江西卷15)过抛物线22(0)x py p =>的焦点F 作倾角为30o 的直线,与抛物线 分别交于A 、B 两点(A 在y 轴左侧),则 AF FB = .1 3 2 (2008年安徽卷)若过点A(4,0)的直线l 与曲线 22 (2)1x y -+=有公共点,则直线l 的斜率的取值范围为 ( ) A. [3,3] B. (3,3) C. 33[33- D. 33 (,33- 3(2008年海南---宁夏卷)设双曲线22 1916x y -=的右顶点为A,右焦点为F,过点F 平行双曲线的一条渐近线的直线与双曲线交于点B,则三角形AFB 的面积为-___________. 热点考点探究: 考点一:直线与曲线交点问题 例1.已知双曲线C :2x2-y2=2与点P(1,2) (1)求过P(1,2)点的直线l 的斜率取值范围,使l 与C 分别有一个交点,两个交点,没有交点. 解:(1)当直线l 的斜率不存在时,l 的方程为x=1,与曲线C 有一个交点.当l

的斜率存在时,设直线l 的方程为y -2=k(x -1),代入C 的方程,并整理得 (2-k2)x2+2(k2-2k)x -k2+4k -6=0 (*) (ⅰ)当2-k2=0,即k=± 2 时,方程(*)有一个根,l 与C 有一个交点 (ⅱ)当2-k2≠0,即k ≠±2 时 Δ=[2(k2-2k)]2-4(2-k2)(-k2+4k -6)=16(3-2k) ①当Δ=0,即 3-2k=0,k=23 时,方程(*)有一个实根,l 与C 有一个交点. ②当Δ>0,即k <23 ,又 k ≠± 2 ,故当k <- 2 或-2 <k < 2 或 2<k <2 3 时,方程(*)有两不等实根,l 与C 有两个交点. ③当Δ<0,即 k >23 时,方程(*)无解,l 与C 无交点. 综上知:当k=±2,或k=23 ,或 k 不存在时,l 与C 只有一个交点; 当2<k <23 ,或-2<k <2,或k <- 2 时,l 与C 有两个交点; 当 k >23 时,l 与C 没有交点. (2)假设以Q 为中点的弦存在,设为AB ,且A(x1,y1),B(x2,y2),则2x12-y12=2,2x22-y22=2两式相减得:2(x1-x2)(x1+x2)=(y1-y2)(y1+y2) 又∵x1+x2=2,y1+y2=2 ∴2(x1-x2)=y1-y1 即kAB= 2 121x x y y --=2 但渐近线斜率为±2,结合图形知直线 AB 与C 无交点,所以假设不正确,即以 Q 为中点的弦不存在.

高考圆锥曲线典型例题(必考)

椭 圆 典例精析 题型一 求椭圆的标准方程 【例1】已知点P 在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为45 3 和 25 3 ,过P 作长轴的垂线恰好过椭圆的一个焦点,求椭圆的方程. 【解析】故所求方程为x 25+3y 2 10=1或3x 210+y 2 5 =1. 【点拨】(1)在求椭圆的标准方程时,常用待定系数法,但是当焦点所在坐标轴不确定时,需要考虑两种情形,有时也可设椭圆的统一方程形式:mx 2+ny 2=1(m >0,n >0且m ≠n );(2)在求椭圆中的a 、b 、c 时,经常用到椭圆的定义及解三角形的知识. 【变式训练1】已知椭圆C 1的中心在原点、焦点在x 轴上,抛物线C 2的顶点在原点、焦点在x 轴上.小明从曲线C 1,C 2上各取若干个点(每条曲线上至少取两个点),并记录其坐标(x ,y ).由于记录失误,使得其中恰有一个点既不在椭圆C 1上,也不在抛物线C 2上.小明的记录如下: 据此,可推断椭圆C 1的方程为 . x 212+y 2 6 =1.

题型二 椭圆的几何性质的运用 【例2】已知F 1、F 2是椭圆的两个焦点,P 为椭圆上一点,∠F 1PF 2=60°. (1)求椭圆离心率的范围; (2)求证:△F 1PF 2的面积只与椭圆的短轴长有关. 【解析】(1)e 的取值范围是[12,1).(2)2 1 F PF S =12mn sin 60°=3 3 b 2, 【点拨】椭圆中△F 1PF 2往往称为焦点三角形,求解有关问题时,要注意正、余弦定理,面积公式的使用;求范围时,要特别注意椭圆定义(或性质)与不等式的联合使用,如|PF 1|·|PF 2|≤(|PF 1|+|PF 2|2)2 ,|PF 1|≥a -c . 【变式训练2】 已知P 是椭圆x 225+y 2 9=1上的一点,Q ,R 分别是圆(x +4)2 +y 2 =1 4 和圆 (x -4)2+y 2=1 4上的点,则|PQ |+|PR |的最小值是 .【解析】最小值 为9. 题型三 有关椭圆的综合问题 【例3】(2010全国新课标)设F 1,F 2分别是椭圆E :x 2a 2+y 2 b 2=1(a >b >0)的 左、右焦点,过F 1斜率为1的直线l 与E 相交于A ,B 两点,且|AF 2|,|AB |,|BF 2|成等差数列. (1)求E 的离心率;

2019高考圆锥曲线大题例题练习题

1.【2018全国二卷19】设抛物线的焦点为,过且斜率为的直线与交于,两点,. (1)求的方程; (2)求过点,且与的准线相切的圆的方程. 3.【2018全国三卷20】已知斜率为的直线与椭圆交于,两点,线段的中点为. (1)证明:; (2)设为的右焦点,为上一点,且.证明: ,,成等差数列,并求该数列的公差. 【定点问题】已知()()()0,10,1,10.A B M --,, 动点P 为曲线C 上任意一点,直线,PA PB 的120,0,y , )0a b 的两个焦点均在以坐标原点的短半轴长为半径的圆上,且该圆被直线20x y +-=截得的弦长为问:,AB BD 是否【18浙江改编】已知椭圆C :()22 2210x y a b a b +=的离心率为12 ,过右顶点与上顶点的直(1)求C 的标准方程; (2)若圆O :223x y +=上一点处的切线l 与椭圆C 交于不同的两点,,A B 求OAB ?面积的最大值. 24C y x =:F F (0)k k >l C A B ||8AB =l A B C k l 22 143 x y C +=:A B AB ()()10M m m >,12 k <-F C P C FP FA FB ++=0FA FP FB

5.【2018天津卷19】设椭圆22 221x x a b +=(a >b >0)的左焦点为F ,上顶点为B . 已知椭圆的离 A 的坐标为(,0)b ,且F B AB ?=(I )求椭圆的方程; (II )设直线l :(0)y kx k =>与椭圆在第一象限的交点为P ,且l 与直线AB 交于点Q . 若 4AQ AOQ PQ =∠(O 为原点) ,求k 的值.

新课标高考《圆锥曲线》大题专题含答案

新课标高考《圆锥曲线》大题专题含答案

全国高考理科数学试题分类汇编9:圆锥曲线 一、选择题 1 .(2013年高考江西卷(理)) 过点2,0) 引直线l 与曲线2 1y x = +相交于 A,B 两点,O 为坐标原点,当?AOB 的面积取最大值时,直线 l 的斜 率 等 于 ( ) A .y E B B C CD =++3 B .3 C .3± D .32 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版)) 双曲线 2 214 x y -=的顶点到其渐近线的距离等于 ( ) A .25 B .4 5 C 25 D 453 .(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版)) 已知中心在原 点的双曲线C 的右焦点为()3,0F ,离心率等于3 2 ,在双曲线C 的方程 是 ( ) A .22 145 x -= B .22 145 x y -= C . 22 125 x y -= D . 22 125 x -=

4 .(2013年高考新课标1(理)) 已知双曲线C : 22 2 21x y a b -=(0,0a b >>)的离心率为52 ,则C 的渐近 线 方 程为 ( ) A .14y x =± B .13 y x =± C . 12 y x =± D .y x =± 5 .(2013年高考湖北卷(理)) 已知04π θ<<,则双曲线 22 122:1 cos sin x y C θθ -=与22 2222 :1sin sin tan y x C θθθ -=的 ( ) A .实轴长相等 B .虚轴长相等 C .焦 距相等 D .离心率相等 6 .(2013年高考四川卷(理)) 抛物线2 4y x =的焦点到双曲线 2 21 3 y x -=的渐近线的距 离 是 ( ) A .12 B .3 2 C .1 D 3

高考数学圆锥曲线历年高考真题

浙江省高考数学圆锥曲线真题 22 04. 若椭圆 x 2 y 2 ab 1(a > b > 0)的左、右焦点分别为 F 1、F 2, 线段 F 1F 2被抛物线 y 2=2 bx 的焦点 分成 5∶ 3的两 段 , 则此椭圆的离心率为 16 (A) 1167 05.过双曲线 2 x 2 a 4 17 (B) 17 2 b y 2 1(a b 4 (C)45 (D) 255 5 0,b 0) 的左焦点且垂直于 x 轴的直线与双曲线相交于 M 、 N 两点 , 以 MN 为直径的圆恰好过双曲线的右顶点 则双曲线的离心率等于 07. 已知双曲线 2 x 2 a 2 y 2 1(a 0,b b 2 0) 的左、右焦点分别为 F 1,F 2, P 是准线上一点 , PF 1 PF 2,|PF 1| |PF 2| 4ab , 则双曲线的离心率是 B ) 3 (C ) 2 (D ) 3 △ ABP 的面积为定 则动点 P 的轨迹是A . 圆 B . 椭圆 C . 一条直线 D . 两条平行直线 09. 2 x 过双曲线 2 a 2 y b 2 1(a 0,b 0) 的右顶 点 条渐近线的交点分别为 B,C uuur .若 AB 1 uuur BC , 2 A . 2 B .3 C 08.如图 , AB 是平面 的斜.线.段. ) B A P 第 10 题) A 作斜率为 1的直线 , 该直线与双曲线的两 则双曲线的离心率 是 ( ) .5 D . 10 A 为斜足 , 若点 P 在平面 内运动 , 使得 点 A (0,2) 。若线段 FA 的中点 B 在抛物线上 2 10. (13)设抛物线 y 2 2px (p 0) 的焦点为 F, 则 B 到该抛物线准线的距离为 近线与以 C 1 的长轴为直径的圆相交于 A, B 两点 ( ) 13 2 B . a 2= 13 1 D . A .a 2= C .b 2= b 2=2 2 2 2 11. 设 F 1, F 2分别为椭圆 x 2 3 y 2 1的 左、 右焦点 22 x y 2 11. 已知椭圆 C 1: 2 2 =1 (a > b > 0)与双曲线 C 2: x 2 ab 则点 A 的坐标是 _______ 2 y 1有公共的焦点 , C 2 的一条渐 4 若 C 1 恰好将线段 AB 三等分 , 则 uuur uuuur 点 A, B 在椭圆上. 若 F 1A 5F 2B ,

(完整word版)2018年高考圆锥曲线大题

2018年高考圆锥曲线大题 一.解答题(共13小题) 1.已知斜率为k的直线l与椭圆C:+=1交于A,B两点,线段AB的中点为M(1,m)(m>0).(1)证明:k<﹣; (2)设F为C的右焦点,P为C上一点,且++=.证明:||,||,||成等差数列,并求该数列的公差. 2.已知斜率为k的直线l与椭圆C:+=1交于A,B两点,线段AB的中点为M(1,m)(m>0).(1)证明:k<﹣; (2)设F为C的右焦点,P为C上一点,且++=,证明:2||=||+||.

3.双曲线﹣=1,F1、F2为其左右焦点,C是以F2为圆心且过原点的圆. (1)求C的轨迹方程; (2)动点P在C上运动,M满足=2,求M的轨迹方程. 4.设椭圆C:+y2=1的右焦点为F,过F的直线l与C交于A,B两点,点M的坐标为(2,0).(1)当l与x轴垂直时,求直线AM的方程; (2)设O为坐标原点,证明:∠OMA=∠OMB.

5.已知椭圆M:+=1(a>b>0)的离心率为,焦距为2.斜率为k的直线l与椭圆M有 两个不同的交点A,B. (Ⅰ)求椭圆M的方程; (Ⅱ)若k=1,求|AB|的最大值; (Ⅲ)设P(﹣2,0),直线PA与椭圆M的另一个交点为C,直线PB与椭圆M的另一个交点为D.若C,D和点Q(﹣,)共线,求k. 6.设常数t>2.在平面直角坐标系xOy中,已知点F(2,0),直线l:x=t,曲线Γ:y2=8x(0≤x≤t,y≥0).l与x轴交于点A、与Γ交于点B.P、Q分别是曲线Γ与线段AB上的动点. (1)用t表示点B到点F的距离; (2)设t=3,|FQ|=2,线段OQ的中点在直线FP上,求△AQP的面积; (3)设t=8,是否存在以FP、FQ为邻边的矩形FPEQ,使得点E在Γ上?若存在,求点P的坐标;若不存在,说明理由.

圆锥曲线历年高考题(整理)附答案

数学圆锥曲线测试高考题 一、选择题: 1. (2006全国II )已知双曲线x 2a 2-y 2b 2=1的一条渐近线方程为y =4 3x ,则双曲线的离心率为( ) (A )53 (B )43 (C )54 (D )3 2 2. (2006全国II )已知△ABC 的顶点B 、C 在椭圆x 23+y 2 =1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( ) (A )2 3 (B )6 (C )4 3 (D )12 3.(2006全国卷I )抛物线2 y x =-上的点到直线4380x y +-=距离的最小值是( ) A . 43 B .7 5 C .85 D .3 4.(2006广东高考卷)已知双曲线2239x y -=,则双曲线右支上的点P 到右焦点的距离与点P 到右准线的距离之比等于( ) B. C. 2 D. 4 5.(2006辽宁卷)方程22520x x -+=的两个根可分别作为( ) A.一椭圆和一双曲线的离心率 B.两抛物线的离心率 C.一椭圆和一抛物线的离心率 D.两椭圆的离心率 6.(2006辽宁卷)曲线 22 1(6)106x y m m m +=<--与曲线221(59)59x y m m m +=<<--的( ) (A)焦距相等 (B) 离心率相等 (C)焦点相同 (D)准线相同 7.(2006安徽高考卷)若抛物线2 2y px =的焦点与椭圆22 162 x y +=的右焦点重合,则p 的值为( ) A .2- B .2 C .4- D .4 8.(2006辽宁卷)直线2y k =与曲线2222 918k x y k x += (,)k R ∈≠且k 0的公共点的个数为( ) (A)1 (B)2 (C)3 (D)4 二、填空题: 9. (2006全国卷I )双曲线2 2 1mx y +=的虚轴长是实轴长的2倍,则m = 。 10. (2006上海卷)已知在平面直角坐标系xOy 中的一个椭圆,它的中心在原点,左焦点为(F ,右顶点为(2,0)D ,

圆锥曲线大题归类

圆锥曲线大题归类 一.定点问题 例1.已知椭圆C :x 2a 2+y 2=1(a >1)的上顶点为A ,右焦点为F ,直线AF 与圆M : (x -3)2+(y -1)2=3相切. (1)求椭圆C 的方程; (2)若不过点A 的动直线l 与椭圆C 交于P ,Q 两点,且AP →·AQ → =0,求证:直线l 过定点,并求该定点的坐标. [解析](1)圆M 的圆心为(3,1),半径r = 3. 由题意知A (0,1),F (c,0), 直线AF 的方程为x c +y =1,即x +cy -c =0, 由直线AF 与圆M 相切,得|3+c -c |c 2+1 =3, 解得c 2=2,a 2=c 2+1=3, 故椭圆C 的方程为x 23+y 2=1. (2)方法一:由·=0知AP ⊥AQ ,从而直线AP 与坐标轴不垂直, 故可设直线AP 的方程为y =kx +1,直线AQ 的方程为y =-1k x +1. 联立??? y =kx +1, x 23+y 2=1,整理得(1+3k 2)x 2+6kx =0,

解得x =0或x =-6k 1+3k 2 , 故点P 的坐标为(-6k 1+3k 2,1-3k 2 1+3k 2 ), 同理,点Q 的坐标为(6k k 2+3,k 2-3k 2+3 ) ∴直线l 的斜率为k 2-3k 2+3-1-3k 2 1+3k 26k k 2+3--6k 1+3k 2 =k 2-14k , ∴直线l 的方程为y =k 2-14k (x -6k k 2+3)+k 2-3k 2+3 , 即y =k 2-14k x -12. ∴直线l 过定点(0,-12). 方法二:由·=0知AP ⊥AQ ,从而直线PQ 与x 轴不垂直,故可设直线l 的方程为y =kx +t (t ≠1), 联立????? y =kx +t ,x 23+y 2=1, 整理得(1+3k 2)x 2+6ktx +3(t 2-1)=0. 设P (x 1,y 1),Q (x 2,y 2)则????? x 1+x 2=-6kt 1+3k 2, x 1x 2=3(t 2-1)1+3k 2, (*) 由Δ=(6kt )2-4(1+3k 2)×3(t 2-1)>0,得 3k 2>t 2-1.由·=0,

0417浙江高考历年圆锥曲线大题(供参考)

2018年04月10日wan****.121的高中数学组卷 评卷人得分 一.解答题(共21小题) 1.如图,已知抛物线x2=y,点A(﹣,),B(,),抛物线上的点P(x,y)(﹣<x<),过点B作直线AP的垂线,垂足为Q. (Ⅰ)求直线AP斜率的取值范围; (Ⅱ)求|PA|?|PQ|的最大值. 2.如图,设抛物线y2=2px(p>0)的焦点为F,抛物线上的点A到y轴的距离等于|AF|﹣1, (Ⅰ)求p的值; (Ⅱ)若直线AF交抛物线于另一点B,过B与x轴平行的直线和过F与AB垂直的直线交于点N,AN与x轴交于点M,求M的横坐标的取值范围. 3.如图,已知抛物线C1:y=x2,圆C2:x2+(y﹣1)2=1,过点P(t,0)(t>0)作不过原点O的直线PA,PB分别与抛物线C1和圆C2相切,A,B为切点.(Ⅰ)求点A,B的坐标;

(Ⅱ)求△PAB的面积. 注:直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则称该直线与抛物线相切,称该公共点为切点. 4.已知椭圆上两个不同的点A,B关于直线y=mx+对称. (1)求实数m的取值范围; (2)求△AOB面积的最大值(O为坐标原点). 5.如图,设椭圆C:(a>b>0),动直线l与椭圆C只有一个公共点 P,且点P在第一象限. (Ⅰ)已知直线l的斜率为k,用a,b,k表示点P的坐标; (Ⅱ)若过原点O的直线l1与l垂直,证明:点P到直线l1的距离的最大值为a ﹣b. 6.如图,点P(0,﹣1)是椭圆C1:+=1(a>b>0)的一个顶点,C1的

长轴是圆C2:x2+y2=4的直径,l1,l2是过点P且互相垂直的两条直线,其中l1交圆C2于A、B两点,l2交椭圆C1于另一点D. (1)求椭圆C1的方程; (2)求△ABD面积的最大值时直线l1的方程. 7.已知抛物线C的顶点为O(0,0),焦点F(0,1) (Ⅰ)求抛物线C的方程; (Ⅱ)过F作直线交抛物线于A、B两点.若直线OA、OB分别交直线l:y=x﹣2于M、N两点,求|MN|的最小值. 8.如图,椭圆C:=1(a>b>0)的离心率为,其左焦点到点P(2,1) 的距离为,不过原点O的直线l与C相交于A,B两点,且线段AB被直线OP平分. (Ⅰ)求椭圆C的方程; (Ⅱ)求△APB面积取最大值时直线l的方程.

历年高考数学圆锥曲线试题汇总

高考数学试题分类详解——圆锥曲线 一、选择题 1.设双曲线22 221x y a b -=(a >0,b >0)的渐近线与抛物线y=x 2 +1相切,则该双曲线的离心率等于( C ) (A (B )2 (C (D 2.已知椭圆2 2:12 x C y +=的右焦点为F ,右准线为l ,点A l ∈,线段AF 交C 于点B ,若3F A F B =,则||AF = (A). (B). 2 (D). 3 3.过双曲线22 221(0,0)x y a b a b -=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线 的交点分别为,B C .若1 2 AB BC =,则双曲线的离心率是 ( ) A B C D 4.已知椭圆22 221(0)x y a b a b +=>>的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF x ⊥轴, 直 线AB 交y 轴于点P .若2AP PB =,则椭圆的离心率是( ) A B .2 C .13 D .12 5.点P 在直线:1l y x =-上,若存在过P 的直线交抛物线2 y x =于,A B 两点,且 |||PA AB =,则称点P 为“ 点”,那么下列结论中正确的是 ( ) A .直线l 上的所有点都是“点” B .直线l 上仅有有限个点是“点” C .直线l 上的所有点都不是“ 点” D .直线l 上有无穷多个点(点不是所有的点)是“ 点” 6.设双曲线12222=-b y a x 的一条渐近线与抛物线y=x 2 +1 只有一个公共点,则双曲线的离心率为 ( ). A. 4 5 B. 5 C. 25 D.5 7.设斜率为2的直线l 过抛物线2 (0)y ax a =≠的焦点F,且和y 轴交于点A,若△OAF(O 为坐标原点)

(完整word版)圆锥曲线、导数2018年全国高考数学分类真题(含标准答案)

圆锥曲线、导数2018年全国高考数学分类真题(含答案) 一.选择题(共7小题) 1.双曲线﹣y2=1的焦点坐标是() A.(﹣,0),(,0)B.(﹣2,0),(2,0)C.(0,﹣),(0,)D.(0,﹣2),(0,2) 2.已知双曲线=1(a>0,b>0)的离心率为2,过右焦点且垂直于x轴 的直线与双曲线交于A,B两点.设A,B到双曲线的同一条渐近线的距离分别为d1和d2,且d1+d2=6,则双曲线的方程为() A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=1 3.设F1,F2是双曲线C:﹣=1(a>0.b>0)的左,右焦点,O是坐标原 点.过F2作C的一条渐近线的垂线,垂足为P,若|PF1|=|OP|,则C的离心率为() A.B.2 C.D. 4.已知F1,F2是椭圆C:=1(a>b>0)的左、右焦点,A是C的左顶点,点P在过A且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C 的离心率为() A.B.C.D. 5.双曲线=1(a>0,b>0)的离心率为,则其渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x 6.已知双曲线C:﹣y2=1,O为坐标原点,F为C的右焦点,过F的直线与C 的两条渐近线的交点分别为M,N.若△OMN为直角三角形,则|MN|=()

A.B.3 C.2 D.4 7.设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为() A.y=﹣2x B.y=﹣x C.y=2x D.y=x 二.填空题(共6小题) 8.在平面直角坐标系xOy中,若双曲线﹣=1(a>0,b>0)的右焦点F (c,0)到一条渐近线的距离为c,则其离心率的值为. 9.已知椭圆M:+=1(a>b>0),双曲线N:﹣=1.若双曲线N的 两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆M的离心率为;双曲线N的离心率为. 10.已知点P(0,1),椭圆+y2=m(m>1)上两点A,B满足=2,则当m=时,点B横坐标的绝对值最大. 11.已知点M(﹣1,1)和抛物线C:y2=4x,过C的焦点且斜率为k的直线与C 交于A,B两点.若∠AMB=90°,则k= . 12.曲线y=(ax+1)e x在点(0,1)处的切线的斜率为﹣2,则a=. 13.曲线y=2ln(x+1)在点(0,0)处的切线方程为. 三.解答题(共13小题) 14.设函数f(x)=[ax2﹣(4a+1)x+4a+3]e x. (Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线与x轴平行,求a; (Ⅱ)若f(x)在x=2处取得极小值,求a的取值范围. 15.如图,在平面直角坐标系xOy中,椭圆C过点(),焦点F1(﹣,0),F2(,0),圆O的直径为F1F2. (1)求椭圆C及圆O的方程;

全国卷高考数学圆锥曲线大题集大全

全国卷高考数学圆锥曲线大题集大全 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高考二轮复习专项:圆锥曲线大题集 1. 如图,直线l 1与l 2是同一平面内两条互相垂直的直线,交点是A ,点B 、D 在直线l 1上(B 、D 位于点A 右侧),且|AB|=4,|AD|=1,M 是该平面上的一个动点,M 在l 1上的射影点是N ,且|BN|=2|DM|. (Ⅰ) 建立适当的坐标系,求动点M 的轨迹C 的方程. (Ⅱ)过点D 且不与l 1、l 2垂直的直线l 交(Ⅰ)中的轨迹C 于E 、F 两点;另外平面上的点G 、H 满足: (R); AG AD λλ=∈2; GE GF GH +=0.GH EF ?= 求点G 的横坐标的取值范围. 2. 设椭圆的中心是坐标原点,焦点在x 轴上,离心率 23 = e ,已知点)3,0(P 到 这个椭圆上的点的最远距离是4,求这个椭圆的方程. 3. 已知椭圆)0(1:22221>>=+b a b y a x C 的一条准线方程是 , 425=x 其左、右顶点分别 B A D M B N l 2 l 1

是A、B;双曲线 1 : 2 2 2 2 2 = - b y a x C 的一条渐近线方程为3x-5y=0. (Ⅰ)求椭圆C1的方程及双曲线C2的离心率; (Ⅱ)在第一象限内取双曲线C2上一点P,连结AP交椭圆C1于点M,连结PB并延长交椭圆C1于点N,若AM=. 求证:.0 = ?AB MN 4. 椭圆的中心在坐标原点O,右焦点F(c,0)到相应准线的距离为1,倾斜角为45°的直线交椭圆于A,B两点.设AB中点为M,直线AB与OM的夹角为αa. (1)用半焦距c表示椭圆的方程及tanα; (2)若2

全国卷高考数学圆锥曲线大题集大全之欧阳数创编

高考二轮复习专项:圆锥曲线大题集 时间:2021.03.02 创作:欧阳数 2.如图,直线l1与l2是同一平面内两条互相垂直的直 线,交点是A,点B、D在直线l1上(B、D 位于点A右侧),且|AB|=4,|AD|=1,M是该平面上的一个动点,M 在l1上的射影点是N,且|BN|=2|DM|. (Ⅰ) 建立适当的坐标系,求动点M的轨迹C的方程.(Ⅱ)过点D且不与l1、l2垂直的直线l交(Ⅰ)中的轨迹C 于E、F两点;另外平面上的点G、H满足: 求点G的横坐标的取值范围. 2. 设椭圆的中心是坐标原点,焦点在轴上,离心率 ,已知点到这个椭圆上的点的最远距离是4,求这个椭圆的方程. 3. 已知椭圆的一条准线方程是 其左、右顶点分别 是A、B;双曲线的一条渐近线方程为3x-5y=0. A D M B N l2 l1

(Ⅰ)求椭圆C1的方程及双曲线C2的离心率; (Ⅱ)在第一象限内取双曲线C2上一点P,连结AP交椭圆C1于点M,连结PB并延长交椭圆C1于点N,若. 求证: 4. 椭圆的中心在坐标原点O,右焦点F(c,0)到相应准线的距离为1,倾斜角为45°的直线交椭圆于A,B两点.设AB中点为M,直线AB与OM的夹角为 a. (1)用半焦距c表示椭圆的方程及tan; (2)若2

2020年高考圆锥曲线部分大题解析

1.【2018浙江21】如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线 2:4C y x =上存在不同的两点,A B 满足,PA PB 的中点均在C 上。 (1) 设AB 中点为M ,证明:PM 垂直于y 轴; (2) 若P 是半椭圆2 2 1(0)4 y x x +=<上的动点,求PAB ?面积的取值范围。 解析:(1)设2200112211(,),(,),(,)44 P x y A y y B y y AP 中点满足:2 2 102014( )4()22 y x y y ++= BP 中点满足:2 2 202024:( )4()22 y x y y BP ++= 所以12,y y 是方程2 2 0204()4()22 y x y y ++=即22000 280y y y x y -+-=的两个根,所以 12 02 y y y +=,故PM 垂直于y 轴。 (2)由(1)可知212012002,8y y y y y x y +=?=- 所以222 1200013||()384 PM y y x y x =+-= - ,12||y y -= 因此,3 2212001||||4)24 PAB S PM y y y x ?=?-=- 因为2 2 0001(0)4 y x x +=<,所以2200004444[4,5]y x x x -=--+∈ 因此,PAB ? 面积的取值范围是

1. 距离型问题 2.【2018全国3 理20】已知斜率为k 的直线l 与椭圆22 :143 x y C +=交于,A B 两点,线段AB 的中点为(1,)(0)M m m > (1)证明:1 2 k <- ; (2)设F 为C 的右焦点,P 为C 上一点且0FP FA FB ++=,证明:,,FP FA FB 为等差数列,并求出该数列的公差。 解析:(1)由中点弦公式22OM b k k a ?=-,解得34k m =- 又因为点M 在椭圆内,故302m << ,故1 2 k <- (2)由题意知2,2FA FB FM FP FM +==-,故(1,2)P m - 因为点P 在椭圆上,代入可得3,14m k = =-,即3||2 FP = 根据第二定义可知,1211||2,||222 FA x FB x =- =- 联立22 212121114371402,4287 4 x y x x x x x x y x ?+=???-+=?+==? ?=-+?? 即121 ||||4()32 FA FB x x +=- += 故满足2||||||FP FA FB =+,所以,,FP FA FB 为等差数列 设其公差为d ,因为,A B 的位置不确定,则有

高考圆锥曲线大题

圆锥曲线经典大题 1.已知过点A (-4,0)的动直线l 与抛物线G :x 2=2py (p >0)相交于B 、C 两点.当 直线l 的斜率是12 时,AC →=4AB →. (1)求抛物线G 的方程; (2)设线段BC 的中垂线在y 轴上的截距为b ,求b 的取值范围. 2.如图,已知(10)F ,,直线:1l x =-,点P 为平面上的动点,过点P 作l 的垂线,垂足为点Q ,且QP QF FP FQ ?=?. (Ⅰ)求动点P 的轨迹C 的方程。 (Ⅱ)过点F 的直线交轨迹C 于A B ,两点,交直线l 于点M . (1)已知1MA AF λ=,2MB BF λ=,求12λλ+的值; (2)求MA MB ?的最小值. 3.设点F 是抛物线G :x 2=4y 的焦点. (1)过点P (0,-4)作抛物线G 的切线,求切线的方程; (2)设A ,B 为抛物线G 上异于原点的两点,且满足 0·=FB FA ,分别延长 AF ,BF 交抛物线G 于C ,D 两点,求四边 形ABCD 面积的最小值. 4.设抛物线方程为22(0)x py p =>,M 为直线2y p =-上任意一点,过M 引抛物线的切线,切点分别为A B ,. (Ⅰ)求证:A M B ,,三点的横坐标成等差数列; (Ⅱ)已知当M 点的坐标为(22)p -, 时,AB =

5.设椭圆22 2:12 x y M a +=(a >的右焦点为1F ,直线2 :2 2-= a a x l 与x 轴交于点 A ,若112OF AF +=0(其中O 为坐标原点) . (1)求椭圆M 的方程;(2)设P 是椭圆M 上的任意一点,EF 为圆 ()12:2 2=-+y x N 的任意一条直径(E 、F 为直径的两个端点),求?的 最大值. 6.已知双曲线C 的方程为22221(0,0)y x a b a b -=>>,离心率e =顶点到渐近线 (I ) (II ) 求双曲线C 的方程; (II)如图,P 是双曲线C 上一点,A ,B 两点在双曲线C 的两条渐近线上,且分 别位于第一、二象限,若1 ,[,2]3 AP PB λλ=∈,求AOB ?面积的取值范围。 7.一条双曲线2 212 x y -=的左、右顶点分别为A 1,A 2,点11(,)P x y ,11(,)Q x y -是双 曲线上不同的两个动点。(1)求直线A 1P 与A 2Q 交点的轨迹E 的方程式;(2)若过点H(0, h)(h>1)的两条直线l 1和l 2与轨迹E 都只有一个交点,且12l l ⊥ ,求h 的值。 8.已知:椭圆122 22=+b y a x (0>>b a ),过点)0,(a A -,),0(b B 的直线倾斜角 为 6 π ,原点到该直线的距离为23.(1)求椭圆的方程;(2)斜率大于零的直线 过)0,1(-D 与椭圆交于E ,F 两点,若2=,求直线EF 的方程;(3)是否存在实数k ,直线2+=kx y 交椭圆于P ,Q 两点,以PQ 为直径的圆过点 )0,1(-D ?若存在,求出k 的值;若不存在,请说明理由.

全国卷高考数学圆锥曲线大题集大全

高考二轮复习专项:圆锥曲线大题集 1. 如图,直线11与12是同一平面两条互相垂直的直线, 交点是A ,点B 、D 在直线11上(B 、 D 位于点A 右侧),且|AB|=4 , |AD|=1 , M 是该平面上的一个动点, M 在l i 上的射影点 是 N ,且 |BN|=2|DM|. (I )建立适当的坐标系,求动点 M 的轨迹C 的方程. (II )过点D 且不与11、12垂直的直线1交(I )中的轨迹C 于E 、F 两点;另外平面上的点 G 、 求点G 的横坐标的取值围. M ___ B ___________________ A D N B 11 、3 e 2. 设椭圆的中心是坐标原点,焦点在 x 轴上,离心率 2,已知 点P(0,3) 到这个椭圆 上的点的最远距离是 4,求这个椭圆的方程. H 满足: AD( R); G E G F 2G H ; G H E F 0. 12

2 2 C x y 1( b 0) 3. 已知椭圆/ b2的一条准线方程是25 , 4其左、右顶点分别

(I) 求椭圆C i的方程及双曲线C2的离心率; (H)在第一象限取双曲线C2上一点P,连结AP交椭圆C i于点M,连结PB并延长交椭 圆C i于点N,若AM MP.求证:MN ?AB 0. 4. 椭圆的中心在坐标原点O,右焦点F (c,0)到相应准线的距离为1,倾斜角为45。的直线交 椭圆于A, B两点.设AB中点为M,直线AB与OM的夹角为 a. (1) 用半焦距c表示椭圆的方程及tan ; (2) 若2b>0)的离心率 3 ,过点A (0, -b)和B (a, 0)的直线 ,3 与原点的距离为 2 (1)求椭圆的方程 (2)已知定点E (-1, 0),若直线y= kx + 2 (k乒0与椭圆交于C D两点问:是否存在k的值,使以CD 为直径的圆过E点?请说明理由 2 2 C x y 是A、B;双曲线, a2b2 1 的一条渐近线方程为3x- 5y=0. 2 x 2 5.已知椭圆a

全国卷高考数学圆锥曲线大题集大全

高考二轮复习专项:圆锥曲线大题集 1. 如图,直线l 1与l 2是同一平面内两条互相垂直的直线,交点是A ,点B 、D 在直线l 1上 (B 、D 位于点A 右侧),且|AB|=4,|AD|=1,M 是该平面上的一个动点,M 在l 1上的射影点是N ,且|BN|=2|DM|. (Ⅰ) 建立适当的坐标系,求动点M 的轨迹C 的方程. (Ⅱ)过点D 且不与l 1、l 2垂直的直线l 交(Ⅰ)中的轨迹C 于E 、F 两点;另外平面上的点G 、H 满足: ①(R);AG AD λλ=∈②2;GE GF GH +=③0.GH EF ?= 求点G 的横坐标的取值范围. 2. 设椭圆的中心是坐标原点,焦点在x 轴上,离心率23 = e ,已知点)3,0(P 到这个椭圆 上的点的最远距离是4,求这个椭圆的方程. 3. 已知椭圆)0(1:22221>>=+b a b y a x C 的一条准线方程是 , 425=x 其左、右顶点分别 B A D M B N l 2 l 1

是A、B;双曲线 1 : 2 2 2 2 2 = - b y a x C 的一条渐近线方程为3x-5y=0. (Ⅰ)求椭圆C1的方程及双曲线C2的离心率; (Ⅱ)在第一象限内取双曲线C2上一点P,连结AP交椭圆C1于点M,连结PB并延长交椭圆C1于点N,若MP AM=. 求证:.0 = ?AB MN 4. 椭圆的中心在坐标原点O,右焦点F(c,0)到相应准线的距离为1,倾斜角为45°的直线交椭圆于A,B两点.设AB中点为M,直线AB与OM的夹角为αa. (1)用半焦距c表示椭圆的方程及tanα; (2)若2

高考数学试题分类大全理科圆锥曲线

2008年高考数学试题分类汇编 圆锥曲线 一. 选择题: 1.(福建卷11)又曲线22 221x y a b ==(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点, 且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为B A.(1,3) B.(]1,3 C.(3,+∞) D.[)3,+∞ 2.(海南卷11)已知点P 在抛物线y 2 = 4x 上,那么点P 到点Q (2,-1)的距离与点P 到 抛物线焦点距离之和取得最小值时,点P 的坐标为( A ) A. (4 1 ,-1) B. ( 4 1 ,1) C. (1,2) D. (1,-2) 3.(湖北卷10)如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点 1 2c 第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行,若用 和22c 分别表示椭轨道Ⅰ和Ⅱ的焦距,用12a 和22a 分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子: ①1122a c a c +=+; ②1122a c a c -=-; ③1212c a a c >; ④11c a <22 c a . 其中正确式子的序号是B A. ①③ B. ②③ C. ①④ D. ②④ 4.(湖南卷8)若双曲线22221x y a b -=(a >0,b >0)上横坐标为32 a 的点到右焦点的距离大于 它到左准线的距离,则双曲线离心率的取值范围是( B ) A.(1,2) B.(2,+∞) C.(1,5) D. (5,+∞)

相关文档
相关文档 最新文档