文档库 最新最全的文档下载
当前位置:文档库 › 胶体与界面化学作业

胶体与界面化学作业

胶体与界面化学作业
胶体与界面化学作业

一、紧密联系工农业生产与科学研究的实际,说明研究物质表面现象或界面现象、研究物质的表面性质或界面性质的重要性。

物质表面现象或界面现象、物质的表面性质或界面性质主要有以下几种:(1)表面张力和表面吉布斯自由能函数;

(2)弯曲界面的附加压力和拉普拉斯公式;

(3)弯曲液面的饱和蒸汽压和开尔文方程;

(4)铺展和铺展系数,润式、接触角和杨氏方程,毛细管现象;

(5)亚稳状态及新相生成;

(6)溶液界面上的吸附现象,正吸附和负吸附,吉布斯模型;

(7)物理吸附和化学吸附的含义和区别;

(8)表面活性剂;

(9)吉布斯吸附等温式;

(10)兰缪尔单分子层吸附模型和吸附等温式;

(11)B.E.T.多分子层吸附定温式。

物质表面现象或界面现象、物质的表面性质或界面性质在工农业生产与科学研究种有很大的应用,本文就润湿现象、毛细管现象和表面张力进行简单说明:在自然界、工程技术和日常生活中,液体对固体的润湿或不润湿的现象,都有重要的意义和作用。彩色感光材料和录音、录像磁带在生产过程中,都要将配制好的感光材料涂液或磁浆,又快又均匀地涂布到固体薄片基上,然后再干燥、裁切、整理包装成产品。能不能又快又均匀地涂上去,就与所涂液体能否在固体薄片基(现通常是采用涤纶薄膜片基)上润湿,并能迅速铺展开来密切相关。现在比较讲究的印刷纸张表面要加上一层薄薄的涂料,其涂布过程,也要考虑涂液对纸基需要有好的润湿性能,在印刷过程中,要又快又好地印出多彩的图案来,各种油墨对纸张也要有好的润湿性能。即使在日常生活中,墙壁的刷浆、家具的刷漆,均都有类似的需要润湿性能好的问题。

生活中有时也希望应用不润湿的现象。几乎所有的防水用品,都希望水对其不润湿。例如风雨衣、雨伞的面布,就希望雨水打到上面后不润湿,形成水珠落下。

据报道,法国有人看到郁金香花瓣的表面粗糙不平,上面有许多仿佛人汗毛形状的物质,当水滴到郁金香花瓣上,因不润湿而保持圆珠状,并自己滑走;从而试图把这—原理嫁接到汽车的挡风玻璃上,将玻璃表面处理成郁金香花瓣表面那样,使水不润湿。当雨水落在这种经过改造的挡风玻璃上,会保持圆珠状,当汽车在行驶时,由于风吹和重力的原因,雨滴会自动滑走。如果这一技术成功,汽车的雨刷将成为摆设。

在自然界中,植物茎内的导管就是植物体内的极细的毛细管,它能把土壤里

的水分吸上来。在生活中毛巾吸汗、粉笔吸墨水都是常见的毛细现象,在这些物体中有许多细小的孔道,起着毛细管的作用。

有科学家的实验表明可以利用毛细作用来进行微观成型。这是毛细现象首次被利用来弯曲平板来形成三维形状,此前,毛细作用大都用来在二维平面上装配物体。科学家们制造很薄的硅树脂,并把它们切割成花朵、三角、方形等不同的形状,然后把一滴水加在上面,水趋向于减小与空气的接触面积,因此水滴立刻开始用薄片包裹自己,水在室温下蒸发后,弯曲好的形状会逐渐变硬,直到成型。因为整个过程是自发形成的,因此在把水滴放在薄片上后无需作任何的操作。

液体液面跟气体接触时,由于液体表面层里分子的分布要比内部稀疏些,也就是分子间的距离比液体内部大些,分子间的作用力就表现为吸引力。液体表面各部分之间这种相互吸引的力叫做液体表面张力。在表面张力作用下,液体表面有收缩到最小的趋势。

肺泡表面活性物质是由肺泡Ⅱ型细胞分泌的一种脂蛋白,主要成分是二软脂酰卵磷脂。因它以单分子形式分布于肺泡液体分子层的表面,即在液——气界面之间,从而使肺泡表面张力降低到原来的1/7~1/14。而肺泡表面活性物质分子在小肺泡内较密集,而大肺泡内较稀疏,这样降低表面张力的作用不同,使大小肺泡的回缩压力相对平衡,从而都能维持在一定的充气状态。因此表面活性物质能影响肺回缩力,起到维持大小肺泡内压和容积相对稳定作用。

如果肺泡表面活性物质缺乏,则肺泡表面张力增大,肺回缩力增强,不但可引起肺不张,并可使肺组织间隙的静脉水压下降,从而促使毛细血管中液体进入肺组织间质及肺泡中,导致肺水肿。

二、从理论上分析解释固、液体物质表面张力产生的原因;阐述各种因素对固、液体表面张力的影响;详细阐述由于液体表面存在表面张力,弯曲液面会产生哪些特殊的物理化学性质。

图1 液体表面分子与内部分子受力情况示意图

如图1所示,液体内部的任一分子,都处于同类分子的包围之中,平均看来,该分子与其周围分子的吸引力是球形对称的,各个相反方向的吸引力是球形对称的,各个相反方向的力彼此相互抵消,其合力为零。然而表面层中的分子,则处于力场不对称的环境中,液体内部分子对表面层中分子的吸引,远远大于液面上蒸气分子对它的吸引力,使表面层中的分子恒受到指向液体内部的拉力,因而液体表面力图缩小表面积,引起液体表面收缩的单位长度上的力就做液体表面张力。固体表面张力也是由于分子内外受力不均匀引起的。

影响液、固表面张力的因素主要有:

(1)物质本身的性质

对纯液体或纯固体,表面张力决定于分子间作用力的大小,分子间作用力越大,表面张力越大。

1)极性物质的γ>非极性物质;

2)结构相似时,分子量越大,γ越高;

3)芳环或共轭双键一般>饱和碳氢化合物;

4)一般有机液体的γ在20-50 mN/m。

(2)温度的影响

同一种物质的表面张力因温度不同而异,当温度升高时物质的体积膨胀,分子间距离增加,分子之间的相互作用减弱,所以表面张力一般随温度升高而减小。

(3)压力对表面张力的影响

表面张力一般随压力的增加而下降。一般每增加10atm,表面张力约降1mN/m,因为压力增加,气相密度增加,表面分子受力不均匀性略有好转;另外,若是气相中有别的物质,则压力增加,促使表面吸附增加,气体溶解度增加,也使表面张力下降。

弯曲液面会产生附加压力,弯曲液面的附加压力可产生毛细现象。能润湿玻璃或土壤的液体在玻璃或土壤的毛细管内形成凹液面(θ<90°),由于附加压力指向大气,而使凹液面下的液体所受的压力小于管外水平液面下的压力,在这种情况下,液体将被压入管中,使得毛细管中水面上升。不能润湿玻璃的液体,正好相反形成凸面(θ>90°),管中液面低于管外。

毛细管凝结。多孔性物质内有很多毛细孔隙,和该固体相润湿的液体可以在这些孔隙内形成凹液面。在一定温度下,液体的蒸气分压虽然低于其正常的饱和蒸气压,但对于这些凹液面已经是过饱和了,蒸气分子就会自发地在这些毛细孔内凝结成液体。这就是硅胶作为干燥剂的工作原理。

过热液体。当液体加热时,新形成的气泡受到的压力远远大于气泡内的蒸气压,因此气泡不可能存在。必须升高温度使气泡内的蒸气压等于气泡所受到的压力时,水才开始沸腾。形成过热液体。过热液体所引起的暴沸是十分危险的。

过饱和蒸气。当气体十分纯净时,往往其分压大于饱和蒸气压仍不能凝聚,形成过饱和蒸气。

过冷液体。低于凝固点而不析出晶体的液体就是过冷液体。过冷液体的产生同样是由于新生相微粒具有较高蒸气压所致。

过饱和溶液。根据开尔文公式可以知道,较小的晶体有较大的溶解度,已达到饱和浓度的溶液对于微小晶体来说并没有饱和,也就不可能有晶体析出,这就形成了过饱和溶液。

三、详细阐述表面活性剂的化学结构特点、物理化学特性,举例说明表面活性剂在科学研究与工农业生产实际中的应用及应用原理。

无论何种表面活性剂,其分子结构均由两部分构成。分子的一端为非极亲油的疏水基,有时也称为亲油基;分子的另一端为极性亲水的亲水基,有时也称为疏油基或形象地称为亲水头。两类结构与性能截然相反的分子碎片或基团分处于同一分子的两端并以化学键相连接,形成了一种不对称的、极性的结构,因而赋予了该类特殊分子既亲水、又亲油,便又不是整体亲水或亲油的特性。表面活性剂的这种特有结构通常称之为“双亲结构”(amphiphilic structure),表面活性剂分子因而也常被称作“双亲分子”。只有分子中疏水基足够大的两亲分子才显示SAa特性,一般来说碳链长度要≥8C。如过疏水基过长,则溶解度过小,变为不溶于水的物质,亦非SAa,一般直链SAa在8-10碳原子左右。

表面活性剂的物理化学特性有四方面:表面性质、溶液特性、溶解度特性和溶油性。

(1)表面活性剂具有很好的降低水表面张力的能力和效率;

(2)表面活性剂溶液相得性质和结构很有特色,其稀溶液的性质与正常的强电解质相似,当浓度增大到一定值后,它们的性质显著的不同;

(3)表面活性剂的溶解度,一般规律:温度一定,水中溶解度随亲油基相对增大而降低,亲水性越强,其在水中的CMC越大,溶解度越大;

(4)在cmc以上表现出可以溶油的特性(加溶作用)。

表面活性剂由于具有润湿或抗粘、乳化或破乳、起泡或消泡以及增溶、分散、洗涤、防腐、抗静电等一系列物理化学作用及相应的实际应用,成为一类灵活多样、用途广泛的精细化工产品。表面活性剂除了在日常生活中作为洗涤剂,其他应用几乎可以覆盖所有的精细化工领域。

(1)增溶

要求:C>CMC (HLB13~18)

临界胶束浓度(CMC):表面活性剂分子缔合形成胶束的最低浓度。当其浓度高于CMC值时,表面活性剂的排列成球状、棒状、束状、层状/板状等结构。

增溶体系为热力学平衡体系;CMC越低、缔合数越大,增溶量(MAC)

就越高;温度对增溶的影响:温度影响胶束的形成,影响增溶质的溶解,影响表面活性剂的溶解度

Krafft点:离子型表面活性剂的溶解度随温度增加而急剧增大这一温度称为Krafft点,Krafft点越高,其临界胶束浓度越小

浊点:对于聚氧乙烯型非离子表面活性剂,温度升高到一定程度时,溶解度急剧下降并析出,溶液出现混浊,这一现象称为起昙,此温度称为昙点。在聚氧乙烯链相同时,碳氢链越长,浊点越低;在碳氢链相同时,聚氧乙烯链越长则浊点越高。

(2)乳化作用

亲水亲油平衡值(HLB):表面活性剂分子中亲水和亲油基团对油或水的综合亲合力。根据经验,将表面活性剂的HLB值范围限定在0-40,非离子型的HLB 值在0-20。

混合加和性:HLB=(HLBa Wa+HLBb /Wb)/(Wa+Wb)

理论计算:HLB=∑(亲水基团HLB值)+∑(亲油基团HLB)-7

HLB:3-8 W /O型乳化剂:Tween;一价皂

HLB:8-16 O/W型乳化剂:Span;二价皂

(3)润湿作用

要求:HLB:7-9。

使用表面活性剂可以控制液、固之间的润湿程度。农药行业中在粒剂及供喷粉用的粉剂中,有的也含有一定量的表面活性剂,其目的是为了提高药剂在受药表面的附着性和沉积量,提高有效成分在有水分条件下的释放速度和扩展面积,提高防病、治病效果。

在化妆品行业中,做为乳化剂是乳霜、乳液、洁面、卸妆等护肤产品中不可或缺的成分。

(4)助悬作用

在农药行业,可湿性粉剂、乳油及浓乳剂都需要有一定量的表面活性剂,如可湿性粉剂中原药多为有机化合物,具有憎水性,只有在表面活性剂存在的条件下,降低水的表面张力,药粒才有可能被水所润湿,形成水悬液;

(5)起泡和消泡作用

表面活性剂在医药行业也有广泛应用。在药剂中,一些挥发油脂溶性纤维素、甾体激素等许多难溶性药物利用表面活性剂的增溶作用可形成透明溶液及增加浓度;药剂制备过程中,它是不可缺少的乳化剂、润湿剂、助悬剂、起泡剂和消泡剂等。

(6)消毒、杀菌

在医药行业中可作为杀菌剂和消毒剂使用,其杀菌和消毒作用归结于它们与

细菌生物膜蛋白质的强烈相互作用使之变性或失去功能,这些消毒剂在水中都有比较大的溶解度,根据使用浓度,可用于手术前皮肤消毒、伤口或粘膜消毒、器械消毒和环境消毒;

(7)抗硬水性

甜菜碱表面活性剂对钙、镁离子均表现出非常好的稳定性,即自身对钙、镁硬离子的耐受能力以及对钙皂的分散力。在使用过程中防止钙皂的沉淀,提高使用效果。

(8)增粘性及增泡性

表面活性剂有对改变溶液体系的作用,增大粘度变稠或增大体系的泡沫,在一些特除的清洗、开采行业有广泛的应用。

(9)去垢、洗涤作用

去除油脂污垢是一个比较复杂的过程,它与上面提到的润湿、起泡等作用均有关。

最后要说明的是,表面活性剂起作用,并不单单是因为某一方面的作用,很多情况下是多种因素共同作用。如在造纸工业中可以用作蒸煮剂、废纸脱墨剂、施胶剂、树脂障碍控制剂、消泡剂、柔软剂、抗静电剂、阻垢剂、软化剂、除油剂、杀菌灭藻剂、缓蚀剂等。

(10)浮游选矿

首先将粗矿磨碎,倾入浮选池中。在池水中加入捕集剂和起泡剂等表面活性剂,搅拌并从池底鼓气,带有有效矿粉的气泡聚集表面,收集并灭泡浓缩,从而达到了富集的目的,不含矿石的泥砂、岩石留在池底,定时清除。

浮游选矿的原理是:当矿砂表面有5%被捕集剂覆盖时,就使表面产生憎水性,它会附在气泡上一起升到液面,便于收集,选择合适的捕集剂,使它的亲水基团只吸在矿砂的表面,憎水基朝向水。

四、详细阐述胶体分散体系的基本物理化学性能;何谓胶体粒子及粗分散粒子的ζ电位?ζ电位是如何产生的?举例说明涉及到ζ电位的科学研究与工农业生产实例。

胶体(Colloid)又称胶状分散体(colloidal dispersion)是一种均匀混合物,在胶体中含有两种不同状态的物质,一种分散,另一种连续。分散的一部分是由微小的粒子或液滴所组成,分散质粒子直径在1nm—100nm之间的分散系;胶体是一种分散质粒子直径介于粗分散体系和溶液之间的一类分散体系,这是一种高度分散的多相不均匀体系。

胶体分散体系的基本物理化学性能主要有:动力性质、光学性质和流变学性质和电学性质。

动力性质的主要内容有:布朗运动、扩散和沉降与平衡

1827 年植物学家布朗(Brown)用显微镜观察到悬浮在液面上的花粉粉末不断地作不规则的运动,后来又发现许多其它物质如煤、 化石、金属等的粉末也都有类似的现象。人们称微粒的这种运动为布朗运动。Brown 运动是分散介质分子以不同大小和不同方向的力对胶体粒子不断撞击而产生的,由于受到的力不平衡,所以连续以不同方向、不同速度作不规则运动。随着粒子增大,撞击的次数增多,而作用力抵消的可能性亦大。当半径大于5μm ,Brown 运动消失。

由于布朗运动的存在,当溶胶中的胶粒存在浓度梯度时,就会发生扩散。表示

扩散系数的Fick 定律: dt dm

= DA(dx dc )。

Fick 定律的物理意义:在单位浓度梯度下,单位时间内,通过单位面积的物质的量,代表了粒子扩散能力的大小,负号表示扩散方向与浓度梯度方向相反。

溶胶是高度分散体系,胶粒一方面受到重力吸引而下降,另一方面由于布朗运动促使浓度趋于均一。当这两种效应相反的力相等时,粒子的分布达到平衡,粒子的浓度随高度不同有一定的梯度,这种平衡称为沉降平衡。

光学性质主要是丁达尔效应。1869年Tyndall 发现,若令一束会聚光通过溶胶,从侧面(即与光束垂直的方向)可以看到一个发光的圆锥体,这就是Tyndall 效应。其他分散体系也会产生一点散射光,但远不如溶胶显著。

当粒子直径大于入射光波长时,粒子主要起反射作用,粒子直径小于入射光波长时,发生散射。可见光的波长约在400~700nm ,而溶胶粒子大小约为1~100nm ,小于可见光的波长,因此,胶体体系的Tyndall 效应的光是散射光。可以理解为从入射波取走光能量,随后又将这能量的一部分再发射出来的过程。

流变学性质。研究物质在外力作用下流动与变形的科学。流变学里的力学名词概念反映了胶体的内在结构,粒子与粒子之间、粒子与溶剂之间的相互作用的微观信息。流变学研究停留在定性说明阶段。但是对工业生产十分重要

电学性质。点学性质主要是电动现象,在外加电场作用下,分散相和分散介质的相对移动现象统称为电动现象。

(1) 电泳。在外加电场作用下,胶体粒子在分散介质中定向移动的现象称为电泳。

(2)电渗。在外加电场作用下,分散介质的定向移动现象称为电渗。

粗分散系统一般包括悬浮液、乳状液、泡沫和粉尘等。粗分散系统中分散相的粒子大于胶体粒子,也是高分散度的系统,有很大的界面,很高的界面能,因此,粗分散系统也是热力学不稳定系统。由于粗分散系统的很多性质与胶体系统类似,故也属于胶体化学的范畴。

Zeta电位又叫电动电位或电动电势(ζ-电位或ζ-电势),是指剪切面(Shear Plane)的电位,是表征胶体分散系稳定性的重要指标。

由于分散粒子表面带有电荷而吸引周围的反号离子,这些反号离子在两相界面呈扩散状态分布而形成扩散双电层。根据Stern双电层理论可将双电层分为两部分,即Stern层和扩散层。当分散粒子在外电场的作用下,稳定层与扩散层发生相对移动时的滑动面即是剪切面,该处对远离界面的流体中的某点的电位称为Zeta电位或电动电位(ζ-电位)。即Zeta电位是连续相与附着在分散粒子上的流体稳定层之间的电势差。

图2 Stern双电层模型

ζ电位是对颗粒之间相互排斥或吸引力的强度的度量。ζ电位的测量使我们能够详细了解分散机理,它对静电分散控制至关重要,对于酿造、陶瓷、制药、药品、矿物处理和水处理等各个行业,ζ电位是极其重要的参数。

ζ电位不但应用于检测行业,ζ电位还带来了废油再利用划时代意义,经过ζ电位法电泳过的石油制品,可以再次利用,并且没有任何的损耗。

五、双子表面活性剂文献综述

双子表面活性剂的合成与应用

1 国内外双子表面活性剂的研究现状及发展趋势

国外对双子表面活性剂的研究从1971年开始,首次合成一组双阳离子头基双烷烃链表面活性剂,1991年美国Emory大学的Menger等合成了以刚性间隔基联接离子头基的双烷烃链表面活性剂,并命名双子表面活性剂;到1994年,Q.Huo等对联接基团连接的离子头基和烷基链不同的双子表面活性剂进行研究,并考察了它们的应用价值。美国纽约市立大学Rosen小组也从对双子命名的认可,再到Condea(康迪雅)公司推出Ceralution F和Ceralution H两种用于个人护理用品工业的新型双子表面活性剂。Reilko、Odao等又对联接基团连接碳氟疏水链的双子表面活性剂展开了研究。对双子表面活性剂的表面活性、界面性质、聚集数、增溶性质等方面的报道已相继出现,各国已对双子表面活性剂作了大量的

研究工作,并合成了许多新型双子表面活性剂,如:不对称型、无公害双糖型、阳离子(季铵盐)和阴离子(磷酸盐)的两性型。

我国在双子表面活性剂方面的研究起步较晚,1999年福州大学赵剑曦发表一篇有关国外双子表面活性剂的研究概况,引发了我国学者的极大兴趣。目前已报道合成的双子表面活性剂有:双季铵盐阳离子表面活性剂,含酯基双季铵盐阳离子表面活性剂,二壬基苯酚缩合以及甘氨酸衍生物双子季铵盐表面活性剂。我国近几年主要集中在对双季铵盐型双子表面活性剂的研究,其它相关研究报道较少。国内的文献中综述了大量的双子表面活性剂的分子结构和合成方法,姚志钢等人按照阳离子双子表面活性剂、阴离子双子表面活性剂、非离子双子表面活性剂的合成及两性双子表面活性剂的分类方法介绍了近百种双子表面活性剂的分子结构和合成方法。游毅等人报导了阳离子型二溴化-N,N’-二(二甲基烷基)乙(己)二铵(Cm-s-Cm·2Br)系列双子表面活性剂的合成及其生成胶束的性质。叶志文等人以N,N-二甲基十二烷基叔胺和1,3-二溴丙烷为原料,无水乙醇为溶剂合成阳离子双子表面活性剂,将其作为晶形改变剂及助乳剂应用于乳胶基质中,使乳化炸药具有小而分布均匀的WO粒子和较强的稳定性及良好的爆炸性能。徐晓明等人用动态光散射技术在10~70℃范围内,通过测定胶团的平均流体力学半径随温度、盐浓度和联接基团长度的变化情况,研究联接基团为聚亚甲基链的阳离子季铵盐双子表面活性剂胶团在无机盐介质中的长大规律。实验结果表明,增加盐量、降低温度和减小联接基团的长度均使平均流体力学半径变大,双子表面活性剂胶团长大时是由球状转变为棒状。杜恣毅等合成了含对苯氧基联结链的羧酸盐双子表面活性剂,研究了其胶团化特性,证明了该羧酸盐双子表面活性剂具有很低的CMC值,并证实了胶团化过程来自熵驱动。段明等人根据我国湘西地区具有丰富的山苍子资源的优势,以月桂酸、三乙撑四胺以及溴乙烷等相对价廉的原料,经过两步反应制得一类以长链酰氨基为疏水基的双季铵盐表面活性剂。宗平采用不同结构的阳离子双子表面活性剂作为涤纶碱减重量处理的促进剂,试验不同温度下活性剂的促进效果。结果表明,几种双子表面活性剂对涤纶织物的碱减重均有一定的促进作用,随着用量的增加,减量率逐步提高,当表面活性剂用量达到一定值后,促进作用变得平缓。

最后值得一提的是,随着人们对环境保护意识的增强,表面活性剂工业逐步向“绿色化”方向发展,所谓绿色化,其中一方面是要考虑原料的“绿色化”,即利用天然产物来合成表面活性剂,如油脂、松香等,而松香是我国重要的林化产品,产量和出口量均居世界首位,因此以松香为原料合成表面活性剂,将是一项很有意义的工作。

2 双子表面活性剂的结构

传统表面活性剂分子中只有1个亲水基和1个亲油基,由于这种表面活性剂

疏水链之间的缔合作用与离子头基间电荷斥力和水化作用引起的分离作用存在平衡,使得它们在界面或分子聚集体中不能更紧密排列,因而降低表面张力的能力有限。

双子表面活性剂(Gemini 表面活性剂)由2个传统的表面活性剂分子通过特殊的连接基团以化学键方式连接而成,分子中含有2个亲水基团及2个亲油链。与传统的表面活性剂相比,双子表面活性剂具有以下特点:① 成胶束能力强,临界胶低;② 吸附在界面的能力超过形成胶束的能力,降低表面张力的效率高; ③ Krafft 点低,水溶性好,且有优异的水溶助长性和增溶性,有助于配方设计;④ 与其他表面活性剂的配伍性好。

与经典的分子相比,双子表面活性剂分子中至少有两个亲水基(离子或极性基团)和两条疏水链,其分子顺序结构为:长碳链、离子头基、联接基团、第二个离子头基、第二个长碳链(分子结构示意见图3)。双子表面活性剂可视为有两个或两个以上的同一或几乎同一的两个成分,在其头基或靠近头基处由联接基团(Spacer groups)通过化学键将两亲分子联接在一起而成。

图3 双子表面活性剂的分子结构示意图

其联接基团一般分为两类:一类是易弯曲的柔性联接基团,如聚亚甲基、短链的聚氧乙烷基和杂原子等;另一类则是不易弯曲的刚性联接基团,如亚二甲苯基等。双子表面活性剂分子中含有两个疏水基团,两个亲水基团和一个连接基团;连接基团可以是亲水的,也可以是疏水的。在双子表面活性剂中,两个离子头基是靠联接基团通过化学键而联接的,由此造成了两个表面活性剂单体离子结构相当紧密的联接,致使其碳氢链间更容易产生强相互作用,即加强了碳氢链间的疏水结合力,而且离子头基间的排斥倾向受制于化学键力而被大大削弱。这就是双子表面活性剂和单链单头基表面活性剂相比较,具有高表面活性的根本原因。另一方面,在两个离子头基间的化学键联接不但不破坏其亲水性,还增加了整个分子的亲水性,使其在水中的溶解度增加,从而为高表面活性的双子表面活性剂的广泛应用提供了基础。新的研究结果表明,双子型表面活性剂与经典表面活性剂确实有较大的差别,它的出现无疑开辟了表面活性剂科学研究的新领域。

3 双子表面活性剂的合成

3.1 双子表面活性剂的合成方法

(1)加入疏水链法

这种方法所采用的原料化合物含有间隔链,

并且己经和两个亲水基连接在一

起了,只是缺了两条疏水链。因此只需加入两条疏水链,即可合成双子表面活性剂,如式(1.1)所示:

(2)加入间隔链法

该方法通过一系列的反应,在两个现成的双亲体之间插入一个间隔链,将这两个双亲体联接起来,如式(1.2)所示:

(3)加入亲水基法

该方法是在间隔链上,先联接两条疏水链,再把两个亲水基加上去,就可以合成双子表面活性剂,如式(1.3)所示:

3.2 双子表面活性剂的合成进展

与传统表面活性剂一样,双子表面活性剂一般也可分为阳离子型、阴离子型、非离子型等,它们的合成方法多种多样,目前国内外的双子表面活性剂的合成方法从类型上分,主要有以下几种:

3.2.1 阳离子双子表面活性剂的合成

目前合成的阳离子型双子表面活性剂主要是双季铵盐表面活性剂,它们具有杀菌、生物降解性好、毒性低的特点。合成双季铵盐表面活性剂的方法主要有两种,一种是以二溴取代烷烃和单长链烷基二甲基叔胺(烷基为直链烷基,它的碳原子数为m)在无水乙醇中加热回流,进行季铵化反应:一种是以1-溴代长链烷烃和N,N,N′,N′-四甲基烷基二胺在无水乙醇中加热回流,进行季铵化反应。

第一种方法适用于二溴代烷烃非常活泼且易得的情况下,如由BrCH2C6H4CH2Br来合成双季铵盐表面活性剂,反应式如式(1.4):

由于二溴代烷烃的价格非常高。所以有许多合成者选择第二种方法来合成双季铵盐表面活性剂,反应式如式(1.5):

3.2.2 阴离子双子表面活性剂的合成

阴离子双子表面活性剂种类较多,从已报道的化合物结构来看,主要分为羧酸盐、磷酸酯盐、硫酸酯盐类。

(1)羧酸盐类

Frederick C B等采用乙二胺、辛基氯化物和氯乙酸为原料合成了最早的双子表面活性剂,该产品原料来源广泛,碳链长度和联结基长度可以改变,合成方法较易实现工业化生产,是非常好的金属螯合剂。其合成反应式如式(1.6)所示:

(2)磷酸酯盐类

磷酸酯盐类化合物与天然磷脂有类似结构(天然磷脂具有双链单极性头结构),易形成反相胶束、囊泡等缔合结构,有望在生命科学,药物载体研究取得应用,它们的合成开发引起人们的重视。

其中,Menger等合成了具有刚性联接基团的双磷酸二酯型双子表面活性剂,反应式如式(1.7):

(3)磺酸盐和硫酸酯盐类

磺酸盐和硫酸酯盐类产品是普通表面活性剂中产量最大的一类产品,如LAS、SDS、AES等。该类化合物在双子表面活性剂中也开发得较早,并己有工业化产品烷基苯醚磺酸钠供应。由于磺酸盐及硫酸酯类产品水溶性好,原料来源广,因此该类产品有可能最先实现大规模工业化生产,以满足日化行业及工业中的应用需求。

其中一种是以二元醇二环氧甘油醚为原料,与高级醇酯化后,再与氯磺酸反应中和而成,其反应式如式(1.8)所示:

3.2.3 非离子双子表面活性剂的合成

非离子型结构较多,大致分为两类:一类是糖的衍生物,另一类是醇酚醚等。Gregory、Paddonjones等合成了非离子双子表面活性剂:二亚甲基2-双(N-聚乙二醇十二基酰胺);Zana等人用十二酸为原料合成了非离子双子表面活性剂,其合成路线如式(1.9):

4 双子表面活的应用

4.1 高效乳化剂、增溶剂、脱脂剂等

因为具有较高的表面活性,双子型表面活性剂可以用于生产高效乳化剂。在减少活性剂用量的情况下,达到甚至超过单链表面活性剂的效果,大大减少了生产中原料的用量和副产品的生成量,有效地保护了环境。

极低的CMC值,使得双子表面活性剂在很低的浓度下即可形成胶束,既而达到增溶的效果。因此,该类表面活性剂可以用作高效增溶剂。同样,一些离子型双子表面活性剂的,可以和不溶于水的表面活性剂复配使用。这些不溶于水的表面活性剂虽然能使水的表面活性降低到很低,但由于水溶性较差,达不到理想的润湿效果。而通过复配,既大幅度降低表面张力,又改善了润湿能力瞄驯。在浸水、浸灰脱毛等制革工序中,使用双子型表面活性剂可以加快操作液渗透到皮中,缩短工序操作时间,而且效果将会比使用传统表面活性剂的效果更好。低的CMC浓度和很好的增溶性使得双子表面活性剂将会是个很好的脱脂剂和乳化剂,用作脱脂剂时,少量的双子型表面活性剂就可以使生皮中的油脂、污垢很好的被乳化、分散而除去。

4.2 抗菌剂和消毒剂

精氨酸双子型表面活性剂可绑定内毒素和抑制细菌活性,从而达到治疗革兰氏阴性细菌以及杀死真菌的目的。双子型表面活性剂化学结构对其抗菌杀毒性有影响,如吡啶型阳离子双子型表面活性剂可提高氮离子密度,或者将柔韧的亚甲基联接链转变为刚硬的亚苯基联接链,抗菌性能明显增加。改变烷基链的长度,

双子型表面活性剂的抗菌性是先增大后减小。

4.3 抗静电剂

当双子型表面活性剂分子吸附在纤维界面时,亲油基朝向纤维,而大量的亲水基则朝向空气,从而使得纤维的离子导电性能和吸湿导电性能非常强,即产生了放电现象,使纤维表明的电阻降底,这样就使纤维表明的静电产生与放电平衡,从而防止了纤维表明的静电积累,达到抗静电的目的。由于双子型表面活性剂含有比传统表面涪陛剂更多的亲水、亲油基团,所以有理由认为双子型表面活性剂用做抗静电剂时,应该比传统表面活性剂的效果更好。

4.4 匀染剂和染色助剂

双子型表面活性剂的高渗透性和优良的分散性用于皮革染色时将会达到很好的匀染、助染效果。高效的渗透性使其能快速的与皮革纤维结合,减缓染料与皮革纤维的结合,从而达到缓染效果。双子表面活性剂的独特结构使得其带有大量的亲纤维性基团或亲染料性基团,因此,双子表面活性剂又有良好的移染性能。

4.5 制备新材料

由于双子表面活性剂具有高表面活性和能在溶剂中形成不同聚集态的超分子结构等特性,可应用于一系列介孔材料、聚合物材料、纳米材料和助催化材料的制备,为多学科交叉创造条件"J。如介孔硅胶材料的制备,纳米级孑L径分子筛材料的制备。同时,在纳米材料制备时反相胶束技术的应用也引起了人们极大的兴趣。反相胶束的“水池”为纳米空间,在一定条件下胶束具有稳定小尺寸的特性,即使破裂也能够重新组合,被誉为“智能反应器”。但目前对双子表面活性剂在材料合成方面的研究相对较少,应进一步探索双子表面活性剂分子间弱相互作用力的协同规律,研究和开发新型的双子表面活性剂,如两疏水链长度不对称、正负离子头基、离子非离子头摹等杂双子表面活性剂,进而设计具有新型结构和功能的分子有序聚集体,为新材料的合成提供新的思路一。

4.6 三次采油

近年来,双子表面活性剂因其优异的性能在三次采油中展现出了广阔的应用前景。目前国内许多研究人员对双子表面活性剂用于三次采油都进行了一些研究,合成出了可作为油田驱油剂使用的双子表面活性剂,探讨其在三次采油领域应用的可行性。

4.7 生物技术

酶是具有牛物活性的蛋白质,是决定生物体系中化学转化方式的卓越非凡的分子器件,在医药合成领域扮演霞要角色;酶制剂在临床上也具有霞要应用价值,但需要解决分离、纯化及其稳定性问题。利用双子表面活性剂在有机相中自发形成的反相胶束.在一定条件下,将水溶蛋白质提取至反向胶束的极性核中,创造条件将其提取至另一水相,实现蛋白质转移,达到分离和提纯的目的。这种方法

的优点是酶不直接与有机相接触,因而不易失活。另外,采用水/双子表面活性剂/有机溶剂组成的微乳液把酶和底物包裹在内,模拟酶在细胞中的功能,通过调节双子表面活性剂的结构来调节胶团尺寸,从而获得最大的酶活性。因此,双子表面活性剂在生物技术领域具有广阔的应用前景。

5 结束语

双子表面活性剂是极具应用前景的新一代表面活性剂。近20年来,国内外在双子表面活性剂的合成及溶液性能方面的研究已较深入,但目前关于双子表面活性剂的应用拓展工作也还远远不够,还要进一步研究和开发新型的双子表面活性剂;在开发的同时要注重优化合成工艺、提高产晶收率、减少三废污染、开展复配研究等方面的工作。如在石油工业用助剂方面,需要对双子表面活性剂在油田领域的应用作进一步研究,研制油田工作液用新型表面活性剂,使其为原油的增产做出更大的贡献;同时由于双子表面活性剂的高表匝活性和在溶剂中能形成不同聚集态的超分子结构等特殊性质,可为多学科交叉创造条件,可逐步的应用于各个领域,预期在抗HIV、抗肿瘤、基因转染方面以及环境保护、三次采油和新型功能材料制备等工业中有较好的应用前景。

刊名-胶体界面化学期刊汇总

【刊名】Advances in Colloid and Interface Science 【简介】《胶体与界面科学进展》, 创刊于1967年,是由荷兰(Elsevier Science)出版的英文刊,期数:16,国际标准刊号:ISSN:0001-8686, 该刊被世图2003版《国外科学技术核心期刊总览》收录,该刊被SCI收录,2006年影响因子为3.79。 【征稿内容】刊载界面与胶体现象以及相关的化学、物理、工艺和生物学等方面的实验与理论研究论文,多用英文发表,间用德、法文。 【投稿信息】 地址:PO Box 211,Amesterdam,Netherlands,1000 AE 网址: https://www.wendangku.net/doc/c91032512.html,/science/journal/00018686 【刊名】Current Opinion in Colloid & Interface Science 【简介】《胶体与界面科学新见》, 创刊于1996年,是由英国(Elsevier Science)出版的英文双月刊,国际标准刊号:ISSN:1359-0294,该刊被SCI收录,2006年影响因子为4.63。本馆有电子馆藏。 【征稿内容】胶体、界面和聚合物科学。 【投稿信息】 地址:84 Theobalds RD London,England, WC1X 8RR 网址: https://www.wendangku.net/doc/c91032512.html,/wps/find/journaldescription.cws_home/620053/description #description 【刊名】Journal of Colloid and Interface Science 【简介】《胶体与界面科学杂志》,创刊于1946年,是由美国(Elsevier Science,Academic Press Inc.)出版的英文半月刊,国际标准刊号:ISSN:0021-9797,该刊被世图2003版《国外科学技术核心期刊总览》收录,该刊被SCI收录,2006年影响因子为2.233。本馆有纸版收藏。 【征稿内容】刊载胶体与界面科学基础原理和应用方面的论文和书评。 【投稿信息】 地址:525 B ST, STE 1900, SAN DIEGO, USA, CA, 92101-4495 网址: https://www.wendangku.net/doc/c91032512.html,/wps/find/journaldescription.cws_home/622861/description #description 【刊名】Langmuir 【简介】《兰格缪尔》,创刊于1985年,是由美国(American Chemical Society)出版的英文刊,期数:26,国际标准刊号:ISSN:0743-7463,该刊被SCI收录,2006年影响因子为3.902。本馆有纸版收藏。 【征稿内容】注重以新的物理学观点研究表面与胶态化学,刊载论文、评论、技术札记和简讯。涉及学科极广。 【投稿信息】 地址:1155 Sixteenth St., NW Washington, DC 20036

胶体与表面化学教学大纲

课程代码:0303181 课程英文名称:Colloid and Surface Chemistry 课程类别:专业选修课 课程负责人:王英滨 胶体与表面化学教学大纲 (总学时:40讲课:40) 一、课程教学目的 本课程是为材料化学专业开设的专业选修课,同时也可作为材料学、环境工程等专业的选修课。通过本课程的学习,学生在大学物理化学的基础上,进一步了解胶体与表面的基本理论问题,并能在以后的研究工作中加以应用。 二、课程教学基本内容、要求及学时分配 第一章绪论 2学时,了解胶体的定义与特点,胶体化学发展简史,胶体化学的研究对象和意义,胶体与表面化学的发展。 第二章胶体的制备和性质 6学时,掌握溶胶的制备和净化,溶胶的动力学性质,溶胶的光学性质,溶胶的电学性质和胶团结构,溶胶的稳定性和聚沉,流变性质。 第三章凝胶 6学时,掌握凝胶通性及分类,凝胶的形成与结构,胶凝作用及其影响因素,凝胶的性质,几种重要的凝胶。 第四章界面现象和吸附 8学时,掌握表面张力和表面能,弯曲界面的一些现象,润湿和铺展,固体表面的吸附作用,吸附等温方程式,固体-溶液界面吸附 第五章常用吸附剂的结构、性能和改性 6学时,掌握多孔性物质物理结构的测定方法,常用吸附剂的结构和性能,固体的表面改性第六章表面活性剂 6学时,掌握表面活性剂的分类和结构特点,表面活性剂在界面上的吸附,表面活性剂的体相性质,胶束理论,表面活性剂的亲水亲油平衡(HLB)问题,表面活性剂的作用 第七章乳状液 6学时,掌握乳状液的制备和物理性质,影响乳状液类型的因素和乳状液类型的鉴别,影响乳状液稳定性的因素,乳化剂的选择,乳状液的变形和破乳,乳状液的应用 三、本课程与其它课程的联系与分工 学习本课程需无机化学、有机化学、物理化学等课程基础。 四、教学方式 主要以课堂讲授方式进行,使用多媒体教学。 五、成绩评定方法 本课程的考核以课堂提问情况、完成作业等平时成绩和期末撰写读书报告成绩综合评

界面与胶体化学

系 专业 班 学 姓 ┉┉┉┉┉┉┉┉┉┉┉密┉┉┉┉┉┉┉┉┉┉封┉┉┉┉┉┉┉┉┉┉线┉┉┉┉┉┉┉┉┉┉

纳米材料的研究进展 摘要: 在充满生机的21世纪,信息、生物技术、能源、环境、先进制造技术和国防的高速发展必然对材料提出新的需求,组件的小型化、智能化、高集成、高密度存储和超快传输等对材料的尺寸要求越来越小;航空航天、新型军事装备及先进制造技术等对材料性能要求越来越高。新材料的创新,以及在此基础上诱发的新技术。本文介绍了纳米材料和纳米技术的概念及其研究进展,并且着重介绍了纳米材料的应用及纳米材料的发展前景预测。 关键词:纳米材料纳米技术研究进展应用发展趋势。 引言: 新产品的创新是未来10年对社会发展、经济振兴、国力增强最有影响力的 战略研究领域,纳米材料将是起重要作用的关键材料之一。纳米材料和纳米结构是当今新材料研究领域中最富有活力、对未来经济和社会发展有着十分重要影响的研究对象,也是纳米科技中最为活跃、最接近应用的重要组成部分。 指由纳米单元构成的任何类型的材料,如金属、陶瓷、聚合物、半导体、玻璃和复合材料等。这些纳米级的结构单元,如纳米粒子(0维)、碳纳米管(1维)和纳米层(2维)等又是由原子和分子组成的。通过改变纳米结构单元的大小,控制内部和表面的化学性质及它们的组合,就能设计材料的特性和功能。 1、纳米材料和纳米技术 1991年,碳纳米管被人类发现,它的质量是相同体积钢的六分之一,强度却是钢的10倍,成为纳米技术研究的热点。诺贝尔化学奖得主斯莫利教授认为,纳米碳管将是未来最佳纤维的首选材料,也将被广泛用于超微导线、超微开关以及纳米级电子线路等。 2、纳米材料的研究进展 纳米材料的研究最初源于十九世纪六十年代对胶体微粒的研究,二十世纪六十年代后,研究人员开始有意识得通过对金属纳米微粒的制备和研究来探索纳米体系的奥秘。1984年,德国萨尔布吕肯的格莱特(Gleiter)教授[3] 把粒径为6nm的金属铁粉原位加压制成世界上第一块纳米材料,开创纳米材料学之先河。1990年7月,在美国巴尔的摩召开了第一届国际纳 米科学技术学术会议(Nano-ST),标志着纳米材料学作为一个相对独立学科的诞生。 中科院沈阳金属所的卢柯小组[6]在纳米材料及相关亚稳材料领域取得了突出的成绩。他发展的利用非晶完全晶化制备致密纳米合金的方法已与惰性气体蒸发后原位加压法、高能球磨法成为当前制备金属纳米块材的三种主要方法之一。他们发现的纳米铜的室温超塑延展性,被评为2000年中国十大科技新

胶体化学练习题2

1. 使用瑞利(Reyleigh) 散射光强度公式,在下列问题中可以解决的问题是:( ) (A) 溶胶粒子的大小(B) 溶胶粒子的形状 (C) 测量散射光的波长(D) 测量散射光的振幅 2. (1)超显微镜在胶体研究中起过重要作用,它的研制是利用的原理是:( ) (A) 光的反射(B) 光的折射(C) 光的透射(D) 光的散射 (2)超显微镜观察到的是:( ) (E) 粒子的实像(F) 粒子的虚像(G) 乳光(H) 透过光 3. 有人在不同pH 的条件下,测定出牛的血清蛋白在水溶液中的电泳速度,结果如下:pH 4.20 4.56 5.20 5.65 6.30 7.00 泳速/( m2/s·V) 0.50 0.18 -0.25 -0.65 -0.90 -1.25 由此实验数据可知:( ) (A) 该蛋白的等电点pH > 7.00 (B) 该蛋白的等电点pH < 4.20 (C) 该蛋白的等电点pH < 7.00 (D) 从上述实验数据不能确定等电点范围 4. 对电动电位的描述错误的是:( ) (A) 电动电位表示了胶粒溶剂化层界面到均匀相内的电位 (B) 电动电位的值易随少量外加电解质而变化 (C) 电动电位的绝对值总是大于热力学电位 (D) 电动电位一般不等于扩散电位 5. 溶胶有三个最基本的特性, 下列不属其中的是:( ) (A) 特有的分散程度(B) 不均匀(多相)性 (C) 动力稳定性(D) 聚结不稳定性 6. 用新鲜Fe(OH)3沉淀来制备Fe(OH)3溶胶时,加入的少量稳定剂是:() (A) KCl (B) AgNO3 (C)FeCl3 (D)KOH 7. 明矾净水的主要原理是:( ) (A) 电解质对溶胶的聚沉作用(B) 溶胶的相互聚沉作用 (C) 电解质的敏化作用(D) 电解质的对抗作用 8. 下列诸分散体系中,Tyndall 效应最强的是:( ) (A) 纯净空气(B) 蔗糖溶液 (C) 大分子溶液(D) 金溶胶 9. 沉降系数(S) 的物理意义是,在重力场中 和离心场中的表达式分别是和。 10. 当用白光照射有适当分散度的溶胶时,从侧面看到的是__________光,呈__________色,

上海大学胶体与表面化学考试知识点

1、胶体的基本特性 特有的分散程度;粒子大小在1nm~100nm之间 多相不均匀性:在超级显微镜下可观察到分散相与分散介质间存在界面。 热力学不稳定性;粒子小,比表面大,表面自由能高,是热力学不稳定体系,有自发降低表面自由能的趋势,即小粒子会自动聚结成大粒子。 2、胶体制备的条件: 分散相在介质中的溶解度须极小 必须有稳定剂存在 3、胶体分散相粒子大小分类 分子分散系统 胶体分散系统 粗分散系统 二、 1、动力学性质布朗运动、扩散、沉降 光学性质是其高度分散性与不均匀性的反映 电学性质主要指胶体系统的电动现象 丁达尔实质:胶体中分散质微粒散射出来的光 超显微镜下得到的信息 (1)可以测定球状胶粒的平均半径。 (2)间接推测胶粒的形状和不对称性。例如,球状粒子不闪光,不对称的粒子在向光面变化时有闪光现象。 (3)判断粒子分散均匀的程度。粒子大小不同,散射光的强度也不同。 (4)观察胶粒的布朗运动、电泳、沉降和凝聚等现象 观察到胶粒发出的散射光,可观察布朗运动电泳沉降凝聚,只能确定质点存在和位置(光亮点),只能推测不能看到大小和形状 2、胶体制备的条件 溶解度稳定剂 3、溶胶的净化 渗析法、超过滤法 4、纳米颗粒粒径在1-100之间纳米颗粒的特性与粒子尺寸紧密相关,许多特性 可表现在表面效应和体积效应两方面。 5、布朗运动使胶粒克服重力的影响, 6、I反比于波长λ的四次方 7、溶胶产生各种颜色的原因;溶胶中的质点对可见光产生选择性吸收。溶胶对光吸收显示特定波长的补色不吸收显示散射光的颜色 agcl&agbr光透过浅红垂直淡蓝雾里黄灯减散,入射白光散射光中蓝紫色光散射最强天蓝是太阳散射光,早傍晚红色是透射光有宇散射作用 8、 9、胶粒带电原因:吸附、电离、同晶置换(晶格取代)、摩擦带电。 10、胶团结构:一定量难溶物分子聚结成中心称为胶核、然后胶核选择性的吸附稳定剂中的一种离子,形成紧密吸附层;由于正、负电荷相吸,在紧密层外形成反号离子的包围圈,从而形成了带与紧密层相同电荷的胶粒;胶粒与扩散层中的反号离子,形成一个电中性的胶团。 11、热力学电势和电动电势的区别: 发生在不同的部位、一般情况电动电势是热力学电势一部分绝对值小于热力学电势、热力学

界面与胶体化学试卷A

系 专业 班 学号 姓 名 ┉┉ ┉┉ ┉┉┉┉ ┉ ┉密┉ ┉ ┉┉┉┉┉┉┉ ┉封┉┉ ┉┉ ┉┉┉┉┉┉ 线 ┉┉┉┉ ┉┉┉┉ ┉ ┉

乳化液的研究进展 摘要针对目前国内外乳化液在食品、化妆品、医药等各类生活用品的应用及发展论述。本文通过世界乳化液发展史,各类乳化液的作用延伸到现实生活中的应用,通过不同性质的物质经过实验加工合成各种各样对人们生产活动息息相关的乳化液。乳化液的应用主要体现在食品添加剂、化妆品的乳化理论与乳化技术上,都是通过人民生产生活对其的要求日益提高,乳化液相关工作人员不断改进乳化液的原料、生产合成工艺逐步完善乳化液的功能。得出了根据各种乳化液的HLB值不同、乳化液与分散相的亲和性、乳化液的配伍作用可以细分各类乳化液的相应及相对作用推广乳化液在各领域的使用。 关键字:乳化液,食品添加剂,化妆品,乳化液的HLB值 引言乳化液广泛应用于化工、食品、造纸、涂料、印染、纺织、环保、石油、医药、金属加工、石油产品、废水处理等各个领域。本文主要介绍乳化液的发展、制备、性质及应用,反映了乳化最新研究与应用成果,对乳化液的研究、开发和应用提供参考。 1.乳化液的乳化原理 乳化液作为一类食品添加剂,在食品工业中扮演着重要的角色,它是现代食品工业的重要组成部分,在食品工业中的需求量约占添加剂的50%[1]。基于其表面活性性质和与食品组分的相互作用,乳化液不仅在各种原料混合、融合等一系列加工过程中起乳化、分散、润滑和稳定等作用,而且还可以改进和提高食品的品质和稳定性。比如,它可以使食品舌感润滑、保持质感,还被用作蛋糕的起泡剂、豆腐的消泡剂等。在面包生产中,乳化液可以保护淀粉粒,防止老化,从而使面包食感得到改良,并在防氧化、抗菌和品质等方面得到改善。 乳化液是一种表面活性剂,既有亲水基团,又有亲油基团,两者分别处于两端,形成不对称的分子结构。可将两种不溶物质“吸附”在一起。乳化液是乳液的一种稳定剂,也是表面活性剂的一种。 乳化液可以分散在分散质的表面,形成薄膜或者是双电层,可以是分散相带有电荷,这样就可以阻止分散相的小液滴互相凝结,使形成的乳浊液比较稳定。例如,在农药的原药(固态)或原油(液态)中加入一定量的乳化液,再把它们溶解在有机溶剂里,混合均匀后可制成透明液体,叫乳油。常用的乳化液有肥皂、阿拉伯胶、烷基苯磺酸钠、硬脂酸钠盐、羧酸盐、硫酸盐等。 1.1液体物料中的乳化原理 在两种不相混合的液体中(如油和水),乳化液分子能吸附于液体界面上,并定向排列,亲水基团指向水相,疏水基团指向油相,通过乳化液的“架桥”作用,使水和油两相紧密地融 合在一起。 1.2 固体物料中的乳化原理乳化液与食品中的蛋白质、淀粉、脂类作用,改善食品结构。碳

专题讲解-界面现象-胶体化学

表面吉布斯自由能和表面张力 1、界面: 密切接触的两相之间的过渡区(约几个分子的厚度)称为界面(interface),通常有液-气、液-固、液-液、固-气、固-液等界面,如果其中一相为气体,这种界面称为表面(surface)。 2、界面现 象: 由于界面两侧的环境不同,因此表面层的分子与液体内的分子受力不同: 1.液体内部分子的吸引力是对称的,各个方向的引力彼此抵销,总的受力效果是合力为零; 2.处在表面层的分子受周围分子的引力是不均匀的,不对称的。 由于气相分子对表面层分子的引力小于液体内部分子对表面层分子的引力,所以液体表面层分子受到一个指向液体内部的拉力,力图把表面层分子拉入内部,因此液体表面有自动收缩的趋势;同时,由于界面上有不对称力场的存在,使表面层分子有自发与外来分子发生化学或物理结合的趋势,借以补偿力场的不对称性。由于有上述两种趋势的存在,在表面会发生许多现象,如毛细现象、润湿作用、液体过热、蒸气过饱和、吸附作用等,统界面现象。 3、比表面(Ao) 表示多相分散体系的分散程度,定义为:单位体积(也有用单位质量的)的物质所具有的表面积。用数学表达式,即为: =A/V A 高分散体系具有巨大的表面积。下表是把一立方厘米的立方体逐渐分割成小立方体时,比表面的增长情况。高度分散体系具有巨大表面积的物质系统,往往产生明显的界面效应,因此必须充分考虑界面效应对系统性质的影响。

4、表面功 在温度、压力和组成恒定时,可逆地使表面积增加dA所需要对体系做的功,称为表面功(ω’)。 -δω’=γdA (γ:表面吉布斯自由能,单位:J.m-2) 5、表面张力 观察界面现象,特别是气-液界面的一些现象,可以觉察到界面上处处存在着一种张力,称为界面张力(interface tension)或表面张力(surface tension)。它作用在表面的边界面上,垂直于边界面向着表面的中心并与表面相切,或者是作用在液体表面上任一条线两侧,垂直于该线沿着液面拉向两侧。如下面的例子所示: 计算公式: -δω'= γdA (1) 式中γ是比例常数,在数值上等于当T、p及组成恒定的条件下,增加单位表面积时所必须对体系作的非膨胀功。 我们从另一个角度来理解公式(1)。先请看下面的例子。 从上面的动画可知:肥皂膜将金属丝向上拉的力就等于向下的重力(W 1+W 2 ),即 为

胶体与表面化学 试题

一、是非题 1.表面超量的英文具体描述: The surface excess of solute is that the number of moles of solute in the sample from the surface minus the number of moles of solute in the sample from the bulk under a condition of the same quantity of solvent or the surface excess of solvent has been chosen to be zero. 2.囊泡的形成途径: The final surfactant structures we consider as models for biological membranes are vesicles. These are spherical or ellipsoidal particles formed by enclosing a volume of aqueous solution in a surfactant bilayer. Vesicles may be formed from synthetic surfactants as well. 3.絮凝与聚焦之间的区别: Coalescence :the process that many small particles take together to form a new big particle,total surface area of the dispersion system decreases. Aggregation:the process by which small particles clump together like a bunch of grapes (an aggregate), but do not fuse into a new particle,total surface area of the dispersion system do not decrease as well. 4.胶束micelle :A monophasic, fluid, transparent, isotropic and thermodynamically stable system composed by surfactant and water, the particle has some linear dimension between 10-9-10-6m. 5.乳液emulsion :A multiphasic, no-transparent and thermodynamically unstable system composed by surfactant, cosurfactant, oil and water. 6.微乳液microemulsion :A monophasic, fluid, transparent, isotropic and thermodynamically stable system composed by surfactant, cosurfactant, oil and water. 7.囊泡vesicle :能不能直接从双联续制备转换过来?(√) 8.憎水溶胶 亲水溶胶 连续相与分散相有没有明显界限?(没有) 9.胶束体系的稳定性与哪些因素有关?与哪些因素无关? 10.瑞利散射:条件 粒子大小 11.表面吸附超量γ:物理意义 溶剂的量是不是都为零?(×) 12.TEM 、SEM 都需要把样品放入真空中,最后结果都可以表明原来分散度。(×) 13.在Langmuir 膜、LB 膜 单层 理想气体方程式 能否用理想气体关系式描述?(能) 二、多项选择题 1.表面吉布斯自由能: The Gibbs equation:multicomponent systems γμAd dn SdT V G i i ++ =∑-dp From Gibbs-Duhen equation:∑μi dn i =0 注:S G G G G ++=β α ; ∑+-+=i i i n TS pV E G μ; ∑+-+=i i i s s s n TS A E G μγ; dA Ad d n dn SdT TdS Vdp pdV dE dG i i i s i i i γγμμβ α++++-++=∑∑∑)-(,,; dA Ad w d n dn dG pV nom s i i i i i i γγδμμβ α++++=∑∑∑)-SdT -(Vdp -,,; γμμβ αAd d n dn SdT Vdp dG i i i s i i i +++= ∑∑∑)-(,,; ∑+=i i i dn SdT Vdp dG μ-

界面与胶体化学复习题及答案

习题1 1. 一定体积的水,当聚成一个大水球或分散成许多水滴时,同温度下,两种状 态相比,以下性质保持不变的有: (A)表面能 (B)表面张力 (C)比表面 (D)液面下的附加压力 2.在下图的毛细管内装入普通不润湿性液体,当将毛细管右端用冰块冷却时,管 内液体将: (A)向左移动 (B)向右移动 (C)不移动 (D)左右来回移动 3.在298 K下,将液体水分散成小液滴,其热力学能: (A) 增加 (B)降低 (C) 不变 (D)无法判定 4.在相同温度下,固体冰和液体水的表面张力哪个大? (A)冰的大 (B)水的大 (C)一样大 (D)无法比较 5.在临界温度时,纯液体的表面张力 (A) 大于零 (B)小于零 (C)等于零 (D)无法确定 6.在 298 K时,已知 A液的表面张力是 B液的一半,其密度是 B液的两倍。如 果A液在毛细管中上升1.0×10-2m,若用相同的毛细管来测 B液,设接触角相等, B液将会升高: (A) 2×10-2m (B) 1/2×10-2m (C) 1/4×10-2m (D) 4.0×10-2m 7.下列说法中不正确的是: (A)生成的新鲜液面都有表面张力 (B)平面液体没有附加压力 (C)弯曲液面的表面张力的方向指向曲率中心 (D)弯曲液面的附加压力指向曲率中心 8.微小晶体与普通晶体相比较,哪一种性质不正确? (A)微小晶体的饱和蒸气压大

(B)微小晶体的溶解度大 (C)微小晶体的熔点较低 (D)微小晶体的溶解度较小 9.在空间轨道上运行的宇宙飞船中,漂浮着一个足够大的水滴,当用一根内壁干净、外壁油污的玻璃毛细管接触水滴时,将会出现: (A)水并不进入毛细管 (B)水进入毛细管并达到管内一定高度 (C)水进入毛细管并达到管的另一端 (D)水进入毛细管并从另一端滴出 10.同外压恒温下,微小液滴的蒸气压比平面液体的蒸气压: (A) 大 (B) 一样 (C) 小 (D) 不定 11.用同一支滴管滴下水的滴数和滴相同体积苯的滴数哪个多? (A)水的多 (B)苯的多 (C)一样多 (D)随温度而改变 12. 25℃时,一稀的肥皂液的表面张力为0.0232 N·m-1,一个长短半轴分别为0.8 cm和0.3 cm的肥皂泡的附加压力为: (A) 5.8 Pa (B) 15.5 Pa (C) 18.4 Pa (D) 36.7 Pa 13.已知 293 K时,水-辛醇的界面张力为 0.009 N·m-1,水-汞的界面张力为 0.375 N·m-1,汞-辛醇的界面张力为 0.348 N·m-1,故可以断定: (A)辛醇不能在水-汞界面上铺展开 (B)辛醇可以在水-汞界面上铺展开 (C)辛醇可以溶在汞里面 (D)辛醇浮在水面上 14.在农药中通常都要加入一定量的表面活性物质,如烷基苯磺酸盐,其主要目的是: (A) 增加农药的杀虫药性 (B) 提高农药对植物表面的润湿能力 (C) 防止农药挥发 (D) 消除药液的泡沫 15.将半径相同的三根玻璃毛细管分别插入水、乙醇水溶液和NaCl水溶液中,三根毛细管中液面上升高度分别为h1,h2,h3,则: (A) h1>h2>h3 (B) h1>h3>h2 (C) h3>h1>h2 (D) h2>h1>h3

胶体与表面化学的简答题

1.什么是气凝胶?有哪些主要特点和用途?当凝胶脱去大部分溶剂,使凝胶中液体含量比固体含量少得多,或凝胶的空间网状结构中充满的介质是气体,外表呈固体状,这即为干凝胶,也称为气凝胶。气凝胶是一种固体物质形态,世界上密度最小的固体。气凝胶貌似“弱不禁风”,其实非常坚固耐用。它可以承受相当于自身质量几千倍的压力,在温度达到1200摄氏度时才会熔化。此外它的导热性和折射率也很低,绝缘能力比最好的玻璃纤维还要强39倍。 用途:(1)制作火星探险宇航服(2)防弹不怕被炸 (3)过滤与催化(4)隔音材料(5)日常生活用品 2.试述凝胶形成的基本条件? ①降低溶解度,使被分散的物质从溶液中以“胶体分散状态”析出。②析出 的质点即不沉降,也不能自由行动,而是构成骨架,在整个溶液中形成连续的网状结构。2.简述光学白度法测定去污力的过程。 将人工制备的污布放在盛有洗涤剂硬水的玻璃瓶中,瓶内还放有橡皮弹子,在机械转动下,人工污布受到擦洗。在规定温度下洗涤一定时间后,用白度计在一定波长下测定污染棉布试片洗涤前后的光谱反射率,并与空白对照。 4.试述洗涤剂的发展趋势。 液体洗涤剂近几年的新的发展趋势: (1)浓缩化 (2)温和化、安全化(3)专业化 (4)功能化(5)生态化: ①无磷化②表面活性剂生物降解③以氧代氯 5.简述干洗的原理 干洗是在有机溶剂中进行洗涤的方法,是利用溶剂的溶解力和表面活性剂的加溶能力去除织物表面的污垢。 3. 脂肪酶在洗涤剂中的主要作用是什么? 脂肪酶,人的皮脂污垢如衣领污垢中因含有甘油三脂肪酸酯而很难去除,在食品污垢中也含有甘油三脂肪酸酯类的憎水物质,脂肪酶能将这些污垢分解成甘油和脂肪酸。 4.在洗涤剂中作为柔和剂的SAA主要是什么物质?用作柔和剂的表面活性剂主要是两性表面活性剂 8.用防水剂处理过的纤维为什么能防水?织物防水原理:将纤维织物用防水剂进行处理,可使处理后的纤维不表面变为疏水性,防水织物由于表面的疏水性使织物与水之间的接触角θ>90°,在纤维与纤维间形成的“毛细管”中的液面成凸液面,凸液面的表面张力的合力产生的附加压力△P的方向指向液体内部因此有阻止水通过毛细管渗透下来的作用。 5.请举出几个润湿剂的应用实例。 (1)润温剂在农药中的应用。加入润湿剂后,药液在蜡质层上的润湿状况得到改善甚至可以在其上铺展。 (2)润湿剂在原油开采中的应用。溶有表面活性剂的水,称之为活性水,活性水中添加的表面活性剂主要是润湿剂。它具有较强的降低油—水界面张力和使润湿反转的能力 (3)润湿剂在原油集输中的应用。在稠油开采和输送中,加入含有润湿剂的水溶液,即能在油管、抽油杆和输油管道的内表面形成—层亲水表面,从而使器壁对稠油的流动阻力降低,以利于稠油的开采和辅送。这种含润湿剂的水溶液 即为润湿降阻

胶体化学论文

胶体化学与表面化学 14无机非 杜君 学号:1403031008 胶体化学是胶体体系的科学,随着胶体化学的迅速发展,它已成为一门独 立的学科。这是因为有一方面由于胶体现象很复杂,有它自己独特的规律性; 它在科学研究方面发挥着巨大的作用;不仅如此,它与无机化学、材料化学等 相关学科也有着密切关系,如利用微乳技术制取纳米颗粒、利用溶胶—凝胶法 制压电陶瓷等。 胶体体系的重要特点之一,是具有很大的表面积。任何表面,在通常情况 下实际上都是界面,如水面即液体与气体的界面、桌面即固体与气体的界面等,在任何两相界面上都可以发生复杂的物理或化学现象,总称为表面现象,也就 是界面现象。胶体化学中所说的界面现象,不仅包括物体表面上发生的物理化 学现象以及物体表面分子(或原子)和内部的有什么不同,而且还包括一定量 的物体经高度分散后(这时表面积将强烈增大)给体系的性质带来怎样的影响,例如粉尘为什么会爆炸、小液珠为什么能成球、汞的小液滴在洁净玻璃上成球 而水的小液滴铺展、活性炭为什么能脱色等等,这些问题都与界面现象有关。 界面现象涉及的范围很广,研究界面现象具有十分重要的意义。 表面化学就是研究表面现象的一门学科,从历史角度看,表面化学是胶体 化学的一个重要分支,也是其中最重要的一个部门,二者密切相关。胶体化学 与表面化学内容包括胶体的制备和性质、凝胶、界面现象和吸附、乳状液的基 本知识及其应用,如丁达尔现象、电泳及电渗、双电层结构和相应电位分布、 双电层理论、DLVO理论、表面张力产生原因及肥皂去污等原理。 胶体的制备与性质和表面现象是胶体化学最核心的内容。胶体的制备与 性质包括胶体的运动性质、光学性质、电学性质、流变性质、制备及净化方法 及胶团的结构和与其相关的双电层理论及模型等相关内容:由于胶粒对光的散 射作用产生了丁达尔现象;由于不同溶胶中胶粒的大小不同,使之对透过其中 的光的散射、反射作用不同,故使溶胶产生各种颜色;由于胶粒带电的性质使 之产生了电泳及电渗现象;由于它带电的性质又产生了双电层理论;又由于它 带电的性质引出了DLVO理论及对其聚沉性的研究。

界面与胶体化学复习题及答案

应化124班 1. 一定体积的水,当聚成一个大水球或分散成许多水滴时,同温度下,两种状 态相比,以下性质保持不变的有: (A)表面能 (B)表面张力 (C)比表面 (D)液面下的附加压力 2.在下图的毛细管内装入普通不润湿性液体,当将毛细管右端用冰块冷却时,管 内液体将: (A)向左移动 (B)向右移动 (C)不移动 (D)左右来回移动 3.在298 K下,将液体水分散成小液滴,其热力学能: (A) 增加 (B)降低 (C) 不变 (D)无法判定 4.在相同温度下,固体冰和液体水的表面张力哪个大? (A)冰的大 (B)水的大 (C)一样大 (D)无法比较 5.在临界温度时,纯液体的表面张力 (A) 大于零 (B)小于零 (C)等于零 (D)无法确定 6.在 298 K时,已知 A液的表面张力是 B液的一半,其密度是 B液的两倍。如 果A液在毛细管中上升1.0×10-2m,若用相同的毛细管来测 B液,设接触角相等, B液将会升高: (A) 2×10-2m (B) 1/2×10-2m (C) 1/4×10-2m (D) 4.0×10-2m 7.下列说法中不正确的是: (A)生成的新鲜液面都有表面张力 (B)平面液体没有附加压力 (C)弯曲液面的表面张力的方向指向曲率中心 (D)弯曲液面的附加压力指向曲率中心 8.微小晶体与普通晶体相比较,哪一种性质不正确?

(A)微小晶体的饱和蒸气压大 (B)微小晶体的溶解度大 (C)微小晶体的熔点较低 (D)微小晶体的溶解度较小 9.在空间轨道上运行的宇宙飞船中,漂浮着一个足够大的水滴,当用一根内壁干净、外壁油污的玻璃毛细管接触水滴时,将会出现: (A)水并不进入毛细管 (B)水进入毛细管并达到管内一定高度 (C)水进入毛细管并达到管的另一端 (D)水进入毛细管并从另一端滴出 以下说法中正确的是( C )。 (A) 溶胶在热力学和动力学上都是稳定系统; (B) 溶胶与真溶液一样是均相系统; (C) 能产生丁达尔效应的分散系统是溶胶; (D) 通过超显微镜能看到胶体粒子的形状和大小 二、判断题 1、溶胶是均相系统,在热力学上是稳定的。(√) 2、长时间渗析,有利于溶胶的净化与稳定。(×) 3、有无丁达尔(Tyndall)效应是溶胶和分子分散系统的主要区别之一。(√) 4、亲液溶胶的丁达尔(Tyndall)效应比憎液胶体强。(×) 5、在外加直流电场中,碘化银正溶胶向负电极移动,而其扩散层向正电极移动。(√) 6、新生成的Fe(OH)3沉淀中加入少量稀FeCl3溶液,会溶解,再加入一定量的硫酸盐溶 液则又会沉淀。(√) 7、丁达尔效应是溶胶粒子对入射光的折射作用引起的。(×) 8、胶束溶液是高度分散的均相的热力学稳定系统。(√) 9、胶体粒子的扩散过程和布朗运动本质上都是粒子的热运动而发生的宏观上的定向迁移现 象。(√) 10、在溶胶中加入电解质对电泳没有影响。(×) 二、填空题 1.界面吉布斯自由能和界面张力的相同点是 不同点是。 2.液态汞的表面张力 g= 0.4636 N·m-1+ 8.32×10-3N·m-1·K-1·T - 3.13×10-7N·m-1·K-2·T2 在 400 K时,汞的(?U/?A)T, V = 。 3.液滴越小,饱和蒸气压越 __________;而液体中的气泡越小,气泡内液体的饱和蒸气压越 __________。 4. 300 K时,水的表面张力g= 0.0728 N·m-1,密度r为 0.9965×103kg·m-3。

胶体与表面化学知识点整理

第一章 1.胶体体系的重要特点之一是具有很大的表面积。 通常规定胶体颗粒的大小为1-100nm(直径) 2.胶体是物质存在的一种特殊状态,而不是一种特殊物质,不是物质的本性。 胶体化学研究对象是溶胶(也称憎液溶胶)和高分子溶液(也称亲液溶胶)。 气溶胶:云雾,青烟、高空灰尘 液溶胶:泡沫,乳状液,金溶胶、墨汁、牙膏 固溶胶:泡沫塑料、沸石、冰淇淋,珍珠、水凝胶、红宝石、合金 第二章 一.溶胶的制备与净化 1.溶胶制备的一般条件:(1)分散相在介质中的溶解度必须极小(2)必须有稳定剂存在 2.胶体的制备方法:(1)凝聚法(2)分散法 二.溶胶的运动性质 1.扩散:过程为自发过程 ,此为Fick第一扩散定律,式中dm/dt表示单位时间通过截面A扩散的物质数量,D为扩散系数,单位为m2/s,D越大,质点的扩散能力越大 扩散系数与质点在介质中运动时阻力系数之间的关系为:(为阿伏加德罗常数;R为气体常数) 若颗粒为球形,阻力系数=6(式中,为介质的黏度,为质点的半径)故,此式即为Einstein第一扩散公式 浓度梯度越大,质点扩散越快;就质点而言,半径越小,扩散能力越强,扩散速度越快。 2.布朗运动:本质是分子的热运动 现象:分子处于不停的无规则运动中 由于布朗运动是无规则的,因此就单个粒子而言,它们向各方向运动的几率是相等的。在浓度高的区域,单位体积的粒子较周围多,造成该区域“出多进少”,使浓度降低,这就表现为扩散。扩散是布朗运动的宏观表现,而布朗运动是扩散的微观基础 Einstein认为,粒子的平均位移与粒子半径、介质黏度、温度和位移时间t之间的关系:,此式常称为Einstein-Brown位移方程。式中是在观察时间t内粒子沿x轴方向的平均位移;r为胶粒的半径;为介质的粘度;为阿伏加德罗常数。 3.沉降

胶体化学练习题

胶体化学练习题 一、选择题 1. 在电泳实验中,观察到分散相向阳极移动,表明: ( ) (A) 胶粒带正电(B) 胶粒带负电 (C) 电动电位相对于溶液本体为正(D) Stern 面处电位相对溶液本体为正 2. 向FeCl3(aq) 中加入少量氨水,可制备稳定的氢氧化铁溶胶,此时胶体粒子带 电荷情况为:( ) (A) 总是带正电(B) 在pH 较大时带正电 (C) 总是带负电(D) 在pH 较大时带负电 3. 胶体粒子的Zeta 电势是指:( ) (A) 固体表面处与本体溶液之间的电位降 (B) 紧密层、扩散层分界处与本体溶液之间的电位降 (C) 扩散层处与本体溶液之间的电位降 (D) 固液之间可以相对移动处与本体溶液之间的电位降 4. 对超离心沉降平衡,下列说法不正确的是: ( ) (A) 沉降池中,某处的浓度与它所处位置离转轴距离有关 (B) 沉降池中,某处的浓度与时间有关 (C) 在测某物的摩尔质量时,超离心沉降平衡法的转动速度比超离心沉降速度法低 (D) 沉降平衡法测得的摩尔质量,随处理方法不同而不同,可得M n、M w、M z 5. 在H3AsO3的稀溶液中,通入过量的H2S 气体,生成As2S3溶胶。用下列物质 聚沉,其聚沉值大小顺序是:( ) (A) Al(NO3)3>MgSO4>K3Fe(CN)6(B) K3Fe(CN)6>MgSO4>Al(NO3)3 (C) MgSO4>Al(NO3)3>K3Fe(CN)6(D) MgSO4>K3Fe(CN)6>Al(NO3)3 6. As2S3负溶胶,若用AlCl3使其聚沉,所需AlCl3的最小浓度约为0.093 mol·m-3,若改用Al2(SO4)3聚沉,所需最小浓度约为:( ) (A) 0.188 mol·m-3(B) 0.094 mol·m-3(C) 0.047 mol·m-3 (D) 0.00013 mol·m-3 7. 将橡胶电镀到金属制品上,应用的原理是:( ) (A) 电解(B) 电泳(C) 电渗(D) 沉降电势 8. 在分析化学上,有两种利用光学性质测定胶体溶液浓度的仪器,一是比色计,另一个是比浊计,分别观察的是胶体溶液的:( ) (A) 透射光;折射光(B) 散射光;透射光 (C) 透射光;反射光(D) 透射光;散射光 9. 使用瑞利(Reyleigh) 散射光强度公式,在下列问题中可以解决的问题是:( )

胶体与表面化学第四版重点

胶体与表面化学(第四版) 1.绪论 分散系统:一种物质以细分散状态分散在另一种物质中构成的系统。 分散相:分散系统中被分散的不连续相。 分散介质:分散系统中的连续相。 比表面:单位质量分散相物质所具有的面积。 缔合胶体:多个分子的缔合体构成胶体分散相。 胶体体系:分散相粒子至少在一个尺度上的大小处在1-100nm 范围内的分散系统。 溶胶:把分散介质是液体的胶体系统称为液溶胶,介质是水为水溶胶;介质是固体为固溶胶。 2.胶体与纳米粒子的制备 胶体制备:分散法(机械、电分散、超声波、胶溶)、凝聚法(还原、氧化、水解、复分解)晶核-晶体成长 条件:1)分散相在介质中的溶解度必须极小;2)必须有稳定剂的存在 净化:1)渗析:利用羊皮纸或火棉胶制成的半透膜,将溶胶与纯分散介质隔开。 2)超过滤:利用半透膜代替普通滤纸在压差下过滤溶胶的方法。 3)渗透:借半透膜将溶液和溶剂隔开,此膜只允许溶剂分子通过,胶粒和溶质不能通过。 反渗透:渗透平衡时在浓相一侧施加外压,则浓相中的溶剂分子向稀相迁移。 单分散溶胶:特定条件下制取的胶粒尺寸、形状和组成皆相同的溶胶。 胶体晶体:由一种或多种单分散胶体粒子组装并规整排列的二维或三维类似于晶体的有序结构。 光子晶体:在各个方向能阻止一定频率范围的光传播。 纳米粒子特性:比表面积大;易形成聚团;熔点低;磁性强;光吸收强;热导性能好 制备:气相、液相、固相 纳米气泡:在液体中或固液界面上存在的纳米尺度的气泡。 3.胶体系统的基本性质(N A =6.5*1023mol -1,R=8.314,T=273K) 运动 扩散:扩散系数:爱因斯坦第一扩散公式:r 61πη?=A N RT D 爱因斯坦布朗运动:r 3t t 2πη?==A N RT D X 沉降:大气压随高度分布:RT M gh -p p ln 0h = 光学 散射现象:当质点大小在胶体范围内时。反射:质点直径远大于入射光波长。 丁道尔现象:以一束强烈的光线射入溶胶后,在入射光的垂直方向可以看到一道明亮的光带。 Rayleigh 散射:022 1222122423)2(c 24I n n n n v I ?+-?=λπ 电学 电动现象:电泳:带负电的胶粒向正极移动,带正电的胶粒向负极移动。 电渗析:水在外加电场作用下,通过黏土颗粒间的毛细通道向负极移动的现象。 沉降电势:在无外加电场作用下,使分散相粒子在分散介质中快速沉降,则在沉降管两端产生电势差。 流动电势:用压力将液体挤过毛细管网或由粉末压成的多孔塞,在毛细管网两端产生电势差。 质点荷电原因:电离;离子吸附;晶格取代 双电层结构:胶粒表面带电时,在液相中必有与表面电荷数量相等且符号相反的离子存在,这些离子称为反离子。反离子一方面受静电引力作用向胶体表面靠近,另一方面受分子热运动及扩散作用有在整个液体中均匀分布的趋势。结果使反离子在胶粒表面区域的液相中形成平衡,越靠近界面反离子浓度越高,越远离界面反离子浓度越低。胶粒表面电荷与周围介质中的反离子构成双电层。胶粒表面与液体内部的电势差

物理化学练习题(胶体化学)

物理化学练习题--胶体化学(胶体分散系统及其基本性质、憎液溶胶的稳定与聚沉乳状液泡沫悬浮液和气溶胶高分子化合物溶液) 10-138 当入射光的波长()胶体粒子的线度时,则可出现丁达尔效应。A.大于 B.等于 C.小于 D.无关于 10-139 胶体系统的电泳现象表明()。 A.分散介质是带电的 B.胶体粒子带有大量的电荷 C.胶团是带电的 D.胶体粒子处等电状态。 10-140 电渗现象表明()。 A.胶体粒子是电中性的 B.分散介质是电中性的 C.分散介质是带电的 D.胶体系统处于等电状态 10-141 在胶体系统中,ξ电势()的状态,则称为等电状态。 A.大于零 B.等于零 C.小于零 D.等于热力学电势 10-142 若分散相微小粒子的表面上选择性地吸附了大量相同元素的负离子,则该溶胶的ξ电势必然是()。 A.大于零 B.小于零 C.等于零 D.无法确定 10-143 在过量的AgNO 3 水溶液中,AgI溶胶的胶体粒子则为()。 A.[AgI(s) m ]·nAg+ B.{[AgI(s)] m ·nAg+·(n-x)NO- 3 }x+ C.{[AgI(s)] m ·nAg+·(n-x)NO- 3 }x+·xNO- 3 D.[AgI(s)] m 10-144 天然的或人工合成的高分子化合物溶液与憎水溶胶在性质上最根本的区别是()。 A.前者是均相系统,后者为多相系统 B.前者是热力学稳定系统,后者为热力学不稳定系统 C.前者黏度大,后者黏度小 D.前者对电解质的稳定性较大,而后者加入少量的电解质就能引起聚沉

10-145 在20ml、浓度为0.005mol·dm-3的AgNO 3 溶液中,滴入20 mL浓度为0.01mol·dm-3的KBr溶液,可制备AgBr溶胶,则该溶胶的ξ电势()。A.大于零 B.等于零 C.小于零 D.无法确定 10-146 为使以KI为稳定剂的AgI溶胶发生聚沉,下列电解质溶液中聚沉能力最强者为()。 A.KNO 3 B.Ba(NO 3) 2 C.Cu(NO 3) 2 D.La(NO 3) 3 10-147 在一定温度下,在四个装有相同体积的As 2S 3 溶胶的试管中,分别加入体 积V和浓度c皆相等的下列电解质溶液,能使As 2S 3 溶胶最快发生聚沉的是()。 A.KCl B.NH 4 Cl C.ZnCl 2 D.AlCl 3 10-148 在油-水混合物中,加入的乳化剂分子亲水一端的横向大于亲油一端的横截面,则形成()型乳状液。 A.W/O B.O/W C.无法确定 D.无特定类

相关文档