文档库 最新最全的文档下载
当前位置:文档库 › 时间序列分析——ARMA模型实验

时间序列分析——ARMA模型实验

时间序列分析——ARMA模型实验
时间序列分析——ARMA模型实验

基于ARMA模型的社会融资规模增长分

————ARMA模型实验

第一部分实验分析目的及方法

一般说来,若时间序列满足平稳随机过程的性质,则可用经典的ARMA模型进行建模和预则。但是, 由于金融时间序列随机波动较大,很少满足ARMA模型的适用条件,无法直接采用该模型进行处理。通过对数化及差分处理后,将原本非平稳的序列处理为近似平稳的序列,可以采用ARMA模型进行建模和分析。

第二部分实验数据

2.1数据来源

数据来源于中经网统计数据库。具体数据见附录表5.1 。

2.2所选数据变量

社会融资规模指一定时期内(每月、每季或每年)实体经济从金融体系获得的全部资金总额,为一增量概念,即期末余额减去期初余额的差额,或当期发行或发生额扣除当期兑付或偿还额的差额。社会融资规模作为重要的宏观监测指标,由实体经济需求所决定,反映金融体系对实体经济的资金量支持。

本实验拟选取2005年11月到2014年9月我国以月为单位的社会融资规模的数据来构建ARMA模型,并利用该模型进行分析预测。

第三部分 ARMA模型构建

3.1判断序列的平稳性

首先绘制出M的折线图,结果如下图:

图3.1 社会融资规模M曲线图

从图中可以看出,社会融资规模M序列具有一定的趋势性,由此可以初步判断该序列是非平稳的。此外,m在每年同时期出现相同的变动趋势,表明m还存在季节特征。下面对m的平稳性和季节性·进行进一步检验。

为了减少m的变动趋势以及异方差性,先对m进行对数化处理,记为lm,其时序图如下:

图3.2 lm曲线图

对数化后的趋势性减弱,但仍存在一定的趋势性,下面观察lm的自相关图

表3.1 lm的自相关图

上表可以看出,该lm序列的PACF只在滞后一期、二期和三期是显著的,ACF随着滞后结束的增加慢慢衰减至0,由此可以看出该序列表现出一定的平稳性。进一步进行单位根检验,由于存在较弱的趋势性且均值不为零,选择存在趋势项的形式,并根据AIC自动选择之后结束,单位根检验结果如下:

表3.2 单位根输出结果

Null Hypothesis: LM has a unit root

Exogenous: Constant, Linear Trend

Lag Length: 0 (Automatic - based on SIC, maxlag=12)

t-Statistic Prob.*

Augmented Dickey-Fuller test statistic -8.674646 0.0000

Test critical values: 1% level -4.046925

5% level -3.452764

10% level -3.151911

*MacKinnon (1996) one-sided p-values.

单位根统计量ADF=-8.674646小于临界值,且P为0.0000,因此该序列不存在单位根,即该序列是平稳序列。

由于趋势性会掩盖季节性,从lm图中可以看出,该序列有一定的季节性,为了分析季节性,对lm进行差分处理,进一步观察季节性:

图3.3 dlm曲线图

观察dlm 的自相关表:

表3.3 dlm的自相关图

Date: 11/02/14 Time: 22:35

Sample: 2005M11 2014M09

Included observations: 106

Autocorrelation Partial Correlation AC PAC Q-Stat Prob

****|. | ****|. | 1 -0.566 -0.566 34.934 0.000

.|* | **|. | 2 0.113 -0.305 36.341 0.000

.|. | *|. | 3 0.032 -0.093 36.455 0.000

*|. | *|. | 4 -0.084 -0.114 37.244 0.000

.|* | .|. | 5 0.105 0.015 38.494 0.000

*|. | *|. | 6 -0.182 -0.182 42.296 0.000

.|* | *|. | 7 0.105 -0.156 43.563 0.000

.|. | *|. | 8 -0.058 -0.171 43.954 0.000

.|. | *|. | 9 -0.019 -0.196 43.996 0.000

.|* | .|. | 10 0.110 -0.045 45.429 0.000

**|. | **|. | 11 -0.242 -0.329 52.501 0.000

.|*** | .|. | 12 0.363 0.023 68.516 0.000

*|. | .|. | 13 -0.202 0.032 73.534 0.000

.|* | .|* | 14 0.101 0.125 74.815 0.000

.|. | .|* | 15 0.004 0.141 74.817 0.000

*|. | *|. | 16 -0.161 -0.089 78.110 0.000

.|** | .|. | 17 0.219 0.037 84.252 0.000

**|. | .|. | 18 -0.221 -0.036 90.623 0.000

.|* | .|. | 19 0.089 -0.046 91.662 0.000

*|. | *|. | 20 -0.080 -0.158 92.516 0.000

.|. | .|. | 21 0.067 -0.039 93.115 0.000

.|. | .|. | 22 0.068 0.056 93.749 0.000

**|. | *|. | 23 -0.231 -0.130 101.08 0.000

.|*** | .|* | 24 0.359 0.116 119.04 0.000

*|. | .|* | 25 -0.189 0.123 124.09 0.000

.|. | .|. | 26 0.032 0.034 124.23 0.000

.|. | .|. | 27 0.059 0.037 124.74 0.000

*|. | .|. | 28 -0.126 0.044 127.08 0.000

.|* | *|. | 29 0.087 -0.079 128.21 0.000

.|. | .|* | 30 -0.050 0.092 128.58 0.000

.|. | .|. | 31 -0.037 -0.019 128.79 0.000

.|. | *|. | 32 -0.035 -0.113 128.97 0.000

.|. | .|. | 33 0.041 -0.056 129.24 0.000

.|* | .|. | 34 0.078 -0.027 130.21 0.000

**|. | *|. | 35 -0.215 -0.197 137.64 0.000

.|*** | .|* | 36 0.380 0.130 161.26 0.000 由dlm的自相关图可知,dlm在滞后期为12、24、36等差的自相关系数均显著异于零。因此该序列为以12为周期呈现季节性,而且季节自相关系数并没有衰减至零,因此为了考虑这种季节性,进行季节性差分,得新变量sdlm:

观察sdlm的自相关图:

表3.4 sdlm的自相关图

Date: 11/02/14 Time: 22:40

Sample: 2005M11 2014M09

Included observations: 94

Autocorrelation Partial Correlation AC PAC Q-Stat Prob

****|. | ****|. | 1 -0.505 -0.505 24.767 0.000

. |. | ***|. | 2 -0.057 -0.419 25.082 0.000

. |. | **|. | 3 0.073 -0.292 25.609 0.000

. |* | . |. | 4 0.160 0.067 28.169 0.000

**|. | .*|. | 5 -0.264 -0.125 35.252 0.000

. |* | .*|. | 6 0.098 -0.110 36.244 0.000

. |* | . |. | 7 0.098 0.019 37.243 0.000

. |. | . |* | 8 -0.041 0.082 37.419 0.000

.*|. | . |. | 9 -0.132 -0.038 39.275 0.000

. |* | .*|. | 10 0.076 -0.139 39.902 0.000

. |** | . |** | 11 0.227 0.247 45.485 0.000

***|. | **|. | 12 -0.459 -0.259 68.647 0.000

. |* | **|. | 13 0.193 -0.251 72.777 0.000

. |* | .*|. | 14 0.132 -0.101 74.753 0.000

.*|. | .*|. | 15 -0.142 -0.189 77.056 0.000

. |. | . |. | 16 -0.053 -0.056 77.378 0.000

. |** | . |* | 17 0.233 0.091 83.751 0.000

**|. | .*|. | 18 -0.234 -0.179 90.258 0.000

. |* | . |. | 19 0.102 0.054 91.505 0.000

. |. | . |. | 20 -0.052 -0.035 91.841 0.000

. |* | . |. | 21 0.123 -0.009 93.714 0.000

. |. | . |* | 22 -0.059 0.120 94.150 0.000

. |. | . |** | 23 -0.011 0.215 94.166 0.000

. |. | .*|. | 24 -0.032 -0.170 94.301 0.000

. |* | .*|. | 25 0.088 -0.137 95.303 0.000

.*|. | . |. | 26 -0.105 -0.034 96.760 0.000

. |* | .*|. | 27 0.077 -0.116 97.562 0.000

. |. | .*|. | 28 -0.054 -0.178 97.967 0.000

. |. | . |. | 29 0.010 0.032 97.982 0.000

. |* | . |. | 30 0.102 0.039 99.457 0.000

.*|. | .*|. | 31 -0.179 -0.099 104.06 0.000

. |. | . |. | 32 0.071 -0.058 104.79 0.000

. |. | .*|. | 33 0.031 -0.066 104.93 0.000

.*|. | .*|. | 34 -0.089 -0.144 106.13 0.000

. |. | . |* | 35 0.036 0.082 106.32 0.000

. |* | .*|. | 36 0.105 -0.102 108.05 0.000 Sdlm在滞后期24之后的季节ACF和PACF已衰减至零,下面对sdlm建立SARMA 模型。

3.2模型参数识别

由表3.4 sdlm的自相关图的自相关图可知,偏自相关系数在3阶后都落在两倍标准差的范围以内,即不显著异于零。自相关系数在1阶和12阶显著异于零。因此SARMA(p,q)模型中选择p、q均不超过3。此外,由于高阶移动平均模型估计较为困难而且自回归模型可以表示无穷阶的移动平均过程,因此Q尽可能取小。拟选择SARMA(1,0)(1,0)12、SARMA(1,0)(1,1)12、SARMA(1,1)(1,0)12、SARMA(1,1)(1,1)12、SARMA(2,0)(1,0)12、SARMA(2,0)(1,1)12、SARMA(3,0)(1,0)12、SARMA(3,0)(1,1)12八个模型来拟合sdlnm。

3.3模型参数估计

以SARMA(1,0)(1,0)12模型为例,分析该模型的估计及残差的检验,其他模型类似。

回归结果为:

表3.5 SARMA(1,0)(1,0)12模型估计结果

Dependent Variable: SDLM

Method: Least Squares

Date: 11/02/14 Time: 22:50

Sample (adjusted): 2008M01 2014M09

Included observations: 81 after adjustments

Convergence achieved after 6 iterations

Variable Coefficient Std. Error t-Statistic Prob.

C -0.005305 0.023352 -0.227165 0.8209

AR(1) -0.490855 0.098580 -4.979256 0.0000

SAR(12) -0.548509 0.096987 -5.655471 0.0000

R-squared 0.448053 Mean dependent var -0.004983

Adjusted R-squared 0.433901 S.D. dependent var 0.644876

S.E. of regression 0.485202 Akaike info criterion 1.427829

Sum squared resid 18.36280 Schwarz criterion 1.516512

Log likelihood -54.82707 Hannan-Quinn criter. 1.463410

F-statistic 31.65901 Durbin-Watson stat 2.348799

Prob(F-statistic) 0.000000

Inverted AR Roots .92+.25i .92-.25i .67+.67i .67-.67i

.25-.92i .25+.92i -.25-.92i -.25+.92i

-.49 -.67-.67i -.67-.67i -.92+.25i

-.92-.25i

由表3.3可知,AR(1)与sar(12))的P值均小于0.05,参数显著,可以通过检验。该模型AIC为1.427829,SC值为1.516512。回归结果的最后一部分表示该模型滞后多项式的

反特征根,小于1,因此该模型是平稳的。

下面对残差进行检验。观察残差的自相关图:

表3.6 SARMA(1,0)(1,0)12模型的残差检验结果

由表3.6可知,由Q统计量可知残差存在自相关性,P值远小于0.05,因此残差不满足白噪声的假设。

将八个模型的估计结果进行汇总如下:

表3.7 不同SARMA模型的特征汇总表

为:

表3.8 SARMA(1,1)(1,1)12模型估计结果Dependent Variable: SDLM

Method: Least Squares

Date: 11/02/14 Time: 23:16

Sample (adjusted): 2008M01 2014M09

Included observations: 81 after adjustments

Convergence achieved after 13 iterations

MA Backcast: 2006M12 2007M12

Variable Coefficient Std. Error t-Statistic Prob.

C -0.006821 0.002943 -2.317782 0.0232

AR(1) 0.018663 0.141168 0.132203 0.8952

SAR(12) -0.201623 0.120638 -1.671313 0.0988

MA(1) -0.833947 0.080352 -10.37865 0.0000

SMA(12) -0.860391 0.041002 -20.98427 0.0000

R-squared 0.701510 Mean dependent var -0.004983 Adjusted R-squared 0.685800 S.D. dependent var 0.644876 S.E. of regression 0.361475 Akaike info criterion 0.862496 Sum squared resid 9.930500 Schwarz criterion 1.010301 Log likelihood -29.93107 Hannan-Quinn criter. 0.921797 F-statistic 44.65381 Durbin-Watson stat 2.003373 Prob(F-statistic) 0.000000

Inverted AR Roots .85+.23i .85-.23i .62-.62i .62+.62i

.23+.85i .23-.85i .02 -.23-.85i

-.23+.85i -.62+.62i -.62+.62i -.85-.23i

-.85+.23i

Inverted MA Roots .99 .86+.49i .86-.49i .83

.49-.86i .49+.86i .00-.99i -.00+.99i

-.49-.86i -.49+.86i -.86-.49i -.86+.49i

-.99

3.2模型预测

在SARMA(1,1)(1,1)12估计方程下选择动态估计,预测2014年10月至12月的序列值,并将结果保存在sdlnmf中,预测情况如下:

图中左边是预测值与置信区间,右边是预测的误差。Theil不等系数中bias proportion 表示偏误,即预测均值与真实均值的偏离程度,本例中bias proportion的值为0.000107,预测均值与真实值偏离较小;variance proportion表示方差误,用来反映预测波动与真实波动之间的差异,本例variance proportion为0.649319,则说明预测波动与真实波动的差异较大;covariance proportion表示协方差误,反映残存非系统性预测误差,本例中该值为0.350574,该误差占比越大,预测效果越好。本例中的协方差误要小于方差误,因此预测效果较差。

附录

具体数据

表5.1 社会融资规模M

存在问题

本次应用ARMA模型分析数据的过程存在不少问题,在整个过程中感觉对模型的理解还不够深入,有一些细节没有理解清楚,具体问题如下:

1、数据的选取

在收集数据时是否需要按照相关经济学知识判断该变量是否存在自相关性?

在选取数据时只关注了原始数据的时序图,选择了大体呈现随机波动。然而具体进行分析的时候却遇到了很多问题,数据无法通过单位根检验,或者由自相关图可以看出数据不平稳。

2、遇到数据可以通过单位根检验,但是自相关图呈现如下情况:

这样的自相关图该如何进行分析?

在拟合时,之后q取12模型才能通过。

3、数据通过了自相关图的检验以及单位根的检验,但是在拟合模型的时候找不到合适的模

型,即所有的模型的残差都不满足白噪声,这是什么原因?

4、单位根检验过程中,以表3.2为例,

表3.2 单位根输出结果

Null Hypothesis: LM has a unit root

Exogenous: Constant, Linear Trend

Lag Length: 0 (Automatic - based on SIC, maxlag=12)

t-Statistic Prob.*

Augmented Dickey-Fuller test statistic -8.674646 0.0000

Test critical values: 1% level -4.046925

5% level -3.452764

10% level -3.151911

*MacKinnon (1996) one-sided p-values.

Lag Length: 0 (Automatic - based on SIC, maxlag=12)这个的意思是否是ADF检验中,p取

了0呢?若在此P取0,单位根检验的结果还有效么?

5、关于季节性,做季节性差分的原因?

6、预测是对历史数据进行的回测,如何操作才能预测下一期的呢?

应用时间序列分析习题答案解析整理

第二章习题答案 2.1 (1)非平稳 (2)0.0173 0.700 0.412 0.148 -0.079 -0.258 -0.376 (3)典型的具有单调趋势的时间序列样本自相关图 2.2 (1)非平稳,时序图如下 (2)-(3)样本自相关系数及自相关图如下:典型的同时具有周期和趋势序列的样本自相关图

2.3 (1)自相关系数为:0.2023 0.013 0.042 -0.043 -0.179 -0.251 -0.094 0.0248 -0.068 -0.072 0.014 0.109 0.217 0.316 0.0070 -0.025 0.075 -0.141 -0.204 -0.245 0.066 0.0062 -0.139 -0.034 0.206 -0.010 0.080 0.118 (2)平稳序列 (3)白噪声序列 2.4 ,序列 LB=4.83,LB统计量对应的分位点为0.9634,P值为0.0363。显著性水平=0.05 不能视为纯随机序列。 2.5 (1)时序图与样本自相关图如下

(2) 非平稳 (3)非纯随机 2.6 (1)平稳,非纯随机序列(拟合模型参考:ARMA(1,2)) (2)差分序列平稳,非纯随机 第三章习题答案 3.1 解:1()0.7()()t t t E x E x E ε-=?+ 0)()7.01(=-t x E 0)(=t x E t t x ε=-)B 7.01( t t t B B B x εε)7.07.01()7.01(221Λ+++=-=- 229608.149 .011 )(εεσσ=-= t x Var 49.00212==ρφρ 022=φ 3.2 解:对于AR (2)模型: ?? ?=+=+==+=+=-3.05 .02110211212112011φρφρφρφρρφφρφρφρ 解得:???==15/115 /72 1φφ 3.3 解:根据该AR(2)模型的形式,易得:0)(=t x E 原模型可变为:t t t t x x x ε+-=--2115.08.0 2212122 ) 1)(1)(1(1)(σφφφφφφ-+--+-= t x Var 2) 15.08.01)(15.08.01)(15.01() 15.01(σ+++--+= =1.98232σ ?????=+==+==-=2209.04066.06957.0)1/(1221302112211ρφρφρρφρφρφφρ ?? ? ??=-====015.06957.033222111φφφρφ

多元时间序列建模分析

应用时间序列分析实验报告

单位根检验输出结果如下:序列x的单位根检验结果:

1967 58.8 53.4 1968 57.6 50.9 1969 59.8 47.2 1970 56.8 56.1 1971 68.5 52.4 1972 82.9 64.0 1973 116.9 103.6 1974 139.4 152.8 1975 143.0 147.4 1976 134.8 129.3 1977 139.7 132.8 1978 167.6 187.4 1979 211.7 242.9 1980 271.2 298.8 1981 367.6 367.7 1982 413.8 357.5 1983 438.3 421.8 1984 580.5 620.5 1985 808.9 1257.8 1986 1082.1 1498.3 1987 1470.0 1614.2 1988 1766.7 2055.1 1989 1956.0 2199.9 1990 2985.8 2574.3 1991 3827.1 3398.7 1992 4676.3 4443.3 1993 5284.8 5986.2 1994 10421.8 9960.1 1995 12451.8 11048.1 1996 12576.4 11557.4 1997 15160.7 11806.5 1998 15223.6 11626.1 1999 16159.8 13736.5 2000 20634.4 18638.8 2001 22024.4 20159.2 2002 26947.9 24430.3 2003 36287.9 34195.6 2004 49103.3 46435.8 2005 62648.1 54273.7 2006 77594.6 63376.9 2007 93455.6 73284.6 2008 100394.9 79526.5 run; proc gplot; plot x*t=1 y*t=2/overlay; symbol1c=black i=join v=none; symbol2c=red i=join v=none w=2l=2; run; proc arima data=example6_4; identify var=x stationarity=(adf=1); identify var=y stationarity=(adf=1); run; proc arima; identify var=y crrosscorr=x; estimate methed=ml input=x plot; forecast lead=0id=t out=out; proc aima data=out; identify varresidual stationarity=(adf=2); run;

时间序列作业ARMA模型--.

一案例分析的目的 本案例选取2001年1月,到2013年我国铁路运输客运量月度数据来构建ARMA模型,并利用该模型进行外推预测分析。 二、实验数据 数据来自中经网统计数据库

数据来源:中经网数据库 三、ARMA 模型的平稳性 首先绘制出N 的折线图,如图 从图中可以看出,N 序列具有较强的非线性趋势性,因此从图形可以初步判断该序列是非平

稳的。此外,N在每年同期出现相同的变动方式,表明N还存在季节性特征。下面对N 的平稳性和季节季节性进行进一步检验。 四、单位根检验 为了减少N 的变动趋势以及异方差性,先对N进行对数处理,记为LN其曲线图如下:GENR LN = LOG(N) 对数后的N趋势性也很强。下面观察N 的自相关表,选择滞后期数为36,如下: 从上图可以看出,LN的PACF只在滞后一期是显著的ACF随着阶数的增加慢慢衰减至0,因此从偏/自相关系数可以看出该序列表现一定的平稳性。进一步进行单位根检验,打开LN选择存在趋势性的形式,并根据AIC自动选择滞后阶数,单位根检验结果如下:

T统计值的值小于临界值,且相伴概率为0.0001,因此该序列不存在单位根,即该序列是平稳序列。 五、季节性分析 趋势性往往会掩盖季节性特征,从LN的图形可以看出,该序列具有较强的趋势性,为了分析季节性,可以对LN进行差分处理来分析季节性: Genr = DLN = LN – LN (-1) 观察DLN的自相关表,如下:

DLN在之后期为6、12、18、24、30、36处的自相关系数均显著异于0,因此,该序列是以周期6呈现季节性,而且季节自相关系数并没有衰减至0,因此,为了考虑这种季节性,进行季节性差分: GENR SDLN = DLN – DLN(-6) 再做关于SDLN的自相关表,如下: SDLN在滞后期36之后的季节ACF和PACF已经衰减至0,下面对SDLN建立SARMA模型。 六、滞后阶数的初步确定 观察SDLN的自相关、偏自相关图,ACF 和PACF在滞后期1和滞后期6还有滞后期12异于0,其余均与0无异,因此,SARMA(p,q)(k,m)s 中p和q均不超过1,k和m均不超过2.6考虑到高洁移动平均模型估计较为困难,而且自回归模型的检验可以表示无穷的移动平均过程,因此q尽可能取较小的取值。本例拟选择SARMA(1,0)(1,0)6、SARMA(1,0)(1,1)6、SARMA(1,0)(1,2)6、SARMA(1,0)(2,1)6、SARMA(1,1)(1,0)6、SARMA(1,1)(1,1)6、SARMA(1,1)(1,2)6、SARMA(1,1)(0,1)6八个模型来拟合SDLN。

时间序列分析基于R——习题答案

第一章习题答案 略 第二章习题答案 2.1 (1)非平稳 (2)0.0173 0.700 0.412 0.148 -0.079 -0.258 -0.376 (3)典型的具有单调趋势的时间序列样本自相关图 2.2 (1)非平稳,时序图如下 (2)-(3)样本自相关系数及自相关图如下:典型的同时具有周期和趋势序列的样本自相关图

2.3 (1)自相关系数为:0.2023 0.013 0.042 -0.043 -0.179 -0.251 -0.094 0.0248 -0.068 -0.072 0.014 0.109 0.217 0.316 0.0070 -0.025 0.075 -0.141 -0.204 -0.245 0.066 0.0062 -0.139 -0.034 0.206 -0.010 0.080 0.118 (2)平稳序列 (3)白噪声序列 2.4 ,序列LB=4.83,LB统计量对应的分位点为0.9634,P值为0.0363。显著性水平=0.05 不能视为纯随机序列。 2.5 (1)时序图与样本自相关图如下

(2) 非平稳 (3)非纯随机 2.6 (1)平稳,非纯随机序列(拟合模型参考:ARMA(1,2)) (2)差分序列平稳,非纯随机 第三章习题答案 3.1 ()0t E x =,2 1 () 1.9610.7 t Var x ==-,220.70.49ρ==,220φ= 3.2 1715φ=,2115 φ= 3.3 ()0t E x =,10.15 () 1.98(10.15)(10.80.15)(10.80.15) t Var x += =--+++ 10.8 0.7010.15 ρ= =+,210.80.150.41ρρ=-=,3210.80.150.22ρρρ=-= 1110.70φρ==,2220.15φφ==-,330φ= 3.4 10c -<<, 1121,1,2 k k k c c k ρρρρ--?=? -??=+≥? 3.5 证明: 该序列的特征方程为:32 --c 0c λλλ+=,解该特征方程得三个特征根: 11λ=,2c λ=3c λ=-

典型时间序列模型分析

实验1典型时间序列模型分析 1、实验目的 熟悉三种典型的时间序列模型: AR 模型,MA 模型与ARMA 模型,学会运用Matlab 工具对 对上述三种模型进行统计特性分析,通过对2阶模型的仿真分析,探讨几种模型的适用范围, 并且通过实验分析理论分析与实验结果之间的差异。 2、实验原理 AR 模型分析: 设有AR(2)模型, X( n)=-0.3X( n-1)-0.5X( n-2)+W( n) 其中:W(n)是零均值正态白噪声,方差为 4。 (1 )用MATLAB 模拟产生X(n)的500观测点的样本函数,并绘出波形 (2) 用产生的500个观测点估计X(n)的均值和方差 (3) 画出理论的功率谱 (4) 估计X(n)的相关函数和功率谱 【分析】给定二阶的 AR 过程,可以用递推公式得出最终的输出序列。或者按照一个白噪声 通过线性系统的方式得到,这个系统的传递函数为: 这是一个全极点的滤波器,具有无限长的冲激响应。 对于功率谱,可以这样得到, 可以看出, FX w 完全由两个极点位置决定。 对于AR 模型的自相关函数,有下面的公式: \(0) 打⑴ 匚⑴… ^(0) ■ 1' G 2 W 0 JAP) 人9-1)… 凉0) _ 这称为Yule-Walker 方程,当相关长度大于 p 时,由递推式求出: r (r) + -1) + -■ + (7r - JJ )= 0 这样,就可以求出理论的 AR 模型的自相关序列。 H(z) 二 1 1 0.3z , P x w +W 1 1 a 才 a 2z^

1. 产生样本函数,并画出波形 2. 题目中的AR过程相当于一个零均值正态白噪声通过线性系统后的输出,可以按照上面的方法进行描述。 clear all; b=[1]; a=[1 0.3 0.5]; % 由描述的差分方程,得到系统传递函数 h=impz(b,a,20); % 得到系统的单位冲激函数,在20点处已经可以认为值是0 randn('state',0); w=normrnd(0,2,1,500); % 产生题设的白噪声随机序列,标准差为 2 x=filter(b,a,w); % 通过线形系统,得到输出就是题目中要求的2阶AR过程 plot(x,'r'); ylabel('x(n)'); title(' 邹先雄——产生的AR随机序列'); grid on; 得到的输出序列波形为: 邹先雄——产生的AR随机序列 2. 估计均值和方差 可以首先计算出理论输出的均值和方差,得到m x =0 ,对于方差可以先求出理论自相 关输出,然后取零点的值。

时间序列分析基于R——习题答案

第一章习题答案 第二章习题答案 2.1 (1)非平稳 (2)0.0173 0.700 0.412 0.148 -0.079 -0.258 -0.376 (3)典型的具有单调趋势的时间序列样本自相关图 Au+ocorreliil. i ons Correlation -1 M 7 6 5 4 3 2 1 0 I ; 3 4 5 6 7 9 9 1 1.00000■Hi ■ K. B H,J B ik L L1■* J.1 jA1-.IM L L* rn^rp ■ i>i?iTwin H'iTiii M[lrp i,*nfr 'TirjlvTilT'1 iBrp O.7QOO0■ill. Ii ill ■ _.ill?L■ ill iL si ill .la11 ■ fall■ 1 ■ rpTirp Tp和阳申■丽轉■晒?|?卉(ft 0.41212■强:料榊<牌■ 0.14343'■讯榊* -.07078■ -.25758, WWHOHHf ■ -.375761 marks two 总t and&rd errors 2.2 (1) 非平稳,时序图如下 (2) - ( 3)样本自相关系数及自相关图如下:典型的同时具有周期和趋势序列的样本自相关图

Ctorrelat ion LOOOOO n.A'7F1 0.72171 0.51252 Q,34982 0.24600 0.20309 0.?1021 0.26429 0.36433 0.49472 0.58456 0.60198 0.51841 Q ?菲晡 日 0.20671 0.0013& -,03243 -.02710 Q.01124 0,08275 0.17011 Autocorrel at ions raarka two standard errors 2.3 (1) 自相关系数为: 0.2023 0.013 0.042 -0.043 -0.179 -0.251 -0.094 0.0248 -0.068 -0.072 0.014 0.109 0.217 0.316 0.0070 -0.025 0.075 -0.141 -0.204 -0.245 0.066 0.0062 -0.139 -0.034 0.206 -0.010 0.080 0.118 (2 )平稳序列 (3) 白噪声序列 2.4 LB=4.83 , LB 统计量对应的分位点为 0.9634 , P 值为0.0363。显著性水平 :-=0.05,序列 不能视为纯随机序列。 2.5 (1) 时序图与样本自相关图如下 AuEocorreI ati ons 弗卅制iti 电卅栅冷卅樹 側樹 榊 惟 1 ■ liihCidi iliihQriHi il>LljU_nll Hnlidiili Hialli iT ,, T^,, T^s ?T* iTijTirr ,^T 1 IT * -i> ■> - ■ ■ *畑** ? ■ ■ 耶曲邯 ? ■ ■ ■ >|{和怦I {册卅KHi 笊出恸 mrpmrp 山!rpEHi erp . 卑*寧* a 1 *

时间序列分析报告——ARMA模型实验

基于ARMA模型的社会融资规模增长分析 ————ARMA模型实验

第一部分实验分析目的及方法 一般说来,若时间序列满足平稳随机过程的性质,则可用经典的ARMA模型进行建模和预则。但是, 由于金融时间序列随机波动较大,很少满足ARMA模型的适用条件,无法直接采用该模型进行处理。通过对数化及差分处理后,将原本非平稳的序列处理为近似平稳的序列,可以采用ARMA模型进行建模和分析。 第二部分实验数据 2.1数据来源 数据来源于中经网统计数据库。具体数据见附录表5.1 。 2.2所选数据变量 社会融资规模指一定时期内(每月、每季或每年)实体经济从金融体系获得的全部资金总额,为一增量概念,即期末余额减去期初余额的差额,或当期发行或发生额扣除当期兑付或偿还额的差额。社会融资规模作为重要的宏观监测指标,由实体经济需求所决定,反映金融体系对实体经济的资金量支持。 本实验拟选取2005年11月到2014年9月我国以月为单位的社会融资规模的数据来构建ARMA模型,并利用该模型进行分析预测。 第三部分 ARMA模型构建 3.1判断序列的平稳性 首先绘制出M的折线图,结果如下图:

图3.1 社会融资规模M曲线图 从图中可以看出,社会融资规模M序列具有一定的趋势性,由此可以初步判断该序列是非平稳的。此外,m在每年同时期出现相同的变动趋势,表明m还存在季节特征。下面对m的平稳性和季节性·进行进一步检验。 为了减少m的变动趋势以及异方差性,先对m进行对数化处理,记为lm,其时序图如下: 图3.2 lm曲线图

对数化后的趋势性减弱,但仍存在一定的趋势性,下面观察lm的自相关图 表3.1 lm的自相关图 上表可以看出,该lm序列的PACF只在滞后一期、二期和三期是显著的,ACF随着滞后结束的增加慢慢衰减至0,由此可以看出该序列表现出一定的平稳性。进一步进行单位根检验,由于存在较弱的趋势性且均值不为零,选择存在趋势项的形式,并根据AIC自动选择之后结束,单位根检验结果如下: 表3.2 单位根输出结果 Null Hypothesis: LM has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic - based on SIC, maxlag=12) t-Statistic Prob.*

时间序列分析——最经典的

【时间简“识”】 说明:本文摘自于经管之家(原人大经济论坛) 作者:胖胖小龟宝。原版请到经管之家(原人大经济论坛) 查看。 1.带你看看时间序列的简史 现在前面的话—— 时间序列作为一门统计学,经济学相结合的学科,在我们论坛,特别是五区计量经济学中是热门讨论话题。本月楼主推出新的系列专题——时间简“识”,旨在对时间序列方面进行知识扫盲(扫盲,仅仅扫盲而已……),同时也想借此吸引一些专业人士能够协助讨论和帮助大家解疑答惑。 在统计学的必修课里,时间序列估计是遭吐槽的重点科目了,其理论性强,虽然应用领域十分广泛,但往往在实际操作中会遇到很多“令人发指”的问题。所以本帖就从基础开始,为大家絮叨絮叨那些关于“时间”的故事! Long long ago,有多long估计大概7000年前吧,古埃及人把尼罗河涨落的情况逐天记录下来,这一记录也就被我们称作所谓的时间序列。记录这个河流涨落有什么意义当时的人们并不是随手一记,而是对这个时间序列进行了长期的观察。结果,他们发现尼罗河的涨落非常有规律。掌握了尼罗河泛滥的规律,这帮助了古埃及对农耕和居所有了规划,使农业迅速发展,从而创建了埃及灿烂的史前文明。

好~~从上面那个故事我们看到了 1、时间序列的定义——按照时间的顺序把随机事件变化发展的过程记录下来就构成了一个时间序列。 2、时间序列分析的定义——对时间序列进行观察、研究,找寻它变化发展的规律,预测它将来的走势就是时间序列分析。 既然有了序列,那怎么拿来分析呢 时间序列分析方法分为描述性时序分析和统计时序分析。 1、描述性时序分析——通过直观的数据比较或绘图观测,寻找序列中蕴含的发展规律,这种分析方法就称为描述性时序分析 描述性时序分析方法具有操作简单、直观有效的特点,它通常是人们进行统计时序分析的第一步。 2、统计时序分析 (1)频域分析方法 原理:假设任何一种无趋势的时间序列都可以分解成若干不同频率的周期波动 发展过程: 1)早期的频域分析方法借助富里埃分析从频率的角度揭示时间序列的规律 2)后来借助了傅里叶变换,用正弦、余弦项之和来逼近某个函数 3)20世纪60年代,引入最大熵谱估计理论,进入现代谱分析阶段 特点:非常有用的动态数据分析方法,但是由于分析方法复杂,结果抽象,有一定的使用局限性 (2)时域分析方法

基于时间序列模型的中国GDP增长预测分析

第33卷 第178期2012年7月 财经理论与实践(双月刊) THE THEORY AND PRACTICE OF FINANCE AND ECONOMICS Vol.33 No.178 Jul. 2012 ·信息与统计· 基于时间序列模型的中国GDP增长预测分析 何新易 (南通大学商学院,江苏南通 226019)* 摘 要:作为度量一个国家或地区所有常住单位在一定时期之内所生产和所提供的最终产品或服务的重要总量指标,如果能够对GDP做出正确的预测,必然可以有效引导宏观经济健康发展,为高层管理部门提供决策依据。选用适合短期预测的ARIMA模型对中国1952~2010年的GDP进行计量建模分析,预测结果认为未来五年中国的经济增长仍将处于一个水平较高的上升通道。 关键词:时间序列模型;GDP;预测 中图分类号:F234 文献标识码: A 文章编号:1003-7217(2012)04-0096-04 一、引 言 作为度量一个国家或地区所有常住单位在一定时期之内所生产和所提供的最终产品或服务的重要总量指标,国内生产总值(Gross Domestic Product,GDP)对于判断经济态势运行、衡量经济综合实力、正确制定经济政策等诸多方面,以及在经济研究实际工作中,均起着不可替代的重要作用。 熊志斌(2011)深入分析了时间序列模型与神经网络(NN)模型的优势和劣势,按照两种模型的预测特性,在比较的基础之上,分别构建了ARIMA模型和NN模型,并根据一定算法对两种模型进行了集成。将GDP时间序列的数据结构,根据在非线性空间和线性空间的预测优势,进一步分解为线性非线性残差和自相关主体两部分,即首先用ARIMA分析技术构建线性主体模型,然后用NN模型估计非线性残差,再对序列的整个预测结果进行最终集成。仿真实证结果表明:与单一模型相比,集成模型的预测准确率显著提高,进行GDP预测当然使用集成模型更为有效[1]。桂文林和韩兆洲(2011)认为由于迄今为止,包括季度GDP在内的经季节调整之后的经济数据,中国政府尚未进行公布,不但无法进行国际之间的横向比较,也不利于监测中国宏观经济态势。本文运用1996年第1季度至2009年第4季度的中国实际GDP数据,构建了状态空间模型,使用卡尔曼滤波迭代算法对季节调整模型状态向量的 各分量,进行了最优平滑、预测和估计,并使用极大似然方法估计了超参数。经过对GDP的主要季节和趋势特征的分析,计算出了环比增长率指标来监测和分析经济走势,并与国际通用的TRAMO-SEATS季节调整模型进行了对比,以便鉴别趋势拐点,制定相关的经济政策[2]。高帆(2010)运用1952~2008年的上海GDP增长率数据,实证研究其内在变动机制,将GDP增长率分解为纯生产率效应、纯劳动投入效应、纯生产结构效应、纯劳动结构效应,并分析了这四种效应之间的交互影响。结果表明:在上海GDP增长率提高的四种效应之中,纯生产率效应起到了关键作用。上海GDP增长率自1978年改革开放之后,在整体上对纯生产率效应的依赖度趋于增强。在1978~1989年期间,纯劳动结构效应是GDP增长的主要因素,由于市场化改革的进一步加大,劳动力跨部门流转在很大程度上得以实现。在1990~2008年期间,纯生产率效应是GDP增长的主要因素,正是由于在此历史阶段,由于资本深化进一步加速,从而有效提高了部门劳动生产率。基于实证的研究结论,可以针对性地制定出今后上海市经济实现持续增长的若干宏观政策[3]。腾格尔和何跃(2010)利用中国季度GDP数据分别构建了ARIMA和ARCH模型,同时利用GMDH自组织方法尝试建模,经过Bon-ferroni-Dunn检验,表明与单一模型相比,组合模型的拟合能力更强。研究表明,基于GMDH组合的GDP模 *收稿日期: 2012-02-12 作者简介: 何新易(1966—),男,湖北武汉人,南通大学商学院副教授,经济学博士,研究方向:宏观国民经济问题、中国企业集团融资和投资。

时间序列分析——ARMA模型实验

基于ARMA模型的社会融资规模增长分 析 ————ARMA模型实验

第一部分实验分析目的及方法 一般说来,若时间序列满足平稳随机过程的性质,则可用经典的ARMA模型进行建模和预则。但是, 由于金融时间序列随机波动较大,很少满足ARMA模型的适用条件,无法直接采用该模型进行处理。通过对数化及差分处理后,将原本非平稳的序列处理为近似平稳的序列,可以采用ARMA模型进行建模和分析。 第二部分实验数据 2.1数据来源 数据来源于中经网统计数据库。具体数据见附录表5.1 。 2.2所选数据变量 社会融资规模指一定时期(每月、每季或每年)实体经济从金融体系获得的全部资金总额,为一增量概念,即期末余额减去期初余额的差额,或当期发行或发生额扣除当期兑付或偿还额的差额。社会融资规模作为重要的宏观监测指标,由实体经济需求所决定,反映金融体系对实体经济的资金量支持。 本实验拟选取2005年11月到2014年9月我国以月为单位的社会融资规模的数据来构建ARMA模型,并利用该模型进行分析预测。 第三部分ARMA模型构建 3.1判断序列的平稳性 首先绘制出M的折线图,结果如下图:

图3.1 社会融资规模M曲线图 从图中可以看出,社会融资规模M序列具有一定的趋势性,由此可以初步判断该序列是非平稳的。此外,m在每年同时期出现相同的变动趋势,表明m还存在季节特征。下面对m的平稳性和季节性·进行进一步检验。 为了减少m的变动趋势以及异方差性,先对m进行对数化处理,记为lm,其时序图如下: 图3.2 lm曲线图

对数化后的趋势性减弱,但仍存在一定的趋势性,下面观察lm的自相关图 表3.1 lm的自相关图 上表可以看出,该lm序列的PACF只在滞后一期、二期和三期是显著的,ACF随着滞后结束的增加慢慢衰减至0,由此可以看出该序列表现出一定的平稳性。进一步进行单位根检验,由于存在较弱的趋势性且均值不为零,选择存在趋势项的形式,并根据AIC自动选择之后结束,单位根检验结果如下: 表3.2 单位根输出结果 Null Hypothesis: LM has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic - based on SIC, maxlag=12) t-Statistic Prob.*

基于时间序列序列分析优秀论文

梧州学院 论文题目基于时间序列分析梧州市财政 收入研究 系别数理系 专业信息与计算科学 班级 09信息与计算科学 学号 200901106034 学生姓名胡莲珍 指导老师覃桂江 完成时间

摘要 梧州市财政收入主要来源于基金收入,地方税收收入和非税收收入等几方面。近年来梧州市在自治区党委、自治区政府和市委的正确领导下,全市广大干部群众深入贯彻落实科学发展观,抢抓机遇,开拓进取,克难攻坚,使得全市经济连续几年快速发展,全市人民的生活水平也大幅度提高,但伴随着发展的同时也存在一些问题,本文主要通过研究分析梧州财政收入近几年的状况,根据采用时间序列分析中的一次简单滑动平均法研究分析梧州市财政收入和支出的情况,得到的结果是梧州市财政收入呈现下降状态,而财政支出却逐年上涨,这种状况将导致梧州市人民生活水平下降,影响梧州市各方面的发展。给予一些有益于梧州市财政发展的建议。本文首先介绍主要运用的时间序列分析的概念及其一次简单滑动平均法的方法,再用图表说明了梧州市财政近几年的财政收入和支出状况,然后建立模型,分析由时间序列分析方法得出的对2012年财政收入状况的预测结果,最后,鉴于提高梧州市财政收入的思想,给予了一些合理性建议,比如:积极实施工业强县战略,壮大工业主导财源;大力发展第三产业,强化地方财源建设;完善公共财政支出机制,着力构建和谐社会。 关键词:梧州市;财政收入;时间序列分析;建立模型;建议

Based onThe Time Series Analysis of Wuzhou city Finance Income Studies Abstract Wuzhou city, fiscal revenue mainly comes from fund income, local tax revenue and the tax revenue etc. Wuzhou city in recent years in the autonomous region party committee, the government of the autonomous region and the municipal party committee under the correct leadership, the cadres and masses thoroughly apply the scientific outlook on development, catch every opportunity, pioneering and enterprising, g hard, make the crucial economic rapid development for several years, the people's living standard has also increased significantly, but with the development at the same time, there are also some problems, this paper mainly through the research and analysis the condition of wuzhou fiscal revenue in recent years, according to the time series analysis of a simple moving average method research and analysis of financial income and expenditure wuzhou city, the result obtained is wuzhou city, fiscal revenue decline present condition, and fiscal spending is rising year by year, the situation will lead to wuzhou city, the people's living standards decline, influence all aspects of wuzhou city development. Give some Suggestions on the development of the financial benefit wuzhou city. This paper first introduces the main use of the time series analysis of the concept and a simple moving average method method, reoccupy chart illustrates the wuzhou city, in recent years the financial revenue and expenditure situation, then set a model, analysis the time series analysis method to draw 2012 fiscal income condition prediction results, finally, in view of wuzhou city, improve the financial income thoughts, give some advice, for instance: rationality vigorously implement the strategy of industrial county, strengthen the industry leading financial sources, A vigorous development of the third industry, and to strengthen the construction of local revenue;

时间序列:ARIMA模型

实验:建立ARIMA模型(综合性实验) 实验题目:某城市连续14年的月度婴儿出生率数据如下表所示: 26.663 23.598 26.931 24.740 25.806 24.364 24.477 23.901 23.175 23.227 21.672 21.870 21.439 21.089 23.709 21.669 21.752 20.761 23.479 23.824 23.105 23.110 21.759 22.073 21.937 20.035 23.590 21.672 22.222 22.123 23.950 23.504 22.238 23.142 21.059 21.573 21.548 20.000 22.424 20.615 21.761 22.874 24.104 23.748 23.262 22.907 21.519 22.025 22.604 20.894 24.677 23.673 25.320 23.583 24.671 24.454 24.122 24.252 22.084 22.991 23.287 23.049 25.076 24.037 24.430 24.667 26.451 25.618 25.014 25.110 22.964 23.981 23.798 22.270 24.775 22.646 23.988 24.737 26.276 25.816 25.210 25.199 23.162 24.707 24.364 22.644 25.565 24.062 25.431 24.635 27.009 26.606 26.268 26.462 25.246 25.180 24.657 23.304 26.982 26.199 27.210 26.122 26.706 26.878 26.152 26.379 24.712 25.688 24.990 24.239 26.721 23.475 24.767 26.219 28.361 28.599 27.914 27.784 25.693 26.881 26.217 24.218 27.914 26.975 28.527 27.139 28.982 28.169 28.056 29.136 26.291 26.987 26.589 24.848 27.543 26.896 28.878 27.390 28.065 28.141 29.048 28.484 26.634 27.735 27.132 24.924 28.963 26.589 27.931 28.009 29.229 28.759 28.405 27.945 25.912 26.619 26.076 25.286 27.660 25.951 26.398 25.565 28.865 30.000 29.261 29.012 26.992 27.897 (1)选择适当模型拟和该序列的发展 (2)使用拟合模型预测下一年度该城市月度婴儿出生率 实验内容: 给出实际问题的非平稳时间序列,要求学生利用R统计软件,对该序列进行分析,通过平稳性检验、差分运算、白噪声检验、拟合ARMA模型,建立ARIMA模型,在此基础上进行预测。 实验要求: 处理数据,掌握非平稳时间序列的ARIMA建模方法,并根据具体的实验题目要求完成实验报告,并及时上传到给定的FTP和课程网站。 实验步骤: 第一步:编程建立R数据集; 第二步:调用plot.ts程序对数据绘制时序图。 第三步:从时序图中利用平稳时间序列的定义判断是否平稳? 第四步:若不满足平稳性,则可利用差分运算是否能使序列平稳?重复第三步步骤第五步:根据Box.test纯随机检验结果,利用LB统计量和白噪声特性检验最后处理的

时间序列分析法原理及步骤

时间序列分析法原理及步骤 ----目标变量随决策变量随时间序列变化系统 一、认识时间序列变动特征 认识时间序列所具有的变动特征, 以便在系统预测时选择采用不同的方法 1》随机性:均匀分布、无规则分布,可能符合某统计分布(用因变量的散点图和直方图及其包含的正态分布检验随机性, 大多服从正态分布 2》平稳性:样本序列的自相关函数在某一固定水平线附近摆动, 即方差和数学期望稳定为常数 识别序列特征可利用函数 ACF :其中是的 k 阶自 协方差,且 平稳过程的自相关系数和偏自相关系数都会以某种方式衰减趋于 0, 前者测度当前序列与先前序列之间简单和常规的相关程度, 后者是在控制其它先前序列的影响后,测度当前序列与某一先前序列之间的相关程度。实际上, 预测模型大都难以满足这些条件, 现实的经济、金融、商业等序列都是非稳定的,但通过数据处理可以变换为平稳的。 二、选择模型形式和参数检验 1》自回归 AR(p模型

模型意义仅通过时间序列变量的自身历史观测值来反映有关因素对预测目标的影响和作用,不受模型变量互相独立的假设条件约束,所构成的模型可以消除普通回归预测方法中由于自变量选择、多重共线性的比你更造成的困难用 PACF 函数判别 (从 p 阶开始的所有偏自相关系数均为 0 2》移动平均 MA(q模型 识别条件

平稳时间序列的偏相关系数和自相关系数均不截尾,但较快收敛到 0, 则该时间序列可能是 ARMA(p,q模型。实际问题中,多数要用此模型。因此建模解模的主要工作时求解 p,q 和φ、θ的值,检验和的值。 模型阶数 实际应用中 p,q 一般不超过 2. 3》自回归综合移动平均 ARIMA(p,d,q模型 模型含义 模型形式类似 ARMA(p,q模型, 但数据必须经过特殊处理。特别当线性时间序列非平稳时,不能直接利用 ARMA(p,q模型,但可以利用有限阶差分使非平稳时间序列平稳化,实际应用中 d (差分次数一般不超过 2. 模型识别 平稳时间序列的偏相关系数和自相关系数均不截尾,且缓慢衰减收敛,则该时间序列可能是 ARIMA(p,d,q模型。若时间序列存在周期性波动, 则可按时间周期进

基于时间序列模型与线性回归模型的历史数据预测

基于时间序列模型与线性回归模型的历史数据预测 摘要:本文通过具体案例,简要说明根据时间序列数据建立和相应经济理论建立线性回归模型的简要步骤及基本原则,并着重介绍了在模型建立和模型有效性检验过程中需要注意的三个主要问题,最后简单介绍了进行模型修正的相应方法。 一、引言 多元线性回归模型的一般形式为: Y=β0+β1X1+β2X2+…+βkXk+μi(k,i=1,2,…,n) 其中k为解释变量的数目,βk(k=1,2,…,n)称为回归系数,上式也被称为总体回归函数的随机表达式。 从统计意义上说,所谓时间序列模型就是将某一个指标在不同时间上的不同数值,按照时间的先后顺序排列而成的数列。这种数列由于受到各种偶然因素的影响,往往表现出某种随机性,彼此之间存在着统计上的依赖关系。从数学意义上说,如果我们对某一过程中的某一个变量或一组变量X(t)进行观察测量,在一系列时刻t1,t2,…,tn(t为自变量,且t1

数学建模时间序列分析

基于Excel的时间序列预测与分析 1 时序分析方法简介 1.1时间序列相关概念 1.1.1 时间序列的内涵以及组成因素 所谓时间序列就是将某一指标在不同时间上的不同数值,按照时间的先后顺序排列而成的数列。如经济领域中每年的产值、国民收入、商品在市场上的销量、股票数据的变化情况等,社会领域中某一地区的人口数、医院患者人数、铁路客流量等,自然领域的太阳黑子数、月降水量、河流流量等等,都形成了一个时间序列。人们希望通过对这些时间序列的分析,从中发现和揭示现象的发展变化规律,或从动态的角度描述某一现象和其他现象之间的内在数量关系及其变化规律,从而尽可能多的从中提取出所需要的准确信息,并将这些知识和信息用于预测,以掌握和控制未来行为。 时间序列的变化受许多因素的影响 ,有些起着长期的、决定性的作用 ,使其呈现出某种趋势和一定的规律性;有些则起着短期的、非决定性的作用,使其呈现出某种不规则性。在分析时间序列的变动规律时,事实上不可能对每个影响因素都一一划分开来,分别去作精确分析。但我们能将众多影响因素,按照对现象变化影响的类型,划分成若干时间序列的构成因素,然后对这几类构成要素分别进行分析,以揭示时间序列的变动规律性。影响时间序列的构成因素可归纳为以下四种: (1)趋势性(Trend),指现象随时间推移朝着一定方向呈现出持续渐进地上升、下降或平稳的变化或移动。这一变化通常是许多长期因素的结果。 (2)周期性(Cyclic),指时间序列表现为循环于趋势线上方和下方的点序列并持续一年以上的有规则变动。这种因素是因经济多年的周期性变动产生的。比如,高速通货膨胀时期后面紧接的温和通货膨胀时期将会使许多时间序列表现为交替地出现于一条总体递增 地趋势线上下方。 (3)季节性变化(Seasonal variation),指现象受季节性影响 ,按一固定周期呈现出的周期波动变化。尽管我们通常将一个时间序列中的季节变化认为是以1年为期的,但是季节因素还可以被用于表示时间长度小于1年的有规则重复形态。比如,每日交通量数据表现出为期1天的“季节性”变化,即高峰期到达高峰水平,而一天的其他时期车流量较小,从午夜到次日清晨最小。

相关文档
相关文档 最新文档