文档库 最新最全的文档下载
当前位置:文档库 › 基于Ping的多波束测深精度评估方法研究

基于Ping的多波束测深精度评估方法研究

基于Ping的多波束测深精度评估方法研究
基于Ping的多波束测深精度评估方法研究

两种深水多波束测深技术的对比

刘方兰余平肖波罗伟东 (广州海洋地质调查局广州 510760) E-mail:lflhome@https://www.wendangku.net/doc/c015898175.html, 摘要:近年来,在深水进行多波束水深测量使用最多的是SeaBeam2112系统和EM120系统。本文作者根据这两套系统在相同海域的实测资料,进行了数据密度、地形剖面以及不同比例尺成果图的对比,两套不同系统在深水测量具有较好的一致性,但EM120系统测量数据相对密度较大,分布均匀,可以绘制更大比例尺地形图。 关键词:EM120 SeaBeam 多波束测深比较 中图分类号: P24 至2006年底,我国海域200m以深海域已经完成了大约80%面积的多波束全覆盖水深测量,主要使用的测深系统有SeaBeam2112、SeaBat 8150以及EM120系统。随着国土资源大调查项目的开展,深水海域多波束水深测量仍将继续进行。目前,多波束测深技术的已经普及,专业海洋调查船一般都会固定安装的多波束测深系统,而且多波束测深技术还在不断发展与更新,这样,用于水深测量的多波束系统的种类还会越来越多。不同种类的多波束系统的实际测量效果如何?它们的测量精度如何?它们的测量结果有何区别?这些都是我们关心的问题。本文利用2004年6月SeaBeam2112和Em120两套多波束系统在南海北部相同海域测量资料,对两系统测量数据密度、测量精度以及成果图等进行了比较。 1.深水多波束系统简介 测深范围在5000m以上的深水多波束测深系统主要有SeaBeam系列、EM系列、SeaBat 系列和DS系列四种,我国目前拥有其中前三个系列的深水系统:SeaBeam 2112系统、EM120多波束系统和SeaBat8150系统。SeaBeam2112多波束系统是美国SeaBeam公司声纳技术军转民的第二代产品,工作频率12kHz,测量水深10~11000m,波束大小为2.0°×2.0°,最大波束数151个。80年代以来,SeaBeam2112系列多波束系统大量应用于海洋地形地貌测量。EM120多波束系统是Kingsberg Simrad公司90年代中后期产品,工作频率与测深范围与SeaBeam2112系统一样,波束大小有1°×1°~2.0°×2.0°,最大条幅开角140°,最多可以接收191个波束。由于该系统良好的的技术性能,很快成为全球海洋测量使用较多的深水多波束系统,目前在世界上拥有最多的用户。新的SeaBat8150系统技术指标相对其他系统,其深水测量的分辨率具有明显的优势,但因国内用户少,没有实际应用的资料。 广州海洋地质调查局于1994年在国内率先引进SeaBeam2112多波束系统,安装于“海洋四号”船上。多年来,“海洋四号”船多波束测深的范围遍及南海、东海、太平洋,覆盖的面积超过了40万平方公里,取得了大量的实际资料,特别是在南海,由于使用了差分GPS 定位,多波束测量资料精度高,质量可靠。中国大洋协会属下“大洋一号”科学考察船早期于1995安装了同样的SeaBeam系统,但2003年把SeaBeam2112系统更新为现在的EM120系统,2004年已经正式投入使用。国内还有一些海洋调查和研究机构也装备有不同型号的深水或中深水多波束系统,但公开的资料少,特别是很少有可进行对比的测量资料。2004年6月,拥有EM120系统的德国太阳号来到南海进行调查,为SeaBeam2112、EM120这两套深水多波束系统的实测对比提供了条件。

施工测量方法及精度评定

施工测量方法及精度评定 1、设站方法 根据现场情况,主要选择以下两种方式设站。 1.1 全站仪坐标法设站 (1)在施工控制点上架设全站仪并对中整平,初始化后检查仪器的设置:气温、气压、棱镜常、在输入(或调出)测站点的三维坐标,量取并输入仪器高,输入(或调出)后视点坐标,照准后视点进行后视。 (2)如果后视点上有棱镜,输入棱镜高,可以测量后视点的坐标和高程并与已知数据检核。 (3)瞄准另一控制点,检查方位角或坐标;在另一后视点上竖棱镜或尺子检查仪器的视线高。 (4)利用仪器自身的计算功能进行计算时,记录员也应该进行相应的计算,以检查输入数据的正确性。 (5)在各待测站点上架设脚架和棱镜,量取、记录并输入棱镜高,测量、记录待定点的坐标和高程。 1.2 全站仪边角交会法设站 (1)在未知点P上架设、整平全站仪;在已知的基本控制点A上安置棱镜,量测棱镜高;在已知点B、C上安置照准点标志。 (2)量测PA间平距D、高差DH和PA至PB方向间的水平角α、β。 (3)用D、α及A、B点的坐标计算P点的一组坐标;用D、β及A、C点的坐标计算P点的另一组坐标;两组坐标的差值不超过规定限差,取中数即为P点的最后坐标。

(4)根据A点的高程HA和高差DH计算仪器的视线高:H视=HA-DH。 (5)如果需要可以将P点投影到地面上,并作好记录。量取仪器高,求出地面P 点的高程。 2、施工测量方法 2.1 放样方法 (1)用以上方法把测站设置好了后,就可以用测站极坐标法开始放样。 (2)使用全站仪测量测点的三维坐标,用计算器计算测点距设计棱镜的距离,再指挥司镜员移动棱镜,直至到位。 (3)若使用免棱镜全站仪时,可由观测员移动激光斑点再进行测量,直至到位。 (4)在直线较长的边坡、洞室、混凝土工程放样时,建立以边坡平行线、洞室轴线、混凝土边线、为坐标轴的独立坐标系,以便加快测量放样的速度和减少现场测量计算的错误。 2.2 验收断面测量方法 (1)验收断面测量采用免棱镜全站仪。 (2)边坡断面测量时,采用相对坐标设站,任意架设仪器,直接测量符合断面要求的点位,保证断面桩号差小于10cm,数据直接保存在仪器内。 (3)洞室断面测量时也可以用边坡断面测量方法,而现场通常是先把每个断面的中桩放出来,然后将仪器架设于中桩上,将方向置于断面方向上,用独立坐标进行断面测量,数据直接保存在仪器内。 (4)内业资料处理前,把仪器内存储的数据传到计算机内,用专用软件进行数据格式转换,网上也可下载。

浅谈影响多波束测深系统数据质量的几个问题

浅谈影响多波束测深系统数据质量的几个问题 为了为海图的数字化管理及更新提供高精度的数据,在多波束测深系统的应用过程中,正确设置并校正其各个设备之间的安装误差显得尤为重要。通过不断的实践,本文总结了影响多波束测深精度的几个问题,并采用正确的校正方法得以解决,确保数据质量。 标签:GPS延时纵摇偏差横摇偏差艏摇偏差 0 引言 目前多波束系统正逐渐普及,并在海上油田井场调查、航道疏浚、港口测量、大陆架经济区勘测等领域得到广泛应用,可以进行高精度、全覆盖水深测量,实现了由线到面的飞跃。多波束测深系统连接设备比单波束测深要多并复杂,一套多波束系统由多种设备或传感器组成,为了得到真实世界中精确的三维水深坐标必须考虑各设备间的安装误差,并通过不同校正方法改正其姿态。本文以多波束SeaBat 8125和软件PDS2000为例,总结了影响其测深精度的几个问题。 1 多波束系统主要组成 ①RESON SeaBat 8125:频率:455kHz;测深分辨率:6mm;覆盖角度:120°;最大测深范围:120m;波束数:240;沿航线波束角:1°;垂直航线波束角:0.5°;最大船速:12节;最大发射速率:40次/秒。②OCTANS光电罗经、运动传感器:真北方位精度:0.1 °;稳定时间:5分钟;纵横摇分辨率:0.01°;升沉精度:5%。③GPS信标机④PDS2000数据采集软件⑤HY1200声速剖面仪。 2 影响系统精度的几个问题及采用措施和校正方法 水中的声速:海洋中各处的声速都可能不一样,它取决于以下三个参数:盐度变1ppt=声速约变1.3m/s;温度变1°C=声速约变3 m/s。压力:165米深度变化的影响相当于温度变1°C。针对参数,使用hy1200声速剖面仪测前和测后两次测量水中声速,并将声速曲线应用到数据后处理中。背景噪声:在测量过程中,由于声纳、船体电子、气泡断裂、螺旋桨和发动机引起的自身噪声一般可以控制,而其他声源如波浪、潮汐、流速、地震、海洋生物和其它船只引起的环境噪声,一般不可控制。在自身噪声控制中,可以采取以下措施:①在换能器上安装导流罩,设计流体型船体形状,改变声纳头到船壳的高度等,可使水流气泡的影响最小化。②仔细选择声纳头安装位置,远离船主机、副机、泵和螺旋桨,并保证声纳杆舷侧安装稳定牢固,超出船底。③增益的选择:当水深小于等于5米时,可以使用固定增益;当水深大于5米时,采用TVG自动增益。TVG的确定主要取决于Absorption和Spreading Loss两个主要参数,在干净的淡水中,或者在海底具有很好的反射体的水中时,两个参数设置通常较低,反之,较高。校正:在进行多波束校正之前,首先选择良好的海况和特定的海底地形(有明显水深变化如航道和港池的边坡)上采集数据,安装一次就要校正一次,当更换设备或改变传感器位置时都需要重新校正。多波束校正

实验准确度及精确度评估方法

Introduction This document is designed to help our clients understand the quality control requirements and limitations of data reporting. There are three sections to this document. The first section will help to determine data usability. The second section will discuss the regulatory and methodology limitations. The final section deals with hold time and preservation requirements. Click on the bookmarks to the left for more information. The following definitions may help you better understand the components of the data report. The Quality Control Section of ESS Laboratory's analytical report is located after the Sample Results. It is used to determine the data usability of the samples. The Method Blank is an analyte free matrix, (reagent water, clean sand, sodium sulfate), which is carried through the complete preparation and analytical procedure. The Method Blank is used to evaluate contamination resulting from the complete preparation and analytical procedure. The Blank Spike (LCS) is an interference free matrix (same used for the Method Blank) spiked with known concentrations of the analytes of interest. It is analyzed to determine, without sample matrix, if the procedure is working within established control limits. Like the Method Blank it is carried through the complete preparation and analytical procedure. It is routinely performed in duplicate as the BSD (LCSD). The recoveries of the spiked analytes are evaluated to determine accuracy. Comparison of the BS to the BSD will yield a precision measurement. The Matrix Spike is a separate aliquot of the sample spiked with known concentrations of the analytes of interest. It is analyzed to determine, including the matrix interferences, if the procedure is working within established control limits. Like the Blank Spike it is carried through the complete preparation and analytical procedure. It is routinely performed in duplicate as the MSD. The recoveries of the spiked analytes are evaluated to determine accuracy in a given matrix. Comparison of the MS to the MSD will yield a precision measurement in a given matrix. The Duplicate is a separate aliquot of the sample carried through the complete preparation and analytical procedure. Comparison of the Sample to the Duplicate will yield a precision measurement in a given matrix. See Blank Spike/Matrix Spike for Blank Spike Duplicate and Matrix Spike Duplicate definitions. The Standard Reference Material is a third party standard with known concentrations in matrix similar to the sample. Surrogate Standards are analytes added to a sample at a known concentration in order to determine extraction efficiency. Surrogate Standards are analytes chemically similar to those being extracted. An Internal Standard is an analyte or group of analytes added to a sample at a constant concentration, for calibration and quantitation. The internal standard is an analyte chemically similar to those being evaluated. It is typically added in GC/MS methods to correct analyte concentrations during analysis. The Continuing Calibration Verification is a check standard used to determine if the sample analysis is within control limits.

多波束勘测系统工作基础学习知识原理及其结构

第二章多波束勘测系统工作原理及结构 多波束系统是70年代兴起、80年代中、末期又得到飞速发展的一项全新的海底地形精密勘测技术。它是当前兴趣的焦点,因为它既有条带测深数据,又同时可获取反映底质属性的回波强度数据(Laurent Hellequin et al.,2003)。该技术采取广角度定向发射和多通道信息接收,获得水下高密度具有上百个波束的条幅式海底地形数据,彻底改变了传统测深技术概念,使测深原理、勘测方法、外围设备和数据处理技术诸方面都发生了巨大变化,大大提高了海底地形勘测的精度、分辨率和工作效率,实现了测深技术史上的一次革命性突破(李家彪等,2000)。多波束系统的工作原理与传统的单波束回声测深仪工作原理类似,都是根据声波在水下往返传播的时间与声速的乘积得到距离,从而得到水深。不同的是单波束测深仪一般采用较宽的发射波束(8°左右)向船底垂直发射,声传播路径不会发生弯曲,来回的路径最短,能量衰减很小,通过对回声信号的幅度检测确定信号往返传播的时间,再根据声波在水介质中的平均传播速度计算测量水深。在多波束系统中,换能器配置有一个或者多个换能器单元的阵列,通过控制不同单元的相位,形成多个具有不同指向角的波束,通常只发射一个波束而在接收时形成多个波束。除换能器天底波束外,外缘波束随着入射角的增加,波束在倾斜穿过水层时会发生折射,同时由于多波束沿航迹方向采用较窄的波束角而在垂直航迹方向采用较宽的覆盖角,要获得整个测幅上精确的水深和位置,必须要精确地知道测量区域水柱的声速剖面和波束在发射和接收时船的姿态和船艏向。因此,多波束测深在系统组成和测量时比单波束测深仪要复杂得多(周兴华等,1999)。 §2.1 多波束勘测系统的工作原理 2.1.1 单波束的形成 2.1.1.1 发射阵和波束的形成 一个单波束在水中发射后,是球形等幅度传播,所以方向上的声能相等。这种均匀传播称为各向同性传播(isotropic expansion),发射阵也叫各向同性源(isotropic source)。例如,一个小石头扔进池塘时就是这种情况,如图2.7所示。

相机标定和精度评估方法的比较和回顾汇总

摄像机标定方法与精度评估的对比回顾摘要 相机标定对于进一步的度量场景测量来说是一个关键性的问题。很多有关标定的技术和研究在过去的几年中相继出现。然而,深入探究一种确定的标定方法的细节,并与其它方法进行精度比较仍是不易的。这种困难主要表现在缺少标准化和各种精度评估方法的选择上。本文给出一个详细的回顾关于一些最常用的标定技术,文中,这些标定方法都采用相同的标准。此外,文中涉及的方法已经过测试,精确度也经过测定。比较结果和后续的讨论也在文中给出。此外,代码和结果在网上也可以找到。2002模式识别学会,发布由Elsevier science,保留所有权利。 关键词:相机标定镜头畸变参数估计优化相机建模精度评估3D 重建计算机视觉 1、介绍 相机标定是计算机视觉计算的第一步。虽然可以通过使用非标定相机获取一些有关测量场景的信息,但是,当需要度量信息时标定是必须的。精确校准相机的使用使从平面投影图像中测量物体在真实世界中的距离成为可能。这种功能的一些应用包括: 1、致密重建:每个像点确定一条光射线通过相机对场景的焦点。这种使用 多个视角观察静止场景(来自一个立体系统,或者单个移动相机, 或者一个结构光发射器)允许两条交叉的光线得到度量的3D点位 置。显然,相应的问题被提前解决了。 2、外观检验:一旦被测目标的致密重建被获得,被重建的目标可以与已存 储的目标比较来检测任何制造缺陷如凸起、凹陷或裂纹。一个潜在 应用是外观检验用来质量控制。计算机处理的外观检查允许自动化 和彻底化检查物体,与缓慢的暗含一种数据统计方法的人工检查截 然相反。

3、目标定位:当考虑来自不同对象的各种图像点时,这些对象的相对位置 可以被轻易确定。这个有许多可能的应用,尤其是工业零件装配和 机器人导航中的障碍回避。 4、相机定位:当相机固定在机械臂或者移动机器人上,相机的位置和相角 可以通过计算场景中已知标志的位置获得。如果这些测量值提前存 储,一个短暂的分析可以帮助处理器计算出机器人的轨迹。相机的 信息可以用在机器人控制或者路线规划上。 相机标定可分为两个步骤。首先,相机建模涉及到使用一系列参数对传感器的物理和视觉行为进行数学逼近。其次,使用直接或迭代的方法估算得到的参数值。在所建模型中有两种参数需要考虑。一方面是本征参数,用来模拟图像传感器的内在结构和光学特征。本质上,本征参数决定光线是如何通过镜头投射在传感器的图像面上的。另一方面的参数是非本征参数。非本征参数测量相机相对于世界坐标系统的位置和相角,也就是说,提供相对于用户固定的坐标系统而不是相机坐标系统的数据。 相机标定可以按以下几种不同的标准划分。(1)线性和非线性相机标定(区别在于相机畸变的建模上)(2)本征和非本征相机标定。本征标定仅在获得相机物理和光学参数时使用。而非本征标定着眼于测量视场中相机的位置和相角。(3)隐式和显式相机标定。隐式标定是指相机标定过程中并不明确计算相机的物理参数。尽管结果可以用于3D测量或生成图像坐标,但是,由于获得的参数与物理参数不一致,测量结果对于相机建模是无用的。(4)使用已知的3D点或简化的3D点作为标定模式,就那些使用如消失线或其它线性特征等几何特征的方法而言。 这些方法还可以按估算相机模型参数的标定方法来划分: 1、非线性最优化技术。当镜头的所有缺陷包含在相机模型中时,标定方法变成非线性。在这种情况下,相机参数通常通过与一个确定的最小化约束条件的函数迭代来获得。最小化指使像点和通过迭代的模型预测值最小。这种迭代技术的好处是几乎所有的模型都可以被校正,精度可以通过增加对收敛域的迭代次数。然而,这种技术需要一个最初有一个好的猜测来保证收敛。一些例子在一些经典的摄影测量法和Salvi中有描述。

多波束天线通道幅相一致性校正及实现(精)

多波束天线通道幅相一致性校正及实现 朱丽龚文斌杨根庆 (中科院上海微系统与信息技术研究所,上海 200050) 摘要:本文针对多波束天线接收机的通道幅相一致性校正,提出了一种基于自适应算法的校正方法并在FPGA 中实现了该方法。在满足系统要求的前提下,该方法不但实现起来相对容易,而且算法的精度和动态范围也有一定的保证。仿真和试验结果表明,该方法是可行的。关键词:多波束天线,通道失衡,幅相误差,最小均方误差,校正 1.引言 随着人们对卫星通信要求的不断提高,卫星通信技术得到了很大的发展。其中,卫星多波束天线目前己成为提高卫星通信性能、降低系统成本的一项关键性技术。 多通道接收机是DBF 天线系统中信号的必经之路,正是这种多接收通道的结构,使DBF 天线系统增加了幅度和相位误差的潜在来源。与多个天线阵列相连接的多个接收机通道必须要有很高的一致性,否则通道间的失配将严重影响数字波束系统的性能。对多通道间误差的校正正是星载数字多波束天线的关键技术之一。由于目前国内对星载DBF 天线的研究还处于初级阶段,所以需要更多的借鉴智能天线、自适应天线和雷达等领域已有的研究成果。 本文主要针对基于卫星应用的两维阵列DBF 天线系统,采用目前最常用的LMS 算法设计并在FPGA 中实现了对其前端射频多通道接收机的幅相校正系统,最后给出了测试结果。测试结果表明,这种采用定点数制的LMS 算法对系统的幅相误差具有较好的校正性能。 2.数字多波束天线的幅相校正原理

数字多波束天线的组成如图1所示。前端天线阵是由多个天线单元组成两维阵列,阵元接收的信号经射频前端电路、A/ D 转换电路、数字下变频器后送入数字波束形成器处理。[2][1] 设计一个六边形排列的7单元天线阵,A/D后端的数字下变频器和波束形成器均采用FPGA 实现。天线阵接收到的信号首先通过射频通道混频后得到中频信号,再将此模拟中频信号经过ADC 后得到数字中频信号,然后送入DDC 进行下变频;下变频后,每路信号分为正交的I、Q 两路,这些正交的信号再送入波束成形器中进行波束成形,最后的输出即为合成的波束。接收通道在制造时的各种误差、电路器件的选择,A/D的量化精度、DDC 的性能、I/Q两路的正交误差等因素都会引起信号幅度和相位的变化。为了能够正确的波束成形,达到系统的精度要求,就必须要对多通道接收机进行校正,校正系统原理图如下图2 所示。

多波束测深系统声速校正

多波束测深系统声速校正 3 何高文 (广州海洋地质调查局二海,510760) 摘要 海水声速是多波束测深系统进行水深测量的基本参数之一,声速剖面正确与否直接影响测量结果的精度和可靠性。本文阐述了声速对多波束水深测量的影响机理,并通过对南海SA 12试验区采集的声速资料的分析,以SeaBeam 2100多波束测深系统为例,对声速校正的技术方法进行了探讨。 关键词  海洋 声速校正 多波束测深 SeaBeam 2100测深系统中图分类号:P 73312 文献标识码:B 前言 自1994年原地矿部引进第一套多波束测深仪(SeaB eam 2100系统,安装于“海洋四号”船)以来,我国先后引进了多套深、浅水多波束测深系统,在大洋矿产资源调查和目前正在开展的近海大陆架及专属经济区的地形勘测中,发挥了巨大作用,引发了一场海底地形测量的革命,为有效地维护国家权益和即将开展的海域划界作出了很大贡献。 如何保证测量数据的精度及其可靠性,是任何测量仪器必须关注的问题,多波束测深仪也不例外。作为一种有别于传统单波束测深仪的水深测量仪器,影响多波束测深数据的因素 有很多,其中海水声速(简称“声速” )是重要的因素之一。下面以SeaB eam 2100系统为例,探讨声速对多波束测量数据的影响以及声速校正的技术方法。 由于SeaB eam 多波束测深系统的水深测量值是根据发射声波的往返时间与声波在海水中的传播速度来确定的,因此,及时为系统提供当时当地准确的声速值是获取可靠水深测量数据的基本保证之一;此外,多波束测深系统对所输入的声速数据量有一定的限制,不同的数据取点,也将对测量结果产生影响。与传统的单波束测深仪相比,多波束测深仪对声速的要求更为严格(见后述)。所以,为了获得准确可靠的多波束测深数据,必须进行声速校正。通过对南海SA 12试验区海水声速系统测量结果的研究,获得了声速变化规律的认识,从而为SeaB eam 系统的声速校正提供科学依据。 1 声速影响因素 海洋中的声速是一个比较活跃的海洋学变量,它取决于介质中的许多声传播特性,随季 收稿日期:2000204220第19卷 第4期2000年12月 海 洋 技 术O CEAN T ECHNOLO GY V o l 119,N o 14 D ec,2000

分类精度评价

遥感影像分类精度评价 遥感影像分类精度评价 (2009-11-20 14:20:57) 在ENVI中,选择主菜单->Classification->Post Classification->Confusion Matrix->Using Ground Truth ROIs。将分类结果和ROI输入,软件会根据区域自动匹配,如不正确可以手动更改。点击ok后选择报表的表示方法(像素和百分比),就可以得到精度报表。 对分类结果进行评价,确定分类的精度和可靠性。有两种方式用于精度验证:一是混淆矩阵,二是ROC曲线,比较常用的为混淆矩阵,ROC曲线可以用图形的方式表达分类精度,比较形象。 对一帧遥感影像进行专题分类后需要进行分类精度的评价,而进行评价精度的因子有混淆矩阵、总体分类精度、Kappa系数、错分误差、漏分误差、每一类的制图精度和拥护精度。 1、混淆矩阵(Confusion Matrix): 主要用于比较分类结果和地表真实信息,可以把分类结果的精度显示在一个混淆矩阵里面。混淆矩阵是通过将每个地表真实像元的位置和分类与分类图象中的相应位置和分类像比较计算的。混淆矩阵的每一列代表了一个地表真实分类,每一列中的数值等于地表真实像元在分类图象中对应于相应类别的数量,有像元数和百分比表示两种。 2、总体分类精度(Overall Accuracy): 等于被正确分类的像元总和除以总像元数,地表真实图像或地表真实感兴趣区限定了像元的真实分类。被正确分类的像元沿着混淆矩阵的对角线分布,它显示出被分类到正确地表真实分类中的像元数。像元总数等于所有地表真实分类中的像元总和。 3、Kappa系数:是另外一种计算分类精度的方法。它是通过把所有地表真实分类中的像元总数(N)乘以混淆矩阵对角线(Xkk)的和,再减去某一类中地表真实像元总数与该类

(完整版)多波束测深与测扫声呐的比较

多波束测深与测扫声呐的比较: (1)侧扫声纳是目前常用的海底目标(如沉船、水雷、管线等)探测工具,在测深领域,多波束以全覆盖和高效率证明了它的优越性。由于多波束具有很高的分辨率,目前在工程上已经开始应用多波束进行海底目标物的探测。 (2)多波束的最大优点在于定位精度高,但其适用范围不如侧扫声纳广泛,尤其受到水深和波束角的限制,多波束和侧扫声纳在探测海底目标时具有很好的互补性,同时应用可以提高目标解译的准确性。 (3)侧扫声纳能直观地提供海底形态的声成像,但这种声像只能由目标影子长度等参数估计目标的高度,所以对数据解译人员的要求很高。多波束测深系统主要用于进行水下地形测量。 (4)探测目标机制的差异:多波束是一种测深工具而并非成像系统,无法直接在记录纸上进行打印,必须先构建数字地形模型(digital terrainmode,l DTM),再根据DTM构建地貌影像图,从而能够反映细微的地形起伏所导致的坡度和坡向变化;此外,多波束的中央波束探测效好,边缘波束效果差;多波束采用三维可视化的方法进行目标判断,在3D GIS系统中可以直接提取目标物的平面位置和高度,还能够从不同的角度进行观察,便于掌握目标物的形状特征。但是,除非我们在进行测深的同时采集反向散射强度信息,否则我们无法得到与目标物的底质类型相关的信息,因此,多波束比较适合于沉船或者管线等容易根据形状进行判断的目标。 现在的侧扫声纳技术有两个缺点,首先它的横向分辨率取决于声纳阵的水平角宽,分辨率随距离的增加而线性增大,其次它给不出海底的准确深度。当前只有两种声纳可做海底三维成像,即等深线成像和反向散射声成像,前一种是多波束测深声纳(如Multi -beamSonarSystem) ,后一种是测深侧扫声纳。总体说来,前者适宜于安装在船上做大面积测量,后者适宜于安装在各类水下载体上,包括拖体、水下机器人(AUV) 、遥控潜水器( ROV ) 和载人潜水器(HUV) ,进行细致的测量。 侧扫声纳通常安装在拖体上,其到海底面的距离是可以调节的,而多波束换能器大多数固定安装在船体上,随着水深的增大,换能器至海底的距离增加,导致波束与海底面的接触面即脚印 变大,所以多波束垂直于航行方向的分辨率降低。此外,水深增大也导致换能器单位时间内能够接收到的有效声信号数目(即采样更新率)减少,因此沿着航行方向的分辨率同样降低。 侧扫声纳不存在波束角的问题,而Seabat8101的波束角为115b,每个声波波束与海底面的接触面被视为一个水深点,因此波束角的影响与水深是正相关的。 在同样的海况条件下,多波束数据的信噪比常常比侧扫声纳图像要高,这是因为多波束的旁瓣波束被有效压制,因而没有假回波。 多波束的定位精度比侧扫声纳要高2~5m。这是因为,一方面多波束的平面位置误差传递方程比侧扫声纳系统要简单;另一方面多波束系统中的电罗经和船资测量传感器具有很高的精度,可以精确地测定船体的姿态和船首向;此外,多波束系统的校正比超短基线要容易,各种系统 误差的消除也更为彻底。因此,对于多波束靠近中央波束所探测到的海底目标,可以认为其定位精度近似地等于GPS本身所能提供的精度。

EM950多波束系统简介

Simrad EM950多波束测深系统及其相关设备的简介 刘胜旋 (广州海洋地质调查局第二海洋地质调查大队510760) 摘要本文主要介绍挪威Simrad公司的EM950型多波束测深系统,对系统的各个关键部件如换能器、底部检测单元、操作单元等进行了较为详细地介绍,同时还对系统参数测试的步骤进行了详细的描述,最后是与系统相配套使用的其它相关设备。 关键词Ping(声脉冲),陶瓷感应棒(ceramic stave),Pitch,Roll,Swath(条幅),OPU,DPU 一引言 多波束测深(Multibeam Echo Sounding)系统的出现,为研究海底地形地貌、寻找沉没于水中的飞机船舰、进行水下考古、铺设海底管线、航道岸提测量、工程疏浚的土方计算等一系列工作提供了可靠的手段。为了顺利完成“我国专属经济区和大陆架勘测”专项(简称“126”专项),我国多家从事海洋地质研究的单位于1998年从挪威Simrad 公司分别引进了多套EM系列多波束测深系统。其中国土资源部(原地矿部)广州海洋地质调查局引进了一套EM950型及一套EM3000型的多波束测深系统。现结合一年来的使用经验系统地介绍一下EM950型多波束测深系统的技术指标、工作性能、各种参数的校正及相关设备等内容。 二Simrad EM950多波束测深系统 (一)基本技术指标 Simrad EM950 是一种高分辨率海底地形测深系统。它的主要技术指标为:发射频率:95kHz 脉冲宽度:0.2ms 测深范围:探头以下3-400米 波束宽度: 2.3°×3.3° 覆盖宽度:最高可达7.4倍水深 波束数:120个(每个脉冲60个) 测深精度:15cm或0.25%水深 EM950采用95 kHz的发射频率,这个频率兼顾了在海水和淡水中的工作能力。其在海水中的吸收系数大约为30dB/km,当所测水深大于140m时,可以得到1000m的水平覆盖宽度。在淡水的吸收系数大约为2—3dB/km。当在河口或河口附近等含有大量泥沙的水域中工作时,因其发射频率的特殊性,它的测程并不会因吸收衰减而受到太大的影响,但会因

多波束安装步骤

一、系统配置 1、多波束声纳传感器 2、电源线、网线(用于多波束与电脑之间数据传输)、电缆线(连接GPS与RPH至电脑)、USB转串口线2根 3、RPH传感器 4、GPS及天线 5、高配置电脑(100M以上网卡、双核或四核以上、WinXP系统、处理器2.8GHz以上) 6、导航船与安装支架 7、直流电源24V (I max=2A) 二、具体要求 1、连接电源线与网线到多波束装置,用24V直流电源,将网线插到多波束网口里,另一端连至笔记本; 2、将USB转换器插到电脑上获取串口号; 3、将USB转换器与RPH传感器和GPS连在一起; 4、连接RPH电源与GPS电源; 5、第一次运行软件时需配置笔记本的系统配置; 5.1、安装USB转串口驱动 5.2、禁用杀毒软件及无线网络 5.3、禁用省电模式 5.4、配置本地IP:192.168.1.188,子网掩码:255.255.255.0 5.5、配置网络适配器速度为“自动侦测” (设备管理器--网络适配器--属性--高级--连接速度和双工模式--自动侦测) 5.6、使用“msconfig”程序时禁启后台所有任务 (Microsoft System Configuration,系统配置实用程序,“开始”--“运行”--键入“msconfig”--选择要禁用的程序) 5.7、安装好多波束测量软件 6、安装要求 6.1、GPS、RPH、多波束装置竖直方向在一条杆上,三者的三维坐标方向一致,GPS 坐标(Xg,Yg,Zg),换能器坐标(Xt,Yt,Zt),船坐标(X,Y,Z),O为船重心坐标原点; 6.2、Xt=Xg为GPS所在杆与船重心的X向垂直距离;Yt=Yg=0为GPS所在杆与船重心的Y向垂直距离;Zt>0为换能器入水深;Zg<0为GPS到换能器Z向垂直距离;Zc<0表示船重心在水面以上; 7、校准 7.1、对RPH的角误差进行校准 用Patch Test获取或预设一估值; 7.2、对GPS位置进行校准 GPS天线位置相对于换能器位置的偏离值;GPS延时是GPS记录的延时;

深水多波束测深系统现状及展望

深水多波束测深系统现状及展望 发表时间:2018-12-24T17:24:49.597Z 来源:《基层建设》2018年第31期作者:熊俊董帅帅[导读] 摘要:本文针对多波束测深系统的发展现状及其未来的方向进行分析,为了能够顺应科技技术的进步,和当前国家的局势,明确深水多波束测深系统对我国资源问题的重要性。 中交广州航道局有限公司广东广州 510221 摘要:本文针对多波束测深系统的发展现状及其未来的方向进行分析,为了能够顺应科技技术的进步,和当前国家的局势,明确深水多波束测深系统对我国资源问题的重要性。同时还要理解多波束测深的基本原理和组成成分,有效的在平面垂直状态下,给予一个深度和足够宽度的深水带,很大程度的为海底的地形和有效探测带来好的工作成效。随着当前科技技术不断的发展,我们需要不断的拓展和研究深水多波束测深系统的发展,可以更好的通过辨别度及其深度和覆盖率来完善展望的趋势。 关键词:深水多波;束测深系统;现状及展望 前言 改革开放以来,我国对于各行各业的发展都在不断的拓展,然而当前资源制约已经是我国国民经济发展的阻碍,从我国的地理位置上来看,海洋在我国地球上占有一大半的位置,为了能够保护资源的合理性,就要有效的通过多波束测深系统来完善必要的条件,保证我国可持续发展。从国家的发展局势上维护我国海洋的权益,同时还可以有效的通过该系统建立稳基的重要战略,当前对于水波束测系统来说,随着科技技术不断的进步,传统的单波束测系统已经无法满足整个海洋的局势,不管是效率上、精度上及其扫描上都无法给予帮助,因此,在这个过程中,需要通过多波束测深技术的优势及其高科技来推进时代的重要意义。 1分析多波束测深系统的重要性 第一,从我国主权上来分析,随着经济的发展,可以说全球各地为了能够争夺主权,开始不断的从海洋主权上来划分地域,因此,多波束测深系统技术也得到了进步,从根本上维护了海洋权益和海底的有效开采,然而对于海洋底部来说,需要专业的精密的及其快速的探测来完善该系统的重要性。 第二,从我国的资源问题来说,我们可以从地球仪上来看海洋占地球面积的一半以上,可以说各国都有海洋的划分区域,海洋不但有丰富的资源,还可以通过探测来保护海洋资源的重要技术,这是大局上来完善海底的发展。 第三,对于海底不仅是表面赋予的条件,还可以不断的使得矿产资源完善,结合海洋的优势,通过水的深度、地形及其海洋的构造,然而怎么样才能得以了解矿产的主要条件,就要明确矿产的深度和精密度,因此深水多波束测深系统的发展势在必行,保证我国的可持续发展,同时还有效的通过该技术了解发展的趋势,建立有效的海洋权益的重要性。 2多波束测深系统概述 2.1多波束测深系统的概念 什么是多波束测深系统?主要应用在海洋测量过程中,通过对海水深度的探测,来真实度的反映海底的主要情况,通过束测深的工作原理,来增加发射声波的指导性,同时还有效的提高海底测量的分辨性,把科技技术的计算机数据处理和绘图来完善精确的位置和深度,实现了从点到线再到面上的跨度,可以说是科技进步的一大优势。 2.2结合多波束测深系统来分析其中的原理 首先,该系统主要通过专属的能量来完善发射,通过海底声波进行覆盖,结合计算机系统的整合和收集,进行发射和接收直接照射到海底的地形,还能对每个地形都能够进行收集和探测,当然在探测过程中会出现照射,会留下足迹,同时在一次探测上还可以有效的结合专属的垂直来表面海底的深度值,有效的结合测量精度和宽度来给予大小和形状变化。其次,该技术的束测还可以形成三维技术,需要结合不同的角度,把反射角度进行信号回波,因此这就是束测的主要原理,在多波束测深系统中通过变量的测量,结合距离和声波的转换,再结合转换器的优势来确定距离和水底的角度,来形成具体的定性。 2.3结合现代技术来说,分析多波束测深系统的主要成分 对于多波束测深系统来说,包括的系统比较多,最为常见的就是以声学和信号及其转换器和显示器系统来完善,这是从硬件设施上来说,其次就是软件,通过计算机的数据处理来完善,同时还要有完善的导航系统和采集资源信息,可以说现代技术的定位巡航和GPS技术都无可厚非,在外在辅助系统上,还需要有现代指南针的效应,把测量、定位、数据统计和传感器都实现完善。最后,随着现代深水多波束测深系统来说,我国在该技术上还不算成熟,对于该技术的产业无法完善,因此需要我们不断的发展深水多波束测深系统,从不足之处来不断的实现未来发展。 3 通过高效率、高深度、高便捷来完善深水多波束测深系统的未来发展趋势 为了更加有效的发展深水多波束测深系统来说,需要结合当前发展趋势和技术要求,抛开传统单侧束测系统的不足,不断的学习国外技术的优势,来实现高效率和便捷性的系统。 3.1 多波束测深系统的优势和完善的分辨率 第一,针对多波束测深系统来说,可以说具有很大的优势,从单一束测深系统来说,只能通过单侧来进行海底探测,然而多波束测深系统结合多侧进行分散在海底进行三维空间的分辨,降低相邻的间隔,将水中最小的目标和一些不足以探测的地形进行精细的探测。第二,对于多波束测深系统来说,具有完善的分辨率,主要是通过脉冲系统和有效的宽度和声波及其海底的速度,来进行有效的发射和转化,单侧的波速在速度上和发射频率上不足以接受和转化,然而在多波系统上,通过高阶的波束技术来完善水深,把接收的波速数量来形成测深,为分辨率带来了大大的提高。 3.2从测量深度上更加精准 首先,针对深水多波束测深系统来说,主要使用的范围在深海海底,然而在海底最主要的是具有有效的数据测量标准和完善的精准度,只有这样才能完善其测量的测绘,对于测量的水深来说,怎么样才能完善测量,就是需要通过声速带来的折射效应及其运动中接受的信号来实现补偿。其次,在整个声速过程中,需要通过表面来进行获取信息,结合海深的速度和声速来进行剖析,把声速的折射效应和海底运动的传感器来进行收集信息和接受各种参数,同时还要结合GPS的测量技术来转变,使得精准度达标。最后,精准的测量深度还可以对海底的潮汐情况进行有效的控制,比起传统的技术来说更加精准。

图像精度评价方法

图像精度评价方法 进行遥感影像分类或进行GIS动态模拟时,需要评价结果的精度,而进行评价精度的方法主要有混淆矩阵、总体分类精度、Kappa 系数、多分误差、漏分误差、每一类的生产者精度(制图精度)和用户精度。 1、混淆矩阵(Confusion Matrix): 主要用于比较分类结果和地表真实信息,可以把分类结果的精度显示在一个混淆矩阵里面。混淆矩阵是通过将每个地表真实像元的位置和分类与分类图象中的相应位置和分类像比较计算的。混淆矩阵的每一列代表了地面参考验证信息,每一列中的数值等于地表真实像元在分类图象中对应于相应类别的数量;混淆矩阵的每一行代表了遥感数据的分类信息,每一行中的数值等于遥感分类像元在地表真实像元相应类别中的数量。 如有50个样本数据,这些数据分成3类,每类50个。分类结束后得到的混淆矩阵为: 43 5 2 2 45 3 0 1 49 则第1行的数据说明有43个样本正确分类,有5样本本应该属于第1类,却错误分到了第二类,有2个样本本应属于第一类,而错误的分到第三类。 2、总体分类精度(Overall Accuracy): 等于被正确分类的像元总和除以总像元数,地表真实图像或地表真实感兴趣区限定了像元的真实分类。被正确分类的像元沿着混淆矩阵的对角线分布,它显示出被分类到正确地表真实分类中的像元数。像元总数等于所有地表真实分类中的像元总和。 3、Kappa系数: The Kappa Index of Agreement (K): this is an important index that the crossclassification outputs. It measures the association between the two input images and helps to evaluate the output image. Its values range from -1 to +1 after adjustment for chance agreement. If the two input images are in perfect agreement (no change has occurred), K equals 1. If the two images are completely different, K takes a value of -1. If the change between the two dates occurred by chance, then Kappa equals 0. Kappa is an index of agreement between the two input images as a whole. However, it also

相关文档