文档库 最新最全的文档下载
当前位置:文档库 › 新手必看 光耦的使用原则与检测方式

新手必看 光耦的使用原则与检测方式

新手必看 光耦的使用原则与检测方式

新手必看光耦的使用原则与检测方式

光耦在电路中的作用是对光电进行转换的同时防止电路之间互相产生干扰。在电子电路设计中是非常常见但也非常重要的一种器件。本文将为大家介绍光耦在电路中的主要作用以及如何对光耦进行检测,最后附上光耦的使用原则。

?作用

?对输入、输出电信号起隔离作用,光耦合器一般由三部分组成:光的发射、光的接收及信号放大。输入的电信号驱动发光二极管(LED),使之发出一定波长的光,被光探测器接收而产生光电流,再经过进一步放大后输出。这就完成了电—光—电的转换,从而起到输入、输出、隔离的作用。由于光耦合器输入输出间互相隔离,电信号传输具有单向性等特点,因而具有良好的电绝缘能力和抗干扰能力。又由于光耦合器的输入端属于电流型工作的低阻元件,因而具有很强的共模抑制能力。

?检测

?1、用万用表判断好坏,断开输入端电源,用R×1k档测1、2脚电阻,正向电阻为几百欧,反向电阻几十千欧,3、4脚间电阻应为无限大。1、2脚与3、4脚间任意一组,阻值为无限大,输入端接通电源后,3、4脚的电阻很小。调节RP,3、4间脚电阻发生变化,说明该器件是好的。注:不能用

R×10k档,否则导致发射管击穿。

?2、简易测试电路,当接通电源后,LED不发光,按下SB,LED会发光,调节RP、LED的发光强度会发生变化,说明被测光电耦合器是好的。

?使用原则

?1、光耦合器的电流传输比(CTR)的允许范围是50%~200%。这是因为

光耦使用技巧

光耦使用技巧 光电耦合器(简称光耦),是一种把发光元件和光敏元件封装在同一壳体内,中间通过电→光→电的转换来传输电信号的半导体光电子器件。光电耦合器可根据不同要求,由不同种类的发光元件和光敏元件组合成许多系列的光电耦合器。目前应用最广的是发光二极管和光敏三极管组合成的光电耦合器,其内部结构如图1 a所示。 光耦以光信号为媒介来实现电信号的耦合与传递,输入与输出在电气上完全隔离,具有抗干扰性能强的特点。对于既包括弱电控制部分,又包括强电控制部分的工业应用测控系统,采用光耦隔离可以很好地实现弱电和强电的隔离,达到抗干扰目的。但是,使用光耦隔离需要考虑以下几个问题: ①光耦直接用于隔离传输模拟量时,要考虑光耦的非线性问题; ②光耦隔离传输数字量时,要考虑光耦的响应速度问题; ③如果输出有功率要求的话,还得考虑光耦的功率接口设计问题。 1 光电耦合器非线性的克服 光电耦合器的输入端是发光二极管,因此,它的输入特性可用发光二极管的伏安特性来表示,如图1b所示;输出端是光敏三极管,因此光敏三极管的伏安特性就是它的输出特性,如图1c所示。由图可见,光电耦合器存在着非线性工作区域,直接用来传输模拟量时精度较差。 图1 光电耦合器结构及输入、输出特性 解决方法之一,利用2个具有相同非线性传输特性的光电耦合器,T1和T2,以及2个射极跟随器A1和A2组成,如图2所示。如果T1和T2是同型号同批次的光电耦合器,可以认为他们的非线性传输特性是完全一致的,即K1(I1)=K2 (I1),则放大器的电压增益G=Uo/U1=I3R3/I2R2=(R3/R2)[K1(I1)/K2(I1)]=R3/R 2。由此可见,利用T1和T2电流传输特性的对称性,利用反馈原理,可以很好的补偿他们原来的非线性。

电子元器件验收标准

电子元器件检验方法 元件测试清单 元件名称每批次抽检数抽检不合格后措施备注 1贴片:电阻、电容、二极管、 三极管、TVS管、稳压管、MOS 管、电感、晶振、光耦 检验方法:封装(按采购单)、外形(与原对照)、脚距(与原对照)、精度(按采购单)、引脚无氧化、生产日期六个月以内,其他免检。 2直插:电阻、电容、二极管、 三极管、TVS管、稳压管、MOS 管、电感、晶振、各类排针排 母、接线端子 检验方法:封装(按采购单)、外形(与原对照)、脚距(与原对照)、精度(按采购单)、引脚无氧化、生产日期六个月以内,其他免检。 3光耦PC817B5%要求再检验5% 检验方法:1引脚无氧化、生产日期六个月以内。2在自制工装上检验直插光耦的一致性,一般直插pc817B 的一致性在3.5mV~6mV之间。 4各类直插芯片、贴片芯片 检验方法:封装(按采购单)、引脚无氧化、生产日期六个月以内,其他暂时免检。 5各类开关每批次20个要求全检验 可向技术部要求技术支持 检验方法:1封装(按采购单)、外形(与原对照)、脚距(与原对照)、引脚无氧化、生产日期六个月以内,2快速使劲按100此以上,无异响,无接触不良现象(可用万用表峰鸣当测量)。3贴片轻触开关热风枪190度吹10S外壳无变形。 6数码管,平面管,发光管10%要求全检验 测试方法:封装(按采购单)、外形(与原对照)、脚距(与原对照)、引脚无氧化、生产日期六个月以内,。2在自制工装里测试每一笔的亮度,测试时每一笔亮度必须一致,不可有明显的亮度不均、不亮、漏光现象。7各类液晶屏,5块/批次要求全检验 检验方法:封装(按采购单)、外形(与原对照)、脚距(与原对照)、有无划痕、引脚无氧化、生产日期六个月以内。2在自制工装内检查各字符的笔画有无缺失,亮度是否一致。 8各类线路板10块/批次要求全检验 检验方法:1观察颜色、外形有无划痕和桥变、焊盘有无氧化现象。 9各类散热器20块/批次检验5% 检验方法:1观察规格型号、外形尺寸(与原对照)、孔径(与原对照)、孔距(与原对照)、毛刺、毛边。108欧小喇叭10只/批次要求全检验 检验方法:外形尺寸,阻值是否在8欧左右,音质音量可在95或者99半成品调试时测试。 元件检验方法

教你如何选择光电耦合器

我们以6N137为例:来说明怎样选择器件 6N137高速光电耦合器 6N137光耦合器是一款用于单通道的高速光耦合器,其内部有一个850 nm波长AlGaAs LED和一个集成检测器组成,其检测器由一个光敏二极管、高增益线性运放及一个肖特基钳位的集电极开路的三极管组成。具有温度、电流和电压补偿功能,高的输入输出隔离,LSTTL/TTL兼容,高速(典型为10MBd),5mA的极小输入电流。 特性: ①转换速率高达10MBit/s; ②摆率高达10kV/us; ③扇出系数为8; ④逻辑电平输出; ⑤集电极开路输出; 工作参数: 最大输入电流,低电平:250uA 最大输入电流,高电平:15mA 最大允许低电平电压(输出高):0.8v 最大允许高电平电压:Vcc 最大电源电压、输出:5.5V 扇出(TTL负载):8个(最多) 工作温度范围:-40°C to +85°C 典型应用:高速数字开关,马达控制系统和A/D转换等 6N137光耦合器的内部结构、管脚如图1所示。 6N137光耦合器的真值如表1所示: 6N137光耦合器的真值表 输入使能输出 H H L L H H H L H L L H H NC L L NC H 需要注意的是,在6N137光耦合器的电源管脚旁应有—个0.1uF的去耦电容。在选择电容类型时,应尽量选择高频特性好的电容器,如陶瓷电容或钽电容,并且尽量靠近6N137光耦合器的电源管脚;另外,输入使能管脚在芯片内部已有上拉电阻,无需再外接上拉电阻。 6N137光耦合器的使用需要注意两点:第一是6N137光耦合器的第6脚Vo输出电路属于集电极开路电路,必须上拉一个电阻;第二是6N137光耦合器的第2脚和第3脚之间是一个LED,必须串接一个限流电阻。 ------------------------------------------------------------ 一、6N137原理及典型用法 6N137的结构原理如图1所示,信号从脚2和脚3输入,发光二极管发光,经片内光通道传到光敏二极管,反向偏置的光敏

夏普·光耦选型参数Opto_Line_Card_Full

https://www.wendangku.net/doc/cc1199463.html, Pack performance into the smallest dimensions with Sharp’s solutions for Lighting, Sensing, and Power handling. Sharp’s Lighting, Drivers, Power handling, and Sensing modules are specifically designed for engineers with small applications demanding higher packaging density and a smaller end product. Combine our Lighting with our Driver and Sensing modules for a complete solution. Sharp’s Sensors pro-vide the best cost/performance numbers in the industry, while Sharp’s Photointerrupters are at the forefront in size and ambient light management. Sharp’s Distance Sensors outperform capacitive, ultrasonic, and light-intensity offerings. Lighting ? LED Modules ? LED Drivers ? Ambient Light Sensors ? Blue Laser Diodes Power ? Photocouplers ? Phototriacs Sensors ? Photointerrupters ? Optical System Devices ? Emitters/Detectors Electronic Components Group Selector Guide

光耦检验

电气特性 1、High Level output Current I OH 2、Low Level output Current I OL 3、High Level output Voltage V OH 4、Low Level output Voltage V OL 5、输入正向电压V F 6、输入级与输出级之间的绝缘电阻Rio 7、电流传输比CTR 开关特性 一、输入特性 光耦合器的输入特性实际也就是其内部发光二极管的特性。常见的参数有: 1. 正向工作电压Vf(Forward Voltage) Vf是指在给定的工作电流下,LED本身的压降。常见的小功率LED通常以If=20mA来测试正向工作电压,当然不同的LED,测试条件和测试结果也会不一样。 2. 反向电压Vr(Reverse Voltage ) 是指LED所能承受的最大反向电压,超过此反向电压,可能会损坏LED。在使用交流脉冲驱动LED 时,要特别注意不要超过反向电压。 3. 反向电流Ir(Reverse Current) 通常指在最大反向电压情况下,流过LED的反向电流。 4. 允许功耗Pd(Maximum Power Dissipation) LED所能承受的最大功耗值。超过此功耗,可能会损坏LED。 5. 中心波长λp(Peak Wave Length) 是指LED所发出光的中心波长值。波长直接决定光的颜色,对于双色或多色LED,会有几个不同的中心波长值。 6. 正向工作电流If(Forward Current) If是指LED正常发光时所流过的正向电流值。不同的LED,其允许流过的最大电流也会不一样。 7. 正向脉冲工作电流Ifp(Peak Forward Current) Ifp是指流过LED的正向脉冲电流值。为保证寿命,通常会采用脉冲形式来驱动LED,通常LED规格书中给中的Ifp是以0.1ms脉冲宽度,占空比为1/10的脉冲电流来计算的。 二、输出特性 光耦合器的输出特性实际也就是其内部光敏三极管的特性,与普通的三极管类似。常见的参数有: 1. 集电极电流Ic(Collector Current) 光敏三极管集电极所流过的电流,通常表示其最大值。

光耦选型经典指南

光耦选型经典指南 1.0.目的: 针对光偶选型,替代,采购,检测及实际使用过程中出现的光偶特性变化引起的产品失效问题,提供指导。 2.0.适用范围: 本指导书适用于瑞谷光偶的设计,选型,替代等。 3.0.说明: 目前发现,因光偶的选型,光偶替代,光偶工作电流,工作温度设计不当等原因导致产品出现问题,如何减少选型,设计,替代导致的产品问题,这里将制订出相关指导性规范。 4.0.内部结构图及CTR 的计算方法: ●规格定义CTR:Ice/I F*100% (检测条件:I F =5 ma Vce=5V, 2701,2801系列) 5.0.光偶主要特性分析,设计选型替代要求: 5.1外观尺寸: 设计,选型,替代注意: ●封装正确,本体MARK字迹要清晰,品牌正确,与技术规格书一致; ●替代时,如都为标准件封装,基本上装配没有问题,但需注意厚度是否与原料 相同,是否满足整机的工艺要求。 5.2不同输入控制电流I F,CTR 值不同;

●由图表显示,IF在5-15ma时CTR值最大;在小于5mA时(目前我们产品设计大 多如此),CTR值一般小于正常额定规格值; ●附加Cosmo KPS2801-B 实测数据: J16(2009年第16周生产)的光耦在室温下的CTR I F(VCE=5V)#1 #2 #3 #4 #5 #6 #7 1mA 88.3% 90.48% 90.57% 86.56% 87.1% 85.12% 87..39% 2mA 133% 130% 130% 125% 135% 122% 126% 3mA 150% 154% 154% 147% 151% 139% 150% 5mA 177% 187% 183% 177% 178% 170% 177% J25(2009年第25周生产)的光耦在室温下的CTR I F(VCE=5V)#1 #2 #3 #4 #5 #6 #7 1mA 69.24% 78.61% 66.68% 66.41% 65.7% 75.5% 79.0% 2mA 97% 105% 110% 104% 101% 122% 126% 3mA 121% 121% 131% 132% 129% 151% 151% 5mA 166% 147% 174% 174% 173% 210% 196% ●评注:IF不同,CTR不同,且差异非常大;不同DATECODE的也有差异,但在IF=5ma时, CTR值都在规格(130-260)范围内; ●设计,选型,替代注意:设计时工作电流应接近来料的检测电流值(目前大多 IF=5ma),否则应用的CTR值无法保证,产品动态性能将很差; 5.3不同环境温度,CTR 值不同;

光耦选型经典指引

光耦选型经典指南 一、文档说明: 针对光偶选型,替代,采购,检测及实际使用过程中出现的光偶特性变化引起的产品失效问题,提供指导。 光耦属于易失效器件,选型和使用过程中要特别的小心。 目前发现,因光偶的选型,光偶替代,光偶工作电流,工作温度设计不当等原因导致产品出现问题,如何减少选型,设计,替代导致的产品问题,这里将制订出相关指导性规范。 二、原理介绍: 光电偶合器件(简称光耦)是把发光器件(如发光二极体)和光敏器件(如光敏三极管)组装在一起,通过光线实现耦合构成电—光和光—电的转换器件。光电耦合器分为很多种类,图1所示为常用的三极管型光电耦合器原理图。 当电信号送入光电耦合器的输入端时,发光二极体通过电流而发光,光敏元件受到光照后产生电流,CE导通;当输入端无信号,发光二极体不亮,光敏三极管截止,CE不通。对于数位量,当输入为低电平“0”时,光敏三极管截止,输出为高电平“1”;当输入为高电平“1”时,光敏三极管饱和导通,输出为低电平“ 0”。若基极有引出线则可满足温度补偿、检测调制要求。这种光耦合器性能较好,价格便宜,因而应用广泛。 图一最常用的光电耦合器之内部结构图三极管接收型 4脚封装

图二光电耦合器之内部结构图三极管接收型 6脚封装 图三光电耦合器之内部结构图双发光二极管输入三极管接收型 4脚封装 图四光电耦合器之内部结构图可控硅接收型 6脚封装 图五光电耦合器之内部结构图双二极管接收型 6脚封装

光电耦合器之所以在传输信号的同时能有效地抑制尖脉冲和各种杂讯干扰,使通道上的信号杂讯比大为提高,主要有以下几方面的原因: (1)光电耦合器的输入阻抗很小,只有几百欧姆,而干扰源的阻抗较大,通常为105~106Ω。据分压原理可知,即使干扰电压的幅度较大,但馈送到光电耦合器输入端的杂讯电压会很小,只能形成很微弱的电流,由于没有足够的能量而不能使二极体发光,从而被抑制掉了。 (2)光电耦合器的输入回路与输出回路之间没有电气联系,也没有共地;之间的分布电容极小,而绝缘电阻又很大,因此回路一边的各种干扰杂讯都很难通过光电耦合器馈送到另一边去,避免了共阻抗耦合的干扰信号的产生。 (3)光电耦合器可起到很好的安全保障作用,即使当外部设备出现故障,甚至输入信号线短接时,也不会损坏仪表。因为光耦合器件的输入回路和输出回路之间可以承受几千伏的高压。 (4)光电耦合器的回应速度极快,其回应延迟时间只有10μs左右,适于对回应速度要求很高的场合。 内部结构图及 CTR 的计算方法: 规格定义 CTR:Ice/I F *100% (检测条件:I F =5 ma Vce=5V, 2701,2801 系列)

光耦测量方法

用两个万用表就可以测了。光电耦合器由发光二极管和受光三极管封装组成。如光电耦合器4N25,采用DIP-6封装,共六个引脚,①、②脚分别为阳、阴极,③脚为空脚,④、⑤、⑥脚分别为三极管的e、c、b极。 以往用万用表测光耦时,只分别检测判断发光二极管和受光三极管的好坏,对光耦的传输性能未进行判断。这里以光耦4N25为例,介绍一种测量光耦传输特性的方法。 1.判断发光二极管好坏与极性:用万用表R×1k挡测量二极管的正、负向电阻,正向电阻一般为几千欧到几十千欧,反向电阻一般应为∞。测得电阻小的那次,红笔接的是二极管的负极。 2.判断受光三极管的好坏与放大倍数:将万用表开关从电阻挡拨至三极管hFE挡,使用NPN型插座,将E孔连接④脚发射极,C孔连接⑤脚集电极,B孔连接⑥脚基极,显示值即为三极管的电流放大倍数。一般通用型光耦hFE值为一百至几百,若显示值为零或溢出为∞,则表明三极管短路或开路,已损坏。 3.光耦传输特性的测量:测试具体接线见下图,将数字万用表开关拨至二极管挡位,黑笔接发射极,红笔接集电极,⑥脚基极悬空。这时,表内基准电压2.8V经表内二极管挡的测量电路,加到三极管的c、e结之间。但由于输入二极管端无光电信号而不导通,液晶显示器显示溢出符号。当输入端②脚插入E孔,①脚插入C孔的NPN插座时,表内基准电源2.8V经表内三极管hFE挡的测量电路,使发光二极管发光,受光三极管因光照而导通,显示值由溢出符号瞬间变到188的示值。当断开①脚阳极与C孔的插接时,显示值瞬间从188示值又回到溢出符号。不同的光耦,传输特性与效率也不相同,可选择示值稍小、显示值稳定不跳动的光耦应用。 由于表内多使用9V叠层电池,故给输入端二极管加电的时间不能过长,以免降低电池的使用寿命及测量精度,可采用断续接触法测量。 817是常用的线性光藕,在各种要求比较精密的功能电路中常常被当作耦合器件,具有上下级电路完全隔离的作用,相互不产生影响。 当输入端加电信号时,发光器发出光线,照射在受光器上,受光器接受光线后导通,产生光电流从输出端输出,从而实现了“电-光-电”的转换。普通光电耦合器只能传输数字信号(开关信号),不适合传输模拟信号。线性光电耦合器是一种新型的光电隔离器件,能够传输连续变化的模拟电压或电流信号,这样随着输入信号的强弱变化会产生相应的光信号,从而使光敏晶体管的导通程度也不同,输出的电压或电流也随之不同,817光电耦合器不但可以起到反馈作用还可以起到隔离作用。 主要范围 开关电源、适配器、充电器、UPS、DVD、空调及其它家用电器等产品. 技术资料: 小知识: 一、光电耦合器的种类较多,但在家电电路中,常见的只有4种结构: 1.第一类,为发光二极管与光电晶体管封装的光电耦合器,结构为双列直插4引脚塑封,内部电路见表一,主要用于开关电源电路中。 2.第二类,为发光二极管与光电晶体管封装的光电耦合器,主要区别引脚结构不同,结构为双列直插6引脚塑封,内部电路见表一,也用于开关电源电路中。 3.第三类,为发光二极管与光电晶体管(附基极端子)封装的光电耦合器,结构为双列直插6引脚塑封,内部电路见表一,主要用于A V转换音频电路中。 4.第四类,为发光二极管与光电二极管加晶体管(附基极端子)封装的光电耦合器,结构为双列直插6引脚塑封,内部电路见表一,主要用于A V转换视频电路中。 类别型号 第一类 PC817 PC818 PC810 PC812 PC502 LTV817 TLP521-1 TLP621-1 ON3111 OC617 PS2401-1 GIC5102 第二类 TLP632 TLP532 TLP519 TLP509 PC504 PC614 PC714 PS208B PS2009B PS2018 PS2019

光耦选型最全指南及各种参数说明

光耦选型手册 光耦简介: 光耦合器(opticalcoupler,英文缩写为OC)亦称光电隔离器或光电耦合器,简称光耦。它是以光为媒介来传输电信号的器件,通常把发光器(红外线发光二极管LED)与受光器(光敏半导体管)封装在同一管壳内。当输入端加电信号时发光器发出光线,受光器接受光线之后就产生光电流,从输出端流出,从而实现了“电—光—电”转换。 光耦合器一般由三部分组成:光的发射、光的接收及信号放大。输入的电信号驱动发光二极管(LED),使之发出一定波长的光,被光探测器接收而产生光电流,再经过进一步放大后输出。这就完成了电—光—电的转换,从而起到输入、输出、隔离的作用。 光耦的分类: (1)光电耦合器分为两种:一种为非线性光耦,另一种为线性光耦。 非线性光耦的电流传输特性曲线是非线性的,这类光耦适合于开关信号的传输,不适合于传输模拟量。常用的4N系列光耦属于非线性光耦。 线性光耦的电流传输特性曲线接近直线,并且小信号时性能较好,能以线性特性进行隔离控制。常用的线性光耦是PC817A—C系列。 (2)常用的分类还有: 按速度分,可分为低速光电耦合器(光敏三极管、光电池等输出型)和高速光电耦合器(光敏二极管带信号处理电路或者光敏集成电路输出型)。 按通道分,可分为单通道,双通道和多通道光电耦合器。 按隔离特性分,可分为普通隔离光电耦合器(一般光学胶灌封低于5000V,空封低于2000V)和高压隔离光电耦合器(可分为10kV,20kV,30kV等)。 按输出形式分,可分为: a、光敏器件输出型,其中包括光敏二极管输出型,光敏三极管输出型,光电池输出型,光可控硅输出型等。 b、NPN三极管输出型,其中包括交流输入型,直流输入型,互补输出型等。 c、达林顿三极管输出型,其中包括交流输入型,直流输入型。 d、逻辑门电路输出型,其中包括门电路输出型,施密特触发输出型,三态门电路输出型等。 e、低导通输出型(输出低电平毫伏数量级)。 f、光开关输出型(导通电阻小于10Ω)。 g、功率输出型(IGBT/MOSFET等输出)。 光耦的结构特点: (1)光电耦合器的输入阻抗很小,只有几百欧姆,而干扰源的阻抗较大,通常为105~106Ω。据分压原理可知,即使干扰电压的幅度较大,但馈送到光电耦合器输入端的杂讯电压会很小,只能形成很微弱的电流,由于没有足够的能量而不能使二极体发光,从而被抑制掉了。 (2)光电耦合器的输入回路与输出回路之间没有电气联系,也没有共地;之间的分布电容极小,而绝缘电阻又很大,因此回路一边的各种干扰杂讯都很难通过光电耦合器馈送到另一边去,避免了共阻抗耦合的干扰信号的产生。 (3)光电耦合器可起到很好的安全保障作用,即使当外部设备出现故障,甚至输入信号线短接时,也不会损坏仪表。因为光耦合器件的输入回路和输出回路之间可以承受几千伏的高压。 (4)光电耦合器的回应速度极快,其回应延迟时间只有10μs左右,适于对回应速度要求很高的场合。

各种光电耦合器参数

常用参数 正向压降VF:二极管通过的正向电流为规定值时,正负极之间所产生的电压降。 正向电流IF:在被测管两端加一定的正向电压时二极管中流过的电流。 反向电流IR:在被测管两端加规定反向工作电压VR时,二极管中流过的电流。 反向击穿电压VBR::被测管通过的反向电流IR为规定值时,在两极间所产生的电压降。结电容CJ:在规定偏压下,被测管两端的电容值。 反向击穿电压V(BR)CEO:发光二极管开路,集电极电流IC为规定值,集电极与发射集间的电压降。 输出饱和压降VCE(sat):发光二极管工作电流IF和集电极电流IC为规定值时,并保持 IC/IF≤CTRmin时(CTRmin在被测管技术条件中规定)集电极与发射极之间的电压降。 反向截止电流ICEO:发光二极管开路,集电极至发射极间的电压为规定值时,流过集电极的电流为反向截止电流。 电流传输比CTR:输出管的工作电压为规定值时,输出电流和发光二极管正向电流之比为电流传输比CTR。 脉冲上升时间tr、下降时间tf:光耦合器在规定工作条件下,发光二极管输入规定电流IFP 的脉冲波,输出端管则输出相应的脉冲波,从输出脉冲前沿幅度的10%到90%,所需时间为脉冲上升时间tr。从输出脉冲后沿幅度的90%到10%,所需时间为脉冲下降时间tf。 传输延迟时间tPHL、tPLH:光耦合器在规定工作条件下,发光二极管输入规定电流IFP的脉冲波,输出端管则输出相应的脉冲波,从输入脉冲前沿幅度的50%到输出脉冲电平下降到1.5V时所需时间为传输延迟时间tPHL。从输入脉冲后沿幅度的50%到输出脉冲电平上升到1.5V时所需时间为传输延迟时间tPLH。 入出间隔离电容CIO:光耦合器件输入端和输出端之间的电容值。 入出间隔离电阻RIO:半导体光耦合器输入端和输出端之间的绝缘电阻值。 入出间隔离电压VIO:光耦合器输入端和输出端之间绝缘耐压值。 最大额定值 参数名称 符号 最大额定值 单位 V 反向电压 5 V R I 正向电流 50 mA

常用光耦简介及常见型号

常用光耦简介及常见型 号 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

常用光耦简介及常见型号 常用光耦简介及常见型号 光电耦合器(简称光耦)是开关电源电路中常用的器件。光电耦合器分为两种:一种为非线性光耦,另一种为线性光耦。 常用的4N系列光耦属于非线性光耦 常用的线性光耦是PC817A—C系列。 非线性光耦的电流传输特性曲线是非线性的,这类光耦适合于弄开关信号的传输,不适合于传输模拟量。 线性光耦的电流传输手特性曲线接进直线,并且小信号时性能较 好,能以线性特性进行隔离控制。 开关电源中常用的光耦是线性光耦。如果使用非线性光耦,有可能使振荡波形变坏,严重时出现寄生振荡,使数千赫的振荡频率被数十到数百赫的低频振荡依次为号调制。由此产生的后果是对彩电,彩显,VCD,DCD等等,将在图像画面上产生干扰。同时电源带 负载能力下降。 在彩电,显示器等开关电源维修中如果光耦损坏,一定要用线性光 耦代换。

常用的4脚线性光耦有PC817A----C。PC111 TLP521等常用的六脚线性光耦有:TLP632 TLP532 PC614 PC714 PS2031等。常用的4N25 4N26 4N35 4N36是不适合用于开关电源中的,因为 这4种光耦均属于非线性光耦。 ? 经查大量资料后,以下是目前市场上常见的高速光藕型号: ? 100K bit/S: 6N138、6N139、PS8703 1M bit/S: 6N135、6N136、CNW135、CNW136、PS8601、PS8602、PS8 701、PS9613、PS9713、CNW4502、HCPL-2503、HCPL-450 2、HCPL-2530(双路)、HCPL-2531(双路) 10M bit/S: 6N137、PS9614、PS9714、PS9611、PS9715、HCPL-2601、H CPL-2611、HCPL-2630(双路)、HCPL-2631(双路)

电子元器件检验标准

一、适用范围及检验方案 1、适用范围 本检验标准中所指电子元器件仅为 PCBA 上的贴片件或接插件,具体下表清单所示: 序号 物料名称 页码 序号 物料名称 页码 序号 物料名称 页码 1 电阻类 13 晶振 25 MOS 管 2 电容类 P2 14 端子(排)插/座 P4 26 防雷管 P6 3 发光LED 类 15 软排线/卡扣 27 IGBT 4 电感类 16 变压器 28 RJ45插座 / 5 PCB 板 17 电压/电流互感器 29 半/双排插针 / 6 二极管类 P3 18 霍尔电流传感器 30 支撑柱/隔离柱 / 7 IC 类 19 LCD 显示屏 31 光纤收发模块 / 8 数码管 20 保险片/管 P5 32 电源模块 / 9 蜂鸣器 21 散热片 33 保险座/卡扣 / 10 开关按键 22 稳压管 34 插片端子 / 11 继电器 P4 23 温度保险丝 35 12 三极管 24 光耦 P6 36 2、检验方案 2.1 每批来料的抽检量( n )为5只,接收质量限( AQL )为:CR 与MA=0,MI=(1,2),当来料少于 5只时 则 全检,且接收质量 限 CR 、MA 与MI=0。 2.2 来料检验项目=通用检验项目+差异检验项目,差异检验项目清单中未列出部件,按通用检验项目执行。 二、通用检验项目 序号 检验项目 标准要求 检验方法 判定 水准 1 规格型号 检查型号规格是否符合要求(送货单、实 物、 BOM 表三者上的信息 目视 MI 必须一致) 2 检查包装是否符合要求(有防静电要求的必须有 防静电袋 /盒等包 目视 MI 装,易碎易损的必须用专用包装或气泡棉包装等) 3 包装 外包装必须有清晰、准确的标识,明确标明产品 名称、规格 /型号、 目视 MI 数量等。或内有分包装则其上必须有型号与数量等标识。 4 盘料或带盘包装时,不应有少料、翻面、 反向等。 目视 MI 5 外观 产品表面应该完好;产品引脚无氧化、锈蚀、变形;本体应无破损、 目视 MI 无裂纹; 6 贴片件 其长/宽/高/直径等应符合部品技术规格书要求,若没有标明 的公 卡尺 MA

继电保护设备检验周期及检验项目规定

继电保护设备检验周期及检验项目规定 1 范围 1.1 为合理安排时间做好电网继电保护检验,提高检验质量,根据《福建省电网继电保护及安全自动装置检验周期和检验验收时间规定》和2006年颁布《继电保护及电网安全自动装置检验条例》继电保护及安全自动装置,特制定本规定 1.2 要求各单位严格按检验类别合理安排检修计划,在设备停役前做好充分准备,坚持“应检必检,检必检好”,确保检验质量。同时应加强运行设备的缺陷统计分析,根据设备运行工况在必要时增加检验次数。 2 规范性引用文件 闽电调[200!]1274号福建省电网继电保护及安全自动装置检验周期及检修项目规定 DL/T 995-2006 继电保护及安全自动装置检验规程 (87)水电生字第108号继电保护和电网安全检验条例 闽电调[2007]3 号福建电网备用电源自投装置配置技术原则及运行管理规定 3 检验种类及周期 3.1 继电保护检验种类分为三种 3.1.1 新安装装置的验收检验(分两种) 3.1.1.1 当新安装的一次设备投入运行时; 3.1.1.2 当在现有的一次设备上投入新安装的装置时 3.1.2 运行中装置的定期检验(简称定期检验) 3.1.2.1 保护装置在新投入运行一年内必须进行首次检验,简称首检; 3.1.2.2 定期全部检验(简称全检); 3.1.2.3 定期部分检验(简称部检); 3.1.2.4 用装置进行断路器的跳合闸试验。 3.1.3 运行中装置的补充检验(简称补充检验)。 3.1.3.1 对运行中的装置进行较大的更改或增设新的回路后的检验; 3.1.3.2 检修或更换一次设备后的检验;

3.1.3.3 运行中发现异常情况后的检验; 3.1.3.4 事故后的检验; 3.1.3.5 已投运行的装置停电一年及以上,再次投入运行时的检验。 3.1.3.6 基建工程已经验收合格的待用间隔保护,在半年后投运时进行的整组传动试验。 4 校验周期 4.1 35kV及以上变电站内10kV及以上电压等级的所有保护装置,不论种类,在新投入运行一年内必须进行首次检验。 4.2 利用装置进行断路器的跳合闸试验宜与一次设备检修结合进行,必要时,可进行补充。 4.3 对目前系统使用非微机型保护装置,全校周期 4年,部检周期 1年。 4.4 微机型保护装置110kV电压等级的保护设备,首检后每6年进行一次全部检验,每3年进行一次部分检验;35kV及以上变电站内的35kV及以下电压等级的保护设备每3年进行一次检验;所有电压等级的保护在相应的检验工作一年半后应结合一次设备停役利用装置进行一次断路器跳闸试验,并完成操作箱和设备的清扫以及螺丝紧固工作。 4.5 110kV及以上继电保护检验周期及检验安排 4.6 应定期认真做好户外端子箱及端子、户外二次电缆及二次线、PT及CT二次接地点状况的检查和维护工作,结合进行PT间隙放电器检查 4.7 检验周期内,所有保护装置实行状态检修,并可根据装置的质量、运行的环境与条件适当缩短其检验期限,并有目的,有重点地选择检验项目。例如:当发现装置有需要经常予以监督的弱点或缺陷,或运行条件恶化,或上级继电保护机构有特殊的指示和反

光耦选型指南(1)

光耦选型指南(1) 1.0.目的: 针对光偶选型,替代,采购,检测及实际使用过程中出现的光偶特性变化引起的产品失效问题,提供指导。 2.0.适用范围: 本指导书适用于瑞谷光偶的设计,选型,替代等。 3.0.说明: 目前发现,因光偶的选型,光偶替代,光偶工作电流,工作温度设计不当等原因导致产品出现问题,如何减少选型,设计,替代导致的产品问题,这里将制订出相关指导性规范。 4.0.内部结构图及CTR 的计算方法: ●规格定义CTR:Ice/I F*100% (检测条件:I F =5 ma Vce=5V, 2701,2801系列) 5.0.光偶主要特性分析,设计选型替代要求: 5.1外观尺寸: 设计,选型,替代注意: ●封装正确,本体MARK字迹要清晰,品牌正确,与技术规格书一致; ●替代时,如都为标准件封装,基本上装配没有问题,但需注意厚度是否与原料 相同,是否满足整机的工艺要求。 5.2不同输入控制电流I F,CTR 值不同;

●由图表显示,IF在5-15ma时CTR值最大;在小于5mA时(目前我们产品设计大 多如此),CTR值一般小于正常额定规格值; ●附加Cosmo KPS2801-B 实测数据: ●评注:IF不同,CTR不同,且差异非常大;不同DATECODE的也有差异,但在IF=5ma时, CTR值都在规格(130-260)范围内; ●设计,选型,替代注意:设计时工作电流应接近来料的检测电流值(目前大多 IF=5ma),否则应用的CTR值无法保证,产品动态性能将很差; 5.3不同环境温度,CTR 值不同;

●由图表显示,CTR 值与光偶的工作环境有关,温度太高或太低都小于常温附近 的检测值; ●附加Cosmo KPS2801-B 实测数据(单体): CE F ●评注:温度不同,CTR不同,温度太高或太低都低于常温,且差异很大; ●设计,选型,替代注意:产品在高低温CTR的值是否满足产品反馈环路的增 益?产品动态稳定吗?开关机,输出是否产生震荡掉沟等不良, 5.4光偶有RL阻值大小及工作频带带宽要求;

光耦问题大解决

最近在使用光耦的时候遇到几个问题恳请指教? 小生在使用光耦的时候遇到几个问题,恳请大侠指教: 1:CTR(50%-300%)是什么意思?在电路中这个CTR是多少?与If有关吗? 2:光耦的工作方式是电流控制还是电压控制。最近在PS2561与TL431配合稳压反馈的电路中,外部参数怎么调整光耦都在正常工作,很费解。 3:希望有大侠分享光耦的使用心得。 潮光光耦网答:1、CTR(50%-300%)是电流传输比, CTR(Curremt-Trrasfer Ratio),它等于直流输出电流IC与直流输入电流IF的百分比。简单来讲,就是个电流放大系数。50%-600%是该系列光耦的CTR,在电路中是多少要看你选择的是哪个光耦。 2、光耦是电流控制的,你调节外部参数还在那个工作的范围里面,肯定可以工作啊,如果你把限流的电阻加很大就会出问题了。 3、CTR是电流传输比Ice/If我知道。但是在具体电路中CTR的值是变化的还是固定的呢。我用 的光耦是NEC的PS2561,W系列。传输比是130%-260%,看规格书是说CTR与If有关,是吗? 另外我也想知道怎么来测量光耦的传输比。 在这个电路中,我通过改变R425的阻值,从100R改变为15K,光耦均能正常工作,R426 两端 的电压维持在1V。当R425=100R的时候,Vk=22.9V,计算得出流过光耦的电流为1.1mA;当 R425=15K的时候,Vk=3.68V,计算得出流过光耦的电流为0.13mA.这个电流变化还是很大的 ,但是光耦正常工作。 关于东芝光耦缺货型号,瑞萨(原NEC)光耦替代方案.

关于东芝光耦缺货型号,潮光光耦网(https://www.wendangku.net/doc/cc1199463.html,)建议各位采购和技术人员,瑞萨(原NEC)光耦替代方案 另外还有很多高速光耦型号的替代 详情登录https://www.wendangku.net/doc/cc1199463.html, 光耦器件在变频器电路中的作用 一、电路中为什么要使用光耦器件?电气隔离的要求。A与B电路之间,要进行信号的传输,但两电路之间由于供电级别. 一、电路中为什么要使用光耦器件? 电气隔离的要求。A与B电路之间,要进行信号的传输,但两电路之间由于供电级别过于悬殊,一路为数百伏,另一路为仅为几伏;两种差异巨大的供电系统,无法将电源共用;

光耦简介及常见型号

常用光耦简介及常见型号 光电耦合器(简称光耦)是开关电源电路中常用的器件。光电耦合器分为两种:一种为非线性光耦,另一种为线性光耦。 常用的4N系列光耦属于非线性光耦 常用的线性光耦是PC817A—C系列。 非线性光耦的电流传输特性曲线是非线性的,这类光耦适合于弄开关信号的传输,不适合于传输模拟量。 线性光耦的电流传输手特性曲线接进直线,并且小信号时性能较好,能以线性特性进行隔离控制。 开关电源中常用的光耦是线性光耦。如果使用非线性光耦,有可能使振荡波形变坏,严重时出现寄生振荡,使数千赫的振荡频率被数十到数百赫的低频振荡依次为号调制。由此产生的后果是对彩电,彩显,VCD,DCD等等,将在图像画面上产生干扰。同时电源带负载能力下降。 在彩电,显示器等开关电源维修中如果光耦损坏,一定要用线性光耦代换。 常用的4脚线性光耦有PC817A----C。PC111 TLP521等常用的六脚线性光耦有:TLP632 TLP532 PC614 PC714 PS2031等。 常用的4N25 4N26 4N35 4N36是不适合用于开关电源中的,因为这4种光耦均属于非线性光耦。 经查大量资料后,以下是目前市场上常见的高速光藕型号: 100K bit/S: 6N138、6N139、PS8703 1M bit/S: 6N135、6N136、CNW135、CNW136、PS8601、PS8602、PS8701、PS9613、PS9713、CNW4502、HCPL-2503、HCPL-4502、HCPL-2530(双路)、HCPL-2531(双路) 10M bit/S: 6N137、PS9614、PS9714、PS9611、PS9715、HCPL-2601、HCPL-2611、HCPL-2630(双路)、HCPL-2631(双路) 光耦合器的增益被称为晶体管输出器件的电流传输比(CTR),其定义是光电晶体管集电极电流与LED正向电流的比率(ICE/IF)。光电晶体管集电极电流与VCE有关,即集电极和发射极之间的电压。 可控硅型光耦 还有一种光耦是可控硅型光耦。 例如:moc3063、IL420; 它们的主要指标是负载能力; 例如:moc3063的负载能力是100mA;IL420是300mA; 光耦的部分型号 型号规格性能说明 4N25 晶体管输出 4N25MC 晶体管输出

电子元器件验要求与方法

电子元器件入厂检验规程 1 目的 为本公司电子元器件类进料检验提供科学、客观的方法和依据,进而不断提高产品质量。 2 适用范围 本检验规范适用于所有电子元器件原材料的检验/验收。对某些无法用定量表明的缺陷,可用供需双方制订的检验标准和封样的办法加以解决。 3 参考文件 GB/T 17215-2002 1级和2级静止式交流有功电度表。 相关电子元器件技术文件和样品。 4 缺陷类型 A类:严重缺陷(CRICITAL DEFECT,简写CRI),是指不良缺陷足使产品失去规定的主要或全部功能,或者特别情况下可能带来安全问题,或者为客户或市场拒绝接受的特别规定的缺点。 B类:主要缺陷(MAJOR DEFECT, 简写MAJ),不良缺陷足使产品失去部分功能,或者相对严重的结构及外观异常,从而显著降低产品的使用性能。 C类:次要缺陷(MINOR DEFECT,简写MIN),不良缺陷可以造成

产品部分性能偏差或一般外观缺点,虽不影响产品性能,但会使产品价值降低的缺点。 5 判定依据 取一般检验水平II,正常检验AQL:A类缺陷为0,B类缺陷为,C类缺陷为。当缺陷位于产品的LOGO、产品名称或图标的40mm内时,应重新审核决定此缺陷是否达到了影响标识、产品名称或图标的程度。在实际执行时依照检验标准的条款或参照产品的封样。 6 工作程序和要求 外观缺陷的检验方法及要求 视力:具有正常视力视力和色感。 照度:室内照明800Lux(40W日光灯)以上。 目测距离:眼睛距离15-30cm处目视,必要时以(三倍或三倍以上)放大照灯检验确认。 ESD防护:凡接触电子元器件必需配带检测合格的静电防护措施(配带干净手套与防静电手环接上静电接地线);检验前需先确认所使用工作平台清洁。 外观尺寸及尺寸的配合的检验方法 使用普通长度测量仪或各种量规(量具)进行测量。 试装配:将电子元器件与PCB等试装位置、尺寸等应配合良好,并且插入后不应占到别的元器件的位置。 检验仪器、仪表、量具的要求 所有检验仪器、仪表、量具必须在校正计量期内。 本检验规范若与其它规范文件相冲突时,依据顺序如下: 本公司所提供的技术文件等提出的特殊需求; 本检验规范; 由供应商提供的检验报告、规格书、承认书等资料;

光电耦合器的简易测试方法和使用常识

光电耦合器的简易测试方法和使用常识 简易测试方法 由于光电耦合器的组成方式不尽相同,所以在检测时应针对不同的结构特点,采取不同的检测方法。例如,在检测普通光电耦合器的输入端时,一般均参照红外发光二极管的检测方法进行。对于光敏三极管输出型的光电耦合器,检测输出端时应参照光敏三极管的检测方法进行。 1.万用表检测法。 这里以MF50型指针式万用表和4脚PC817型光电耦合器为例,说明具体检测方法:首先,按照图1(a)所示,将指针式万用表置于“R×100”(或“R×1k”)电阻挡,红、黑表笔分别接光电耦合器输入端发光二极管的两个引脚。如果有一次表针指数为无穷大,但红、黑表笔互换后有几千至十几千欧姆的电阻值,则此时黑表笔所接的引脚即为发光二极管的正极,红表笔所接的引脚为发光二极管的负极。 然后,按照图1(b)所示,在光电耦合器输入端接入正向电压,将指针式万用表仍然置于“R×100”电阻挡,红、黑表笔分别接光电耦合器输出端的两个引脚。如果有一次表针指数为无穷大(或电阻值较大),但红、黑表笔互换后却有很小的电阻值(<100Ω),则此时黑表笔所接的引脚即为内部NPN型光敏三极管的集电极c、红表笔所接的引脚为发射极e。当切断输入端正向电压时,光敏三极管应截止,万用表指数应为无穷大。这样,不仅确定了4脚光电耦合器 PC817的引脚排列,而且还检测出它的光传输特性正常。如果检测时万用表指针始终不摆动,则说明光电耦合器已损坏。

需要说明的是:光电耦合器中常用红外发光二极管的正向导通电压较普通发光二极管要低,一般在1.3V以下,所以可以用指针式万用表的“R×100”电阻挡直接测量,并且图 1(b)中的电池G电压取1.5V(用1节5号电池)即可。还可用图1(a)所示的万用表接线直接取代图1(b)所示的输入端所接正向电压(即电阻器R和电池G),使测量更方便,只不过需要增加一块万用表。 至于多通道光电耦合器的检测,应首先将所有发光二极管的管脚判别出来,然后再确定对应的光敏三极管的管脚。对于在线路的光电耦合器,最好的检测方法是“比较法”,即拆下怀疑有问题的光电耦合器,用万用表测量其内部二极管、三极管的正向和反向电阻值,并与好的同型号光电耦合器对应脚的测量值进行比较,若阻值相差较大,则说明被测光电耦合器已损坏。 2.鉴别器检测法。 笔者多年前曾根据光电耦合器的原理,设计制作了一个能够快速判断光电耦合器好坏的小巧鉴别器,其电路如图2所示。当将光电耦合器的输入、输出引脚分清极性后正确插入鉴别器的4个相应插孔内时,如果发光二极管VD1、VD2同步闪烁发光,则证明光电耦合器完好。如果VD1不闪烁发光,则说明光电耦合器内部发光管已开路;如果VD1闪烁发光,

相关文档