文档库 最新最全的文档下载
当前位置:文档库 › 高等代数期末复习试题

高等代数期末复习试题

高等代数期末复习试题
高等代数期末复习试题

数学系《高等代数》期末考试试卷

年级 专业 学号 姓名 注:考试时间120分钟,试卷满分100分 。

;错误的在题后的括号内打“×”.每小题2分,共18分)

1.向量空间一定含有无穷多个向量. ( ) 2

.若向量空间V 的维数2dim ≤V ,则V 没有真子空间. ( ) 3. n 维向量空间中由一个基到另一个基的过渡矩阵必为可逆矩阵. ( ) 4.线性变换把线性无关的向量组映成线性无关的向量组. ( ) 5.每一个线性变换都有本征值. ( ) 6.若向量ξ是线性变换σ的属于本征值λ的本征向量,则由ξ生成的子空间 为

σ的不变子空间. ( )

7.保持向量间夹角不变的线性变换是正交变换. ( ) 8.两个复二次型等价的充分必要条件是它们有相同的秩. ( ) 9. 若两个n 阶实对称矩阵B A ,均正定,则它们的和B A +也正定. ( )

号码填在题目的括号内.每小题2分,共10分) 1. 下列命题不正确的是 ( ).

A. 若向量组},,,{21r ααα 线性无关,则它的任意一部分向量所成的向量组也线性无关;

B. 若向量组},,,{21r ααα 线性相关,则其中每一个向量都是其余向量的线性组合;

C.若向量组},,,{21r ααα 线性无关,且每一i α可由向量},,,{21s βββ 线

订 线

性表示,则s r ≤;

D. )0(>n n 维向量空间的任意两个基彼此等价.

2. 下列关于同构的命题中,错误的是( ).

A .向量空间V 的可逆线性变换是V 到V 的同构映射;

B .数域F 上的n 维向量空间的全体线性变换所成向量空间与数域F 上的所有n 阶矩阵所成向量空间同构;

C .若σ是数域F 上向量空间V 到W 的同构映射,则1-σ是W 到V 的同构

映射;

D .向量空间不能与它的某一个非平凡子空间同构.

3.n 阶矩阵A 有n 个不同的特征根是A 与对角矩阵相似的 ( ).

A .充分而非必要条件;

B .必要而非充分条件;

C .充分必要条件; D. 既非充分也非必要条件.

4.二次型???

?

?????? ??-=21213211312),(),,(x x x x x x x q 的矩阵是( ).

A .???? ??-1312;

B .???

?

??1112;

C .????? ??-000013013;

D .????

? ??000011012

5.实二次型Ax x x x x q '=),,(321正定的充分且必要条件是 ( ).

A .0>A ;

B .秩为3;

C .A 合同于三阶单位矩阵;

D .对某一,0),,(321≠'=x x x x 有0>'Ax x .

1. 复数域C 作为实数域R 上的向量空间,它的一个基是________.

2. 设},,2,1,),,,{(21n i F x x x x F i n n =∈=是数域F 上n 元行空间,对任

意n n F x x x ∈),,,(21 ,定义),,,,0,0()),,,((22121-=n n x x x x x x σ,则σ是一个线性变换,且σ的核)(σKer 的维数等于______.

3. 若A 是一个正交矩阵,则2A 的行列式2A =________.

4. 在欧氏空间3R 中向量)0,0,1(1=α与)0,1,0(2=α的夹角θ=______.

5. 实数域R上5元二次型可分为_______类,属于同一类的二次型彼

此等价,属于不同类的二次型互不等价.

42分) 1.求齐次线性方程组

??????

?=+++=++=+++=+++0

33450220

230432143243214321x x x x x x x x x x x x x x x 的解空间的一个基,再进一步实施正交化,求出规范正交基.

2.设???

?

? ??--=230120001A ,求A 的特征根及对应的特征向量.问A 是否可以对角化?

若可以,则求一可逆矩阵T ,使AT T 1-为对角形.

3. 写出3元二次型32213214),,(x x x x x x x q +=的矩阵.试用非奇异的线性变换,将此二次型变为只含变量的平方项.

五.证明题(每小题10分,共20分)

1.设21,λλ为n 阶矩阵A 的属于不同特征根,21,ξξ分别是A 的属于21,λλ的特征向量,证明21ξξ+不是A 的特征向量.

2.设σ是n 维欧氏空间V 的正交变换,且ισ=2为单位变换,A 是σ关于V 的某一规范正交基的矩阵,证明A 为对称矩阵.

数学系《高等代数》期末考试试卷(A 卷)

年级 专业 学号 姓名 注:考试时间120分钟,试卷满分100分 。

;错误的在题后的括号内打“×”.每小题2分,共18分)

1.任意数域F 可以看成是它自身上的向量空间. ( ) 2

.欧氏空间的两个子空间的并还是子空间. ( ) 3.一个向量组存在两个极大无关组,它们所含向量的个数不相同. ( ) 4.两个向量空间之间的同构映射σ的逆映射1-σ还是同构映射. ( ) 5.若数域F 上的两个n 阶矩阵A 、B 相似,则A 、B 合同. ( ) 6.任何一个n 阶实对称矩阵A 都相似且合同于一个实对角矩阵. ( ) 7.两个复二次型等价的充要条件是它们有相同的秩. ( ) 8.向量空间V 的可逆线性变换σ的核)(σKer 是空集. ( ) 9.两个n 阶正交矩阵A 、B 的和还是正交矩阵. ( )

号码填在题目的括号内.每小题2分,共10分) 1. 下列命题正确的是 ( ) .

A. 线性变换保持向量长度不变;

B. 对称变换保持向量的内积不变;

C. 正交变换保持向量夹角不变;

D. 线性变换保持向量的线性无关性. 2.两个n 元实二次型等价的充要条件是( ) .

A .它们的秩相等;

B .它们的惯性指标相等;

C .它们的符号差相同;

D .它们有相同的秩和符号差.

3.数域F 上所有对称矩阵的全体关于矩阵的加法及数乘所成的向量空间的维数是( ) .

A.2)1(+n n ;

B.1+n ;

C.2n ;

D. 2

)1(-n n .

订 线

4. 向量空间2R 中的下列变换,只有( )不是 2R 的线性变换. A. ),()),((x y y x =σ; B. ),()),((y x y x =σ; C.)0,0()),((=y x σ; D.),()),((y x y x y x -+=σ 5.设U 是一个n 阶酉矩阵,则 ( ) .

A. U 的行列式等于1;

B. U 的特征根的模为1;

C. U 的行列式的模等于1或1-;

D. U 的特征根为1或1-.

1. 3元实二次型32312

32221321222),,(x mx x x x x x x x x f ++++=是正定的,

则m 取值范围为 .

2. 设A 是n 阶实对称矩阵,则A 为正定的充要条件是 .

3. 向量空间3R 中, 向量(1,2,3)在基{(1,1,1),(0,1,1),(0,0,1)}下的坐标为 .

4.设σ是数域F 上向量空间V 的线性变换,W 是V 的子空间,则W 是σ的不变子空间的充分必要条件是 .

5.在欧氏空间V 中, V ∈?ηξ,[]b a C ,柯西-施瓦茨不等式成立,且等式成立:

ηηξξηξ,,,2

=的充要条件是 .

42分) 1.求齐次线性方程组

???

??=-+-=+-+=++-0

330304321

43214321x x x x x x x x x x x x 的解空间的一个基,再进一步实施正交化,求出规范正交基.

2.设???

?

? ??-=110310002A ,求A 的特征根及对应的特征向量.问A 是否可以对角化?

若可以,则求一可逆矩阵T ,使AT T 1-为对角形.

3. 写出3元二次型32212132122),,(x x x x x x x x q ++=的矩阵.试用非奇异的线性变换,将此二次型变为只含变量的平方项.

1.设σ是数域F 上n 维向量空间V 线性变换)0( n ,V ∈ξ,若,0)(1≠-ξσn 但

,0)(=ξσn 试证)(,,)(,)(,12ξσξσξσξ-n 是V 的一个基,并写出σ关于此基的矩

阵.

2.设σ是n 维欧氏空间V 的正交变换,同时又是对称变换,A 是σ关于V 的某一规范正交基的矩阵,证明2A 为单位矩阵.

《高等代数》期末试卷B

教育科学系14级小学教育(科学与数学)专业2014—2015学年度春学期 期末考试《高等代数Ⅱ》试卷(B ) 试卷说明:1.本试卷共2页,4个大题,满分100分,120分钟完卷; 2.试题解答全部书写在本试卷上。 班号: 学号 姓名 一、选择题:(每题3分,共15分) 1.当λ=( )时,方程组1231 231 222x x x x x x λ++=??++=?,有无穷多解。 A 1 B 2 C 3 D 4 2.若向量组中含有零向量,则此向量组( )。 A 线性相关 B 线性无关 C 线性相关或线性无关 D 不一定 3.设α是n 阶可逆矩阵A 的属于特征值λ的特征向量,在下列矩阵中,α不是( ) 的特征向量。 A 2()A E + B -3A C *A D T A 4.若A 为n 阶实对称矩阵,P 为n 阶正交阵,则1P A P -为( )。 A 实对称阵 B 正交阵 C 非奇异阵 D 奇异阵 5.设矩阵 A , B , C 均为n 阶矩阵,则矩阵A B 的充分条件是( )。 A A 与 B 有相同的特征值 B A 与B 有相同的特征向量 C A 与B 与同一矩阵相似 D A 一定有n 个不同的特征值 1.已知向量组)4,3,2,1(1=α,)5,4,3,2(2=α,)6,5,4,3(3=α,)7,6,5,4(4=α,则向量=+-+4321αααα 。 2.若120s ααα++ +=,则向量组12,, ,s ααα必线性 。 3.设向量空间1212{(,, )|0,}n n i V x x x x x x x R =++ +=∈,则V 是 维 空间。 4.A ,B 均为3阶方阵,A 的特征值为1,2,3,1B =-,则*A B B += 。 5.设矩阵A 满足条件2560A A E -+=,则矩阵A 的特征值 是 。 6.二次型yz xz xy z y x z y x f 222),,(222---++=的矩阵是____________。 二、填空题:(每题3分,共27分)

高等代数(上)期末复习题

高等代数(1)复习题 一、判断题 1、四阶行列式中含因子2311a a 的项为42342311a a a a 和44322311a a a a 。( ) 2、设D 为六阶行列式,则162534435261a a a a a a 是D 中带负号的项。( ) 3、对任一排列施行偶数次对换后,排列的奇偶性不变。( ) 4、排列()3211 -n n 的逆序数为n 。( ) 5、排列()3211 -n n 为偶排列。( ) 6、若行列式中所有元素都是整数,且有一行中元素全为偶数,则行列式的值一定是偶数。( ) 7、若22B A =,则B A =或B A -=。( ) 8、若AC AB =,0≠A ,则C B =。( ) 9、若矩阵A 满足A A =2,则0=A 或E A =。( ) 10、设A 是n 阶方阵,若0≠A ,则必有A 可逆。( ) 11、若矩阵A 满足02=A ,则0=A 。( ) 12、若矩阵B A ,满足0AB =,且0A ≠,则0B =。( ) 13、对n 阶可逆方阵A ,B ,必有()111 ---=B A AB 。( ) 14、对n 阶可逆方阵A ,B ,必有()111 ---+=+B A B A 。( ) 15、设A ,B 为n 阶方阵,则必有B A B A +=+。( ) 16、设A ,B 为n 阶方阵,则必有BA AB =。( ) 17、若矩阵A 与B 等价,则B A =。( ) 18、若A 与B 都是对称矩阵,则AB 也是对称矩阵。( ) 19、若矩阵A 的所有1r +级的子式全为零,则A 的秩为r 。( ) 20、设n m A ?,n m B ?为矩阵,则()()()B R A R B A R +≤+。( ) 21、设A =0,则()0=A R 。( ) 22、线性方程组0=?X A n n 只有零解,则0≠A 。( ) 23、若b AX =有无穷多解,则0=AX 有非零解。( )

高等代数试卷及答案1

高等代数 一、填空题 (共10题,每题2分,共20 分) 1.只于自身合同的矩阵是 矩阵。 2.二次型()()11212237,116x f x x x x x ?? ??= ? ????? 的矩阵为__________________。 3.设A 是实对称矩阵,则当实数t _________________,tE A +是正定矩阵。 4.正交变换在标准正交基下的矩阵为_______________________________。 5.标准正交基下的度量矩阵为_________________________。 6.线性变换可对角化的充要条件为__________________________________。 7.在22P ?中定义线性变换σ为:()a b X X c d σ?? = ??? ,写出σ在基11122122,,,E E E E 下的矩阵_______________________________。 8.设1V 、2V 都是线性空间V 的子空间,且12V V ?,若12dim dim V V =,则_____________________。 9.叙述维数公式_________________________________________________________________________。 10.向量α在基12,,,n ααα???(1)与基12,,,n βββ???(2)下的坐标分别为x 、y ,且从基(1)到基(2)的过渡矩阵为A ,则x 与y 的关系为_____________________________。 二、判断题 (共10 题,每题1分,共10分) 1.线性变换在不同基下的矩阵是合同的。( ) 2.设σ为n 维线性空间V 上的线性变换,则()1 0V V σσ -+=。 ( ) 3.平面上不平行于某一向量的全部向量所成的集合,对于向量的加法和数量乘法,构成实 数域上的线性空间。( ) 4.设1V 与2V 分别是齐次线性方程组120n x x x ++???+=与12n x x x ==???=的解空间,则 12n V V P ⊕= ( ) 5.2 2 11n n i i i i n x x ==??- ??? ∑∑为正定二次型。( ) 6.数域上任意一个矩阵都合同于一对角矩阵。( ) 7.把复数域C 看作复数域上的线性空间,C ξ?∈,令σξξ=,则σ是线性变换。( ) 8.若σ是正交变换,那么σ的不变子空间的真正交补也是σ的不变子空间。( ) 9.欧氏空间中不同基的度量矩阵是相似的。( ) 10.若σ为[]n P x (1n >)中的微分变换,则σ不可对角化。( )

高等代数下期末复习

第六章 线性空 间 一 线性空间的判定 线性空间中两种运算的8条运算规律缺一不可,要证明一个集合是线性空间必须逐条验证. 若要证明某个集合对于所定义的两种运算不构成线性空间,只需说明在两个封闭性和8条运算规律中有一条不满足即可。 例:检验以下集合对于所指的线性运算是否构成实数域上的线性空间: 1) 次数等于n (n ≥1)的实系数多项式的全体,对于多项式的加法和 数量乘法; 2) 全体n 阶反对称矩阵,对于矩阵的加法和数量乘法; 解: 1)否。因两个n 次多项式相加不一定是n 次多项式,例如 5 23n n x x ++--=()()。 2) n 阶矩阵的加法和和数量乘法满足线性空间定义的1~8条性质, 即全体n 阶矩阵对矩阵的加法和和数量乘法是构成线性空间的。“全体n 阶反对称矩阵”是“n 阶矩阵”的子集,故只需验证反对称矩阵对加法与数量乘法是否封闭即可。 当A ,B 为反对称矩阵,k 为任意一实数时,有 '''(A+B )=A +B =-A-B=-(A+B ),即A+B 仍是反对称矩阵。 A kA k A A ''==-=-(k )()(k ),所以kA 是反对称矩阵。 故反对称矩阵的全体构成线性空间。 例:齐次线性方程组A x =0的全体解向量的集合,对于向量的加法和数乘 向量构成一个线性空间,通常称为解空间。

而非齐次线性方程组 A x =b 的全体解向量的集合,在上述运算下则 不是线性空间,因为它们的两个解向量的和已经不是它的解向量。 二、基 维数 坐标 定义:在线性空间V 中,如果存在 n 个线性无关的向量 12n ,,,ααα使得:V 中任一向量α都可由12n ,,,ααα线性 表示,那么,12n ,,,ααα就称为线性空间V 的一个基,n 称为线 性空间V 的维数。记作dim V =n 。维数为n 的线性空间称为n 维线性空 间。 定义(向量的坐标):设12n ,,,ααα是线性空间n V 的一个基。对 于任一元素∈αn V ,总有且仅有一组有序数,,,,21n x x x 使 则n x x x ,,,21 这组有序数就称为元素a 在基底 12n ,,,ααα下的坐标,并记作()12,,,T n x x x x = 例: 在线性空间2 2?R 中, 就是2 2?R 的一个基。2 2?R 的维数为4. 任一2阶矩阵 因此A 在 4321,,,A A A A 这个基下的坐标为 () T d c b a ,,,。 若另取一个基 ? ? ? ??=??? ??=??? ??=??? ??=1111,0111,0101,00014321B B B B 。 则

高等代数试题附答案

科目名称:《高等代数》 姓名: 班级: 考试时间:120分钟 考试形式:闭卷 ≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌ ≌≌≌≌ 一、填空题(每小题5分,共25分) 1、在[]X P 中,向量21x x ++关于基23,1,12+--x x x 的坐标为 。 2、向 量 组 ()()()()()8,3,5,2,1,1,3,0,3,2,4,2,1,2,154321-=-==-=-=ααααα的秩 为 ,一个最大无关组为 .。 3、(维数公式)如果21,V V 是线性空间V 的两个子空间,那么 。 4、假设??? ? ? ??-----=175131023A 的特征根是 ,特征向量分别 为 。 5、实二次型()323121321224,,x x x x x x x x x f ++-= 的秩为 二、是非题(每小题2分,共20分) 1、如果r a a a ,,,21 线性无关,那么其中每一个向量都不是其余向量的线性组合。( ) 2、在][x P 中,定义变换)()(0x f x Af =,其中P x ∈0,是一固定的数,那么变换A 是线性变换。( ) 3、设21,W W 是向量空间V 的两个子空间,那么它们的并 21W W 也是V 的一个子空间。( ) 4、两个欧氏空间同构的充分且必要条件是它们有相同的维数。( )

5、令),,,(4321x x x x =ξ是4R 的任意向量,那么δ是4R 到自身的线性变 换。其中),,,()(24232221x x x x =ξδ。( ) 6、矩阵A 的特征向量的线性组合仍是A 的特征向量。( ) 7、若矩阵A 与B 相似,那么A 与B 等价。( ) 8、n 阶实对称矩阵A 有n 个线性无关的特征向量。( ) 9、在)(2R M 中,若W 由所有满足迹等于零的矩阵组成,那么W 是 )(2R M 的 子空间。( ) 10、齐次线性方程组0)(=-X A E λ的非零解向量是A 的属于λ的特征向量。( ) 三、明证题(每小题××分,共31分) 1、设n εεε,,,21 是线性空间V 的一组基,A 是V 上的线性变换,证明:A 可逆当且仅当n A A A εεε,,,21 线性无关。 (10) 2、设δ是n 维欧氏空间V 的一个线性变幻,证明:如果δ是对称变幻, 2δ=l 是单位变幻,那么δ是正交变换。(11) 3、设V 是一个n 维欧氏空间,证明:如果21,W W 都是V 得子空间,那么() ⊥⊥⊥ =+2121W W W W 。(10) 四、计算题(每小题8分,共24分) 1、求矩阵??? ? ? ??---=466353331A 的特征根与特征向量,并求满秩矩阵P 使 得AP P 1-为对角形矩阵。 2、求一个正交矩阵U ,使得AU U '使对角形式,其中

高等代数期末卷及答案

沈阳农业大学理学院第一学期期末考试 《高等代数》试卷(1) 1 ?设 f (x) = x 4 +x ? +4x - 9 ,贝H f (一3) = 69 .. 2?当 t = _2,-2 . 时,f(x)=x 3 —3x+t 有重因式。 3.令f(x),g(x)是两个多项式,且f(x 3) xg(x 3)被x 2 x 1整除,则 f(1)=_0_^ g(1)= 0 . 0 6 2 =23 。 1 1 — -2 0 1 x , 2x 2 2x 3 x 4 二 0 7. 2x 1 x 2 -2x 3 -2x 4 二 0 的一般解为 x( ~'X 2 _'4x 3 ~3x 4 = 0 题号 -一- -二二 -三 四 五 六 七 总分 得分 、填空(共35分,每题5 分) 得分 4.行列式 1 -3 5. ■’4 10" 1 0 3 -1、 -1 1 3 '9 -2 -1 2 1 0 2」 2 0 1 < 9 9 11 <1 3 4 丿 6. z 5 0 0 1 -1 <0 2 1; 0-2 3 矩阵的积

c 亠5 刘=2x3 X4 4 x3, x4任意取值。X2 二-2x^ --x4

、(10分)令f(x),g(x)是两个多项式。求证 当且仅当(f(x) g(x), f(x)g(x))=1。 证:必要性.设(f(x) g(x), f (x)g(x)) =1。(1% 令 p(x)为 f (x) g (x), f (x)g(x)的不可约公因式,(1% 则由 p(x) | f (x)g (x)知 p(x)| f (x)或 p(x) |g(x) o (1%) 不妨设 p(x) | f (x),再由 p(x)|(f(x) g (x))得 p(x) | g(x)。故 p(x) |1 矛盾。(2%) 充分性.由(f (x) g(x), f (x)g(x)^1知存在多项式u(x), v(x)使 u(x)(f(x) g(x)) v(x)f(x)g(x)=1,(2%) 从而 u(x)f(x) g(x)(u(x) v(x) f(x)) =1,(2%) 故(f (x), g(x)) =1 o (1%) ax 「bx 2 2x 3 =1 ax 1 (2 b -1)x 2 3x 3 =1 ax 1 bx 2 - (b 3)X 3 = 2b _1 有唯一解、没有解、有无穷解?在有解情况下求其解。 解: a b 2 1 a b 2 1 a 2b -1 3 1 T 0 b —1 1 0 b J* b+3 2b-1 , b+1 2b-2 ‘ (5%) a 2 - b 0 1 0 b -1 1 0 L 0 0 b+1 2b —2 当b =1时,有无穷解:X 3 = 0, X 2 = 1 - a%,人任意取值; 当a =0,b =5时,有无穷解:x 1 = k,x^ --3,x^ 4 ,k 任意取值;(3%) 当b = T 或a =0且b =二1且b = 5时,无解。(4%) 三、(16分)a,b 取何值时,线性方程组 当a(b 2 T) = 0时,有唯一解: 5-b a(b 1) X 2 2 b+1 x3 = 2b -2 b 1 ;4%) (f(x),g(x)) =1

高等代数试题及答案

中国海洋大学2007-2008学年第2学期期末考试试卷

授课教师命题教师或 命题负责人签字年月日院系负责人签 字年月日 共 2 页第 2 页

中国海洋大学 XXXX-XXXX 学年 第X 学期 期末考试试卷 五(10分)证明:设A 为n 级矩阵,()g x 是矩阵A 的最小多项式,则多项式()f x 以A 为根的充要条件是()g x |()f x . 六(10分)设V 是数域P 上的n 维线性空间,A B ,是V 上的线性变换,且=AB BA .证明:B 的值域与核都是A 的不变子空间. 七(10分)设2n 阶矩阵a b a b A b a b a ??????? ? =? ?? ??????? O N N O ,a b ≠,求A 的最小多项式. 八(10分)设f 是数域P 上线性空间V 上的线性变换,多项式()(),p x q x 互素,且满足 ()()0p f q f =(零变换) 求证:()()()(),ker ,ker V W S W p f S q f =⊕==

中国海洋大学 2007-2008学年 第2学期 期末考试 数学科学 学院 《高等代数》试题(A 卷)答案 一.判断题 1.× 2.× 3.× 4.√ 5.√ 二.解:A =???? ????????1111111111111111, 3|(4)E A λλλ-=-|,所以特征值为0,4(3重). 将特征值代入,求解线性方程组()0E A x λ-=,得4个线性无关的特征向量(答案可以不唯一),再正交单位化,得4个单位正交向量: 11111 ,,,)'2222α=( ,2α=, 3α= ,4'α=. 所以正交阵1 212 102610 2 T ?????? ?=??- ?? ???????? 而40'00T AT ??????=??????. 三.证:(1) ,.A B M ?∈ 验证,A B kA M +∈即可. (2) 令1101 010011 0n E D E -???? ? ??? ??== ????? ?????? O O O ,D 为循环阵, 00n k k k E D E -?? = ??? ,(k E 为k 阶单位阵) 则2 1 ,,,,n n D D D D E -=L 在P 上线性无关.

2013_814高等代数(试题)

南京航空航天大学 2013年硕士研究生入学考试初试试题( A 卷) 科目代码: 814 科目名称: 高等代数 满分: 150 分 注意: ①认真阅读答题纸上的注意事项;②所有答案必须写在答题纸上,写在本试题纸或草稿纸上均无 效;③本试题纸须随答题纸一起装入试题袋中交回! 一、(15分)设有向量组T T T a a )1,,3(,)3,1,1(,)1,1,2(321?=?==ααα,这里“T ”表示转置,以下各题相同. 1.求参数a ,使得321,,ααα线性相关; 2.在题1的基础上,记T A 21αα=,求方程组3α=AX 的通解. 二、(25分)设二次型AX X X f T =)(的秩为3,其中???? ??????=212111b b a A ,???????????=121α是A 的伴随 矩阵*A 的特征向量. 1.求参数a 和b ; 2.求正交矩阵P ,使得AP P T 为对角矩阵; 3.求二次型)(X f 在条件1232221=++x x x 下的最大值. 三、(15分)设1V 是由向量组T T T )7,6,9(,)1,0,3(,)3,2,1(321?==?=ααα生成的子空间, 2V 是由向量组T T T b a )1,2,(,)1,1,0(,)0,1,(321=?==βββ生成的子空间. 1.若11V ∈β,求参数a ; 2.若1V 与2V 有相同的维数,求参数b a ,满足的条件; 3.问:对任意给定的常数b a ,,21V V +是否有可能是直和?说明理由. 四、(25分)设3R 的线性变换Γ使得,222321 321321321??????????++++?+=??????????Γbx x x ax x x x x x x x x 且T )1,1,1(=α是Γ的一个特征 向量.

高等代数下期末复习

第 六章 线性空 间 一 线性空间的判定 线性空间中两种运算的8条运算规律缺一不可,要证明一个集合是线性空间必须逐条验证. 若要证明某个集合对于所定义的两种运算不构成线性空间,只需说明在两个封闭性和8条运算规律中有一条不满足即可。 例:检验以下集合对于所指的线性运算是否构成实数域上的线性空间: 1) 次数等于n (n ≥1)的实系数多项式的全体,对于多项式的加法和数量乘法; 2) 全体n 阶反对称矩阵,对于矩阵的加法和数量乘法; 解: 1)否。因两个n 次多项式相加不一定是n 次多项式,例如 5 23n n x x ++--=()()。 2) n 阶矩阵的加法和和数量乘法满足线性空间定义的1~8条性质,即全体n 阶矩阵对矩阵的加法和和数量乘法是构成线性空间的。“全体n 阶反对称矩阵”是“n 阶矩阵”的子集,故只需验证反对称矩阵对加法与数量乘法是否封闭即可。 当A ,B 为反对称矩阵,k 为任意一实数时,有 '''(A+B )=A +B =-A-B=-(A+B ),即A+B 仍是反对称矩阵。 A kA k A A ''==-=-(k )()(k ),所以kA 是反对称矩阵。 故反对称矩阵的全体构成线性空间。 例:齐次线性方程组A x =0的全体解向量的集合,对于向量的加法和数乘向量构 成一个线性空间,通常称为解空间。 而非齐次线性方程组 A x =b 的全体解向量的集合,在上述运算下则不是线性 空间,因为它们的两个解向量的和已经不是它的解向量。 二、基 维数 坐标

定义:在线性空间V 中,如果存在n 个线性无关的向量12n ,,,ααα使 得:V 中任一向量 α 都可由 12n ,,,ααα线性表示,那么, 12n ,,,ααα就称为线性空间V 的一个基,n 称为线性空间V 的维数。记作dim V =n 。维数为n 的线性空间称为n 维线性空间。 定义(向量的坐标):设12n ,, ,ααα是线性空间n V 的一个基。对于任一元素∈αn V ,总有且仅有一组有序数,,,,21n x x x 使 则n x x x ,,,21 这组有序数就称为元素a 在基底 12n ,,,ααα下的坐标,并记作()12,,,T n x x x x = 例: 在线性空间22?R 中, 就是2 2?R 的一个基。2 2?R 的维数为4. 任一2阶矩阵 因此A 在 4321,,,A A A A 这个基下的坐标为 () T d c b a ,,,。 若另取一个基 ? ? ? ??=??? ??=??? ??=??? ??=1111,0111,0101,00014321B B B B 。 则 4 321)()()(dB B d c B c b B b a d b c a A +-+-+-=?? ? ??=因 此A 在 4321,,,B B B B 这个基下的坐标为 () T d d c c b b a ,,,---。 例:考虑全体n 阶对称矩阵构成的线性空间的基底和维数。

(完整版)高等代数(下)期终考试题及答案(B卷)

高等代数(下)期末考试试卷及答案(B 卷) 一.填空题(每小题3分,共21分) 1. 22 3[]-2-31,(-1),(-1)P x x x x x 在中,在基下的坐标为 2. 设n 阶矩阵A 的全体特征值为12,,,n λλλL ,()f x 为任一多项式,则()f A 的全体特征值为 . 3.'=n 在数域P 上的线性空间P[x]中,定义线性变换:(,则的值域())()A A f x f x A ()-n P[x]= ,的核(0)= 1A A A 4.已知3阶λ-矩阵A (λ)的标准形为21 0 00 00 0λλλ?? ? ? ?+?? ,则A (λ)的不变 因子________________________; 3阶行列式因子 D 3 =_______________. 5. 若4阶方阵A 的初等因子是(λ-1)2,(λ-2),(λ-3),则A 的若当标准形 J= 6.在n 维欧氏空间V 中,向量ξ在标准正交基12,,,n ηηηL 下的坐标是 12(,,,)n x x x L ,那么(,)i ξη= 7. 两个有限维欧氏空间同构的充要条件是 . 二. 选择题( 每小题2分,共10 分) 1.( ) 已知{(,),,,}V a bi c di a b c d R =++∈为R 上的线性空间, 则dim(V)为 (A) 1; (B) 2; (C) 3; (D) 4 2. ( ) 下列哪个条件不是n 阶复系数矩阵A 可对角化的充要条件 (A) A 有n 个线性无关的特征向量; (B) A 的初等因子全是1次的; (C) A 的不变因子都没有重根; (D) A 有n 个不同的特征根; 3.( ) 设三阶方阵A 的特征多项式为322)(23+--=λλλλf ,则=||A

厦门大学《高等代数》期末试题及答案(数学系)

10-11学年第一学期厦门大学《高等代数》期末试卷 厦门大学《高等代数》课程试卷 数学科学学院 各 系 2010 年级 各 专业 主考教师:杜妮、林鹭 试卷类型:(A 卷) 2011.1.13 一、 单选题(32 分. 共 8 题, 每题 4 分) 1) 设b 为 3 维行向量, 123123 V {(,,)|(,,)} x x x x x x b == ,则____。C A)对任意的b ,V 均是线性空间;B)对任意的b ,V 均不是线性空间;C)只有当 0 b = 时,V 是线性空间;D)只有当 0 b 1 时,V 是线性空间。 2)已知向量组 I : 12 ,,..., s a a a 可以由向量组 II : 12 ,,..., t b b b 线性表示,则下列叙述正确的是____。 A A)若向量组 I 线性无关,则s t £ ;B)若向量组 I 线性相关,则s t > ; C)若向量组 II 线性无关,则s t £ ;D)若向量组 II 线性相关,则s t > 。 3)设非齐次线性方程组AX b = 中未定元个数为 n ,方程个数为m ,系数矩阵 A 的秩为 r ,则____。 D A)当r n < 时,方程组AX b = 有无穷多解; B) 当r n = 时,方程组AX b = 有唯一解;C)当r m < 时,方程组AX b = 有解;D)当r m = 时,方程组AX b = 有解。 4) 设 A 是m n ′ 阶矩阵,B 是n m ′ 阶矩阵,且AB I = ,则____。A A)(),() r A m r B m == ;B)(),() r A m r B n == ;C)(),() r A n r B m == ; D)(),() r A n r B n == 。 5) 设 K 上 3 维线性空间 V 上的线性变换j 在基 123 ,, x x x 下的表示矩阵是 111 101 111 ?? ?÷ ?÷ ?÷ è? ,则j 在基 123 ,2, x x x 下的表示矩阵是____。C A) 121 202 121 ?? ?÷ ?÷ ?÷ è? ; B) 1 2 11 22 1 2 11 0 11 ?? ?÷ ?÷ ?÷ è? ; C)11 22 121 0 121 ?? ?÷ ? ÷ ?÷ è? ;D) 1 2 1 2 11 202 11 ?? ?÷ ?÷ ?÷ è? 。 6) 设j 是 V 到 U 的线性映射,dim V ,dim U n m == 。若m n < ,则j ____。B A)必是单射; B)必非单射; C)必是满射;D)必非满射。

大一上学期(第一学期)高数期末考试题xcsf

高等数学I 1. 当0x x →时,()(),x x αβ都是无穷小,则当0x x →时( D )不一定是 无穷小. (A) ()()x x βα+ (B) ()()x x 2 2βα+ (C) [])()(1ln x x βα?+ (D) )() (2x x βα 2. 极限a x a x a x -→??? ??1sin sin lim 的值是( C ). (A ) 1 (B ) e (C ) a e cot (D ) a e tan 3. ??? ??=≠-+=001 sin )(2x a x x e x x f ax 在0x =处连续,则a =( D ). (A ) 1 (B ) 0 (C ) e (D ) 1- 4. 设)(x f 在点x a =处可导,那么=--+→h h a f h a f h )2()(lim 0( A ). (A ) )(3a f ' (B ) )(2a f ' (C) )(a f ' (D ) ) (31 a f ' 二、填空题(本大题有4小题,每小题4分,共16分) 5. 极限) 0(ln )ln(lim 0>-+→a x a a x x 的值是 a 1. 6. 由x x y e y x 2cos ln =+确定函数y (x ),则导函数='y x xe ye x y x xy xy ln 2sin 2+++ - . 7. 直线l 过点M (,,)123且与两平面x y z x y z +-=-+=202356,都平行,则直 线l 的方程为 13 1211--=--=-z y x . 8. 求函数2 )4ln(2x x y -=的单调递增区间为 (-∞,0)和(1,+∞ ) . 三、解答题(本大题有4小题,每小题8分,共32分) 9. 计算极限10(1)lim x x x e x →+-.

高等代数试卷及答案--(二)

一、填空题 (共10题,每题2分,共20 分) 1.只于自身合同的矩阵是 矩阵。 2.二次型()()11212237,116x f x x x x x ?? ??= ? ????? 的矩阵为__________________。 3.设A 是实对称矩阵,则当实数t _________________,tE A +是正定矩阵。 4.正交变换在标准正交基下的矩阵为_______________________________。 5.标准正交基下的度量矩阵为_________________________。 6.线性变换可对角化的充要条件为__________________________________。 7.在22P ?中定义线性变换σ为:()a b X X c d σ?? = ??? ,写出σ在基11122122,,,E E E E 下的 矩阵_______________________________。 8.设1V 、2V 都是线性空间V 的子空间,且12V V ?,若12dim dim V V =,则_____________________。 9.叙述维数公式_________________________________________________________________________。 10.向量α在基12,,,n ααα???(1)与基12,,,n βββ???(2)下的坐标分别为x 、y ,且从基(1)到基(2)的过渡矩阵为A ,则x 与y 的关系为_____________________________。 二、判断题 (共10 题,每题1分,共10分) 1.线性变换在不同基下的矩阵是合同的。( ) 2.设σ为n 维线性空间V 上的线性变换,则()1 0V V σσ -+=。 ( ) 3.平面上不平行于某一向量的全部向量所成的集合,对于向量的加法和数量乘法,构成实数域上的线性空间。( ) 4.设1V 与2V 分别是齐次线性方程组120n x x x ++???+=与12n x x x ==???=的解空间,则 12n V V P ⊕= ( ) 5.2 2 11n n i i i i n x x ==??- ??? ∑∑为正定二次型。( ) 6.数域上任意一个矩阵都合同于一对角矩阵。( ) 7.把复数域C 看作复数域上的线性空间,C ξ?∈,令σξξ=,则σ是线性变换。( ) 8.若σ是正交变换,那么σ的不变子空间的真正交补也是σ的不变子空间。( ) 9.欧氏空间中不同基的度量矩阵是相似的。( ) 10.若σ为[]n P x (1n >)中的微分变换,则σ不可对角化。( ) 三、计算题 (共3题,每题10分,共30分)

高数下期末考试试题和答案解析

2017学年春季学期 《高等数学Ⅰ(二)》期末考试试卷(A ) 注意: 1、本试卷共 3 页; 2、考试时间110分钟; 3、姓名、学号必须写在指定地方 一、单项选择题(8个小题,每小题2分,共16分)将每题的正确答案的代号A 、B 、C 或D 填入下表中. 1.已知a 与b 都是非零向量,且满足-=+a b a b ,则必有( ). (A)-=0a b (B)+=0a b (C)0?=a b (D)?=0a b 2.极限2 2 22 00 1 lim()sin x y x y x y →→+=+( ). (A) 0 (B) 1 (C) 2 (D)不存在 3.下列函数中,d f f =?的是( ). (A )(,)f x y xy = (B )00(,),f x y x y c c =++为实数 (C )(,)f x y = (D )(,)e x y f x y += 4.函数(,)(3)f x y xy x y =--,原点(0,0)是(,)f x y 的( ). (A )驻点与极值点 (B )驻点,非极值点 (C )极值点,非驻点 (D )非驻点,非极值点 5.设平面区域2 2 :(1)(1)2D x y -+-≤,若1d 4D x y I σ+= ??,2D I σ=,3D I σ=,则有( ). (A )123I I I << (B )123I I I >> (C )213I I I << (D )312I I I << 6.设椭圆L : 13 42 2=+y x 的周长为l ,则22(34)d L x y s +=?( ). (A) l (B) l 3 (C) l 4 (D) l 12 7.设级数 ∑∞ =1 n n a 为交错级数,0()n a n →→+∞,则( ). (A)该级数收敛 (B)该级数发散 (C)该级数可能收敛也可能发散 (D)该级数绝对收敛 8.下列四个命题中,正确的命题是( ). (A )若级数 1n n a ∞ =∑发散,则级数21n n a ∞ =∑也发散 (B )若级数21n n a ∞ =∑发散,则级数1n n a ∞=∑也发散 (C )若级数 21n n a ∞ =∑收敛,则级数 1n n a ∞ =∑也收敛 (D )若级数 1 ||n n a ∞=∑收敛,则级数2 1 n n a ∞=∑也收敛 二、填空题(7个小题,每小题2分,共14分). 1.直线34260 30 x y z x y z a -+-=?? +-+=?与z 轴相交,则常数a 为 . 2.设(,)ln(),y f x y x x =+则(1,0)y f '=______ _____. 3.函数(,)f x y x y =+在(3,4)处沿增加最快的方向的方向导数为 . 4.设2 2 :2D x y x +≤,二重积分 ()d D x y σ-??= . 5.设()f x 是连续函数,22{(,,)|09}x y z z x y Ω=≤≤--,22()d f x y v Ω +???在柱面坐标系下 的三次积分为 . 6.幂级数 1 1 (1) ! n n n x n ∞ -=-∑的收敛域是 . 7.将函数2 1,0 ()1,0x f x x x ππ--<≤??=?+<≤?? 以2π为周期延拓后,其傅里叶级数在点x π=处收敛 于 . 三峡大学 试卷纸 教学班号 序号 学号 姓名 …………………….……答 题 不 要 超 过 密 封 线………….………………………………

《高等代数》(上)期末试卷(A)

《高等代数》(上)期末试卷(A ) 一、填空题(每空3分,共15分) 1.设方阵1112223 3 3b x c A b x c b x c ????=??????,1 112 223 3 3b y c B b y c b y c ?? ??=? ????? ,且2,3A B =-=, 则行列式2A B += . 2.已知A 是一个34?矩阵,且秩()2A =,而102020103B ????=?????? ,则秩()BA = . 3. 多项式2005 20042 322006()(54)31(8112)f x x x x x x ??=--+-+?? 的所有系数之和 = ,常数项= . 4. ()f x 为多项式,用1x -除时余式为3,用3x -除时余式为5,则用(1)(3)x x --除时余式为 . 二、选择题(每题3分,共12分) 1.设n 维向量组12345,,,,ααααα的秩为3,且满足135230,ααα+-= 242,αα=则向量组的一个极大无关组为( ) A . 125,,ααα; B . 124,,ααα; C. 245,,ααα; D. 135,,ααα. 2. A 是m n ?矩阵,B 是n m ?矩阵,则( ) A . 当m n >时,必有行列式0A B ≠; B . 当m n >时,必有行列式0AB =; C . 当n m >时,必有行列式0AB ≠; D . 当n m >时,必有行列式0AB =. 3.设,A B 都是可逆矩阵,则矩阵0A C B ??????的逆矩阵为( ) A . 1 1 10A C B ---?? ????; B . 1110B C A ---?????? ;

高等代数下期末复习

第六章线性空间 一线性空间的判定 线性空间中两种运算的8条运算规律缺一不可,要证明一个集合是线性空间必须逐条验证. 若要证明某个集合对于所定义的两种运算不构成线性空间,只需说明在两个封闭性和8条运算规律中有一条不满足即可。 例:检验以下集合对于所指的线性运算是否构成实数域上的线性空间: 1) 次数等于n (n ≥1)的实系数多项式的全体,对于多项式的加法和数量乘法; 2) 全体n 阶反对称矩阵,对于矩阵的加法和数量乘法; 解:1)否。因两个n 次多项式相加不一定是n 次多项式,例如 523n n x x ++--=()()。 2) n 阶矩阵的加法和和数量乘法满足线性空间定义的1~8条性质,即全体n 阶矩阵对矩阵的加法和和数量乘法是构成线性空间的。“全体n 阶反对称矩阵”是“n 阶矩阵”的子集,故只需验证反对称矩阵对加法与数量乘法是否封闭即可。 当A ,B 为反对称矩阵,k 为任意一实数时,有 '''(A+B )=A +B =-A-B=-(A+B ),即A+B 仍是反对称矩阵。

A kA k A A ''==-=-(k )()(k ),所以kA 是反对称矩阵。 故反对称矩阵的全体构成线性空间。 例:齐次线性方程组A x =0的全体解向量的集合,对于向量的加法和数乘向量构成一个线性空间,通常称为解空间。 而非齐次线性方程组A x =b 的全体解向量的集合,在上述运算下则不是线性空间,因为它们的两个解向量的和已经不是它的解向量。 二、基维数坐标 定义:在线性空间V 中,如果存在n 个线性无关的向量12n ,,,αααL 使得:V 中任一向量α都可由 12n ,,,αααL 线性表示,那么,12n ,,,αααL 就称为线性空间V 的一个基,n 称为线性空间V 的维数。记作dim V =n 。维数为n 的线性空间称为n 维线性空间。 定义(向量的坐标):设12n ,,,αααL 是线性空间n V 的一个基。对于任一元素∈αn V ,总有且仅有一组有序数,,,,21n x x x Λ使 则n x x x ,,,21Λ这组有序数就称为元素a 在基底 12n ,,,αααL 下的坐标,并记作()12,,,T n x x x x =L 例:在线性空间22?R 中, 就是22?R 的一个基。22?R 的维数为4.

高等代数真题答案

第六章习题册 1. 检验下述集合关于所规定的运算是否构成实数域R 上的线性空间? (a) 集合{()[]deg()}f x R x f n ∈|=关于多项式的加法和数乘. (b) 集合{()}T n A M R A A ∈|=关于矩阵的加法和数乘. (c) 集合0{{}}n n n x x R ∞=|∈关于数列的加法和数乘. 2. 设V 是数域F 上的线性空间, 证明(αβ)αβk k k ?=?, 这里αβV k F ,∈,∈.

3. 下述集合是否是()n M R 的子空间 (a) { ()}T n V A M R A A =∈|=? (b) {()()[]}V f A f x R x =|∈, 这里()n A M R ∈是一个固定方阵. 4. 叙述并证明线性空间V 的子空间1W 与2W 的并12W W ∪仍为V 的子空间的充分必要条件. 5. 设1S 与2S 是线性空间V 的两个非空子集, 证明: (a) 当12S S ?时, 12()()Span S Span S ?. (b) 1212()()()Span S S Span S Span S =+∪. (c) 1212()()()Span S S Span S Span S ?∩∩.

6. 如果123f f f ,,是实数域上一元多项式全体所成的线性空间[]R x 中三个互素的多项式, 但其中任意两个都不互素, 那么它们线性无关.试证之. 7. 设S 是数域F 上线性空间V 的一个线性无关子集, α是V 中一个向量, αS ?, 则{α}S ∪线性相关充分必要条件α()Span S ∈. 8. (a) 证明{|()}ij ji E E i j +≤是()n M F 中全体对称矩阵组成的子空间的一个基. (b). 求3()M F 的子空间{()()[]}f A f x F x |∈ 的一个基和维数, 这里010001000A ???? =?????? 9. 在4 R 中, 求向量ξ在基1234(εεεε),,,下的坐标, 其中 12341210111112εεεεξ0301311014??????????????????????????????=,=,=,=,=????????????????????????????????????????

高等代数期末卷 及答案

沈阳农业大学理学院第一学期期末考试 《高等代数》试卷(1) 一、 填空(共35分,每题5分) 1.设4 2 ()49f x x x x =++-, 则(3)f -= 69_ .. 2.当t = _2,-2 .时, 3()3f x x x t =-+有重因式。 3. 令 ()f x ,()g x 是两个多项式, 且33()()f x xg x +被21x x ++整除, 则 (1)f = 0_ , (1)g = _0 . 4. 行列式 31 0210 62 101132 1 -=-- 23 。 5. 矩阵的积41010311 1321022 011 34?? ? --?? ?= ? ??? ??? 9219911--?? ???。 6. 1 500031021-?? ?= ? ??? 1 05011023?? ? ?- ? ? - ??? 7. 1234123412342202220430 x x x x x x x x x x x x +++=?? +--=??---=?的一般解为 134234523423x x x x x x ? =+??? ?=--?? , 34,x x 任意取值。 二、(10分)令()f x ,()g x 是两个多项式。求证((),())1f x g x =当且仅当

(()(),()())1f x g x f x g x +=。 证:必要性. 设(()(),()())1f x g x f x g x +≠。(1%) 令()p x 为()(),()()f x g x f x g x +的不可约公因式,(1%)则由()|()()p x f x g x 知 ()|()p x f x 或()|()p x g x 。(1%) 不妨设()|()p x f x ,再由()|(()())p x f x g x +得()|()p x g x 。故()|1p x 矛盾。(2%) 充分性. 由(()(),()())1f x g x f x g x +=知存在多项式(),()u x v x 使 ()(()())()()()1u x f x g x v x f x g x ++=,(2%) 从而()()()(()()())1u x f x g x u x v x f x ++=,(2%) 故((),())1f x g x =。(1%) 三、(16分),a b 取何值时,线性方程组 有唯一解、没有解、有无穷解?在有解情况下求其解。 解: 21212131011032100122201011000122a b a b a b b a b b b b b a b b b b ???? ? ?-→- ? ? ? ?+-+-????-?? ?→- ? ?+-?? (5%) 当2 (1)0a b -≠时,有唯一解:1235222 , (1)+11 b b x x x a b b b ---= ==++,; (4%) 当1b =时,有无穷解:3210,1,x x ax ==-1x 任意取值; 当a 0,5b ==时,有无穷解:14 12333,,,x k x x k ==-=任意取值;(3%) 当1b =-或0 1 5a b b =≠±≠且且时,无解。(4%) 四、(10分)设12,,...,n a a a 都是非零实数,证明 证: 对n 用数学归纳法。当n=1时 , 1111 1 1(1)D a a a =+=+, 结论成立(2%); 假设n-1时成立。则n 时

相关文档
相关文档 最新文档