文档库 最新最全的文档下载
当前位置:文档库 › 量子力学第四章习题

量子力学第四章习题

量子力学第四章习题
量子力学第四章习题

4-18 如果算符βα

?,?满足下列对易规则:1????=-αββα,求证:1?????-=-n n n n βαββα(n 为正整数)。

4-19 参考矢量情况下的斯密特正交化步骤,试阐述由属于同一本征值而并一定正交的本征函数构成正交函数的方法。

4-20 有两个归一化的但不是正交的波函数1φ及2φ,?

=αφφdt 2*1(实数),10<<α,试将1φ及2φ进行叠加组成两个正交归一化的函数1ψ及2ψ。

4-21 证明一维谐振子不管处于哪一个定态,它的动量都没有确定值。

4-22 电子在原子大小范围(数量级为10-10m )内运动,试用测不准关系估计电子的最小能量。

4-23 质量为m ,速度为v ,能量为E=1/2mv 2的粒子沿x 轴方向运动,其位置测量的误差为x ?,设v x t /?=?,试由测不准关系 2

1≥???p x ,导出能量和时间的测不准关系 2

1≥???t E 4-24 求证力学量x 与F( p x )的测不准关系x

p F F x ??≥???2))()((2/122 4-25 设),(?p x F 是x ,p 的多项式,证明[]x F i F p ??-=??,? ,[]

p F i F x ??=??,? 4-26 计算:[]???????????

???????r r p r p r p r p ?,?,1,,?,?,1,?2222 。 4-27 设算符B A

?,?不可对易,[]c B A ??,?=,但C ?和A ?及B ?可对易,即[][]0?,?,0?,?==C B C A ,试计算:[][][])?(,?,,?,?,??B f A

e A B A B n λ 。其中n 为正整数,λ为参变量,

f 为任何可以表示为正幂级数的函数。 4-28 设算符B A ?,?不可对易,[]

c B A ??,?=但C ?和A ?及B ?可对易,即[][]0?,?,0?,?==C B C A ,试证Glauber 公式:C A B C B A B A e e e e e e e ?

2/1???2/1????==-+ 。 4-29 证明:[][][][][][]

++++=-A B B B A B B A B A e A e B B ?,?,??!31?,?,?!21?,????? (提示:考虑B B e A

e f ???)(λλλ-=按λ展开,然后令=1) 4-30 设B A ?,?与[]B A ?,?对易,证明[][]B A B n B A n n ?,???,?1-= , [][]

B A A n B A n n ?,???,?1-=

4-31 设B A ?,?与[]

B A ?,?对易,证明[]B A B A B A e e e ?,?21????++= (提示:考虑[]

f B A d df 证明e e e f B A B A ?,?)()??(??λλλλλλ==+- ,然后积分) 4-32 证明下列几个关于厄米算符的定理:(1)在任何定态下,厄米算符的平均值都是实数。

(2)在任何态下。平均值均为实数的算符必为厄米算符。

4-33 证明几个关于一维定态薛定谔方程的定理:(1)对于一维定态薛定谔方程,如果1ψ和

2ψ是属于同一个本征值E 的两个独立的解,则C x x x x ='')()(-)()(122

1ψψψψ(常数)。 (2)对于一维束缚态,所有能级都是非简并的。 (3)对于一维定态问题,如果U(x)为x 的偶函数,则任何一个束缚态)(x E ψ都有一定的宇称性。

4-34 用测不准关系估计原子核中核子(质子和中子)的动能的数量级。曾经设想电子也是原子核的构成单元之一,试利用测不准关系判断这个设想是否正确。

4-35 对于H ?的任何一个本征束缚态n

n E ,ψ,证明公式λ

λ??=??n E H ,其中λ为包含在H ?中的任何一个常数(,m , 等等)。 4-36 对于一维谐振子,证明m

p U 22

= 4-37 质量为m 的粒子在中心势场0

ln )(r r c r U =中运动,证明:(1)对所有的束缚态2ν相同,并求出2

ν。 (2)任何两个能级的间隔与质量m 无关。 4-38 给定z

L A m p H ?2/??2+=,下列力学量中哪些是守恒量?z y x L L L L p p p p H z

y x z y x ,,,?,?,?,?,?,?,?,?,?22 4-39 证明定理:设体系有两个守恒量B A

?,?,但[]0?,?≠B A ,则一般说来,体系的能级是简并的。

4-40 在一维无限深势阱中,已知阱宽为a ,试用测不准关系估算零点能。

量子力学作业习题

第一章量子力学作业习题 [1] 在宏观世界里,量子现象常常可以忽略.对下列诸情况,在数值上加以证明: ( l )长l=lm ,质量M=1kg 的单摆的零点振荡的振幅; ( 2 )质量M=5g ,以速度10cm/s 向一刚性障碍物(高5cm ,宽1cm )运动的子弹的透射率; ( 3 )质量M= 0.1kg ,以速度0.5m/s 运动的钢球被尺寸为1×1.5m2时的窗子所衍射. [2] 用h,e,c,m(电子质量), M (质子质量)表示下列每个量,给出粗略的数值估计: ( 1 )玻尔半径(cm ) ; ( 2 )氢原子结合能(eV ) ; ( 3 )玻尔磁子;( 4 )电子的康普顿波长(cm ) ; ( 5 ) 经典电子半径(cm ) ; ( 6 )电子静止能量(MeV ) ; ( 7 )质子静止能量( MeV ) ; ( 8 )精细结构常数;( 9 )典型的氢原子精细结构分裂 [3]导出、估计、猜测或背出下列数值,精确到一个数量级范围内, ( 1 )电子的汤姆逊截面;( 2 )氢原子的电离能;( 3 )氢原子中基态能级的超精细分裂能量;( 4 )37Li ( z=3 )核的磁偶极矩;( 5 )质子和中子质量差;( 6 )4He 核的束缚能;( 7 )最大稳定核的半径;( 8 )Π0 介子的寿命;( 9 )Π-介子的寿命;( 10 )自由中子的寿命. [4]指出下列实验中,哪些实验表明了辐射场的粒子性?哪些实验主要证明能量交换的量子性?哪些实验主要表明物质粒子的波动性?简述理由. ( 1 )光电效应;( 2 )黑体辐射谱;( 3 ) Franck – Hertz实验;( 4 ) Davisson -Ger - mer 实验;散射. [5]考虑如下实验:一束电子射向刻有A 、B 两缝的平板,板外是一装有检测器阵列的屏幕,利用检测器 能定出电子撞击屏幕的位置.在下列各种情形下,画出入射电子强度随屏幕位置变化的草图,给出简单解释. ( 1 ) A 缝开启,B缝关闭; ( 2 ) B 缝开启,A 缝关闭; ( 3 )两缝均开启. [6]验算三个系数数值:(1 2 ;(3)hc

量子力学教程课后习题答案

量子力学习题及解答 第一章 量子理论基础 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 1 833 -? =πρ, (1) 以及 c v =λ, (2) λρρd dv v v -=, (3) 有 ,1 18)()(5-?=?=?? ? ??-=-=kT hc v v e hc c d c d d dv λλλ πλλρλλ λρλρ ρ 这里的λρ的物理意义是黑体波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下: 011511 86 ' =???? ? ?? -?+--?= -kT hc kT hc e kT hc e hc λλλλλ πρ

? 0115=-?+ -- kT hc e kT hc λλ ? kT hc e kT hc λλ= -- )1(5 如果令x= kT hc λ ,则上述方程为 x e x =--)1(5 这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有 xk hc T m =λ 把x 以及三个物理常量代入到上式便知 K m T m ??=-3109.2λ 这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。 1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。 解 根据德布罗意波粒二象性的关系,可知 E=h v , λ h P = 如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么 e p E μ22 = 如果我们考察的是相对性的光子,那么 E=pc 注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0?,因此利用非相对论性的电子的能量——动量关系式,这样,便有 p h = λ

周世勋量子力学习题解答第三章

第三章习题解答 3.1 一维谐振子处在基态t i x e x ωαπ αψ2 2 22)(-- =,求: (1)势能的平均值222 1 x U μω= ; (2)动能的平均值μ 22 p T =; (3)动量的几率分布函数。 解:(1) ? ∞ ∞ --==dx e x x U x 2 2 22 222121α πα μωμω μωμωαμωα παπαμω ?==?= 2 2 222241212121221 ω 41= ?∞+--????=0122)12(5312a a n dx e x n n ax n π (2) ?∞∞-==dx x p x p T )(?)(2122*2ψψμμ ?∞∞ ----=dx e dx d e x x 2 22 221 22 221)(21ααμπα ?∞ ∞ ---=dx e x x 2 2)1(22222αααμ πα ][22 22 222 22??∞∞ --∞∞---=dx e x dx e x x ααααμ πα ]2[23222απ ααπαμ πα?-= μω μαμαπαμ πα? ===442222222 ω 4 1 = 或 ωωω 4 14121=-= -=U E T (3) ?=dx x x p c p )() ()(*ψψ 21 2 2 21 ?∞ ∞ ---=dx e e Px i x απ απ ? ∞ ∞ ---= dx e e Px i x 222 1 21απ απ

? ∞ ∞--+-=dx e p ip x 2222222)(21 21 αααπ απ ? ∞ ∞ -+-- =dx e e ip x p 2222 22)(212 21 αααπ απ πα π α πα2 212 222 p e - = 2 2221 απ αp e - = 动量几率分布函数为 2 22 1 )()(2 απ αωp e p c p - == # 3.2.氢原子处在基态0/30 1 ),,(a r e a r -=π?θψ,求: (1)r 的平均值; (2)势能r e 2 -的平均值; (3)最可几半径; (4)动能的平均值; (5)动量的几率分布函数。 解:(1)?θθπτ?θψππd rd d r re a d r r r a r sin 1),,(0 220 /230 2 0??? ?∞ -= = ?∞-=0/233004dr a r a a r ?∞+-=01! n ax n a n dx e x 04 03 023 2!34a a a =??? ? ??= 22 03020 /23 20 20 /23 2 20 2/23 2 2214 4 sin sin 1)()2(0 00a e a a e dr r e a e d drd r e a e d drd r e r a e r e U a r a r a r -=??? ? ??-=-=-=-=-=? ??? ??? ∞ -∞ -∞ -ππππ?θθπ?θθπ

量子力学习题答案

量子力学习题答案 1.2 在0k 附近,钠的价电子能量约为3eV ,求其德布罗意波长。 解:由德布罗意波粒二象性的关系知: E h =ν; p h /=λ 由于所考虑的电子是非相对论的电子(26k e E (3eV)c (0.5110)-μ?) ,故: 2e E P /(2)=μ 69h /p h /hc /1.2410/0.7110m 0.71nm --λ====?=?= 1.3氦原子的动能是E=1.5kT ,求T=1K 时,氦原子的德布罗意波长。 解:对于氦原子而言,当K 1=T 时,其能量为 J 102.07K 1K J 10381.12 3 2323123---?=????== kT E 于是有 一维谐振子处于22 /2 ()x x Ae αψ-=状态中,其中α为实常数,求: 1.归一化系数; 2.动能平均值。 (22 x e dx /∞-α-∞ = α?) 解:1.由归一化条件可知:

22 *2x (x)(x)dx A e dx1 A/1 ∞∞ -α -∞-∞ ψψ== =α= ?? 取相因子为零,则归一化系数1/21/4 A/ =απ 2. 2222 2222 2222 2222 22 2 *2x/2x/2 22 2x/2x/2 2 2x/22x/2 22 22x2x/2 22 242x2 T(x)T(x)dx A e(P/2)e dx d A e()e dx 2dx d A e(xe)dx 2dx A{xe(xe)dx} 2 A x e dx A 22 ∞∞ -α-α -∞-∞ ∞ -α-α -∞ ∞ -α-α -∞ ∞∞ -α-α -∞ -∞ ∞ -α -∞ =ψψ=μ =- μ =--α μ =--α--α μ =α= μμ ?? ? ? ? ? =()== 22 2222 4x 2 2 24x x 2 22 222 24 2 1 ()xd(e) 2 1 A(){xe e dx} 22 1A A() 24 2 ∞ -α -∞ ∞∞ -α-α -∞ -∞ α- α =α--- μα ππαα α-- μμ α ? ? 若α,则该态为谐振子的基态,T 4 ω = 解法二:对于求力学量在某一体系能量本征态下的平均值问题,用F-H定理是非常方便的。 一维谐振子的哈密顿量为: 22 22 d 1 H x 2dx2 =-+μω μ 它的基态能量 1 E 2 =ω选择为参量,则:

量子力学习题汇集

第一章习题 1.证明下列算符等式 [][][][][][][][][][][][][][][]0 ,,,,,,,,,,,,,,,=+++=+=+=+B A C A C B C B A B C A C B A C AB C B A C A B BC A C A B A C B A 2.设粒子波函数为),,(z y x ψ,求在()dx x x +, 范围内找到粒子的几率. 3.在球坐标中,粒子波函数为()??ψ,,r ,试求: 1)在球壳(r,r+dr)中找到粒子的几率; 2)在()??,方向的立体角Ωd 中找到粒子的几率. 4.已知力学量F 的本征方程为 n n n F ?λ?= 求在状态波函数 332211???ψc c c ++= 下测力学量F 的可能值,相应的几率及平均值(假设波函数ψ已归一或不归一的情况). 第二章习题 1.一粒子在二维势场

???∞=,,0),(y x V 其它b y a x <<<<0,0 中运动,求粒子的能级和波函数.能级是否简并 2.由哈密顿算符 () 2232 22221222 2z y x m m H ωωω+++?-=η 所描述的体系,称各向异性谐振子.求其本征态和本征值. 3.利用递推关系 ??? ? ??--=+-1121 2)(n n n n n x dx d ψψαψ 证明 ( ) 222 22)2)(1()12()1(2 +-++++--=n n n n n n n n n dx d ψψψαψ 并由此证明在n ψ态下 2 ,0n E T P = = 第 四 章 习 题 1. 证明 )cos sin (cos ???i A +=ψ 为2L 和y L 的共同本征态,并求相应的本征值。说明当体系处在此状态时, z L 没有确定值。

量子力学习题集及解答

量子力学习题集及解答

目录 第一章量子理论基础 (1) 第二章波函数和薛定谔方程 (5) 第三章力学量的算符表示 (28) 第四章表象理论 (48) 第五章近似方法 (60) 第六章碰撞理论 (94) 第七章自旋和角动量 (102) 第八章多体问题 (116) 第九章相对论波动方程 (128)

第一章 量子理论基础 1.设一电子为电势差V 所加速,最后打在靶上,若电子的动能转化为一个光子,求当这光子相应的光波波长分别为5000 A (可见光),1 A (x 射线)以及0.001 A (γ射线)时,加速电子所需的电势差是多少? [解] 电子在电势差V 加速下,得到的能量是eV m =22 1 υ这个能量全部转化为一个光子的能量,即 λ νυhc h eV m ===221 ) (1024.1106.11031063.64 19834 A e hc V λλλ?=?????==∴--(伏) 当 A 50001=λ时, 48.21=V (伏) A 12=λ时 421024.1?=V (伏) A 001.03=λ时 731024.1?=V (伏) 2.利用普朗克的能量分布函数证明辐射的总能量和绝对温度的四次方成正比,并求比例系数。 [解] 普朗克公式为 1 8/33-?=kT hv v e dv c hv d πνρ 单位体积辐射的总能量为 ? ?∞∞-==0 0/331 3T hv v e dv v c h dv U κπρ 令kT hv y = ,则 4 40333418T T e dy y c h k U y σπ=? ??? ??-=?∞ (★) 其中 ?∞-=033341 8y e dy y c h k πσ (★★) (★)式表明,辐射的总能量U 和绝对温度T 的四次方成正比。这个公式就是斯忒蕃——玻耳兹曼公式。其中σ是比例常数,可求出如下: 因为 )1()1(1 121 +++=-=-------y y y y y y e e e e e e

量子力学习题集及答案

09光信息量子力学习题集 一、填空题 1. 设电子能量为4电子伏,其德布罗意波长为( 6.125ο A )。 2. 索末菲的量子化条件为=nh pdq ),应用这量子化条件求得一维谐振 子的能级=n E ( ηωn )。 3. 德布罗意假说的正确性,在1927年为戴维孙和革末所做的( 电 )子衍 射实验所证实,德布罗意关系(公式)为( ηω=E )和( k p ρηρ = )。 4. 三维空间自由粒子的归一化波函数为()r p ρ ρψ=( r p i e ρ ρη η?2 /3) 2(1π ), () ()=? +∞ ∞ -*'τψψd r r p p ρρρρ( )(p p ρ ρ-'δ )。 5. 动量算符的归一化本征态=)(r p ρ ρψ( r p i e ρ ρηη?2/3)2(1π ),=' ∞ ?τψψd r r p p )()(*ρρρρ( )(p p ρ ρ-'δ )。 6. t=0时体系的状态为()()()x x x 2020,ψψψ+=,其中()x n ψ为一维线性谐振子的定态波函数,则()=t x ,ψ( t i t i e x e x ωωψψ2 522 0)(2)(--+ )。 7. 按照量子力学理论,微观粒子的几率密度w =2 ),几率流密度= ( () ** 2ψ?ψ-ψ?ψμ ηi )。 8. 设)(r ρψ描写粒子的状态,2)(r ρψ是( 粒子的几率密度 ),在)(r ρψ中F ?的平均值为F =( ??dx dx F ψψψψ* *? ) 。 9. 波函数ψ和ψc 是描写( 同一 )状态,δψi e 中的δi e 称为( 相因子 ), δi e 不影响波函数ψ1=δi )。 10. 定态是指( 能量具有确定值 )的状态,束缚态是指(无穷远处波函数为 零)的状态。 11. )i exp()()i exp()(),(2211t E x t E x t x η η-+-=ψψψ是定态的条件是 ( 21E E = ),这时几率密度和( 几率密度 )都与时间无关。 12. ( 粒子在能量小于势垒高度时仍能贯穿势垒的现象 )称为隧道效应。 13. ( 无穷远处波函数为零 )的状态称为束缚态,其能量一般为( 分立 )谱。 14. 3.t=0时体系的状态为()()()x x x 300,ψψψ+=,其中()x n ψ为一维线性谐振子的定态波函数,则()=t x ,ψ( t i t i e x e x ωωψψ2 732 0)()(--+ )。 15. 粒子处在a x ≤≤0的一维无限深势阱中,第一激发态的能量为

量子力学 第四版 卷一 (曾谨言 著) 科学出版社第7章

第七章:粒子在电磁场中的运动 P367——7.1,7.2 证明在磁场B 中,带电粒子的速度算符的各分量,满足下述的对易关系: [] z y x c q i v v B ?,2μ = (1) [] x z y c q i v v B ?,2μ = (2) []y x z c q i v v B ? ,2 μ = (3) [证明]根据正则方程组: x x p H x v ??== ? ,Φ+?? ? ??-=q A c q p H 2 21? μ ? ? ? ?? -=x x x A c q p v ??1?μ 同理 ? ? ? ? ?-=y y y A c q p v ??1?μ ()z y x p p p p ?,?,?? 是正则动量,不等于机械动量,将所得结果代入(1)的等号左方: [] ? ? ????--=y y x x y x A c q p A c q p v v ??,??1,2μ ] [] y x A A c q ?,?2 2 μ+ (4) [] 0?,?=y x p p 又A ? [] z x y y x B c y x i c v v 22 ,μμ = ??? ??-?? = (因A B ??=??) 其余二式依轮换对称写出。 P368证明在规范变换下 ψψρ* = (1) [ ]ψψμψψψψμ * * *- -=A c q p p j ??21 (2)

??? ? ?-=A c q p v ?μ (机械动量的平均值)都不变 (3) (证明)如课本证明,要规范变换下,若将体系的波函数作以下变换(P368 20式) ψψc iqf e → (4) 则薛定谔方程形式不变,将(4)代入(1)式等号右方,设变换后几率密度: ρ ρψ ψψψψψ ρ='=?=??? ? ? ???? ? ? ?='* * -* c iqf c iqf c iqf c iqf e e e e 又设变换后几率流密度是j ',将(4)代入(2)式右方,同时又代入 ()t r f A A , ?+→ ψψψψμc iqf c iqf c iqf c iqf e P e e p e j * - * -????? ?-='21 (5) 注意到算符的对易关系 推广到三维:() )(F )(F ,?r i r p ??=? 6) 令c iqf e r =)(F 则有: c iqf e p -=e p c iqf (7) =-e p c iqf (8) 将(7)(5)式成为: ()() j A c q p p f A c q f c q p e e f c q p e e j c iqf c iqf c iqf c iqf =--=?+-????????? ???--??? ???+=* ***-*-ψψμψψψψμψψμψψψψμ2121 (9) 在证明第3式时,设变换后的v 是v ' 。写出右方平均值的显式,用(4)的波数变换,和)4('的矢势的变换式:

苏汝铿量子力学习题答案第二章2.16-2.18

14QM-2.16设氢原子处在基态,求: (1) 它在动量表象中的表达式; (2) x p 和2 x p 的平均值; (3) x 和2x 的平均值; 解:氢原子基态波函数为 120121 (,,)r a r e a φθ?π-= 22h a e μ= 而动量p 本征函数为 2./3/2 1()(2)p r p r e φπ=v v h v v h 所以它在动量表象中的表达式为 2cos //223/200011()()1/21/20 1/23/222 3222 1()sin (2)[]2()111[]11(2)()()2(/)ipr a r a ip ip r r a a p e e r d d dr a e e rdr a ip ip ip i p a a a a p a πφθθ?ππππ∞-----+∞==-=--+=+????h h h h h h h g g h h h h h 于是 |()|0 x x x y z p p p dp d p dp φ∞-∞==? 由于被积函数对x p 是奇函数 22222542250004 2 2 2|()|1|()|3 8sin 3()3x x x y z x y z p p p dp d p dp p p dp d p dp p dp d d a p a a ππφφθ?π∞-∞∞-∞∞== =+=?????h h h

而223223243532 113434()4!32 r a r a r a x e x dxdydz a e r dxdydz a e r dr a a a a ππ ---====?=???g 2==>h 14QM-2.17利用氢原子的能谱公式,写出: (1)电子偶素,即e e +--形成的束缚态的能级; (2)以μ-子代表核外电子所形成的μ原子的能级; (3)μ+和e - 形成的束缚态能级。 解:氢原子束缚态的能级公式为: 42 22 (2)(1,2,3,)2n me E n h n π=-= (1) 对于电子偶素来说,束缚态的能级为: 42422222(2)(2)(1,2,3,)24e n m e e E n h n h n πμπ=-=-= 其中μ为系统折合质量,e m 为电子质量。 (2)对于μ原子来说,束缚态的能级为: 42422222(2)207(2)(1,2,3,)22e n m e m e E n h n h n μππ=- =-= 其中m μ为μ原子质量,e m 为电子质量。 (3)μ+和e - 形成的束缚态能级为: 4222(2)(1,2,3,)2e n m e E n h n π=-= 其中e m 为电子质量。 14QM-2.18 设势场为2()(,0)a A U r a A r r =-+>,求粒子的能量本征值。

量子力学(周世勋)课后答案-第七章

7.1.证明:i z y x =σσσ ??? 证:由对易关系 z x y y x i σσσσσ ?2????=- 及 反对易关系 0????=+x y y x σσσσ , 得 z y x i σσσ ???= 上式两边乘z σ ?,得 2????z z y x i σσσσ= ∵ 1?2=z σ ∴ i z y x =σσσ ??? 7.2 求在自旋态)(2 1z S χ中,x S ?和y S ?的测不准关系: ?)()(22=y x S S ?? 解:在z S ?表象中)(2 1z S χ、x S ?、y S ?的矩阵表示分别为 ???? ??=01)(21z S χ ???? ??=01102? x S ???? ??-=002?i i S y ∴ 在)(2 1z S χ态中 00101102)0 1(2121=??? ? ?????? ??==+ χχx x S S 4010110201102)0 1(?2 22 2 121 =???? ?????? ?????? ??==+ χχx x S S 4 )(22 22 =-=?x x x S S S 001002)0 1(?212 1=??? ? ?????? ??-==+i i S S y y χχ 401002002)0 1(?222 2 121 =??? ? ?????? ??-???? ??-==+ i i i i S S y y χχ 4 )(22 22 =-=?y y y S S S

16 )()(4 2 2 =??y x S S ① 讨论:由x S ?、y S ?的对易关系 [x S ?,y S ?]z S i ? = 要求 4 )()(2 2 2 2z y x S S S ≥?? 在)(2 1z S χ态中,2 = z S ∴ 16 )()(4 2 2 ≥y x S S ?? 可见①式符合上式的要求。 7.3.求??? ? ??--=???? ??=002?01102?i i S S y x 及的本征值和所属的本征函数。 解:x S ?的本征方程为01102a a b b λ??????= ??? ? ?????? 移项得: 20 2 a b λ λ? ? - ???= ? ? ???- ??? x S ?的久期方程为 02 2=--λ λ 可得 20)2(22 ±=?=-λλ ∴ x S ?的本征值为2 ±。 设对应于本征值2 的本征函数为 ???? ??=112/1b a χ 由本征方程 2 /12/12 ?χχ =x S ,得

量子力学习题答案

量子力学习题答案

2.1 如图所示 左右 0 x 设粒子的能量为,下面就和两种情况来讨论 (一)的情形 此时,粒子的波函数所满足的定态薛定谔方程为 其中 其解分别为 (1)粒子从左向右运动 右边只有透射波无反射波,所以为零 由波函数的连续性 得 得 解得 由概率流密度公式 入射 反射系数 透射系数 (2)粒子从右向左运动 左边只有透射波无反射波,所以为零 同理可得两个方程 解 反射系数 透射系数 (二)的情形 令,不变 此时,粒子的波函数所满足的定态薛定谔方程为 其解分别为

由在右边波函数的有界性得为零 (1)粒子从左向右运动 得 得 解得 入射 反射系数 透射系数 (2)粒子从右向左运动 左边只有透射波无反射波,所以为零 同理可得方程 由于全部透射过去,所以 反射系数 透射系数 2.2 如图所示 E 0 x 在有隧穿效应,粒子穿过垒厚为的方势垒的透射系数为 总透射系数 2.3 以势阱底为零势能参考点,如图所示 (1) ∞∞ 左中右 0 a x 显然 时只有中间有值 在中间区域所满足的定态薛定谔方程为 其解是 由波函数连续性条件得

∴ ∴ 相应的 因为正负号不影响其幅度特性可直接写成由波函数归一化条件得 所以波函数 (2) ∞∞ 左 中右 0 x 显然 时只有中间有值 在中间区域所满足的定态薛定谔方程为 其解是 由波函数连续性条件得 当,为任意整数, 则 当,为任意整数, 则 综合得 ∴ 当时,, 波函数 归一化后 当时,, 波函数 归一化后 2.4 如图所示∞ 左右 0 a 显然 在中间和右边粒子的波函数所满足的定态薛定谔方程为 其中

曾谨言《量子力学教程》(第3版)配套题库【课后习题-量子跃迁】

第11章量子跃迁 11.1 荷电q的离子在平衡位置附近作小振动(简谐振动),受到光照射而发生跃迁,设照射光的能量密度为ρ(w),波长较长.求: (a)跃迁选择定则; (b)设离子原来处于基态,求每秒跃迁到第一激发态的概率. 解:(a)具有电荷为q的离子,在波长较长的光的照射下,从n→n'的跃迁速率为 而根据谐振子波函数的递推关系(见习题2.7) 可知跃迁选择定则为 (b)设初态为谐振子基态(n=0),利用 可求出 而每秒钟跃迁到第一激发态的概率为 11.2 氢原子处于基态,受到脉冲电场的作用.试用微扰论计算它跃迁到各激发态的概率以及仍然处于基态的概率(取E0沿z轴方向来计算).

【解答与分析见《量子力学习题精选与剖析》[上],10.2题,l0.3题】 10.2 氢原子处于基态,受到脉冲电场 作用,为常数.试用微扰论计算电子跃迁到各激发态的概率以及仍停留在基态的概率.解:自由氢原子的Hamilton量记为H0,能级记为E n,能量本征态记为代表nlm 三个量子数),满足本征方程 如以电场方向作为Z轴,微扰作用势可以表示成 在电场作用过程中,波函数满足Schr6dinger方程 初始条件为 令 初始条件(5)亦即 以式(6)代入式(4),但微扰项(这是微扰论的实质性要点!)即得 以左乘上式两端,并对全空间积分,即得 再对t积分,由即得

因此t>0时(即脉冲电场作用后)电子已经跃迁到态的概率为 根据选择定则终态量子数必须是 即电子只跃迁到各np态(z=1),而且磁量子数m=0. 跃迁到各激发态的概率总和为 其中 a o为Bohr半径.代入式(9)即得 电场作用后电子仍留在基态的概率为 10.3 氢原子处于基态,受到脉冲电场作用,为常数.求作用后(t >0)发现氢原子仍处于基态的概率(精确解). 解:基态是球对称的,所求概率显然和电场方向无关,也和自旋无关.以方向作z 轴,电场对原子的作用能可以表示成

量子力学习题解答-第2章

第二章 定态薛定谔方程 本章主要内容概要: 1. 定态薛定谔方程与定态的性质: 在势能不显含时间的情况下,含时薛定谔方程可以通过分离变量法来求解。首先求解定态薛定谔方程(能量本征值方程) 222.2d V E m dx ψ ψψ-+= 求解时需考虑波函数的标准条件(连续、有限、单值等)。能量本征函数n ψ具有正交归一性(分立谱) *()()m n mn x x dx ψψδ∞ -∞ =? 或δ函数正交归一性(连续谱) ' *'()()()q q x x dx q q ψψδ∞ -∞ =-? 由能量本征函数n ψ可以得到定态波函数 /(,)()n iE t n n x t x e ψ-ψ= 定态波函数满足含时薛定谔方程。 对分立谱,定态是物理上可实现的态,粒子处在定态时,能量具有确定值n E ,其它力学量(不显含时间)的期待值不随时间变化。对连续谱,定态不是物理上可实现的态(不可 归一化),但是它们可以叠加成物理上可实现的态。 含时薛定谔方程的一般解可由定态解叠加而成,在分离谱情况下为 (,)(,)n n n x t c x t ψ=ψ∑ 系数n c 由初始波函数确定 (,0)()n n n x c x ψψ=∑ , * ()( ,0)n n c x x dx ψ∞ -∞ =ψ? 由波函数(,)x t ψ的归一性,可以得到系数n c 的归一性 2 1n n c =∑ 对(,)x t ψ态测量能量只能得到能量本征值,得到n E 的几率是2 n c ,能量的期待值可由 2 n n n H c E =∑ 求出。这种方法与用

*? (,)(,) H x t H x t dx ∞ -∞ =ψψ ? 方法等价。 2. 一维典型例子: (a)一维无限深势阱(分立谱,束缚态) 0,0 () , x a V x << ? =? ∞ ?其它地方 能量本征函数和能量本征值为 222 2 (), 0;1,2,3,... 2 n n n x x x a n a n E ma π ψ π ?? =<<= ? ?? = 若 0, () , a x a V x -<< ? =? ∞ ?其它地方 则能量本征函数和能量本征值为 222 2 ()s i n(),;1,2,3,... 2 2(2) n n n x x a a x a n a n E m a π ψ π ?? =+-<<= ? ?? = 1 n=是基态(能量最低),2 n=是第一激发态。波函数相对于势阱的中心是奇偶交替 的: 1 ψ是偶函数, 2 ψ是奇函数, 3 ψ是偶函数,依次类推。 (b)一维简谐振子(分立谱,束缚态): 22 1 (), 2 V x m x x ω =-∞<<∞ 能量本征函数和能量本征值为 2 1/4 /2 ()(), ; 1 , 1,2,3,... 2 n n n m x H e E n n ξ ω ψξξ π ω - ?? =≡ ? ?? ?? =+= ? ?? 其中() n Hξ厄米多项式,可由母函数 2 eξ-生成 22 ()(1) n n n d H e e d ξξ ξ ξ - ?? =- ? ??

量子力学课后习题答案

第一章 绪论 1.1.由黑体辐射公式导出维恩位移定律:C m b b T m 0 3109.2 ,??==-λ。 证明:由普朗克黑体辐射公式: ννπνρννd e c h d kT h 1 1 83 3 -= , 及λ νc = 、λλ νd c d 2 - =得 1 185 -= kT hc e hc λλλπρ, 令kT hc x λ= ,再由0=λρλd d ,得λ.所满足的超越方程为 1 5-=x x e xe 用图解法求得97.4=x ,即得 97.4=kT hc m λ,将数据代入求得C m 109.2 ,03??==-b b T m λ 1.2.在0K 附近,钠的价电子能量约为3eV,求de Broglie 波长. 解:010 A 7.09m 1009.72=?≈= =-mE h p h λ # 1.3. 氦原子的动能为kT E 2 3 = ,求K T 1=时氦原子的de Broglie 波长。 解:010 A 63.12m 1063.1232=?≈== =-mkT h mE h p h λ 其中kg 1066.1003.427-??=m ,1 23K J 1038.1--??=k # 1.4利用玻尔—索末菲量子化条件,求: (1)一维谐振子的能量。 (2)在均匀磁场中作圆周运动的电子的轨道半径。 已知外磁场T 10=B ,玻尔磁子123 T J 10 923.0--??=B μ,求动能的量子化间隔E ?,并与K 4=T 及 K 100=T 的热运动能量相比较。 解:(1)方法1:谐振子的能量2222 1 2q p E μωμ+= 可以化为 ( ) 1222 222 2=??? ? ??+ μωμE q E p 的平面运动,轨道为椭圆,两半轴分别为2 2,2μω μE b E a = =,相空间面积为 ,2,1,0,2=== = =?n nh E E ab pdq ν ω ππ 所以,能量 ,2,1,0,==n nh E ν 方法2:一维谐振子的运动方程为02 =+''q q ω,其解为 ()?ω+=t A q sin 速度为 ( )?ωω+='t A q c o s ,动量为()?ωμωμ+='=t A q p cos ,则相积分为

周世勋量子力学第二章知识题

第二章 波函数和薛定谔方程 2.1. 证明在定态中,几率流密度与时间无关. 解: 几率流密度公式为 ()**2J i ψψψψμ = ?-? 而定态波函数的一般形式为 ()(),i Et t e ψψ-=r r 将上式代入前式中得: ()()()()** 2J r r r r i ψψψψμ??= ?-?? ? 显然是这个J 与时间无关. 2.2. 由下列两定态波函数计算几率流密度; (1) ,e r ikr 11= ψ (2) ikr e r -=1 2ψ 从所得结果说明1ψ表示向外传播的球面波,2ψ表示向内(即向原点)传播的球面波. 解: 在球坐标中,梯度算符为 1ψ和2ψ只是r 的函数,与?θ,无关,所以 , ()* *1 1211e e e ikr r r r e r ik ik r r r r ψψψ-???? ??==-+=-+ ? ????? ? ()*222111e e e ikr r r r e r ik ik r r r r ψψψψ-???? ??==-+=-+=? ? ????? ? ()()**2 21111ikr r r r e r ik ik r r r r r ψψψψ???? ??==-=-=? ? ????? ?e e e 将以上四式代入 ()()()()** 2J r r r r i ψψψψμ ??=?-??? (1) 对于ikr e r 11=ψ 12222 111122r r r i k p ik r r r r μμμμ??=-===????p J e e e (2) 对于ikr e r -=12ψ

212222 1111 22r r r i k p ik r r r r μμμμ??= =-=-=-=-???? p J e e e J 计算的结果已经很清楚ikr e r 11=ψ这样的球面波,是沿r e 方向传播的波, 121p J e r r μ=.而球面 波ikr e r -= 12ψ传播方向与1ψ相反,即21J J =- 2.3. 一粒子在一维势场 ()?? ? ??>∞≤≤<∞=a x a x x x U 00 中运动,求粒子的能级和对应的波函数. 解: 从定态薛定谔方程 02222=+ψμψ E dx d 即 02 =+''ψψk ()2 0k E = > 可知,其解为 ikx ikx Be Ae -+=ψ 在0≤x 和a x ≥处,波函数为 0)(=x ψ, 在a x ≤≤0处, 波函数为 ikx ikx Be Ae -+=ψ 从()00=ψ得 0=+B A 即 B A -= 因此有 () 2sin sin ikx ikx A e e iA kx C kx ψ-=-== 从()0=a ψ得 sin 0ka = 即要求 321,,n n ka ==π 所以 sin 1,2,3n n C x n a π ψ== 2 2 222a n E n μπ = 归一化条件 1*=?dx ψψ可得 a C 2 = ()()2222 11sin 1cos 2,cos 1cos 222αααα ??=-=+???? 所以 1,2,30n n x n x a a πψ= =≤≤ 综合得: 000n n x x a a x x a πψ≤≤=<>? 或 2.4. 证明()sin 20n n A x a x a a x a π ψ?'+

第七章习题

第七章习题 1. 有一平凹氦氖激光器,腔长m 5.0,凹镜曲率半径为m 2,现欲用小孔光阑选出 00TEM 模,试求光阑放于紧靠平面镜和紧靠凹面镜处两种情况下小孔直径各为多少?(对于氦氖激光器,当小孔光阑的直径约等于基模半径的3.3倍时,可选出基横模。) 解:由R L g -=1,可计算出75.01=g ,0.12=g ,满足1021

量子力学教程周世勋_课后答案

量子力学课后习题详解 第一章 量子理论基础 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 183 3 -?=πρ, (1) 以及 c v =λ, (2) λρρd dv v v -=, (3) 有 ,1 18)() (5 -?=?=?? ? ??-=-=kT hc v v e hc c d c d d dv λλλ πλλρλ λλρλ ρ ρ 这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下: 011511 86 '=???? ? ?? -?+--?= -kT hc kT hc e kT hc e hc λλλλλπρ

? 0115=-?+ -- kT hc e kT hc λλ ? kT hc e kT hc λλ= -- )1(5 如果令x= kT hc λ ,则上述方程为 x e x =--)1(5 这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=,经过验证,此解正是所要求的,这样则有 xk hc T m = λ 把x 以及三个物理常量代入到上式便知 K m T m ??=-3109.2λ 这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。 1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。 解 根据德布罗意波粒二象性的关系,可知 E=hv , λ h P = 如果所考虑的粒子是非相对论性的电子(2 c E e μ<<动),那么 e p E μ22 = 如果我们考察的是相对性的光子,那么 E=pc 注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 6 1051.0?,因此利用非相对论性的电子的能量——动量关系式,这样,便有 p h = λ

量子力学教程课后习题答案高等教育

量子力学习题及解答 第一章 量子理论基础 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b (常量) ; 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 1 833 -? =πρ, (1) 以及 c v =λ, (2) λρρd dv v v -=, (3) 有 ,1 18)() (5-?=?=?? ? ??-=-=kT hc v v e hc c d c d d dv λλλ πλλρλλλρλρ ρ 这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下: 011511 86 ' =???? ? ?? -?+--?= -kT hc kT hc e kT hc e hc λλλλλ πρ

? 0115=-?+ --kT hc e kT hc λλ ? kT hc e kT hc λλ= -- )1(5 如果令x= kT hc λ ,则上述方程为 x e x =--)1(5 这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有 xk hc T m =λ 把x 以及三个物理常量代入到上式便知 K m T m ??=-3109.2λ 这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。 1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。 解 根据德布罗意波粒二象性的关系,可知 E=hv , λh P = 如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么 e p E μ22 = 如果我们考察的是相对性的光子,那么 E=pc 注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0?,因此利用非相对论性的电子的能量——动量关系式,这样,便有 p h = λ

相关文档